1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/log2.h>
26 #include "transaction.h"
27 #include "btrfs_inode.h"
29 #include "ordered-data.h"
30 #include "compression.h"
31 #include "extent_io.h"
32 #include "extent_map.h"
34 static const char* const btrfs_compress_types
[] = { "", "zlib", "lzo", "zstd" };
36 const char* btrfs_compress_type2str(enum btrfs_compression_type type
)
39 case BTRFS_COMPRESS_ZLIB
:
40 case BTRFS_COMPRESS_LZO
:
41 case BTRFS_COMPRESS_ZSTD
:
42 case BTRFS_COMPRESS_NONE
:
43 return btrfs_compress_types
[type
];
49 static int btrfs_decompress_bio(struct compressed_bio
*cb
);
51 static inline int compressed_bio_size(struct btrfs_fs_info
*fs_info
,
52 unsigned long disk_size
)
54 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
56 return sizeof(struct compressed_bio
) +
57 (DIV_ROUND_UP(disk_size
, fs_info
->sectorsize
)) * csum_size
;
60 static int check_compressed_csum(struct btrfs_inode
*inode
,
61 struct compressed_bio
*cb
,
69 u32
*cb_sum
= &cb
->sums
;
71 if (inode
->flags
& BTRFS_INODE_NODATASUM
)
74 for (i
= 0; i
< cb
->nr_pages
; i
++) {
75 page
= cb
->compressed_pages
[i
];
78 kaddr
= kmap_atomic(page
);
79 csum
= btrfs_csum_data(kaddr
, csum
, PAGE_SIZE
);
80 btrfs_csum_final(csum
, (u8
*)&csum
);
83 if (csum
!= *cb_sum
) {
84 btrfs_print_data_csum_error(inode
, disk_start
, csum
,
85 *cb_sum
, cb
->mirror_num
);
97 /* when we finish reading compressed pages from the disk, we
98 * decompress them and then run the bio end_io routines on the
99 * decompressed pages (in the inode address space).
101 * This allows the checksumming and other IO error handling routines
104 * The compressed pages are freed here, and it must be run
107 static void end_compressed_bio_read(struct bio
*bio
)
109 struct compressed_bio
*cb
= bio
->bi_private
;
113 unsigned int mirror
= btrfs_io_bio(bio
)->mirror_num
;
119 /* if there are more bios still pending for this compressed
122 if (!refcount_dec_and_test(&cb
->pending_bios
))
126 * Record the correct mirror_num in cb->orig_bio so that
127 * read-repair can work properly.
129 ASSERT(btrfs_io_bio(cb
->orig_bio
));
130 btrfs_io_bio(cb
->orig_bio
)->mirror_num
= mirror
;
131 cb
->mirror_num
= mirror
;
134 * Some IO in this cb have failed, just skip checksum as there
135 * is no way it could be correct.
141 ret
= check_compressed_csum(BTRFS_I(inode
), cb
,
142 (u64
)bio
->bi_iter
.bi_sector
<< 9);
146 /* ok, we're the last bio for this extent, lets start
149 ret
= btrfs_decompress_bio(cb
);
155 /* release the compressed pages */
157 for (index
= 0; index
< cb
->nr_pages
; index
++) {
158 page
= cb
->compressed_pages
[index
];
159 page
->mapping
= NULL
;
163 /* do io completion on the original bio */
165 bio_io_error(cb
->orig_bio
);
168 struct bio_vec
*bvec
;
171 * we have verified the checksum already, set page
172 * checked so the end_io handlers know about it
174 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
175 bio_for_each_segment_all(bvec
, cb
->orig_bio
, i
)
176 SetPageChecked(bvec
->bv_page
);
178 bio_endio(cb
->orig_bio
);
181 /* finally free the cb struct */
182 kfree(cb
->compressed_pages
);
189 * Clear the writeback bits on all of the file
190 * pages for a compressed write
192 static noinline
void end_compressed_writeback(struct inode
*inode
,
193 const struct compressed_bio
*cb
)
195 unsigned long index
= cb
->start
>> PAGE_SHIFT
;
196 unsigned long end_index
= (cb
->start
+ cb
->len
- 1) >> PAGE_SHIFT
;
197 struct page
*pages
[16];
198 unsigned long nr_pages
= end_index
- index
+ 1;
203 mapping_set_error(inode
->i_mapping
, -EIO
);
205 while (nr_pages
> 0) {
206 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
208 nr_pages
, ARRAY_SIZE(pages
)), pages
);
214 for (i
= 0; i
< ret
; i
++) {
216 SetPageError(pages
[i
]);
217 end_page_writeback(pages
[i
]);
223 /* the inode may be gone now */
227 * do the cleanup once all the compressed pages hit the disk.
228 * This will clear writeback on the file pages and free the compressed
231 * This also calls the writeback end hooks for the file pages so that
232 * metadata and checksums can be updated in the file.
234 static void end_compressed_bio_write(struct bio
*bio
)
236 struct extent_io_tree
*tree
;
237 struct compressed_bio
*cb
= bio
->bi_private
;
245 /* if there are more bios still pending for this compressed
248 if (!refcount_dec_and_test(&cb
->pending_bios
))
251 /* ok, we're the last bio for this extent, step one is to
252 * call back into the FS and do all the end_io operations
255 tree
= &BTRFS_I(inode
)->io_tree
;
256 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
257 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
259 cb
->start
+ cb
->len
- 1,
262 BLK_STS_OK
: BLK_STS_NOTSUPP
);
263 cb
->compressed_pages
[0]->mapping
= NULL
;
265 end_compressed_writeback(inode
, cb
);
266 /* note, our inode could be gone now */
269 * release the compressed pages, these came from alloc_page and
270 * are not attached to the inode at all
273 for (index
= 0; index
< cb
->nr_pages
; index
++) {
274 page
= cb
->compressed_pages
[index
];
275 page
->mapping
= NULL
;
279 /* finally free the cb struct */
280 kfree(cb
->compressed_pages
);
287 * worker function to build and submit bios for previously compressed pages.
288 * The corresponding pages in the inode should be marked for writeback
289 * and the compressed pages should have a reference on them for dropping
290 * when the IO is complete.
292 * This also checksums the file bytes and gets things ready for
295 blk_status_t
btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
296 unsigned long len
, u64 disk_start
,
297 unsigned long compressed_len
,
298 struct page
**compressed_pages
,
299 unsigned long nr_pages
,
300 unsigned int write_flags
)
302 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
303 struct bio
*bio
= NULL
;
304 struct compressed_bio
*cb
;
305 unsigned long bytes_left
;
306 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
309 u64 first_byte
= disk_start
;
310 struct block_device
*bdev
;
312 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
314 WARN_ON(start
& ((u64
)PAGE_SIZE
- 1));
315 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
317 return BLK_STS_RESOURCE
;
318 refcount_set(&cb
->pending_bios
, 0);
324 cb
->compressed_pages
= compressed_pages
;
325 cb
->compressed_len
= compressed_len
;
327 cb
->nr_pages
= nr_pages
;
329 bdev
= fs_info
->fs_devices
->latest_bdev
;
331 bio
= btrfs_bio_alloc(bdev
, first_byte
);
332 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
333 bio
->bi_private
= cb
;
334 bio
->bi_end_io
= end_compressed_bio_write
;
335 refcount_set(&cb
->pending_bios
, 1);
337 /* create and submit bios for the compressed pages */
338 bytes_left
= compressed_len
;
339 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
342 page
= compressed_pages
[pg_index
];
343 page
->mapping
= inode
->i_mapping
;
344 if (bio
->bi_iter
.bi_size
)
345 submit
= io_tree
->ops
->merge_bio_hook(page
, 0,
349 page
->mapping
= NULL
;
350 if (submit
|| bio_add_page(bio
, page
, PAGE_SIZE
, 0) <
353 * inc the count before we submit the bio so
354 * we know the end IO handler won't happen before
355 * we inc the count. Otherwise, the cb might get
356 * freed before we're done setting it up
358 refcount_inc(&cb
->pending_bios
);
359 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
360 BTRFS_WQ_ENDIO_DATA
);
361 BUG_ON(ret
); /* -ENOMEM */
364 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
365 BUG_ON(ret
); /* -ENOMEM */
368 ret
= btrfs_map_bio(fs_info
, bio
, 0, 1);
370 bio
->bi_status
= ret
;
374 bio
= btrfs_bio_alloc(bdev
, first_byte
);
375 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
376 bio
->bi_private
= cb
;
377 bio
->bi_end_io
= end_compressed_bio_write
;
378 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
380 if (bytes_left
< PAGE_SIZE
) {
382 "bytes left %lu compress len %lu nr %lu",
383 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
385 bytes_left
-= PAGE_SIZE
;
386 first_byte
+= PAGE_SIZE
;
390 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
391 BUG_ON(ret
); /* -ENOMEM */
394 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
395 BUG_ON(ret
); /* -ENOMEM */
398 ret
= btrfs_map_bio(fs_info
, bio
, 0, 1);
400 bio
->bi_status
= ret
;
407 static u64
bio_end_offset(struct bio
*bio
)
409 struct bio_vec
*last
= bio_last_bvec_all(bio
);
411 return page_offset(last
->bv_page
) + last
->bv_len
+ last
->bv_offset
;
414 static noinline
int add_ra_bio_pages(struct inode
*inode
,
416 struct compressed_bio
*cb
)
418 unsigned long end_index
;
419 unsigned long pg_index
;
421 u64 isize
= i_size_read(inode
);
424 unsigned long nr_pages
= 0;
425 struct extent_map
*em
;
426 struct address_space
*mapping
= inode
->i_mapping
;
427 struct extent_map_tree
*em_tree
;
428 struct extent_io_tree
*tree
;
432 last_offset
= bio_end_offset(cb
->orig_bio
);
433 em_tree
= &BTRFS_I(inode
)->extent_tree
;
434 tree
= &BTRFS_I(inode
)->io_tree
;
439 end_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
441 while (last_offset
< compressed_end
) {
442 pg_index
= last_offset
>> PAGE_SHIFT
;
444 if (pg_index
> end_index
)
448 page
= radix_tree_lookup(&mapping
->i_pages
, pg_index
);
450 if (page
&& !radix_tree_exceptional_entry(page
)) {
457 page
= __page_cache_alloc(mapping_gfp_constraint(mapping
,
462 if (add_to_page_cache_lru(page
, mapping
, pg_index
, GFP_NOFS
)) {
467 end
= last_offset
+ PAGE_SIZE
- 1;
469 * at this point, we have a locked page in the page cache
470 * for these bytes in the file. But, we have to make
471 * sure they map to this compressed extent on disk.
473 set_page_extent_mapped(page
);
474 lock_extent(tree
, last_offset
, end
);
475 read_lock(&em_tree
->lock
);
476 em
= lookup_extent_mapping(em_tree
, last_offset
,
478 read_unlock(&em_tree
->lock
);
480 if (!em
|| last_offset
< em
->start
||
481 (last_offset
+ PAGE_SIZE
> extent_map_end(em
)) ||
482 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
484 unlock_extent(tree
, last_offset
, end
);
491 if (page
->index
== end_index
) {
493 size_t zero_offset
= isize
& (PAGE_SIZE
- 1);
497 zeros
= PAGE_SIZE
- zero_offset
;
498 userpage
= kmap_atomic(page
);
499 memset(userpage
+ zero_offset
, 0, zeros
);
500 flush_dcache_page(page
);
501 kunmap_atomic(userpage
);
505 ret
= bio_add_page(cb
->orig_bio
, page
,
508 if (ret
== PAGE_SIZE
) {
512 unlock_extent(tree
, last_offset
, end
);
518 last_offset
+= PAGE_SIZE
;
524 * for a compressed read, the bio we get passed has all the inode pages
525 * in it. We don't actually do IO on those pages but allocate new ones
526 * to hold the compressed pages on disk.
528 * bio->bi_iter.bi_sector points to the compressed extent on disk
529 * bio->bi_io_vec points to all of the inode pages
531 * After the compressed pages are read, we copy the bytes into the
532 * bio we were passed and then call the bio end_io calls
534 blk_status_t
btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
535 int mirror_num
, unsigned long bio_flags
)
537 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
538 struct extent_io_tree
*tree
;
539 struct extent_map_tree
*em_tree
;
540 struct compressed_bio
*cb
;
541 unsigned long compressed_len
;
542 unsigned long nr_pages
;
543 unsigned long pg_index
;
545 struct block_device
*bdev
;
546 struct bio
*comp_bio
;
547 u64 cur_disk_byte
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
550 struct extent_map
*em
;
551 blk_status_t ret
= BLK_STS_RESOURCE
;
555 tree
= &BTRFS_I(inode
)->io_tree
;
556 em_tree
= &BTRFS_I(inode
)->extent_tree
;
558 /* we need the actual starting offset of this extent in the file */
559 read_lock(&em_tree
->lock
);
560 em
= lookup_extent_mapping(em_tree
,
561 page_offset(bio_first_page_all(bio
)),
563 read_unlock(&em_tree
->lock
);
565 return BLK_STS_IOERR
;
567 compressed_len
= em
->block_len
;
568 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
572 refcount_set(&cb
->pending_bios
, 0);
575 cb
->mirror_num
= mirror_num
;
578 cb
->start
= em
->orig_start
;
580 em_start
= em
->start
;
585 cb
->len
= bio
->bi_iter
.bi_size
;
586 cb
->compressed_len
= compressed_len
;
587 cb
->compress_type
= extent_compress_type(bio_flags
);
590 nr_pages
= DIV_ROUND_UP(compressed_len
, PAGE_SIZE
);
591 cb
->compressed_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
593 if (!cb
->compressed_pages
)
596 bdev
= fs_info
->fs_devices
->latest_bdev
;
598 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
599 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
601 if (!cb
->compressed_pages
[pg_index
]) {
602 faili
= pg_index
- 1;
603 ret
= BLK_STS_RESOURCE
;
607 faili
= nr_pages
- 1;
608 cb
->nr_pages
= nr_pages
;
610 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
612 /* include any pages we added in add_ra-bio_pages */
613 cb
->len
= bio
->bi_iter
.bi_size
;
615 comp_bio
= btrfs_bio_alloc(bdev
, cur_disk_byte
);
616 bio_set_op_attrs (comp_bio
, REQ_OP_READ
, 0);
617 comp_bio
->bi_private
= cb
;
618 comp_bio
->bi_end_io
= end_compressed_bio_read
;
619 refcount_set(&cb
->pending_bios
, 1);
621 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
624 page
= cb
->compressed_pages
[pg_index
];
625 page
->mapping
= inode
->i_mapping
;
626 page
->index
= em_start
>> PAGE_SHIFT
;
628 if (comp_bio
->bi_iter
.bi_size
)
629 submit
= tree
->ops
->merge_bio_hook(page
, 0,
633 page
->mapping
= NULL
;
634 if (submit
|| bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0) <
636 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
,
637 BTRFS_WQ_ENDIO_DATA
);
638 BUG_ON(ret
); /* -ENOMEM */
641 * inc the count before we submit the bio so
642 * we know the end IO handler won't happen before
643 * we inc the count. Otherwise, the cb might get
644 * freed before we're done setting it up
646 refcount_inc(&cb
->pending_bios
);
648 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
649 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
,
651 BUG_ON(ret
); /* -ENOMEM */
653 sums
+= DIV_ROUND_UP(comp_bio
->bi_iter
.bi_size
,
654 fs_info
->sectorsize
);
656 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
, 0);
658 comp_bio
->bi_status
= ret
;
662 comp_bio
= btrfs_bio_alloc(bdev
, cur_disk_byte
);
663 bio_set_op_attrs(comp_bio
, REQ_OP_READ
, 0);
664 comp_bio
->bi_private
= cb
;
665 comp_bio
->bi_end_io
= end_compressed_bio_read
;
667 bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0);
669 cur_disk_byte
+= PAGE_SIZE
;
672 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
, BTRFS_WQ_ENDIO_DATA
);
673 BUG_ON(ret
); /* -ENOMEM */
675 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
676 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
, sums
);
677 BUG_ON(ret
); /* -ENOMEM */
680 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
, 0);
682 comp_bio
->bi_status
= ret
;
690 __free_page(cb
->compressed_pages
[faili
]);
694 kfree(cb
->compressed_pages
);
703 * Heuristic uses systematic sampling to collect data from the input data
704 * range, the logic can be tuned by the following constants:
706 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
707 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
709 #define SAMPLING_READ_SIZE (16)
710 #define SAMPLING_INTERVAL (256)
713 * For statistical analysis of the input data we consider bytes that form a
714 * Galois Field of 256 objects. Each object has an attribute count, ie. how
715 * many times the object appeared in the sample.
717 #define BUCKET_SIZE (256)
720 * The size of the sample is based on a statistical sampling rule of thumb.
721 * The common way is to perform sampling tests as long as the number of
722 * elements in each cell is at least 5.
724 * Instead of 5, we choose 32 to obtain more accurate results.
725 * If the data contain the maximum number of symbols, which is 256, we obtain a
726 * sample size bound by 8192.
728 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
729 * from up to 512 locations.
731 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
732 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
738 struct heuristic_ws
{
739 /* Partial copy of input data */
742 /* Buckets store counters for each byte value */
743 struct bucket_item
*bucket
;
745 struct bucket_item
*bucket_b
;
746 struct list_head list
;
749 static void free_heuristic_ws(struct list_head
*ws
)
751 struct heuristic_ws
*workspace
;
753 workspace
= list_entry(ws
, struct heuristic_ws
, list
);
755 kvfree(workspace
->sample
);
756 kfree(workspace
->bucket
);
757 kfree(workspace
->bucket_b
);
761 static struct list_head
*alloc_heuristic_ws(void)
763 struct heuristic_ws
*ws
;
765 ws
= kzalloc(sizeof(*ws
), GFP_KERNEL
);
767 return ERR_PTR(-ENOMEM
);
769 ws
->sample
= kvmalloc(MAX_SAMPLE_SIZE
, GFP_KERNEL
);
773 ws
->bucket
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket
), GFP_KERNEL
);
777 ws
->bucket_b
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket_b
), GFP_KERNEL
);
781 INIT_LIST_HEAD(&ws
->list
);
784 free_heuristic_ws(&ws
->list
);
785 return ERR_PTR(-ENOMEM
);
788 struct workspaces_list
{
789 struct list_head idle_ws
;
791 /* Number of free workspaces */
793 /* Total number of allocated workspaces */
795 /* Waiters for a free workspace */
796 wait_queue_head_t ws_wait
;
799 static struct workspaces_list btrfs_comp_ws
[BTRFS_COMPRESS_TYPES
];
801 static struct workspaces_list btrfs_heuristic_ws
;
803 static const struct btrfs_compress_op
* const btrfs_compress_op
[] = {
804 &btrfs_zlib_compress
,
806 &btrfs_zstd_compress
,
809 void __init
btrfs_init_compress(void)
811 struct list_head
*workspace
;
814 INIT_LIST_HEAD(&btrfs_heuristic_ws
.idle_ws
);
815 spin_lock_init(&btrfs_heuristic_ws
.ws_lock
);
816 atomic_set(&btrfs_heuristic_ws
.total_ws
, 0);
817 init_waitqueue_head(&btrfs_heuristic_ws
.ws_wait
);
819 workspace
= alloc_heuristic_ws();
820 if (IS_ERR(workspace
)) {
822 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
824 atomic_set(&btrfs_heuristic_ws
.total_ws
, 1);
825 btrfs_heuristic_ws
.free_ws
= 1;
826 list_add(workspace
, &btrfs_heuristic_ws
.idle_ws
);
829 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
830 INIT_LIST_HEAD(&btrfs_comp_ws
[i
].idle_ws
);
831 spin_lock_init(&btrfs_comp_ws
[i
].ws_lock
);
832 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 0);
833 init_waitqueue_head(&btrfs_comp_ws
[i
].ws_wait
);
836 * Preallocate one workspace for each compression type so
837 * we can guarantee forward progress in the worst case
839 workspace
= btrfs_compress_op
[i
]->alloc_workspace();
840 if (IS_ERR(workspace
)) {
841 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
843 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 1);
844 btrfs_comp_ws
[i
].free_ws
= 1;
845 list_add(workspace
, &btrfs_comp_ws
[i
].idle_ws
);
851 * This finds an available workspace or allocates a new one.
852 * If it's not possible to allocate a new one, waits until there's one.
853 * Preallocation makes a forward progress guarantees and we do not return
856 static struct list_head
*__find_workspace(int type
, bool heuristic
)
858 struct list_head
*workspace
;
859 int cpus
= num_online_cpus();
862 struct list_head
*idle_ws
;
865 wait_queue_head_t
*ws_wait
;
869 idle_ws
= &btrfs_heuristic_ws
.idle_ws
;
870 ws_lock
= &btrfs_heuristic_ws
.ws_lock
;
871 total_ws
= &btrfs_heuristic_ws
.total_ws
;
872 ws_wait
= &btrfs_heuristic_ws
.ws_wait
;
873 free_ws
= &btrfs_heuristic_ws
.free_ws
;
875 idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
876 ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
877 total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
878 ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
879 free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
884 if (!list_empty(idle_ws
)) {
885 workspace
= idle_ws
->next
;
888 spin_unlock(ws_lock
);
892 if (atomic_read(total_ws
) > cpus
) {
895 spin_unlock(ws_lock
);
896 prepare_to_wait(ws_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
897 if (atomic_read(total_ws
) > cpus
&& !*free_ws
)
899 finish_wait(ws_wait
, &wait
);
902 atomic_inc(total_ws
);
903 spin_unlock(ws_lock
);
906 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
907 * to turn it off here because we might get called from the restricted
908 * context of btrfs_compress_bio/btrfs_compress_pages
910 nofs_flag
= memalloc_nofs_save();
912 workspace
= alloc_heuristic_ws();
914 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
915 memalloc_nofs_restore(nofs_flag
);
917 if (IS_ERR(workspace
)) {
918 atomic_dec(total_ws
);
922 * Do not return the error but go back to waiting. There's a
923 * workspace preallocated for each type and the compression
924 * time is bounded so we get to a workspace eventually. This
925 * makes our caller's life easier.
927 * To prevent silent and low-probability deadlocks (when the
928 * initial preallocation fails), check if there are any
931 if (atomic_read(total_ws
) == 0) {
932 static DEFINE_RATELIMIT_STATE(_rs
,
933 /* once per minute */ 60 * HZ
,
936 if (__ratelimit(&_rs
)) {
937 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
945 static struct list_head
*find_workspace(int type
)
947 return __find_workspace(type
, false);
951 * put a workspace struct back on the list or free it if we have enough
952 * idle ones sitting around
954 static void __free_workspace(int type
, struct list_head
*workspace
,
958 struct list_head
*idle_ws
;
961 wait_queue_head_t
*ws_wait
;
965 idle_ws
= &btrfs_heuristic_ws
.idle_ws
;
966 ws_lock
= &btrfs_heuristic_ws
.ws_lock
;
967 total_ws
= &btrfs_heuristic_ws
.total_ws
;
968 ws_wait
= &btrfs_heuristic_ws
.ws_wait
;
969 free_ws
= &btrfs_heuristic_ws
.free_ws
;
971 idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
972 ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
973 total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
974 ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
975 free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
979 if (*free_ws
<= num_online_cpus()) {
980 list_add(workspace
, idle_ws
);
982 spin_unlock(ws_lock
);
985 spin_unlock(ws_lock
);
988 free_heuristic_ws(workspace
);
990 btrfs_compress_op
[idx
]->free_workspace(workspace
);
991 atomic_dec(total_ws
);
993 cond_wake_up(ws_wait
);
996 static void free_workspace(int type
, struct list_head
*ws
)
998 return __free_workspace(type
, ws
, false);
1002 * cleanup function for module exit
1004 static void free_workspaces(void)
1006 struct list_head
*workspace
;
1009 while (!list_empty(&btrfs_heuristic_ws
.idle_ws
)) {
1010 workspace
= btrfs_heuristic_ws
.idle_ws
.next
;
1011 list_del(workspace
);
1012 free_heuristic_ws(workspace
);
1013 atomic_dec(&btrfs_heuristic_ws
.total_ws
);
1016 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
1017 while (!list_empty(&btrfs_comp_ws
[i
].idle_ws
)) {
1018 workspace
= btrfs_comp_ws
[i
].idle_ws
.next
;
1019 list_del(workspace
);
1020 btrfs_compress_op
[i
]->free_workspace(workspace
);
1021 atomic_dec(&btrfs_comp_ws
[i
].total_ws
);
1027 * Given an address space and start and length, compress the bytes into @pages
1028 * that are allocated on demand.
1030 * @type_level is encoded algorithm and level, where level 0 means whatever
1031 * default the algorithm chooses and is opaque here;
1032 * - compression algo are 0-3
1033 * - the level are bits 4-7
1035 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1036 * and returns number of actually allocated pages
1038 * @total_in is used to return the number of bytes actually read. It
1039 * may be smaller than the input length if we had to exit early because we
1040 * ran out of room in the pages array or because we cross the
1041 * max_out threshold.
1043 * @total_out is an in/out parameter, must be set to the input length and will
1044 * be also used to return the total number of compressed bytes
1046 * @max_out tells us the max number of bytes that we're allowed to
1049 int btrfs_compress_pages(unsigned int type_level
, struct address_space
*mapping
,
1050 u64 start
, struct page
**pages
,
1051 unsigned long *out_pages
,
1052 unsigned long *total_in
,
1053 unsigned long *total_out
)
1055 struct list_head
*workspace
;
1057 int type
= type_level
& 0xF;
1059 workspace
= find_workspace(type
);
1061 btrfs_compress_op
[type
- 1]->set_level(workspace
, type_level
);
1062 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
1065 total_in
, total_out
);
1066 free_workspace(type
, workspace
);
1071 * pages_in is an array of pages with compressed data.
1073 * disk_start is the starting logical offset of this array in the file
1075 * orig_bio contains the pages from the file that we want to decompress into
1077 * srclen is the number of bytes in pages_in
1079 * The basic idea is that we have a bio that was created by readpages.
1080 * The pages in the bio are for the uncompressed data, and they may not
1081 * be contiguous. They all correspond to the range of bytes covered by
1082 * the compressed extent.
1084 static int btrfs_decompress_bio(struct compressed_bio
*cb
)
1086 struct list_head
*workspace
;
1088 int type
= cb
->compress_type
;
1090 workspace
= find_workspace(type
);
1091 ret
= btrfs_compress_op
[type
- 1]->decompress_bio(workspace
, cb
);
1092 free_workspace(type
, workspace
);
1098 * a less complex decompression routine. Our compressed data fits in a
1099 * single page, and we want to read a single page out of it.
1100 * start_byte tells us the offset into the compressed data we're interested in
1102 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
1103 unsigned long start_byte
, size_t srclen
, size_t destlen
)
1105 struct list_head
*workspace
;
1108 workspace
= find_workspace(type
);
1110 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
1111 dest_page
, start_byte
,
1114 free_workspace(type
, workspace
);
1118 void __cold
btrfs_exit_compress(void)
1124 * Copy uncompressed data from working buffer to pages.
1126 * buf_start is the byte offset we're of the start of our workspace buffer.
1128 * total_out is the last byte of the buffer
1130 int btrfs_decompress_buf2page(const char *buf
, unsigned long buf_start
,
1131 unsigned long total_out
, u64 disk_start
,
1134 unsigned long buf_offset
;
1135 unsigned long current_buf_start
;
1136 unsigned long start_byte
;
1137 unsigned long prev_start_byte
;
1138 unsigned long working_bytes
= total_out
- buf_start
;
1139 unsigned long bytes
;
1141 struct bio_vec bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1144 * start byte is the first byte of the page we're currently
1145 * copying into relative to the start of the compressed data.
1147 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1149 /* we haven't yet hit data corresponding to this page */
1150 if (total_out
<= start_byte
)
1154 * the start of the data we care about is offset into
1155 * the middle of our working buffer
1157 if (total_out
> start_byte
&& buf_start
< start_byte
) {
1158 buf_offset
= start_byte
- buf_start
;
1159 working_bytes
-= buf_offset
;
1163 current_buf_start
= buf_start
;
1165 /* copy bytes from the working buffer into the pages */
1166 while (working_bytes
> 0) {
1167 bytes
= min_t(unsigned long, bvec
.bv_len
,
1168 PAGE_SIZE
- buf_offset
);
1169 bytes
= min(bytes
, working_bytes
);
1171 kaddr
= kmap_atomic(bvec
.bv_page
);
1172 memcpy(kaddr
+ bvec
.bv_offset
, buf
+ buf_offset
, bytes
);
1173 kunmap_atomic(kaddr
);
1174 flush_dcache_page(bvec
.bv_page
);
1176 buf_offset
+= bytes
;
1177 working_bytes
-= bytes
;
1178 current_buf_start
+= bytes
;
1180 /* check if we need to pick another page */
1181 bio_advance(bio
, bytes
);
1182 if (!bio
->bi_iter
.bi_size
)
1184 bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1185 prev_start_byte
= start_byte
;
1186 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1189 * We need to make sure we're only adjusting
1190 * our offset into compression working buffer when
1191 * we're switching pages. Otherwise we can incorrectly
1192 * keep copying when we were actually done.
1194 if (start_byte
!= prev_start_byte
) {
1196 * make sure our new page is covered by this
1199 if (total_out
<= start_byte
)
1203 * the next page in the biovec might not be adjacent
1204 * to the last page, but it might still be found
1205 * inside this working buffer. bump our offset pointer
1207 if (total_out
> start_byte
&&
1208 current_buf_start
< start_byte
) {
1209 buf_offset
= start_byte
- buf_start
;
1210 working_bytes
= total_out
- start_byte
;
1211 current_buf_start
= buf_start
+ buf_offset
;
1220 * Shannon Entropy calculation
1222 * Pure byte distribution analysis fails to determine compressiability of data.
1223 * Try calculating entropy to estimate the average minimum number of bits
1224 * needed to encode the sampled data.
1226 * For convenience, return the percentage of needed bits, instead of amount of
1229 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1230 * and can be compressible with high probability
1232 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1234 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1236 #define ENTROPY_LVL_ACEPTABLE (65)
1237 #define ENTROPY_LVL_HIGH (80)
1240 * For increasead precision in shannon_entropy calculation,
1241 * let's do pow(n, M) to save more digits after comma:
1243 * - maximum int bit length is 64
1244 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1245 * - 13 * 4 = 52 < 64 -> M = 4
1249 static inline u32
ilog2_w(u64 n
)
1251 return ilog2(n
* n
* n
* n
);
1254 static u32
shannon_entropy(struct heuristic_ws
*ws
)
1256 const u32 entropy_max
= 8 * ilog2_w(2);
1257 u32 entropy_sum
= 0;
1258 u32 p
, p_base
, sz_base
;
1261 sz_base
= ilog2_w(ws
->sample_size
);
1262 for (i
= 0; i
< BUCKET_SIZE
&& ws
->bucket
[i
].count
> 0; i
++) {
1263 p
= ws
->bucket
[i
].count
;
1264 p_base
= ilog2_w(p
);
1265 entropy_sum
+= p
* (sz_base
- p_base
);
1268 entropy_sum
/= ws
->sample_size
;
1269 return entropy_sum
* 100 / entropy_max
;
1272 #define RADIX_BASE 4U
1273 #define COUNTERS_SIZE (1U << RADIX_BASE)
1275 static u8
get4bits(u64 num
, int shift
) {
1280 low4bits
= (COUNTERS_SIZE
- 1) - (num
% COUNTERS_SIZE
);
1285 * Use 4 bits as radix base
1286 * Use 16 u32 counters for calculating new possition in buf array
1288 * @array - array that will be sorted
1289 * @array_buf - buffer array to store sorting results
1290 * must be equal in size to @array
1293 static void radix_sort(struct bucket_item
*array
, struct bucket_item
*array_buf
,
1298 u32 counters
[COUNTERS_SIZE
];
1306 * Try avoid useless loop iterations for small numbers stored in big
1307 * counters. Example: 48 33 4 ... in 64bit array
1309 max_num
= array
[0].count
;
1310 for (i
= 1; i
< num
; i
++) {
1311 buf_num
= array
[i
].count
;
1312 if (buf_num
> max_num
)
1316 buf_num
= ilog2(max_num
);
1317 bitlen
= ALIGN(buf_num
, RADIX_BASE
* 2);
1320 while (shift
< bitlen
) {
1321 memset(counters
, 0, sizeof(counters
));
1323 for (i
= 0; i
< num
; i
++) {
1324 buf_num
= array
[i
].count
;
1325 addr
= get4bits(buf_num
, shift
);
1329 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1330 counters
[i
] += counters
[i
- 1];
1332 for (i
= num
- 1; i
>= 0; i
--) {
1333 buf_num
= array
[i
].count
;
1334 addr
= get4bits(buf_num
, shift
);
1336 new_addr
= counters
[addr
];
1337 array_buf
[new_addr
] = array
[i
];
1340 shift
+= RADIX_BASE
;
1343 * Normal radix expects to move data from a temporary array, to
1344 * the main one. But that requires some CPU time. Avoid that
1345 * by doing another sort iteration to original array instead of
1348 memset(counters
, 0, sizeof(counters
));
1350 for (i
= 0; i
< num
; i
++) {
1351 buf_num
= array_buf
[i
].count
;
1352 addr
= get4bits(buf_num
, shift
);
1356 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1357 counters
[i
] += counters
[i
- 1];
1359 for (i
= num
- 1; i
>= 0; i
--) {
1360 buf_num
= array_buf
[i
].count
;
1361 addr
= get4bits(buf_num
, shift
);
1363 new_addr
= counters
[addr
];
1364 array
[new_addr
] = array_buf
[i
];
1367 shift
+= RADIX_BASE
;
1372 * Size of the core byte set - how many bytes cover 90% of the sample
1374 * There are several types of structured binary data that use nearly all byte
1375 * values. The distribution can be uniform and counts in all buckets will be
1376 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1378 * Other possibility is normal (Gaussian) distribution, where the data could
1379 * be potentially compressible, but we have to take a few more steps to decide
1382 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1383 * compression algo can easy fix that
1384 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1385 * probability is not compressible
1387 #define BYTE_CORE_SET_LOW (64)
1388 #define BYTE_CORE_SET_HIGH (200)
1390 static int byte_core_set_size(struct heuristic_ws
*ws
)
1393 u32 coreset_sum
= 0;
1394 const u32 core_set_threshold
= ws
->sample_size
* 90 / 100;
1395 struct bucket_item
*bucket
= ws
->bucket
;
1397 /* Sort in reverse order */
1398 radix_sort(ws
->bucket
, ws
->bucket_b
, BUCKET_SIZE
);
1400 for (i
= 0; i
< BYTE_CORE_SET_LOW
; i
++)
1401 coreset_sum
+= bucket
[i
].count
;
1403 if (coreset_sum
> core_set_threshold
)
1406 for (; i
< BYTE_CORE_SET_HIGH
&& bucket
[i
].count
> 0; i
++) {
1407 coreset_sum
+= bucket
[i
].count
;
1408 if (coreset_sum
> core_set_threshold
)
1416 * Count byte values in buckets.
1417 * This heuristic can detect textual data (configs, xml, json, html, etc).
1418 * Because in most text-like data byte set is restricted to limited number of
1419 * possible characters, and that restriction in most cases makes data easy to
1422 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1423 * less - compressible
1424 * more - need additional analysis
1426 #define BYTE_SET_THRESHOLD (64)
1428 static u32
byte_set_size(const struct heuristic_ws
*ws
)
1431 u32 byte_set_size
= 0;
1433 for (i
= 0; i
< BYTE_SET_THRESHOLD
; i
++) {
1434 if (ws
->bucket
[i
].count
> 0)
1439 * Continue collecting count of byte values in buckets. If the byte
1440 * set size is bigger then the threshold, it's pointless to continue,
1441 * the detection technique would fail for this type of data.
1443 for (; i
< BUCKET_SIZE
; i
++) {
1444 if (ws
->bucket
[i
].count
> 0) {
1446 if (byte_set_size
> BYTE_SET_THRESHOLD
)
1447 return byte_set_size
;
1451 return byte_set_size
;
1454 static bool sample_repeated_patterns(struct heuristic_ws
*ws
)
1456 const u32 half_of_sample
= ws
->sample_size
/ 2;
1457 const u8
*data
= ws
->sample
;
1459 return memcmp(&data
[0], &data
[half_of_sample
], half_of_sample
) == 0;
1462 static void heuristic_collect_sample(struct inode
*inode
, u64 start
, u64 end
,
1463 struct heuristic_ws
*ws
)
1466 u64 index
, index_end
;
1467 u32 i
, curr_sample_pos
;
1471 * Compression handles the input data by chunks of 128KiB
1472 * (defined by BTRFS_MAX_UNCOMPRESSED)
1474 * We do the same for the heuristic and loop over the whole range.
1476 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1477 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1479 if (end
- start
> BTRFS_MAX_UNCOMPRESSED
)
1480 end
= start
+ BTRFS_MAX_UNCOMPRESSED
;
1482 index
= start
>> PAGE_SHIFT
;
1483 index_end
= end
>> PAGE_SHIFT
;
1485 /* Don't miss unaligned end */
1486 if (!IS_ALIGNED(end
, PAGE_SIZE
))
1489 curr_sample_pos
= 0;
1490 while (index
< index_end
) {
1491 page
= find_get_page(inode
->i_mapping
, index
);
1492 in_data
= kmap(page
);
1493 /* Handle case where the start is not aligned to PAGE_SIZE */
1494 i
= start
% PAGE_SIZE
;
1495 while (i
< PAGE_SIZE
- SAMPLING_READ_SIZE
) {
1496 /* Don't sample any garbage from the last page */
1497 if (start
> end
- SAMPLING_READ_SIZE
)
1499 memcpy(&ws
->sample
[curr_sample_pos
], &in_data
[i
],
1500 SAMPLING_READ_SIZE
);
1501 i
+= SAMPLING_INTERVAL
;
1502 start
+= SAMPLING_INTERVAL
;
1503 curr_sample_pos
+= SAMPLING_READ_SIZE
;
1511 ws
->sample_size
= curr_sample_pos
;
1515 * Compression heuristic.
1517 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1518 * quickly (compared to direct compression) detect data characteristics
1519 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1522 * The following types of analysis can be performed:
1523 * - detect mostly zero data
1524 * - detect data with low "byte set" size (text, etc)
1525 * - detect data with low/high "core byte" set
1527 * Return non-zero if the compression should be done, 0 otherwise.
1529 int btrfs_compress_heuristic(struct inode
*inode
, u64 start
, u64 end
)
1531 struct list_head
*ws_list
= __find_workspace(0, true);
1532 struct heuristic_ws
*ws
;
1537 ws
= list_entry(ws_list
, struct heuristic_ws
, list
);
1539 heuristic_collect_sample(inode
, start
, end
, ws
);
1541 if (sample_repeated_patterns(ws
)) {
1546 memset(ws
->bucket
, 0, sizeof(*ws
->bucket
)*BUCKET_SIZE
);
1548 for (i
= 0; i
< ws
->sample_size
; i
++) {
1549 byte
= ws
->sample
[i
];
1550 ws
->bucket
[byte
].count
++;
1553 i
= byte_set_size(ws
);
1554 if (i
< BYTE_SET_THRESHOLD
) {
1559 i
= byte_core_set_size(ws
);
1560 if (i
<= BYTE_CORE_SET_LOW
) {
1565 if (i
>= BYTE_CORE_SET_HIGH
) {
1570 i
= shannon_entropy(ws
);
1571 if (i
<= ENTROPY_LVL_ACEPTABLE
) {
1577 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1578 * needed to give green light to compression.
1580 * For now just assume that compression at that level is not worth the
1581 * resources because:
1583 * 1. it is possible to defrag the data later
1585 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1586 * values, every bucket has counter at level ~54. The heuristic would
1587 * be confused. This can happen when data have some internal repeated
1588 * patterns like "abbacbbc...". This can be detected by analyzing
1589 * pairs of bytes, which is too costly.
1591 if (i
< ENTROPY_LVL_HIGH
) {
1600 __free_workspace(0, ws_list
, true);
1604 unsigned int btrfs_compress_str2level(const char *str
)
1606 if (strncmp(str
, "zlib", 4) != 0)
1609 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1610 if (str
[4] == ':' && '1' <= str
[5] && str
[5] <= '9' && str
[6] == 0)
1611 return str
[5] - '0';
1613 return BTRFS_ZLIB_DEFAULT_LEVEL
;