1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
16 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
17 *root
, struct btrfs_path
*path
, int level
);
18 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
19 const struct btrfs_key
*ins_key
, struct btrfs_path
*path
,
20 int data_size
, int extend
);
21 static int push_node_left(struct btrfs_trans_handle
*trans
,
22 struct btrfs_fs_info
*fs_info
,
23 struct extent_buffer
*dst
,
24 struct extent_buffer
*src
, int empty
);
25 static int balance_node_right(struct btrfs_trans_handle
*trans
,
26 struct btrfs_fs_info
*fs_info
,
27 struct extent_buffer
*dst_buf
,
28 struct extent_buffer
*src_buf
);
29 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
32 struct btrfs_path
*btrfs_alloc_path(void)
34 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
41 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
44 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
45 if (!p
->nodes
[i
] || !p
->locks
[i
])
47 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
48 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
49 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
50 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
51 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
56 * reset all the locked nodes in the patch to spinning locks.
58 * held is used to keep lockdep happy, when lockdep is enabled
59 * we set held to a blocking lock before we go around and
60 * retake all the spinlocks in the path. You can safely use NULL
63 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
64 struct extent_buffer
*held
, int held_rw
)
69 btrfs_set_lock_blocking_rw(held
, held_rw
);
70 if (held_rw
== BTRFS_WRITE_LOCK
)
71 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
72 else if (held_rw
== BTRFS_READ_LOCK
)
73 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
75 btrfs_set_path_blocking(p
);
77 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
78 if (p
->nodes
[i
] && p
->locks
[i
]) {
79 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
80 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
81 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
82 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
83 p
->locks
[i
] = BTRFS_READ_LOCK
;
88 btrfs_clear_lock_blocking_rw(held
, held_rw
);
91 /* this also releases the path */
92 void btrfs_free_path(struct btrfs_path
*p
)
96 btrfs_release_path(p
);
97 kmem_cache_free(btrfs_path_cachep
, p
);
101 * path release drops references on the extent buffers in the path
102 * and it drops any locks held by this path
104 * It is safe to call this on paths that no locks or extent buffers held.
106 noinline
void btrfs_release_path(struct btrfs_path
*p
)
110 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
115 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
118 free_extent_buffer(p
->nodes
[i
]);
124 * safely gets a reference on the root node of a tree. A lock
125 * is not taken, so a concurrent writer may put a different node
126 * at the root of the tree. See btrfs_lock_root_node for the
129 * The extent buffer returned by this has a reference taken, so
130 * it won't disappear. It may stop being the root of the tree
131 * at any time because there are no locks held.
133 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
135 struct extent_buffer
*eb
;
139 eb
= rcu_dereference(root
->node
);
142 * RCU really hurts here, we could free up the root node because
143 * it was COWed but we may not get the new root node yet so do
144 * the inc_not_zero dance and if it doesn't work then
145 * synchronize_rcu and try again.
147 if (atomic_inc_not_zero(&eb
->refs
)) {
157 /* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
161 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
163 struct extent_buffer
*eb
;
166 eb
= btrfs_root_node(root
);
168 if (eb
== root
->node
)
170 btrfs_tree_unlock(eb
);
171 free_extent_buffer(eb
);
176 /* loop around taking references on and locking the root node of the
177 * tree until you end up with a lock on the root. A locked buffer
178 * is returned, with a reference held.
180 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
182 struct extent_buffer
*eb
;
185 eb
= btrfs_root_node(root
);
186 btrfs_tree_read_lock(eb
);
187 if (eb
== root
->node
)
189 btrfs_tree_read_unlock(eb
);
190 free_extent_buffer(eb
);
195 /* cowonly root (everything not a reference counted cow subvolume), just get
196 * put onto a simple dirty list. transaction.c walks this to make sure they
197 * get properly updated on disk.
199 static void add_root_to_dirty_list(struct btrfs_root
*root
)
201 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
203 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
204 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
207 spin_lock(&fs_info
->trans_lock
);
208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
209 /* Want the extent tree to be the last on the list */
210 if (root
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
211 list_move_tail(&root
->dirty_list
,
212 &fs_info
->dirty_cowonly_roots
);
214 list_move(&root
->dirty_list
,
215 &fs_info
->dirty_cowonly_roots
);
217 spin_unlock(&fs_info
->trans_lock
);
221 * used by snapshot creation to make a copy of a root for a tree with
222 * a given objectid. The buffer with the new root node is returned in
223 * cow_ret, and this func returns zero on success or a negative error code.
225 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
226 struct btrfs_root
*root
,
227 struct extent_buffer
*buf
,
228 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
230 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
231 struct extent_buffer
*cow
;
234 struct btrfs_disk_key disk_key
;
236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
237 trans
->transid
!= fs_info
->running_transaction
->transid
);
238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
239 trans
->transid
!= root
->last_trans
);
241 level
= btrfs_header_level(buf
);
243 btrfs_item_key(buf
, &disk_key
, 0);
245 btrfs_node_key(buf
, &disk_key
, 0);
247 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
248 &disk_key
, level
, buf
->start
, 0);
252 copy_extent_buffer_full(cow
, buf
);
253 btrfs_set_header_bytenr(cow
, cow
->start
);
254 btrfs_set_header_generation(cow
, trans
->transid
);
255 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
256 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
257 BTRFS_HEADER_FLAG_RELOC
);
258 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
259 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
261 btrfs_set_header_owner(cow
, new_root_objectid
);
263 write_extent_buffer_fsid(cow
, fs_info
->fsid
);
265 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
266 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
267 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
269 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
274 btrfs_mark_buffer_dirty(cow
);
283 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
284 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
286 MOD_LOG_ROOT_REPLACE
,
289 struct tree_mod_root
{
294 struct tree_mod_elem
{
300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 struct btrfs_disk_key key
;
310 /* this is used for op == MOD_LOG_MOVE_KEYS */
316 /* this is used for op == MOD_LOG_ROOT_REPLACE */
317 struct tree_mod_root old_root
;
321 * Pull a new tree mod seq number for our operation.
323 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
325 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
329 * This adds a new blocker to the tree mod log's blocker list if the @elem
330 * passed does not already have a sequence number set. So when a caller expects
331 * to record tree modifications, it should ensure to set elem->seq to zero
332 * before calling btrfs_get_tree_mod_seq.
333 * Returns a fresh, unused tree log modification sequence number, even if no new
336 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
337 struct seq_list
*elem
)
339 write_lock(&fs_info
->tree_mod_log_lock
);
340 spin_lock(&fs_info
->tree_mod_seq_lock
);
342 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
343 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
345 spin_unlock(&fs_info
->tree_mod_seq_lock
);
346 write_unlock(&fs_info
->tree_mod_log_lock
);
351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
352 struct seq_list
*elem
)
354 struct rb_root
*tm_root
;
355 struct rb_node
*node
;
356 struct rb_node
*next
;
357 struct seq_list
*cur_elem
;
358 struct tree_mod_elem
*tm
;
359 u64 min_seq
= (u64
)-1;
360 u64 seq_putting
= elem
->seq
;
365 spin_lock(&fs_info
->tree_mod_seq_lock
);
366 list_del(&elem
->list
);
369 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
370 if (cur_elem
->seq
< min_seq
) {
371 if (seq_putting
> cur_elem
->seq
) {
373 * blocker with lower sequence number exists, we
374 * cannot remove anything from the log
376 spin_unlock(&fs_info
->tree_mod_seq_lock
);
379 min_seq
= cur_elem
->seq
;
382 spin_unlock(&fs_info
->tree_mod_seq_lock
);
385 * anything that's lower than the lowest existing (read: blocked)
386 * sequence number can be removed from the tree.
388 write_lock(&fs_info
->tree_mod_log_lock
);
389 tm_root
= &fs_info
->tree_mod_log
;
390 for (node
= rb_first(tm_root
); node
; node
= next
) {
391 next
= rb_next(node
);
392 tm
= rb_entry(node
, struct tree_mod_elem
, node
);
393 if (tm
->seq
> min_seq
)
395 rb_erase(node
, tm_root
);
398 write_unlock(&fs_info
->tree_mod_log_lock
);
402 * key order of the log:
403 * node/leaf start address -> sequence
405 * The 'start address' is the logical address of the *new* root node
406 * for root replace operations, or the logical address of the affected
407 * block for all other operations.
409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
412 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
414 struct rb_root
*tm_root
;
415 struct rb_node
**new;
416 struct rb_node
*parent
= NULL
;
417 struct tree_mod_elem
*cur
;
419 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
421 tm_root
= &fs_info
->tree_mod_log
;
422 new = &tm_root
->rb_node
;
424 cur
= rb_entry(*new, struct tree_mod_elem
, node
);
426 if (cur
->logical
< tm
->logical
)
427 new = &((*new)->rb_left
);
428 else if (cur
->logical
> tm
->logical
)
429 new = &((*new)->rb_right
);
430 else if (cur
->seq
< tm
->seq
)
431 new = &((*new)->rb_left
);
432 else if (cur
->seq
> tm
->seq
)
433 new = &((*new)->rb_right
);
438 rb_link_node(&tm
->node
, parent
, new);
439 rb_insert_color(&tm
->node
, tm_root
);
444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
446 * this until all tree mod log insertions are recorded in the rb tree and then
447 * write unlock fs_info::tree_mod_log_lock.
449 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
450 struct extent_buffer
*eb
) {
452 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
454 if (eb
&& btrfs_header_level(eb
) == 0)
457 write_lock(&fs_info
->tree_mod_log_lock
);
458 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
459 write_unlock(&fs_info
->tree_mod_log_lock
);
466 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
467 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
468 struct extent_buffer
*eb
)
471 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
473 if (eb
&& btrfs_header_level(eb
) == 0)
479 static struct tree_mod_elem
*
480 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
481 enum mod_log_op op
, gfp_t flags
)
483 struct tree_mod_elem
*tm
;
485 tm
= kzalloc(sizeof(*tm
), flags
);
489 tm
->logical
= eb
->start
;
490 if (op
!= MOD_LOG_KEY_ADD
) {
491 btrfs_node_key(eb
, &tm
->key
, slot
);
492 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
496 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
497 RB_CLEAR_NODE(&tm
->node
);
502 static noinline
int tree_mod_log_insert_key(struct extent_buffer
*eb
, int slot
,
503 enum mod_log_op op
, gfp_t flags
)
505 struct tree_mod_elem
*tm
;
508 if (!tree_mod_need_log(eb
->fs_info
, eb
))
511 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
515 if (tree_mod_dont_log(eb
->fs_info
, eb
)) {
520 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
521 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
528 static noinline
int tree_mod_log_insert_move(struct extent_buffer
*eb
,
529 int dst_slot
, int src_slot
, int nr_items
)
531 struct tree_mod_elem
*tm
= NULL
;
532 struct tree_mod_elem
**tm_list
= NULL
;
537 if (!tree_mod_need_log(eb
->fs_info
, eb
))
540 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
544 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
550 tm
->logical
= eb
->start
;
552 tm
->move
.dst_slot
= dst_slot
;
553 tm
->move
.nr_items
= nr_items
;
554 tm
->op
= MOD_LOG_MOVE_KEYS
;
556 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
557 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
558 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, GFP_NOFS
);
565 if (tree_mod_dont_log(eb
->fs_info
, eb
))
570 * When we override something during the move, we log these removals.
571 * This can only happen when we move towards the beginning of the
572 * buffer, i.e. dst_slot < src_slot.
574 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
575 ret
= __tree_mod_log_insert(eb
->fs_info
, tm_list
[i
]);
580 ret
= __tree_mod_log_insert(eb
->fs_info
, tm
);
583 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
588 for (i
= 0; i
< nr_items
; i
++) {
589 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
590 rb_erase(&tm_list
[i
]->node
, &eb
->fs_info
->tree_mod_log
);
594 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
602 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
603 struct tree_mod_elem
**tm_list
,
609 for (i
= nritems
- 1; i
>= 0; i
--) {
610 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
612 for (j
= nritems
- 1; j
> i
; j
--)
613 rb_erase(&tm_list
[j
]->node
,
614 &fs_info
->tree_mod_log
);
622 static noinline
int tree_mod_log_insert_root(struct extent_buffer
*old_root
,
623 struct extent_buffer
*new_root
, int log_removal
)
625 struct btrfs_fs_info
*fs_info
= old_root
->fs_info
;
626 struct tree_mod_elem
*tm
= NULL
;
627 struct tree_mod_elem
**tm_list
= NULL
;
632 if (!tree_mod_need_log(fs_info
, NULL
))
635 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
636 nritems
= btrfs_header_nritems(old_root
);
637 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
643 for (i
= 0; i
< nritems
; i
++) {
644 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
645 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
653 tm
= kzalloc(sizeof(*tm
), GFP_NOFS
);
659 tm
->logical
= new_root
->start
;
660 tm
->old_root
.logical
= old_root
->start
;
661 tm
->old_root
.level
= btrfs_header_level(old_root
);
662 tm
->generation
= btrfs_header_generation(old_root
);
663 tm
->op
= MOD_LOG_ROOT_REPLACE
;
665 if (tree_mod_dont_log(fs_info
, NULL
))
669 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
671 ret
= __tree_mod_log_insert(fs_info
, tm
);
673 write_unlock(&fs_info
->tree_mod_log_lock
);
682 for (i
= 0; i
< nritems
; i
++)
691 static struct tree_mod_elem
*
692 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
695 struct rb_root
*tm_root
;
696 struct rb_node
*node
;
697 struct tree_mod_elem
*cur
= NULL
;
698 struct tree_mod_elem
*found
= NULL
;
700 read_lock(&fs_info
->tree_mod_log_lock
);
701 tm_root
= &fs_info
->tree_mod_log
;
702 node
= tm_root
->rb_node
;
704 cur
= rb_entry(node
, struct tree_mod_elem
, node
);
705 if (cur
->logical
< start
) {
706 node
= node
->rb_left
;
707 } else if (cur
->logical
> start
) {
708 node
= node
->rb_right
;
709 } else if (cur
->seq
< min_seq
) {
710 node
= node
->rb_left
;
711 } else if (!smallest
) {
712 /* we want the node with the highest seq */
714 BUG_ON(found
->seq
> cur
->seq
);
716 node
= node
->rb_left
;
717 } else if (cur
->seq
> min_seq
) {
718 /* we want the node with the smallest seq */
720 BUG_ON(found
->seq
< cur
->seq
);
722 node
= node
->rb_right
;
728 read_unlock(&fs_info
->tree_mod_log_lock
);
734 * this returns the element from the log with the smallest time sequence
735 * value that's in the log (the oldest log item). any element with a time
736 * sequence lower than min_seq will be ignored.
738 static struct tree_mod_elem
*
739 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
742 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
746 * this returns the element from the log with the largest time sequence
747 * value that's in the log (the most recent log item). any element with
748 * a time sequence lower than min_seq will be ignored.
750 static struct tree_mod_elem
*
751 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
753 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
757 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
758 struct extent_buffer
*src
, unsigned long dst_offset
,
759 unsigned long src_offset
, int nr_items
)
762 struct tree_mod_elem
**tm_list
= NULL
;
763 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
767 if (!tree_mod_need_log(fs_info
, NULL
))
770 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
773 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
778 tm_list_add
= tm_list
;
779 tm_list_rem
= tm_list
+ nr_items
;
780 for (i
= 0; i
< nr_items
; i
++) {
781 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
782 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
783 if (!tm_list_rem
[i
]) {
788 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
789 MOD_LOG_KEY_ADD
, GFP_NOFS
);
790 if (!tm_list_add
[i
]) {
796 if (tree_mod_dont_log(fs_info
, NULL
))
800 for (i
= 0; i
< nr_items
; i
++) {
801 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
804 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
809 write_unlock(&fs_info
->tree_mod_log_lock
);
815 for (i
= 0; i
< nr_items
* 2; i
++) {
816 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
817 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
821 write_unlock(&fs_info
->tree_mod_log_lock
);
827 static noinline
int tree_mod_log_free_eb(struct extent_buffer
*eb
)
829 struct tree_mod_elem
**tm_list
= NULL
;
834 if (btrfs_header_level(eb
) == 0)
837 if (!tree_mod_need_log(eb
->fs_info
, NULL
))
840 nritems
= btrfs_header_nritems(eb
);
841 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
845 for (i
= 0; i
< nritems
; i
++) {
846 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
847 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
854 if (tree_mod_dont_log(eb
->fs_info
, eb
))
857 ret
= __tree_mod_log_free_eb(eb
->fs_info
, tm_list
, nritems
);
858 write_unlock(&eb
->fs_info
->tree_mod_log_lock
);
866 for (i
= 0; i
< nritems
; i
++)
874 * check if the tree block can be shared by multiple trees
876 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
877 struct extent_buffer
*buf
)
880 * Tree blocks not in reference counted trees and tree roots
881 * are never shared. If a block was allocated after the last
882 * snapshot and the block was not allocated by tree relocation,
883 * we know the block is not shared.
885 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
886 buf
!= root
->node
&& buf
!= root
->commit_root
&&
887 (btrfs_header_generation(buf
) <=
888 btrfs_root_last_snapshot(&root
->root_item
) ||
889 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
892 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
893 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
899 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
900 struct btrfs_root
*root
,
901 struct extent_buffer
*buf
,
902 struct extent_buffer
*cow
,
905 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
913 * Backrefs update rules:
915 * Always use full backrefs for extent pointers in tree block
916 * allocated by tree relocation.
918 * If a shared tree block is no longer referenced by its owner
919 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
920 * use full backrefs for extent pointers in tree block.
922 * If a tree block is been relocating
923 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
924 * use full backrefs for extent pointers in tree block.
925 * The reason for this is some operations (such as drop tree)
926 * are only allowed for blocks use full backrefs.
929 if (btrfs_block_can_be_shared(root
, buf
)) {
930 ret
= btrfs_lookup_extent_info(trans
, fs_info
, buf
->start
,
931 btrfs_header_level(buf
), 1,
937 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
942 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
943 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
944 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
949 owner
= btrfs_header_owner(buf
);
950 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
951 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
954 if ((owner
== root
->root_key
.objectid
||
955 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
956 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
957 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
961 if (root
->root_key
.objectid
==
962 BTRFS_TREE_RELOC_OBJECTID
) {
963 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
966 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
970 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
973 if (root
->root_key
.objectid
==
974 BTRFS_TREE_RELOC_OBJECTID
)
975 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
977 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
981 if (new_flags
!= 0) {
982 int level
= btrfs_header_level(buf
);
984 ret
= btrfs_set_disk_extent_flags(trans
, fs_info
,
987 new_flags
, level
, 0);
992 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
993 if (root
->root_key
.objectid
==
994 BTRFS_TREE_RELOC_OBJECTID
)
995 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
997 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1000 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
1004 clean_tree_block(fs_info
, buf
);
1011 * does the dirty work in cow of a single block. The parent block (if
1012 * supplied) is updated to point to the new cow copy. The new buffer is marked
1013 * dirty and returned locked. If you modify the block it needs to be marked
1016 * search_start -- an allocation hint for the new block
1018 * empty_size -- a hint that you plan on doing more cow. This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
1022 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1023 struct btrfs_root
*root
,
1024 struct extent_buffer
*buf
,
1025 struct extent_buffer
*parent
, int parent_slot
,
1026 struct extent_buffer
**cow_ret
,
1027 u64 search_start
, u64 empty_size
)
1029 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1030 struct btrfs_disk_key disk_key
;
1031 struct extent_buffer
*cow
;
1034 int unlock_orig
= 0;
1035 u64 parent_start
= 0;
1037 if (*cow_ret
== buf
)
1040 btrfs_assert_tree_locked(buf
);
1042 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1043 trans
->transid
!= fs_info
->running_transaction
->transid
);
1044 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1045 trans
->transid
!= root
->last_trans
);
1047 level
= btrfs_header_level(buf
);
1050 btrfs_item_key(buf
, &disk_key
, 0);
1052 btrfs_node_key(buf
, &disk_key
, 0);
1054 if ((root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) && parent
)
1055 parent_start
= parent
->start
;
1057 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1058 root
->root_key
.objectid
, &disk_key
, level
,
1059 search_start
, empty_size
);
1061 return PTR_ERR(cow
);
1063 /* cow is set to blocking by btrfs_init_new_buffer */
1065 copy_extent_buffer_full(cow
, buf
);
1066 btrfs_set_header_bytenr(cow
, cow
->start
);
1067 btrfs_set_header_generation(cow
, trans
->transid
);
1068 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1069 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1070 BTRFS_HEADER_FLAG_RELOC
);
1071 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1072 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1074 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1076 write_extent_buffer_fsid(cow
, fs_info
->fsid
);
1078 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1080 btrfs_abort_transaction(trans
, ret
);
1084 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1085 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1087 btrfs_abort_transaction(trans
, ret
);
1092 if (buf
== root
->node
) {
1093 WARN_ON(parent
&& parent
!= buf
);
1094 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1095 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1096 parent_start
= buf
->start
;
1098 extent_buffer_get(cow
);
1099 ret
= tree_mod_log_insert_root(root
->node
, cow
, 1);
1101 rcu_assign_pointer(root
->node
, cow
);
1103 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1105 free_extent_buffer(buf
);
1106 add_root_to_dirty_list(root
);
1108 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1109 tree_mod_log_insert_key(parent
, parent_slot
,
1110 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1111 btrfs_set_node_blockptr(parent
, parent_slot
,
1113 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1115 btrfs_mark_buffer_dirty(parent
);
1117 ret
= tree_mod_log_free_eb(buf
);
1119 btrfs_abort_transaction(trans
, ret
);
1123 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1127 btrfs_tree_unlock(buf
);
1128 free_extent_buffer_stale(buf
);
1129 btrfs_mark_buffer_dirty(cow
);
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1138 static struct tree_mod_elem
*__tree_mod_log_oldest_root(
1139 struct extent_buffer
*eb_root
, u64 time_seq
)
1141 struct tree_mod_elem
*tm
;
1142 struct tree_mod_elem
*found
= NULL
;
1143 u64 root_logical
= eb_root
->start
;
1150 * the very last operation that's logged for a root is the
1151 * replacement operation (if it is replaced at all). this has
1152 * the logical address of the *new* root, making it the very
1153 * first operation that's logged for this root.
1156 tm
= tree_mod_log_search_oldest(eb_root
->fs_info
, root_logical
,
1161 * if there are no tree operation for the oldest root, we simply
1162 * return it. this should only happen if that (old) root is at
1169 * if there's an operation that's not a root replacement, we
1170 * found the oldest version of our root. normally, we'll find a
1171 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1173 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1177 root_logical
= tm
->old_root
.logical
;
1181 /* if there's no old root to return, return what we found instead */
1189 * tm is a pointer to the first operation to rewind within eb. then, all
1190 * previous operations will be rewound (until we reach something older than
1194 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1195 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1198 struct rb_node
*next
;
1199 struct tree_mod_elem
*tm
= first_tm
;
1200 unsigned long o_dst
;
1201 unsigned long o_src
;
1202 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1204 n
= btrfs_header_nritems(eb
);
1205 read_lock(&fs_info
->tree_mod_log_lock
);
1206 while (tm
&& tm
->seq
>= time_seq
) {
1208 * all the operations are recorded with the operator used for
1209 * the modification. as we're going backwards, we do the
1210 * opposite of each operation here.
1213 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1214 BUG_ON(tm
->slot
< n
);
1216 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1217 case MOD_LOG_KEY_REMOVE
:
1218 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1219 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1220 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1224 case MOD_LOG_KEY_REPLACE
:
1225 BUG_ON(tm
->slot
>= n
);
1226 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1227 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1228 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1231 case MOD_LOG_KEY_ADD
:
1232 /* if a move operation is needed it's in the log */
1235 case MOD_LOG_MOVE_KEYS
:
1236 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1237 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1238 memmove_extent_buffer(eb
, o_dst
, o_src
,
1239 tm
->move
.nr_items
* p_size
);
1241 case MOD_LOG_ROOT_REPLACE
:
1243 * this operation is special. for roots, this must be
1244 * handled explicitly before rewinding.
1245 * for non-roots, this operation may exist if the node
1246 * was a root: root A -> child B; then A gets empty and
1247 * B is promoted to the new root. in the mod log, we'll
1248 * have a root-replace operation for B, a tree block
1249 * that is no root. we simply ignore that operation.
1253 next
= rb_next(&tm
->node
);
1256 tm
= rb_entry(next
, struct tree_mod_elem
, node
);
1257 if (tm
->logical
!= first_tm
->logical
)
1260 read_unlock(&fs_info
->tree_mod_log_lock
);
1261 btrfs_set_header_nritems(eb
, n
);
1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1271 static struct extent_buffer
*
1272 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1273 struct extent_buffer
*eb
, u64 time_seq
)
1275 struct extent_buffer
*eb_rewin
;
1276 struct tree_mod_elem
*tm
;
1281 if (btrfs_header_level(eb
) == 0)
1284 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1288 btrfs_set_path_blocking(path
);
1289 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1291 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1292 BUG_ON(tm
->slot
!= 0);
1293 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
);
1295 btrfs_tree_read_unlock_blocking(eb
);
1296 free_extent_buffer(eb
);
1299 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1300 btrfs_set_header_backref_rev(eb_rewin
,
1301 btrfs_header_backref_rev(eb
));
1302 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1303 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1305 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1307 btrfs_tree_read_unlock_blocking(eb
);
1308 free_extent_buffer(eb
);
1313 btrfs_clear_path_blocking(path
, NULL
, BTRFS_READ_LOCK
);
1314 btrfs_tree_read_unlock_blocking(eb
);
1315 free_extent_buffer(eb
);
1317 extent_buffer_get(eb_rewin
);
1318 btrfs_tree_read_lock(eb_rewin
);
1319 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1320 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1321 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1333 static inline struct extent_buffer
*
1334 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1336 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1337 struct tree_mod_elem
*tm
;
1338 struct extent_buffer
*eb
= NULL
;
1339 struct extent_buffer
*eb_root
;
1340 struct extent_buffer
*old
;
1341 struct tree_mod_root
*old_root
= NULL
;
1342 u64 old_generation
= 0;
1346 eb_root
= btrfs_read_lock_root_node(root
);
1347 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1351 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1352 old_root
= &tm
->old_root
;
1353 old_generation
= tm
->generation
;
1354 logical
= old_root
->logical
;
1355 level
= old_root
->level
;
1357 logical
= eb_root
->start
;
1358 level
= btrfs_header_level(eb_root
);
1361 tm
= tree_mod_log_search(fs_info
, logical
, time_seq
);
1362 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1363 btrfs_tree_read_unlock(eb_root
);
1364 free_extent_buffer(eb_root
);
1365 old
= read_tree_block(fs_info
, logical
, 0, level
, NULL
);
1366 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1368 free_extent_buffer(old
);
1370 "failed to read tree block %llu from get_old_root",
1373 eb
= btrfs_clone_extent_buffer(old
);
1374 free_extent_buffer(old
);
1376 } else if (old_root
) {
1377 btrfs_tree_read_unlock(eb_root
);
1378 free_extent_buffer(eb_root
);
1379 eb
= alloc_dummy_extent_buffer(fs_info
, logical
);
1381 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1382 eb
= btrfs_clone_extent_buffer(eb_root
);
1383 btrfs_tree_read_unlock_blocking(eb_root
);
1384 free_extent_buffer(eb_root
);
1389 extent_buffer_get(eb
);
1390 btrfs_tree_read_lock(eb
);
1392 btrfs_set_header_bytenr(eb
, eb
->start
);
1393 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1394 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1395 btrfs_set_header_level(eb
, old_root
->level
);
1396 btrfs_set_header_generation(eb
, old_generation
);
1399 __tree_mod_log_rewind(fs_info
, eb
, time_seq
, tm
);
1401 WARN_ON(btrfs_header_level(eb
) != 0);
1402 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
1407 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1409 struct tree_mod_elem
*tm
;
1411 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1413 tm
= __tree_mod_log_oldest_root(eb_root
, time_seq
);
1414 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1415 level
= tm
->old_root
.level
;
1417 level
= btrfs_header_level(eb_root
);
1419 free_extent_buffer(eb_root
);
1424 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1425 struct btrfs_root
*root
,
1426 struct extent_buffer
*buf
)
1428 if (btrfs_is_testing(root
->fs_info
))
1431 /* Ensure we can see the FORCE_COW bit */
1432 smp_mb__before_atomic();
1435 * We do not need to cow a block if
1436 * 1) this block is not created or changed in this transaction;
1437 * 2) this block does not belong to TREE_RELOC tree;
1438 * 3) the root is not forced COW.
1440 * What is forced COW:
1441 * when we create snapshot during committing the transaction,
1442 * after we've finished coping src root, we must COW the shared
1443 * block to ensure the metadata consistency.
1445 if (btrfs_header_generation(buf
) == trans
->transid
&&
1446 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1447 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1448 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1449 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1455 * cows a single block, see __btrfs_cow_block for the real work.
1456 * This version of it has extra checks so that a block isn't COWed more than
1457 * once per transaction, as long as it hasn't been written yet
1459 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1460 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1461 struct extent_buffer
*parent
, int parent_slot
,
1462 struct extent_buffer
**cow_ret
)
1464 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1468 if (trans
->transaction
!= fs_info
->running_transaction
)
1469 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1471 fs_info
->running_transaction
->transid
);
1473 if (trans
->transid
!= fs_info
->generation
)
1474 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1475 trans
->transid
, fs_info
->generation
);
1477 if (!should_cow_block(trans
, root
, buf
)) {
1478 trans
->dirty
= true;
1483 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1486 btrfs_set_lock_blocking(parent
);
1487 btrfs_set_lock_blocking(buf
);
1489 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1490 parent_slot
, cow_ret
, search_start
, 0);
1492 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1501 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1503 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1505 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1511 * compare two keys in a memcmp fashion
1513 static int comp_keys(const struct btrfs_disk_key
*disk
,
1514 const struct btrfs_key
*k2
)
1516 struct btrfs_key k1
;
1518 btrfs_disk_key_to_cpu(&k1
, disk
);
1520 return btrfs_comp_cpu_keys(&k1
, k2
);
1524 * same as comp_keys only with two btrfs_key's
1526 int btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
)
1528 if (k1
->objectid
> k2
->objectid
)
1530 if (k1
->objectid
< k2
->objectid
)
1532 if (k1
->type
> k2
->type
)
1534 if (k1
->type
< k2
->type
)
1536 if (k1
->offset
> k2
->offset
)
1538 if (k1
->offset
< k2
->offset
)
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1548 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1549 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1550 int start_slot
, u64
*last_ret
,
1551 struct btrfs_key
*progress
)
1553 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1554 struct extent_buffer
*cur
;
1557 u64 search_start
= *last_ret
;
1567 int progress_passed
= 0;
1568 struct btrfs_disk_key disk_key
;
1570 parent_level
= btrfs_header_level(parent
);
1572 WARN_ON(trans
->transaction
!= fs_info
->running_transaction
);
1573 WARN_ON(trans
->transid
!= fs_info
->generation
);
1575 parent_nritems
= btrfs_header_nritems(parent
);
1576 blocksize
= fs_info
->nodesize
;
1577 end_slot
= parent_nritems
- 1;
1579 if (parent_nritems
<= 1)
1582 btrfs_set_lock_blocking(parent
);
1584 for (i
= start_slot
; i
<= end_slot
; i
++) {
1585 struct btrfs_key first_key
;
1588 btrfs_node_key(parent
, &disk_key
, i
);
1589 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1592 progress_passed
= 1;
1593 blocknr
= btrfs_node_blockptr(parent
, i
);
1594 gen
= btrfs_node_ptr_generation(parent
, i
);
1595 btrfs_node_key_to_cpu(parent
, &first_key
, i
);
1596 if (last_block
== 0)
1597 last_block
= blocknr
;
1600 other
= btrfs_node_blockptr(parent
, i
- 1);
1601 close
= close_blocks(blocknr
, other
, blocksize
);
1603 if (!close
&& i
< end_slot
) {
1604 other
= btrfs_node_blockptr(parent
, i
+ 1);
1605 close
= close_blocks(blocknr
, other
, blocksize
);
1608 last_block
= blocknr
;
1612 cur
= find_extent_buffer(fs_info
, blocknr
);
1614 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1617 if (!cur
|| !uptodate
) {
1619 cur
= read_tree_block(fs_info
, blocknr
, gen
,
1623 return PTR_ERR(cur
);
1624 } else if (!extent_buffer_uptodate(cur
)) {
1625 free_extent_buffer(cur
);
1628 } else if (!uptodate
) {
1629 err
= btrfs_read_buffer(cur
, gen
,
1630 parent_level
- 1,&first_key
);
1632 free_extent_buffer(cur
);
1637 if (search_start
== 0)
1638 search_start
= last_block
;
1640 btrfs_tree_lock(cur
);
1641 btrfs_set_lock_blocking(cur
);
1642 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1645 (end_slot
- i
) * blocksize
));
1647 btrfs_tree_unlock(cur
);
1648 free_extent_buffer(cur
);
1651 search_start
= cur
->start
;
1652 last_block
= cur
->start
;
1653 *last_ret
= search_start
;
1654 btrfs_tree_unlock(cur
);
1655 free_extent_buffer(cur
);
1661 * search for key in the extent_buffer. The items start at offset p,
1662 * and they are item_size apart. There are 'max' items in p.
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1668 * slot may point to max if the key is bigger than all of the keys
1670 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1671 unsigned long p
, int item_size
,
1672 const struct btrfs_key
*key
,
1679 struct btrfs_disk_key
*tmp
= NULL
;
1680 struct btrfs_disk_key unaligned
;
1681 unsigned long offset
;
1683 unsigned long map_start
= 0;
1684 unsigned long map_len
= 0;
1688 btrfs_err(eb
->fs_info
,
1689 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690 __func__
, low
, high
, eb
->start
,
1691 btrfs_header_owner(eb
), btrfs_header_level(eb
));
1695 while (low
< high
) {
1696 mid
= (low
+ high
) / 2;
1697 offset
= p
+ mid
* item_size
;
1699 if (!kaddr
|| offset
< map_start
||
1700 (offset
+ sizeof(struct btrfs_disk_key
)) >
1701 map_start
+ map_len
) {
1703 err
= map_private_extent_buffer(eb
, offset
,
1704 sizeof(struct btrfs_disk_key
),
1705 &kaddr
, &map_start
, &map_len
);
1708 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1710 } else if (err
== 1) {
1711 read_extent_buffer(eb
, &unaligned
,
1712 offset
, sizeof(unaligned
));
1719 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1722 ret
= comp_keys(tmp
, key
);
1738 * simple bin_search frontend that does the right thing for
1741 int btrfs_bin_search(struct extent_buffer
*eb
, const struct btrfs_key
*key
,
1742 int level
, int *slot
)
1745 return generic_bin_search(eb
,
1746 offsetof(struct btrfs_leaf
, items
),
1747 sizeof(struct btrfs_item
),
1748 key
, btrfs_header_nritems(eb
),
1751 return generic_bin_search(eb
,
1752 offsetof(struct btrfs_node
, ptrs
),
1753 sizeof(struct btrfs_key_ptr
),
1754 key
, btrfs_header_nritems(eb
),
1758 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1760 spin_lock(&root
->accounting_lock
);
1761 btrfs_set_root_used(&root
->root_item
,
1762 btrfs_root_used(&root
->root_item
) + size
);
1763 spin_unlock(&root
->accounting_lock
);
1766 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1768 spin_lock(&root
->accounting_lock
);
1769 btrfs_set_root_used(&root
->root_item
,
1770 btrfs_root_used(&root
->root_item
) - size
);
1771 spin_unlock(&root
->accounting_lock
);
1774 /* given a node and slot number, this reads the blocks it points to. The
1775 * extent buffer is returned with a reference taken (but unlocked).
1777 static noinline
struct extent_buffer
*
1778 read_node_slot(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*parent
,
1781 int level
= btrfs_header_level(parent
);
1782 struct extent_buffer
*eb
;
1783 struct btrfs_key first_key
;
1785 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
1786 return ERR_PTR(-ENOENT
);
1790 btrfs_node_key_to_cpu(parent
, &first_key
, slot
);
1791 eb
= read_tree_block(fs_info
, btrfs_node_blockptr(parent
, slot
),
1792 btrfs_node_ptr_generation(parent
, slot
),
1793 level
- 1, &first_key
);
1794 if (!IS_ERR(eb
) && !extent_buffer_uptodate(eb
)) {
1795 free_extent_buffer(eb
);
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion. We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1807 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1808 struct btrfs_root
*root
,
1809 struct btrfs_path
*path
, int level
)
1811 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1812 struct extent_buffer
*right
= NULL
;
1813 struct extent_buffer
*mid
;
1814 struct extent_buffer
*left
= NULL
;
1815 struct extent_buffer
*parent
= NULL
;
1819 int orig_slot
= path
->slots
[level
];
1825 mid
= path
->nodes
[level
];
1827 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1828 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1829 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1831 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1833 if (level
< BTRFS_MAX_LEVEL
- 1) {
1834 parent
= path
->nodes
[level
+ 1];
1835 pslot
= path
->slots
[level
+ 1];
1839 * deal with the case where there is only one pointer in the root
1840 * by promoting the node below to a root
1843 struct extent_buffer
*child
;
1845 if (btrfs_header_nritems(mid
) != 1)
1848 /* promote the child to a root */
1849 child
= read_node_slot(fs_info
, mid
, 0);
1850 if (IS_ERR(child
)) {
1851 ret
= PTR_ERR(child
);
1852 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1856 btrfs_tree_lock(child
);
1857 btrfs_set_lock_blocking(child
);
1858 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1860 btrfs_tree_unlock(child
);
1861 free_extent_buffer(child
);
1865 ret
= tree_mod_log_insert_root(root
->node
, child
, 1);
1867 rcu_assign_pointer(root
->node
, child
);
1869 add_root_to_dirty_list(root
);
1870 btrfs_tree_unlock(child
);
1872 path
->locks
[level
] = 0;
1873 path
->nodes
[level
] = NULL
;
1874 clean_tree_block(fs_info
, mid
);
1875 btrfs_tree_unlock(mid
);
1876 /* once for the path */
1877 free_extent_buffer(mid
);
1879 root_sub_used(root
, mid
->len
);
1880 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1881 /* once for the root ptr */
1882 free_extent_buffer_stale(mid
);
1885 if (btrfs_header_nritems(mid
) >
1886 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
1889 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
1894 btrfs_tree_lock(left
);
1895 btrfs_set_lock_blocking(left
);
1896 wret
= btrfs_cow_block(trans
, root
, left
,
1897 parent
, pslot
- 1, &left
);
1904 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
1909 btrfs_tree_lock(right
);
1910 btrfs_set_lock_blocking(right
);
1911 wret
= btrfs_cow_block(trans
, root
, right
,
1912 parent
, pslot
+ 1, &right
);
1919 /* first, try to make some room in the middle buffer */
1921 orig_slot
+= btrfs_header_nritems(left
);
1922 wret
= push_node_left(trans
, fs_info
, left
, mid
, 1);
1928 * then try to empty the right most buffer into the middle
1931 wret
= push_node_left(trans
, fs_info
, mid
, right
, 1);
1932 if (wret
< 0 && wret
!= -ENOSPC
)
1934 if (btrfs_header_nritems(right
) == 0) {
1935 clean_tree_block(fs_info
, right
);
1936 btrfs_tree_unlock(right
);
1937 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
1938 root_sub_used(root
, right
->len
);
1939 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1940 free_extent_buffer_stale(right
);
1943 struct btrfs_disk_key right_key
;
1944 btrfs_node_key(right
, &right_key
, 0);
1945 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
1946 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1948 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1949 btrfs_mark_buffer_dirty(parent
);
1952 if (btrfs_header_nritems(mid
) == 1) {
1954 * we're not allowed to leave a node with one item in the
1955 * tree during a delete. A deletion from lower in the tree
1956 * could try to delete the only pointer in this node.
1957 * So, pull some keys from the left.
1958 * There has to be a left pointer at this point because
1959 * otherwise we would have pulled some pointers from the
1964 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1967 wret
= balance_node_right(trans
, fs_info
, mid
, left
);
1973 wret
= push_node_left(trans
, fs_info
, left
, mid
, 1);
1979 if (btrfs_header_nritems(mid
) == 0) {
1980 clean_tree_block(fs_info
, mid
);
1981 btrfs_tree_unlock(mid
);
1982 del_ptr(root
, path
, level
+ 1, pslot
);
1983 root_sub_used(root
, mid
->len
);
1984 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1985 free_extent_buffer_stale(mid
);
1988 /* update the parent key to reflect our changes */
1989 struct btrfs_disk_key mid_key
;
1990 btrfs_node_key(mid
, &mid_key
, 0);
1991 ret
= tree_mod_log_insert_key(parent
, pslot
,
1992 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1994 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1995 btrfs_mark_buffer_dirty(parent
);
1998 /* update the path */
2000 if (btrfs_header_nritems(left
) > orig_slot
) {
2001 extent_buffer_get(left
);
2002 /* left was locked after cow */
2003 path
->nodes
[level
] = left
;
2004 path
->slots
[level
+ 1] -= 1;
2005 path
->slots
[level
] = orig_slot
;
2007 btrfs_tree_unlock(mid
);
2008 free_extent_buffer(mid
);
2011 orig_slot
-= btrfs_header_nritems(left
);
2012 path
->slots
[level
] = orig_slot
;
2015 /* double check we haven't messed things up */
2017 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2021 btrfs_tree_unlock(right
);
2022 free_extent_buffer(right
);
2025 if (path
->nodes
[level
] != left
)
2026 btrfs_tree_unlock(left
);
2027 free_extent_buffer(left
);
2032 /* Node balancing for insertion. Here we only split or push nodes around
2033 * when they are completely full. This is also done top down, so we
2034 * have to be pessimistic.
2036 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2037 struct btrfs_root
*root
,
2038 struct btrfs_path
*path
, int level
)
2040 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2041 struct extent_buffer
*right
= NULL
;
2042 struct extent_buffer
*mid
;
2043 struct extent_buffer
*left
= NULL
;
2044 struct extent_buffer
*parent
= NULL
;
2048 int orig_slot
= path
->slots
[level
];
2053 mid
= path
->nodes
[level
];
2054 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2056 if (level
< BTRFS_MAX_LEVEL
- 1) {
2057 parent
= path
->nodes
[level
+ 1];
2058 pslot
= path
->slots
[level
+ 1];
2064 left
= read_node_slot(fs_info
, parent
, pslot
- 1);
2068 /* first, try to make some room in the middle buffer */
2072 btrfs_tree_lock(left
);
2073 btrfs_set_lock_blocking(left
);
2075 left_nr
= btrfs_header_nritems(left
);
2076 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2079 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2084 wret
= push_node_left(trans
, fs_info
,
2091 struct btrfs_disk_key disk_key
;
2092 orig_slot
+= left_nr
;
2093 btrfs_node_key(mid
, &disk_key
, 0);
2094 ret
= tree_mod_log_insert_key(parent
, pslot
,
2095 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2097 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2098 btrfs_mark_buffer_dirty(parent
);
2099 if (btrfs_header_nritems(left
) > orig_slot
) {
2100 path
->nodes
[level
] = left
;
2101 path
->slots
[level
+ 1] -= 1;
2102 path
->slots
[level
] = orig_slot
;
2103 btrfs_tree_unlock(mid
);
2104 free_extent_buffer(mid
);
2107 btrfs_header_nritems(left
);
2108 path
->slots
[level
] = orig_slot
;
2109 btrfs_tree_unlock(left
);
2110 free_extent_buffer(left
);
2114 btrfs_tree_unlock(left
);
2115 free_extent_buffer(left
);
2117 right
= read_node_slot(fs_info
, parent
, pslot
+ 1);
2122 * then try to empty the right most buffer into the middle
2127 btrfs_tree_lock(right
);
2128 btrfs_set_lock_blocking(right
);
2130 right_nr
= btrfs_header_nritems(right
);
2131 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
2134 ret
= btrfs_cow_block(trans
, root
, right
,
2140 wret
= balance_node_right(trans
, fs_info
,
2147 struct btrfs_disk_key disk_key
;
2149 btrfs_node_key(right
, &disk_key
, 0);
2150 ret
= tree_mod_log_insert_key(parent
, pslot
+ 1,
2151 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
2153 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2154 btrfs_mark_buffer_dirty(parent
);
2156 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2157 path
->nodes
[level
] = right
;
2158 path
->slots
[level
+ 1] += 1;
2159 path
->slots
[level
] = orig_slot
-
2160 btrfs_header_nritems(mid
);
2161 btrfs_tree_unlock(mid
);
2162 free_extent_buffer(mid
);
2164 btrfs_tree_unlock(right
);
2165 free_extent_buffer(right
);
2169 btrfs_tree_unlock(right
);
2170 free_extent_buffer(right
);
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
2179 static void reada_for_search(struct btrfs_fs_info
*fs_info
,
2180 struct btrfs_path
*path
,
2181 int level
, int slot
, u64 objectid
)
2183 struct extent_buffer
*node
;
2184 struct btrfs_disk_key disk_key
;
2189 struct extent_buffer
*eb
;
2197 if (!path
->nodes
[level
])
2200 node
= path
->nodes
[level
];
2202 search
= btrfs_node_blockptr(node
, slot
);
2203 blocksize
= fs_info
->nodesize
;
2204 eb
= find_extent_buffer(fs_info
, search
);
2206 free_extent_buffer(eb
);
2212 nritems
= btrfs_header_nritems(node
);
2216 if (path
->reada
== READA_BACK
) {
2220 } else if (path
->reada
== READA_FORWARD
) {
2225 if (path
->reada
== READA_BACK
&& objectid
) {
2226 btrfs_node_key(node
, &disk_key
, nr
);
2227 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2230 search
= btrfs_node_blockptr(node
, nr
);
2231 if ((search
<= target
&& target
- search
<= 65536) ||
2232 (search
> target
&& search
- target
<= 65536)) {
2233 readahead_tree_block(fs_info
, search
);
2237 if ((nread
> 65536 || nscan
> 32))
2242 static noinline
void reada_for_balance(struct btrfs_fs_info
*fs_info
,
2243 struct btrfs_path
*path
, int level
)
2247 struct extent_buffer
*parent
;
2248 struct extent_buffer
*eb
;
2253 parent
= path
->nodes
[level
+ 1];
2257 nritems
= btrfs_header_nritems(parent
);
2258 slot
= path
->slots
[level
+ 1];
2261 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2262 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2263 eb
= find_extent_buffer(fs_info
, block1
);
2265 * if we get -eagain from btrfs_buffer_uptodate, we
2266 * don't want to return eagain here. That will loop
2269 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2271 free_extent_buffer(eb
);
2273 if (slot
+ 1 < nritems
) {
2274 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2275 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2276 eb
= find_extent_buffer(fs_info
, block2
);
2277 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2279 free_extent_buffer(eb
);
2283 readahead_tree_block(fs_info
, block1
);
2285 readahead_tree_block(fs_info
, block2
);
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree. The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block. This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
2302 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2303 int lowest_unlock
, int min_write_lock_level
,
2304 int *write_lock_level
)
2307 int skip_level
= level
;
2309 struct extent_buffer
*t
;
2311 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2312 if (!path
->nodes
[i
])
2314 if (!path
->locks
[i
])
2316 if (!no_skips
&& path
->slots
[i
] == 0) {
2320 if (!no_skips
&& path
->keep_locks
) {
2323 nritems
= btrfs_header_nritems(t
);
2324 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2329 if (skip_level
< i
&& i
>= lowest_unlock
)
2333 if (i
>= lowest_unlock
&& i
> skip_level
) {
2334 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2336 if (write_lock_level
&&
2337 i
> min_write_lock_level
&&
2338 i
<= *write_lock_level
) {
2339 *write_lock_level
= i
- 1;
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node. This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2354 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2358 if (path
->keep_locks
)
2361 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2362 if (!path
->nodes
[i
])
2364 if (!path
->locks
[i
])
2366 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2372 * helper function for btrfs_search_slot. The goal is to find a block
2373 * in cache without setting the path to blocking. If we find the block
2374 * we return zero and the path is unchanged.
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada. -EAGAIN is returned and the search must be repeated.
2380 read_block_for_search(struct btrfs_root
*root
, struct btrfs_path
*p
,
2381 struct extent_buffer
**eb_ret
, int level
, int slot
,
2382 const struct btrfs_key
*key
)
2384 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2387 struct extent_buffer
*b
= *eb_ret
;
2388 struct extent_buffer
*tmp
;
2389 struct btrfs_key first_key
;
2393 blocknr
= btrfs_node_blockptr(b
, slot
);
2394 gen
= btrfs_node_ptr_generation(b
, slot
);
2395 parent_level
= btrfs_header_level(b
);
2396 btrfs_node_key_to_cpu(b
, &first_key
, slot
);
2398 tmp
= find_extent_buffer(fs_info
, blocknr
);
2400 /* first we do an atomic uptodate check */
2401 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2406 /* the pages were up to date, but we failed
2407 * the generation number check. Do a full
2408 * read for the generation number that is correct.
2409 * We must do this without dropping locks so
2410 * we can trust our generation number
2412 btrfs_set_path_blocking(p
);
2414 /* now we're allowed to do a blocking uptodate check */
2415 ret
= btrfs_read_buffer(tmp
, gen
, parent_level
- 1, &first_key
);
2420 free_extent_buffer(tmp
);
2421 btrfs_release_path(p
);
2426 * reduce lock contention at high levels
2427 * of the btree by dropping locks before
2428 * we read. Don't release the lock on the current
2429 * level because we need to walk this node to figure
2430 * out which blocks to read.
2432 btrfs_unlock_up_safe(p
, level
+ 1);
2433 btrfs_set_path_blocking(p
);
2435 if (p
->reada
!= READA_NONE
)
2436 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
2439 tmp
= read_tree_block(fs_info
, blocknr
, gen
, parent_level
- 1,
2443 * If the read above didn't mark this buffer up to date,
2444 * it will never end up being up to date. Set ret to EIO now
2445 * and give up so that our caller doesn't loop forever
2448 if (!extent_buffer_uptodate(tmp
))
2450 free_extent_buffer(tmp
);
2455 btrfs_release_path(p
);
2460 * helper function for btrfs_search_slot. This does all of the checks
2461 * for node-level blocks and does any balancing required based on
2464 * If no extra work was required, zero is returned. If we had to
2465 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2469 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2470 struct btrfs_root
*root
, struct btrfs_path
*p
,
2471 struct extent_buffer
*b
, int level
, int ins_len
,
2472 int *write_lock_level
)
2474 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2477 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2478 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
2481 if (*write_lock_level
< level
+ 1) {
2482 *write_lock_level
= level
+ 1;
2483 btrfs_release_path(p
);
2487 btrfs_set_path_blocking(p
);
2488 reada_for_balance(fs_info
, p
, level
);
2489 sret
= split_node(trans
, root
, p
, level
);
2490 btrfs_clear_path_blocking(p
, NULL
, 0);
2497 b
= p
->nodes
[level
];
2498 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2499 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 2) {
2502 if (*write_lock_level
< level
+ 1) {
2503 *write_lock_level
= level
+ 1;
2504 btrfs_release_path(p
);
2508 btrfs_set_path_blocking(p
);
2509 reada_for_balance(fs_info
, p
, level
);
2510 sret
= balance_level(trans
, root
, p
, level
);
2511 btrfs_clear_path_blocking(p
, NULL
, 0);
2517 b
= p
->nodes
[level
];
2519 btrfs_release_path(p
);
2522 BUG_ON(btrfs_header_nritems(b
) == 1);
2532 static void key_search_validate(struct extent_buffer
*b
,
2533 const struct btrfs_key
*key
,
2536 #ifdef CONFIG_BTRFS_ASSERT
2537 struct btrfs_disk_key disk_key
;
2539 btrfs_cpu_key_to_disk(&disk_key
, key
);
2542 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2543 offsetof(struct btrfs_leaf
, items
[0].key
),
2546 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2547 offsetof(struct btrfs_node
, ptrs
[0].key
),
2552 static int key_search(struct extent_buffer
*b
, const struct btrfs_key
*key
,
2553 int level
, int *prev_cmp
, int *slot
)
2555 if (*prev_cmp
!= 0) {
2556 *prev_cmp
= btrfs_bin_search(b
, key
, level
, slot
);
2560 key_search_validate(b
, key
, level
);
2566 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2567 u64 iobjectid
, u64 ioff
, u8 key_type
,
2568 struct btrfs_key
*found_key
)
2571 struct btrfs_key key
;
2572 struct extent_buffer
*eb
;
2577 key
.type
= key_type
;
2578 key
.objectid
= iobjectid
;
2581 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2585 eb
= path
->nodes
[0];
2586 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2587 ret
= btrfs_next_leaf(fs_root
, path
);
2590 eb
= path
->nodes
[0];
2593 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2594 if (found_key
->type
!= key
.type
||
2595 found_key
->objectid
!= key
.objectid
)
2601 static struct extent_buffer
*btrfs_search_slot_get_root(struct btrfs_root
*root
,
2602 struct btrfs_path
*p
,
2603 int write_lock_level
)
2605 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2606 struct extent_buffer
*b
;
2610 /* We try very hard to do read locks on the root */
2611 root_lock
= BTRFS_READ_LOCK
;
2613 if (p
->search_commit_root
) {
2614 /* The commit roots are read only so we always do read locks */
2615 if (p
->need_commit_sem
)
2616 down_read(&fs_info
->commit_root_sem
);
2617 b
= root
->commit_root
;
2618 extent_buffer_get(b
);
2619 level
= btrfs_header_level(b
);
2620 if (p
->need_commit_sem
)
2621 up_read(&fs_info
->commit_root_sem
);
2623 * Ensure that all callers have set skip_locking when
2624 * p->search_commit_root = 1.
2626 ASSERT(p
->skip_locking
== 1);
2631 if (p
->skip_locking
) {
2632 b
= btrfs_root_node(root
);
2633 level
= btrfs_header_level(b
);
2638 * If the level is set to maximum, we can skip trying to get the read
2641 if (write_lock_level
< BTRFS_MAX_LEVEL
) {
2643 * We don't know the level of the root node until we actually
2644 * have it read locked
2646 b
= btrfs_read_lock_root_node(root
);
2647 level
= btrfs_header_level(b
);
2648 if (level
> write_lock_level
)
2651 /* Whoops, must trade for write lock */
2652 btrfs_tree_read_unlock(b
);
2653 free_extent_buffer(b
);
2656 b
= btrfs_lock_root_node(root
);
2657 root_lock
= BTRFS_WRITE_LOCK
;
2659 /* The level might have changed, check again */
2660 level
= btrfs_header_level(b
);
2663 p
->nodes
[level
] = b
;
2664 if (!p
->skip_locking
)
2665 p
->locks
[level
] = root_lock
;
2667 * Callers are responsible for dropping b's references.
2674 * btrfs_search_slot - look for a key in a tree and perform necessary
2675 * modifications to preserve tree invariants.
2677 * @trans: Handle of transaction, used when modifying the tree
2678 * @p: Holds all btree nodes along the search path
2679 * @root: The root node of the tree
2680 * @key: The key we are looking for
2681 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2682 * deletions it's -1. 0 for plain searches
2683 * @cow: boolean should CoW operations be performed. Must always be 1
2684 * when modifying the tree.
2686 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2687 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2689 * If @key is found, 0 is returned and you can find the item in the leaf level
2690 * of the path (level 0)
2692 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2693 * points to the slot where it should be inserted
2695 * If an error is encountered while searching the tree a negative error number
2698 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2699 const struct btrfs_key
*key
, struct btrfs_path
*p
,
2700 int ins_len
, int cow
)
2702 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2703 struct extent_buffer
*b
;
2708 int lowest_unlock
= 1;
2709 /* everything at write_lock_level or lower must be write locked */
2710 int write_lock_level
= 0;
2711 u8 lowest_level
= 0;
2712 int min_write_lock_level
;
2715 lowest_level
= p
->lowest_level
;
2716 WARN_ON(lowest_level
&& ins_len
> 0);
2717 WARN_ON(p
->nodes
[0] != NULL
);
2718 BUG_ON(!cow
&& ins_len
);
2723 /* when we are removing items, we might have to go up to level
2724 * two as we update tree pointers Make sure we keep write
2725 * for those levels as well
2727 write_lock_level
= 2;
2728 } else if (ins_len
> 0) {
2730 * for inserting items, make sure we have a write lock on
2731 * level 1 so we can update keys
2733 write_lock_level
= 1;
2737 write_lock_level
= -1;
2739 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2740 write_lock_level
= BTRFS_MAX_LEVEL
;
2742 min_write_lock_level
= write_lock_level
;
2746 b
= btrfs_search_slot_get_root(root
, p
, write_lock_level
);
2749 level
= btrfs_header_level(b
);
2752 * setup the path here so we can release it under lock
2753 * contention with the cow code
2756 bool last_level
= (level
== (BTRFS_MAX_LEVEL
- 1));
2759 * if we don't really need to cow this block
2760 * then we don't want to set the path blocking,
2761 * so we test it here
2763 if (!should_cow_block(trans
, root
, b
)) {
2764 trans
->dirty
= true;
2769 * must have write locks on this node and the
2772 if (level
> write_lock_level
||
2773 (level
+ 1 > write_lock_level
&&
2774 level
+ 1 < BTRFS_MAX_LEVEL
&&
2775 p
->nodes
[level
+ 1])) {
2776 write_lock_level
= level
+ 1;
2777 btrfs_release_path(p
);
2781 btrfs_set_path_blocking(p
);
2783 err
= btrfs_cow_block(trans
, root
, b
, NULL
, 0,
2786 err
= btrfs_cow_block(trans
, root
, b
,
2787 p
->nodes
[level
+ 1],
2788 p
->slots
[level
+ 1], &b
);
2795 p
->nodes
[level
] = b
;
2796 btrfs_clear_path_blocking(p
, NULL
, 0);
2799 * we have a lock on b and as long as we aren't changing
2800 * the tree, there is no way to for the items in b to change.
2801 * It is safe to drop the lock on our parent before we
2802 * go through the expensive btree search on b.
2804 * If we're inserting or deleting (ins_len != 0), then we might
2805 * be changing slot zero, which may require changing the parent.
2806 * So, we can't drop the lock until after we know which slot
2807 * we're operating on.
2809 if (!ins_len
&& !p
->keep_locks
) {
2812 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2813 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2818 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2824 if (ret
&& slot
> 0) {
2828 p
->slots
[level
] = slot
;
2829 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2830 ins_len
, &write_lock_level
);
2837 b
= p
->nodes
[level
];
2838 slot
= p
->slots
[level
];
2841 * slot 0 is special, if we change the key
2842 * we have to update the parent pointer
2843 * which means we must have a write lock
2846 if (slot
== 0 && ins_len
&&
2847 write_lock_level
< level
+ 1) {
2848 write_lock_level
= level
+ 1;
2849 btrfs_release_path(p
);
2853 unlock_up(p
, level
, lowest_unlock
,
2854 min_write_lock_level
, &write_lock_level
);
2856 if (level
== lowest_level
) {
2862 err
= read_block_for_search(root
, p
, &b
, level
,
2871 if (!p
->skip_locking
) {
2872 level
= btrfs_header_level(b
);
2873 if (level
<= write_lock_level
) {
2874 err
= btrfs_try_tree_write_lock(b
);
2876 btrfs_set_path_blocking(p
);
2878 btrfs_clear_path_blocking(p
, b
,
2881 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2883 err
= btrfs_tree_read_lock_atomic(b
);
2885 btrfs_set_path_blocking(p
);
2886 btrfs_tree_read_lock(b
);
2887 btrfs_clear_path_blocking(p
, b
,
2890 p
->locks
[level
] = BTRFS_READ_LOCK
;
2892 p
->nodes
[level
] = b
;
2895 p
->slots
[level
] = slot
;
2897 btrfs_leaf_free_space(fs_info
, b
) < ins_len
) {
2898 if (write_lock_level
< 1) {
2899 write_lock_level
= 1;
2900 btrfs_release_path(p
);
2904 btrfs_set_path_blocking(p
);
2905 err
= split_leaf(trans
, root
, key
,
2906 p
, ins_len
, ret
== 0);
2907 btrfs_clear_path_blocking(p
, NULL
, 0);
2915 if (!p
->search_for_split
)
2916 unlock_up(p
, level
, lowest_unlock
,
2917 min_write_lock_level
, &write_lock_level
);
2924 * we don't really know what they plan on doing with the path
2925 * from here on, so for now just mark it as blocking
2927 if (!p
->leave_spinning
)
2928 btrfs_set_path_blocking(p
);
2929 if (ret
< 0 && !p
->skip_release_on_error
)
2930 btrfs_release_path(p
);
2935 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2936 * current state of the tree together with the operations recorded in the tree
2937 * modification log to search for the key in a previous version of this tree, as
2938 * denoted by the time_seq parameter.
2940 * Naturally, there is no support for insert, delete or cow operations.
2942 * The resulting path and return value will be set up as if we called
2943 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2945 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
2946 struct btrfs_path
*p
, u64 time_seq
)
2948 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2949 struct extent_buffer
*b
;
2954 int lowest_unlock
= 1;
2955 u8 lowest_level
= 0;
2958 lowest_level
= p
->lowest_level
;
2959 WARN_ON(p
->nodes
[0] != NULL
);
2961 if (p
->search_commit_root
) {
2963 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2967 b
= get_old_root(root
, time_seq
);
2968 level
= btrfs_header_level(b
);
2969 p
->locks
[level
] = BTRFS_READ_LOCK
;
2972 level
= btrfs_header_level(b
);
2973 p
->nodes
[level
] = b
;
2974 btrfs_clear_path_blocking(p
, NULL
, 0);
2977 * we have a lock on b and as long as we aren't changing
2978 * the tree, there is no way to for the items in b to change.
2979 * It is safe to drop the lock on our parent before we
2980 * go through the expensive btree search on b.
2982 btrfs_unlock_up_safe(p
, level
+ 1);
2985 * Since we can unwind ebs we want to do a real search every
2989 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2993 if (ret
&& slot
> 0) {
2997 p
->slots
[level
] = slot
;
2998 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3000 if (level
== lowest_level
) {
3006 err
= read_block_for_search(root
, p
, &b
, level
,
3015 level
= btrfs_header_level(b
);
3016 err
= btrfs_tree_read_lock_atomic(b
);
3018 btrfs_set_path_blocking(p
);
3019 btrfs_tree_read_lock(b
);
3020 btrfs_clear_path_blocking(p
, b
,
3023 b
= tree_mod_log_rewind(fs_info
, p
, b
, time_seq
);
3028 p
->locks
[level
] = BTRFS_READ_LOCK
;
3029 p
->nodes
[level
] = b
;
3031 p
->slots
[level
] = slot
;
3032 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3038 if (!p
->leave_spinning
)
3039 btrfs_set_path_blocking(p
);
3041 btrfs_release_path(p
);
3047 * helper to use instead of search slot if no exact match is needed but
3048 * instead the next or previous item should be returned.
3049 * When find_higher is true, the next higher item is returned, the next lower
3051 * When return_any and find_higher are both true, and no higher item is found,
3052 * return the next lower instead.
3053 * When return_any is true and find_higher is false, and no lower item is found,
3054 * return the next higher instead.
3055 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3058 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3059 const struct btrfs_key
*key
,
3060 struct btrfs_path
*p
, int find_higher
,
3064 struct extent_buffer
*leaf
;
3067 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3071 * a return value of 1 means the path is at the position where the
3072 * item should be inserted. Normally this is the next bigger item,
3073 * but in case the previous item is the last in a leaf, path points
3074 * to the first free slot in the previous leaf, i.e. at an invalid
3080 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3081 ret
= btrfs_next_leaf(root
, p
);
3087 * no higher item found, return the next
3092 btrfs_release_path(p
);
3096 if (p
->slots
[0] == 0) {
3097 ret
= btrfs_prev_leaf(root
, p
);
3102 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3109 * no lower item found, return the next
3114 btrfs_release_path(p
);
3124 * adjust the pointers going up the tree, starting at level
3125 * making sure the right key of each node is points to 'key'.
3126 * This is used after shifting pointers to the left, so it stops
3127 * fixing up pointers when a given leaf/node is not in slot 0 of the
3131 static void fixup_low_keys(struct btrfs_fs_info
*fs_info
,
3132 struct btrfs_path
*path
,
3133 struct btrfs_disk_key
*key
, int level
)
3136 struct extent_buffer
*t
;
3139 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3140 int tslot
= path
->slots
[i
];
3142 if (!path
->nodes
[i
])
3145 ret
= tree_mod_log_insert_key(t
, tslot
, MOD_LOG_KEY_REPLACE
,
3148 btrfs_set_node_key(t
, key
, tslot
);
3149 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3158 * This function isn't completely safe. It's the caller's responsibility
3159 * that the new key won't break the order
3161 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3162 struct btrfs_path
*path
,
3163 const struct btrfs_key
*new_key
)
3165 struct btrfs_disk_key disk_key
;
3166 struct extent_buffer
*eb
;
3169 eb
= path
->nodes
[0];
3170 slot
= path
->slots
[0];
3172 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3173 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3175 if (slot
< btrfs_header_nritems(eb
) - 1) {
3176 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3177 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3180 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3181 btrfs_set_item_key(eb
, &disk_key
, slot
);
3182 btrfs_mark_buffer_dirty(eb
);
3184 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3188 * try to push data from one node into the next node left in the
3191 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3192 * error, and > 0 if there was no room in the left hand block.
3194 static int push_node_left(struct btrfs_trans_handle
*trans
,
3195 struct btrfs_fs_info
*fs_info
,
3196 struct extent_buffer
*dst
,
3197 struct extent_buffer
*src
, int empty
)
3204 src_nritems
= btrfs_header_nritems(src
);
3205 dst_nritems
= btrfs_header_nritems(dst
);
3206 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3207 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3208 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3210 if (!empty
&& src_nritems
<= 8)
3213 if (push_items
<= 0)
3217 push_items
= min(src_nritems
, push_items
);
3218 if (push_items
< src_nritems
) {
3219 /* leave at least 8 pointers in the node if
3220 * we aren't going to empty it
3222 if (src_nritems
- push_items
< 8) {
3223 if (push_items
<= 8)
3229 push_items
= min(src_nritems
- 8, push_items
);
3231 ret
= tree_mod_log_eb_copy(fs_info
, dst
, src
, dst_nritems
, 0,
3234 btrfs_abort_transaction(trans
, ret
);
3237 copy_extent_buffer(dst
, src
,
3238 btrfs_node_key_ptr_offset(dst_nritems
),
3239 btrfs_node_key_ptr_offset(0),
3240 push_items
* sizeof(struct btrfs_key_ptr
));
3242 if (push_items
< src_nritems
) {
3244 * Don't call tree_mod_log_insert_move here, key removal was
3245 * already fully logged by tree_mod_log_eb_copy above.
3247 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3248 btrfs_node_key_ptr_offset(push_items
),
3249 (src_nritems
- push_items
) *
3250 sizeof(struct btrfs_key_ptr
));
3252 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3253 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3254 btrfs_mark_buffer_dirty(src
);
3255 btrfs_mark_buffer_dirty(dst
);
3261 * try to push data from one node into the next node right in the
3264 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3265 * error, and > 0 if there was no room in the right hand block.
3267 * this will only push up to 1/2 the contents of the left node over
3269 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3270 struct btrfs_fs_info
*fs_info
,
3271 struct extent_buffer
*dst
,
3272 struct extent_buffer
*src
)
3280 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3281 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3283 src_nritems
= btrfs_header_nritems(src
);
3284 dst_nritems
= btrfs_header_nritems(dst
);
3285 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
3286 if (push_items
<= 0)
3289 if (src_nritems
< 4)
3292 max_push
= src_nritems
/ 2 + 1;
3293 /* don't try to empty the node */
3294 if (max_push
>= src_nritems
)
3297 if (max_push
< push_items
)
3298 push_items
= max_push
;
3300 ret
= tree_mod_log_insert_move(dst
, push_items
, 0, dst_nritems
);
3302 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3303 btrfs_node_key_ptr_offset(0),
3305 sizeof(struct btrfs_key_ptr
));
3307 ret
= tree_mod_log_eb_copy(fs_info
, dst
, src
, 0,
3308 src_nritems
- push_items
, push_items
);
3310 btrfs_abort_transaction(trans
, ret
);
3313 copy_extent_buffer(dst
, src
,
3314 btrfs_node_key_ptr_offset(0),
3315 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3316 push_items
* sizeof(struct btrfs_key_ptr
));
3318 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3319 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3321 btrfs_mark_buffer_dirty(src
);
3322 btrfs_mark_buffer_dirty(dst
);
3328 * helper function to insert a new root level in the tree.
3329 * A new node is allocated, and a single item is inserted to
3330 * point to the existing root
3332 * returns zero on success or < 0 on failure.
3334 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3335 struct btrfs_root
*root
,
3336 struct btrfs_path
*path
, int level
)
3338 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3340 struct extent_buffer
*lower
;
3341 struct extent_buffer
*c
;
3342 struct extent_buffer
*old
;
3343 struct btrfs_disk_key lower_key
;
3346 BUG_ON(path
->nodes
[level
]);
3347 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3349 lower
= path
->nodes
[level
-1];
3351 btrfs_item_key(lower
, &lower_key
, 0);
3353 btrfs_node_key(lower
, &lower_key
, 0);
3355 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3356 &lower_key
, level
, root
->node
->start
, 0);
3360 root_add_used(root
, fs_info
->nodesize
);
3362 memzero_extent_buffer(c
, 0, sizeof(struct btrfs_header
));
3363 btrfs_set_header_nritems(c
, 1);
3364 btrfs_set_header_level(c
, level
);
3365 btrfs_set_header_bytenr(c
, c
->start
);
3366 btrfs_set_header_generation(c
, trans
->transid
);
3367 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3368 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3370 write_extent_buffer_fsid(c
, fs_info
->fsid
);
3371 write_extent_buffer_chunk_tree_uuid(c
, fs_info
->chunk_tree_uuid
);
3373 btrfs_set_node_key(c
, &lower_key
, 0);
3374 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3375 lower_gen
= btrfs_header_generation(lower
);
3376 WARN_ON(lower_gen
!= trans
->transid
);
3378 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3380 btrfs_mark_buffer_dirty(c
);
3383 ret
= tree_mod_log_insert_root(root
->node
, c
, 0);
3385 rcu_assign_pointer(root
->node
, c
);
3387 /* the super has an extra ref to root->node */
3388 free_extent_buffer(old
);
3390 add_root_to_dirty_list(root
);
3391 extent_buffer_get(c
);
3392 path
->nodes
[level
] = c
;
3393 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3394 path
->slots
[level
] = 0;
3399 * worker function to insert a single pointer in a node.
3400 * the node should have enough room for the pointer already
3402 * slot and level indicate where you want the key to go, and
3403 * blocknr is the block the key points to.
3405 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3406 struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
3407 struct btrfs_disk_key
*key
, u64 bytenr
,
3408 int slot
, int level
)
3410 struct extent_buffer
*lower
;
3414 BUG_ON(!path
->nodes
[level
]);
3415 btrfs_assert_tree_locked(path
->nodes
[level
]);
3416 lower
= path
->nodes
[level
];
3417 nritems
= btrfs_header_nritems(lower
);
3418 BUG_ON(slot
> nritems
);
3419 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
3420 if (slot
!= nritems
) {
3422 ret
= tree_mod_log_insert_move(lower
, slot
+ 1, slot
,
3426 memmove_extent_buffer(lower
,
3427 btrfs_node_key_ptr_offset(slot
+ 1),
3428 btrfs_node_key_ptr_offset(slot
),
3429 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3432 ret
= tree_mod_log_insert_key(lower
, slot
, MOD_LOG_KEY_ADD
,
3436 btrfs_set_node_key(lower
, key
, slot
);
3437 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3438 WARN_ON(trans
->transid
== 0);
3439 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3440 btrfs_set_header_nritems(lower
, nritems
+ 1);
3441 btrfs_mark_buffer_dirty(lower
);
3445 * split the node at the specified level in path in two.
3446 * The path is corrected to point to the appropriate node after the split
3448 * Before splitting this tries to make some room in the node by pushing
3449 * left and right, if either one works, it returns right away.
3451 * returns 0 on success and < 0 on failure
3453 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3454 struct btrfs_root
*root
,
3455 struct btrfs_path
*path
, int level
)
3457 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3458 struct extent_buffer
*c
;
3459 struct extent_buffer
*split
;
3460 struct btrfs_disk_key disk_key
;
3465 c
= path
->nodes
[level
];
3466 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3467 if (c
== root
->node
) {
3469 * trying to split the root, lets make a new one
3471 * tree mod log: We don't log_removal old root in
3472 * insert_new_root, because that root buffer will be kept as a
3473 * normal node. We are going to log removal of half of the
3474 * elements below with tree_mod_log_eb_copy. We're holding a
3475 * tree lock on the buffer, which is why we cannot race with
3476 * other tree_mod_log users.
3478 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3482 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3483 c
= path
->nodes
[level
];
3484 if (!ret
&& btrfs_header_nritems(c
) <
3485 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3)
3491 c_nritems
= btrfs_header_nritems(c
);
3492 mid
= (c_nritems
+ 1) / 2;
3493 btrfs_node_key(c
, &disk_key
, mid
);
3495 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3496 &disk_key
, level
, c
->start
, 0);
3498 return PTR_ERR(split
);
3500 root_add_used(root
, fs_info
->nodesize
);
3502 memzero_extent_buffer(split
, 0, sizeof(struct btrfs_header
));
3503 btrfs_set_header_level(split
, btrfs_header_level(c
));
3504 btrfs_set_header_bytenr(split
, split
->start
);
3505 btrfs_set_header_generation(split
, trans
->transid
);
3506 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3507 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3508 write_extent_buffer_fsid(split
, fs_info
->fsid
);
3509 write_extent_buffer_chunk_tree_uuid(split
, fs_info
->chunk_tree_uuid
);
3511 ret
= tree_mod_log_eb_copy(fs_info
, split
, c
, 0, mid
, c_nritems
- mid
);
3513 btrfs_abort_transaction(trans
, ret
);
3516 copy_extent_buffer(split
, c
,
3517 btrfs_node_key_ptr_offset(0),
3518 btrfs_node_key_ptr_offset(mid
),
3519 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3520 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3521 btrfs_set_header_nritems(c
, mid
);
3524 btrfs_mark_buffer_dirty(c
);
3525 btrfs_mark_buffer_dirty(split
);
3527 insert_ptr(trans
, fs_info
, path
, &disk_key
, split
->start
,
3528 path
->slots
[level
+ 1] + 1, level
+ 1);
3530 if (path
->slots
[level
] >= mid
) {
3531 path
->slots
[level
] -= mid
;
3532 btrfs_tree_unlock(c
);
3533 free_extent_buffer(c
);
3534 path
->nodes
[level
] = split
;
3535 path
->slots
[level
+ 1] += 1;
3537 btrfs_tree_unlock(split
);
3538 free_extent_buffer(split
);
3544 * how many bytes are required to store the items in a leaf. start
3545 * and nr indicate which items in the leaf to check. This totals up the
3546 * space used both by the item structs and the item data
3548 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3550 struct btrfs_item
*start_item
;
3551 struct btrfs_item
*end_item
;
3552 struct btrfs_map_token token
;
3554 int nritems
= btrfs_header_nritems(l
);
3555 int end
= min(nritems
, start
+ nr
) - 1;
3559 btrfs_init_map_token(&token
);
3560 start_item
= btrfs_item_nr(start
);
3561 end_item
= btrfs_item_nr(end
);
3562 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3563 btrfs_token_item_size(l
, start_item
, &token
);
3564 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3565 data_len
+= sizeof(struct btrfs_item
) * nr
;
3566 WARN_ON(data_len
< 0);
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data. IOW, how much room
3573 * the leaf has left for both items and data
3575 noinline
int btrfs_leaf_free_space(struct btrfs_fs_info
*fs_info
,
3576 struct extent_buffer
*leaf
)
3578 int nritems
= btrfs_header_nritems(leaf
);
3581 ret
= BTRFS_LEAF_DATA_SIZE(fs_info
) - leaf_space_used(leaf
, 0, nritems
);
3584 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info
),
3587 leaf_space_used(leaf
, 0, nritems
), nritems
);
3593 * min slot controls the lowest index we're willing to push to the
3594 * right. We'll push up to and including min_slot, but no lower
3596 static noinline
int __push_leaf_right(struct btrfs_fs_info
*fs_info
,
3597 struct btrfs_path
*path
,
3598 int data_size
, int empty
,
3599 struct extent_buffer
*right
,
3600 int free_space
, u32 left_nritems
,
3603 struct extent_buffer
*left
= path
->nodes
[0];
3604 struct extent_buffer
*upper
= path
->nodes
[1];
3605 struct btrfs_map_token token
;
3606 struct btrfs_disk_key disk_key
;
3611 struct btrfs_item
*item
;
3617 btrfs_init_map_token(&token
);
3622 nr
= max_t(u32
, 1, min_slot
);
3624 if (path
->slots
[0] >= left_nritems
)
3625 push_space
+= data_size
;
3627 slot
= path
->slots
[1];
3628 i
= left_nritems
- 1;
3630 item
= btrfs_item_nr(i
);
3632 if (!empty
&& push_items
> 0) {
3633 if (path
->slots
[0] > i
)
3635 if (path
->slots
[0] == i
) {
3636 int space
= btrfs_leaf_free_space(fs_info
, left
);
3637 if (space
+ push_space
* 2 > free_space
)
3642 if (path
->slots
[0] == i
)
3643 push_space
+= data_size
;
3645 this_item_size
= btrfs_item_size(left
, item
);
3646 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3650 push_space
+= this_item_size
+ sizeof(*item
);
3656 if (push_items
== 0)
3659 WARN_ON(!empty
&& push_items
== left_nritems
);
3661 /* push left to right */
3662 right_nritems
= btrfs_header_nritems(right
);
3664 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3665 push_space
-= leaf_data_end(fs_info
, left
);
3667 /* make room in the right data area */
3668 data_end
= leaf_data_end(fs_info
, right
);
3669 memmove_extent_buffer(right
,
3670 BTRFS_LEAF_DATA_OFFSET
+ data_end
- push_space
,
3671 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
3672 BTRFS_LEAF_DATA_SIZE(fs_info
) - data_end
);
3674 /* copy from the left data area */
3675 copy_extent_buffer(right
, left
, BTRFS_LEAF_DATA_OFFSET
+
3676 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3677 BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(fs_info
, left
),
3680 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3681 btrfs_item_nr_offset(0),
3682 right_nritems
* sizeof(struct btrfs_item
));
3684 /* copy the items from left to right */
3685 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3686 btrfs_item_nr_offset(left_nritems
- push_items
),
3687 push_items
* sizeof(struct btrfs_item
));
3689 /* update the item pointers */
3690 right_nritems
+= push_items
;
3691 btrfs_set_header_nritems(right
, right_nritems
);
3692 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3693 for (i
= 0; i
< right_nritems
; i
++) {
3694 item
= btrfs_item_nr(i
);
3695 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3696 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3699 left_nritems
-= push_items
;
3700 btrfs_set_header_nritems(left
, left_nritems
);
3703 btrfs_mark_buffer_dirty(left
);
3705 clean_tree_block(fs_info
, left
);
3707 btrfs_mark_buffer_dirty(right
);
3709 btrfs_item_key(right
, &disk_key
, 0);
3710 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3711 btrfs_mark_buffer_dirty(upper
);
3713 /* then fixup the leaf pointer in the path */
3714 if (path
->slots
[0] >= left_nritems
) {
3715 path
->slots
[0] -= left_nritems
;
3716 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3717 clean_tree_block(fs_info
, path
->nodes
[0]);
3718 btrfs_tree_unlock(path
->nodes
[0]);
3719 free_extent_buffer(path
->nodes
[0]);
3720 path
->nodes
[0] = right
;
3721 path
->slots
[1] += 1;
3723 btrfs_tree_unlock(right
);
3724 free_extent_buffer(right
);
3729 btrfs_tree_unlock(right
);
3730 free_extent_buffer(right
);
3735 * push some data in the path leaf to the right, trying to free up at
3736 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3738 * returns 1 if the push failed because the other node didn't have enough
3739 * room, 0 if everything worked out and < 0 if there were major errors.
3741 * this will push starting from min_slot to the end of the leaf. It won't
3742 * push any slot lower than min_slot
3744 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3745 *root
, struct btrfs_path
*path
,
3746 int min_data_size
, int data_size
,
3747 int empty
, u32 min_slot
)
3749 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3750 struct extent_buffer
*left
= path
->nodes
[0];
3751 struct extent_buffer
*right
;
3752 struct extent_buffer
*upper
;
3758 if (!path
->nodes
[1])
3761 slot
= path
->slots
[1];
3762 upper
= path
->nodes
[1];
3763 if (slot
>= btrfs_header_nritems(upper
) - 1)
3766 btrfs_assert_tree_locked(path
->nodes
[1]);
3768 right
= read_node_slot(fs_info
, upper
, slot
+ 1);
3770 * slot + 1 is not valid or we fail to read the right node,
3771 * no big deal, just return.
3776 btrfs_tree_lock(right
);
3777 btrfs_set_lock_blocking(right
);
3779 free_space
= btrfs_leaf_free_space(fs_info
, right
);
3780 if (free_space
< data_size
)
3783 /* cow and double check */
3784 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3789 free_space
= btrfs_leaf_free_space(fs_info
, right
);
3790 if (free_space
< data_size
)
3793 left_nritems
= btrfs_header_nritems(left
);
3794 if (left_nritems
== 0)
3797 if (path
->slots
[0] == left_nritems
&& !empty
) {
3798 /* Key greater than all keys in the leaf, right neighbor has
3799 * enough room for it and we're not emptying our leaf to delete
3800 * it, therefore use right neighbor to insert the new item and
3801 * no need to touch/dirty our left leaft. */
3802 btrfs_tree_unlock(left
);
3803 free_extent_buffer(left
);
3804 path
->nodes
[0] = right
;
3810 return __push_leaf_right(fs_info
, path
, min_data_size
, empty
,
3811 right
, free_space
, left_nritems
, min_slot
);
3813 btrfs_tree_unlock(right
);
3814 free_extent_buffer(right
);
3819 * push some data in the path leaf to the left, trying to free up at
3820 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3822 * max_slot can put a limit on how far into the leaf we'll push items. The
3823 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3826 static noinline
int __push_leaf_left(struct btrfs_fs_info
*fs_info
,
3827 struct btrfs_path
*path
, int data_size
,
3828 int empty
, struct extent_buffer
*left
,
3829 int free_space
, u32 right_nritems
,
3832 struct btrfs_disk_key disk_key
;
3833 struct extent_buffer
*right
= path
->nodes
[0];
3837 struct btrfs_item
*item
;
3838 u32 old_left_nritems
;
3842 u32 old_left_item_size
;
3843 struct btrfs_map_token token
;
3845 btrfs_init_map_token(&token
);
3848 nr
= min(right_nritems
, max_slot
);
3850 nr
= min(right_nritems
- 1, max_slot
);
3852 for (i
= 0; i
< nr
; i
++) {
3853 item
= btrfs_item_nr(i
);
3855 if (!empty
&& push_items
> 0) {
3856 if (path
->slots
[0] < i
)
3858 if (path
->slots
[0] == i
) {
3859 int space
= btrfs_leaf_free_space(fs_info
, right
);
3860 if (space
+ push_space
* 2 > free_space
)
3865 if (path
->slots
[0] == i
)
3866 push_space
+= data_size
;
3868 this_item_size
= btrfs_item_size(right
, item
);
3869 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3873 push_space
+= this_item_size
+ sizeof(*item
);
3876 if (push_items
== 0) {
3880 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3882 /* push data from right to left */
3883 copy_extent_buffer(left
, right
,
3884 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3885 btrfs_item_nr_offset(0),
3886 push_items
* sizeof(struct btrfs_item
));
3888 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
) -
3889 btrfs_item_offset_nr(right
, push_items
- 1);
3891 copy_extent_buffer(left
, right
, BTRFS_LEAF_DATA_OFFSET
+
3892 leaf_data_end(fs_info
, left
) - push_space
,
3893 BTRFS_LEAF_DATA_OFFSET
+
3894 btrfs_item_offset_nr(right
, push_items
- 1),
3896 old_left_nritems
= btrfs_header_nritems(left
);
3897 BUG_ON(old_left_nritems
<= 0);
3899 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3900 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3903 item
= btrfs_item_nr(i
);
3905 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3906 btrfs_set_token_item_offset(left
, item
,
3907 ioff
- (BTRFS_LEAF_DATA_SIZE(fs_info
) - old_left_item_size
),
3910 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3912 /* fixup right node */
3913 if (push_items
> right_nritems
)
3914 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3917 if (push_items
< right_nritems
) {
3918 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3919 leaf_data_end(fs_info
, right
);
3920 memmove_extent_buffer(right
, BTRFS_LEAF_DATA_OFFSET
+
3921 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3922 BTRFS_LEAF_DATA_OFFSET
+
3923 leaf_data_end(fs_info
, right
), push_space
);
3925 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3926 btrfs_item_nr_offset(push_items
),
3927 (btrfs_header_nritems(right
) - push_items
) *
3928 sizeof(struct btrfs_item
));
3930 right_nritems
-= push_items
;
3931 btrfs_set_header_nritems(right
, right_nritems
);
3932 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3933 for (i
= 0; i
< right_nritems
; i
++) {
3934 item
= btrfs_item_nr(i
);
3936 push_space
= push_space
- btrfs_token_item_size(right
,
3938 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3941 btrfs_mark_buffer_dirty(left
);
3943 btrfs_mark_buffer_dirty(right
);
3945 clean_tree_block(fs_info
, right
);
3947 btrfs_item_key(right
, &disk_key
, 0);
3948 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3950 /* then fixup the leaf pointer in the path */
3951 if (path
->slots
[0] < push_items
) {
3952 path
->slots
[0] += old_left_nritems
;
3953 btrfs_tree_unlock(path
->nodes
[0]);
3954 free_extent_buffer(path
->nodes
[0]);
3955 path
->nodes
[0] = left
;
3956 path
->slots
[1] -= 1;
3958 btrfs_tree_unlock(left
);
3959 free_extent_buffer(left
);
3960 path
->slots
[0] -= push_items
;
3962 BUG_ON(path
->slots
[0] < 0);
3965 btrfs_tree_unlock(left
);
3966 free_extent_buffer(left
);
3971 * push some data in the path leaf to the left, trying to free up at
3972 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3974 * max_slot can put a limit on how far into the leaf we'll push items. The
3975 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3978 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3979 *root
, struct btrfs_path
*path
, int min_data_size
,
3980 int data_size
, int empty
, u32 max_slot
)
3982 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3983 struct extent_buffer
*right
= path
->nodes
[0];
3984 struct extent_buffer
*left
;
3990 slot
= path
->slots
[1];
3993 if (!path
->nodes
[1])
3996 right_nritems
= btrfs_header_nritems(right
);
3997 if (right_nritems
== 0)
4000 btrfs_assert_tree_locked(path
->nodes
[1]);
4002 left
= read_node_slot(fs_info
, path
->nodes
[1], slot
- 1);
4004 * slot - 1 is not valid or we fail to read the left node,
4005 * no big deal, just return.
4010 btrfs_tree_lock(left
);
4011 btrfs_set_lock_blocking(left
);
4013 free_space
= btrfs_leaf_free_space(fs_info
, left
);
4014 if (free_space
< data_size
) {
4019 /* cow and double check */
4020 ret
= btrfs_cow_block(trans
, root
, left
,
4021 path
->nodes
[1], slot
- 1, &left
);
4023 /* we hit -ENOSPC, but it isn't fatal here */
4029 free_space
= btrfs_leaf_free_space(fs_info
, left
);
4030 if (free_space
< data_size
) {
4035 return __push_leaf_left(fs_info
, path
, min_data_size
,
4036 empty
, left
, free_space
, right_nritems
,
4039 btrfs_tree_unlock(left
);
4040 free_extent_buffer(left
);
4045 * split the path's leaf in two, making sure there is at least data_size
4046 * available for the resulting leaf level of the path.
4048 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4049 struct btrfs_fs_info
*fs_info
,
4050 struct btrfs_path
*path
,
4051 struct extent_buffer
*l
,
4052 struct extent_buffer
*right
,
4053 int slot
, int mid
, int nritems
)
4058 struct btrfs_disk_key disk_key
;
4059 struct btrfs_map_token token
;
4061 btrfs_init_map_token(&token
);
4063 nritems
= nritems
- mid
;
4064 btrfs_set_header_nritems(right
, nritems
);
4065 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(fs_info
, l
);
4067 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4068 btrfs_item_nr_offset(mid
),
4069 nritems
* sizeof(struct btrfs_item
));
4071 copy_extent_buffer(right
, l
,
4072 BTRFS_LEAF_DATA_OFFSET
+ BTRFS_LEAF_DATA_SIZE(fs_info
) -
4073 data_copy_size
, BTRFS_LEAF_DATA_OFFSET
+
4074 leaf_data_end(fs_info
, l
), data_copy_size
);
4076 rt_data_off
= BTRFS_LEAF_DATA_SIZE(fs_info
) - btrfs_item_end_nr(l
, mid
);
4078 for (i
= 0; i
< nritems
; i
++) {
4079 struct btrfs_item
*item
= btrfs_item_nr(i
);
4082 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4083 btrfs_set_token_item_offset(right
, item
,
4084 ioff
+ rt_data_off
, &token
);
4087 btrfs_set_header_nritems(l
, mid
);
4088 btrfs_item_key(right
, &disk_key
, 0);
4089 insert_ptr(trans
, fs_info
, path
, &disk_key
, right
->start
,
4090 path
->slots
[1] + 1, 1);
4092 btrfs_mark_buffer_dirty(right
);
4093 btrfs_mark_buffer_dirty(l
);
4094 BUG_ON(path
->slots
[0] != slot
);
4097 btrfs_tree_unlock(path
->nodes
[0]);
4098 free_extent_buffer(path
->nodes
[0]);
4099 path
->nodes
[0] = right
;
4100 path
->slots
[0] -= mid
;
4101 path
->slots
[1] += 1;
4103 btrfs_tree_unlock(right
);
4104 free_extent_buffer(right
);
4107 BUG_ON(path
->slots
[0] < 0);
4111 * double splits happen when we need to insert a big item in the middle
4112 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4113 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4116 * We avoid this by trying to push the items on either side of our target
4117 * into the adjacent leaves. If all goes well we can avoid the double split
4120 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4121 struct btrfs_root
*root
,
4122 struct btrfs_path
*path
,
4125 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4130 int space_needed
= data_size
;
4132 slot
= path
->slots
[0];
4133 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4134 space_needed
-= btrfs_leaf_free_space(fs_info
, path
->nodes
[0]);
4137 * try to push all the items after our slot into the
4140 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4147 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4149 * our goal is to get our slot at the start or end of a leaf. If
4150 * we've done so we're done
4152 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4155 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= data_size
)
4158 /* try to push all the items before our slot into the next leaf */
4159 slot
= path
->slots
[0];
4160 space_needed
= data_size
;
4162 space_needed
-= btrfs_leaf_free_space(fs_info
, path
->nodes
[0]);
4163 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4179 * returns 0 if all went well and < 0 on failure.
4181 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4182 struct btrfs_root
*root
,
4183 const struct btrfs_key
*ins_key
,
4184 struct btrfs_path
*path
, int data_size
,
4187 struct btrfs_disk_key disk_key
;
4188 struct extent_buffer
*l
;
4192 struct extent_buffer
*right
;
4193 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4197 int num_doubles
= 0;
4198 int tried_avoid_double
= 0;
4201 slot
= path
->slots
[0];
4202 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4203 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(fs_info
))
4206 /* first try to make some room by pushing left and right */
4207 if (data_size
&& path
->nodes
[1]) {
4208 int space_needed
= data_size
;
4210 if (slot
< btrfs_header_nritems(l
))
4211 space_needed
-= btrfs_leaf_free_space(fs_info
, l
);
4213 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4214 space_needed
, 0, 0);
4218 space_needed
= data_size
;
4220 space_needed
-= btrfs_leaf_free_space(fs_info
,
4222 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4223 space_needed
, 0, (u32
)-1);
4229 /* did the pushes work? */
4230 if (btrfs_leaf_free_space(fs_info
, l
) >= data_size
)
4234 if (!path
->nodes
[1]) {
4235 ret
= insert_new_root(trans
, root
, path
, 1);
4242 slot
= path
->slots
[0];
4243 nritems
= btrfs_header_nritems(l
);
4244 mid
= (nritems
+ 1) / 2;
4248 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4249 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4250 if (slot
>= nritems
) {
4254 if (mid
!= nritems
&&
4255 leaf_space_used(l
, mid
, nritems
- mid
) +
4256 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4257 if (data_size
&& !tried_avoid_double
)
4258 goto push_for_double
;
4264 if (leaf_space_used(l
, 0, mid
) + data_size
>
4265 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4266 if (!extend
&& data_size
&& slot
== 0) {
4268 } else if ((extend
|| !data_size
) && slot
== 0) {
4272 if (mid
!= nritems
&&
4273 leaf_space_used(l
, mid
, nritems
- mid
) +
4274 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
4275 if (data_size
&& !tried_avoid_double
)
4276 goto push_for_double
;
4284 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4286 btrfs_item_key(l
, &disk_key
, mid
);
4288 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4289 &disk_key
, 0, l
->start
, 0);
4291 return PTR_ERR(right
);
4293 root_add_used(root
, fs_info
->nodesize
);
4295 memzero_extent_buffer(right
, 0, sizeof(struct btrfs_header
));
4296 btrfs_set_header_bytenr(right
, right
->start
);
4297 btrfs_set_header_generation(right
, trans
->transid
);
4298 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4299 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4300 btrfs_set_header_level(right
, 0);
4301 write_extent_buffer_fsid(right
, fs_info
->fsid
);
4302 write_extent_buffer_chunk_tree_uuid(right
, fs_info
->chunk_tree_uuid
);
4306 btrfs_set_header_nritems(right
, 0);
4307 insert_ptr(trans
, fs_info
, path
, &disk_key
,
4308 right
->start
, path
->slots
[1] + 1, 1);
4309 btrfs_tree_unlock(path
->nodes
[0]);
4310 free_extent_buffer(path
->nodes
[0]);
4311 path
->nodes
[0] = right
;
4313 path
->slots
[1] += 1;
4315 btrfs_set_header_nritems(right
, 0);
4316 insert_ptr(trans
, fs_info
, path
, &disk_key
,
4317 right
->start
, path
->slots
[1], 1);
4318 btrfs_tree_unlock(path
->nodes
[0]);
4319 free_extent_buffer(path
->nodes
[0]);
4320 path
->nodes
[0] = right
;
4322 if (path
->slots
[1] == 0)
4323 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4326 * We create a new leaf 'right' for the required ins_len and
4327 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4328 * the content of ins_len to 'right'.
4333 copy_for_split(trans
, fs_info
, path
, l
, right
, slot
, mid
, nritems
);
4336 BUG_ON(num_doubles
!= 0);
4344 push_for_double_split(trans
, root
, path
, data_size
);
4345 tried_avoid_double
= 1;
4346 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= data_size
)
4351 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4352 struct btrfs_root
*root
,
4353 struct btrfs_path
*path
, int ins_len
)
4355 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4356 struct btrfs_key key
;
4357 struct extent_buffer
*leaf
;
4358 struct btrfs_file_extent_item
*fi
;
4363 leaf
= path
->nodes
[0];
4364 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4366 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4367 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4369 if (btrfs_leaf_free_space(fs_info
, leaf
) >= ins_len
)
4372 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4373 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4374 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4375 struct btrfs_file_extent_item
);
4376 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4378 btrfs_release_path(path
);
4380 path
->keep_locks
= 1;
4381 path
->search_for_split
= 1;
4382 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4383 path
->search_for_split
= 0;
4390 leaf
= path
->nodes
[0];
4391 /* if our item isn't there, return now */
4392 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4395 /* the leaf has changed, it now has room. return now */
4396 if (btrfs_leaf_free_space(fs_info
, path
->nodes
[0]) >= ins_len
)
4399 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4400 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4401 struct btrfs_file_extent_item
);
4402 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4406 btrfs_set_path_blocking(path
);
4407 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4411 path
->keep_locks
= 0;
4412 btrfs_unlock_up_safe(path
, 1);
4415 path
->keep_locks
= 0;
4419 static noinline
int split_item(struct btrfs_fs_info
*fs_info
,
4420 struct btrfs_path
*path
,
4421 const struct btrfs_key
*new_key
,
4422 unsigned long split_offset
)
4424 struct extent_buffer
*leaf
;
4425 struct btrfs_item
*item
;
4426 struct btrfs_item
*new_item
;
4432 struct btrfs_disk_key disk_key
;
4434 leaf
= path
->nodes
[0];
4435 BUG_ON(btrfs_leaf_free_space(fs_info
, leaf
) < sizeof(struct btrfs_item
));
4437 btrfs_set_path_blocking(path
);
4439 item
= btrfs_item_nr(path
->slots
[0]);
4440 orig_offset
= btrfs_item_offset(leaf
, item
);
4441 item_size
= btrfs_item_size(leaf
, item
);
4443 buf
= kmalloc(item_size
, GFP_NOFS
);
4447 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4448 path
->slots
[0]), item_size
);
4450 slot
= path
->slots
[0] + 1;
4451 nritems
= btrfs_header_nritems(leaf
);
4452 if (slot
!= nritems
) {
4453 /* shift the items */
4454 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4455 btrfs_item_nr_offset(slot
),
4456 (nritems
- slot
) * sizeof(struct btrfs_item
));
4459 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4460 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4462 new_item
= btrfs_item_nr(slot
);
4464 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4465 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4467 btrfs_set_item_offset(leaf
, item
,
4468 orig_offset
+ item_size
- split_offset
);
4469 btrfs_set_item_size(leaf
, item
, split_offset
);
4471 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4473 /* write the data for the start of the original item */
4474 write_extent_buffer(leaf
, buf
,
4475 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4478 /* write the data for the new item */
4479 write_extent_buffer(leaf
, buf
+ split_offset
,
4480 btrfs_item_ptr_offset(leaf
, slot
),
4481 item_size
- split_offset
);
4482 btrfs_mark_buffer_dirty(leaf
);
4484 BUG_ON(btrfs_leaf_free_space(fs_info
, leaf
) < 0);
4490 * This function splits a single item into two items,
4491 * giving 'new_key' to the new item and splitting the
4492 * old one at split_offset (from the start of the item).
4494 * The path may be released by this operation. After
4495 * the split, the path is pointing to the old item. The
4496 * new item is going to be in the same node as the old one.
4498 * Note, the item being split must be smaller enough to live alone on
4499 * a tree block with room for one extra struct btrfs_item
4501 * This allows us to split the item in place, keeping a lock on the
4502 * leaf the entire time.
4504 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4505 struct btrfs_root
*root
,
4506 struct btrfs_path
*path
,
4507 const struct btrfs_key
*new_key
,
4508 unsigned long split_offset
)
4511 ret
= setup_leaf_for_split(trans
, root
, path
,
4512 sizeof(struct btrfs_item
));
4516 ret
= split_item(root
->fs_info
, path
, new_key
, split_offset
);
4521 * This function duplicate a item, giving 'new_key' to the new item.
4522 * It guarantees both items live in the same tree leaf and the new item
4523 * is contiguous with the original item.
4525 * This allows us to split file extent in place, keeping a lock on the
4526 * leaf the entire time.
4528 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4529 struct btrfs_root
*root
,
4530 struct btrfs_path
*path
,
4531 const struct btrfs_key
*new_key
)
4533 struct extent_buffer
*leaf
;
4537 leaf
= path
->nodes
[0];
4538 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4539 ret
= setup_leaf_for_split(trans
, root
, path
,
4540 item_size
+ sizeof(struct btrfs_item
));
4545 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4546 item_size
, item_size
+
4547 sizeof(struct btrfs_item
), 1);
4548 leaf
= path
->nodes
[0];
4549 memcpy_extent_buffer(leaf
,
4550 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4551 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4557 * make the item pointed to by the path smaller. new_size indicates
4558 * how small to make it, and from_end tells us if we just chop bytes
4559 * off the end of the item or if we shift the item to chop bytes off
4562 void btrfs_truncate_item(struct btrfs_fs_info
*fs_info
,
4563 struct btrfs_path
*path
, u32 new_size
, int from_end
)
4566 struct extent_buffer
*leaf
;
4567 struct btrfs_item
*item
;
4569 unsigned int data_end
;
4570 unsigned int old_data_start
;
4571 unsigned int old_size
;
4572 unsigned int size_diff
;
4574 struct btrfs_map_token token
;
4576 btrfs_init_map_token(&token
);
4578 leaf
= path
->nodes
[0];
4579 slot
= path
->slots
[0];
4581 old_size
= btrfs_item_size_nr(leaf
, slot
);
4582 if (old_size
== new_size
)
4585 nritems
= btrfs_header_nritems(leaf
);
4586 data_end
= leaf_data_end(fs_info
, leaf
);
4588 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4590 size_diff
= old_size
- new_size
;
4593 BUG_ON(slot
>= nritems
);
4596 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4598 /* first correct the data pointers */
4599 for (i
= slot
; i
< nritems
; i
++) {
4601 item
= btrfs_item_nr(i
);
4603 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4604 btrfs_set_token_item_offset(leaf
, item
,
4605 ioff
+ size_diff
, &token
);
4608 /* shift the data */
4610 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4611 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4612 data_end
, old_data_start
+ new_size
- data_end
);
4614 struct btrfs_disk_key disk_key
;
4617 btrfs_item_key(leaf
, &disk_key
, slot
);
4619 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4621 struct btrfs_file_extent_item
*fi
;
4623 fi
= btrfs_item_ptr(leaf
, slot
,
4624 struct btrfs_file_extent_item
);
4625 fi
= (struct btrfs_file_extent_item
*)(
4626 (unsigned long)fi
- size_diff
);
4628 if (btrfs_file_extent_type(leaf
, fi
) ==
4629 BTRFS_FILE_EXTENT_INLINE
) {
4630 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4631 memmove_extent_buffer(leaf
, ptr
,
4633 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4637 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4638 data_end
+ size_diff
, BTRFS_LEAF_DATA_OFFSET
+
4639 data_end
, old_data_start
- data_end
);
4641 offset
= btrfs_disk_key_offset(&disk_key
);
4642 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4643 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4645 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4648 item
= btrfs_item_nr(slot
);
4649 btrfs_set_item_size(leaf
, item
, new_size
);
4650 btrfs_mark_buffer_dirty(leaf
);
4652 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4653 btrfs_print_leaf(leaf
);
4659 * make the item pointed to by the path bigger, data_size is the added size.
4661 void btrfs_extend_item(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
4665 struct extent_buffer
*leaf
;
4666 struct btrfs_item
*item
;
4668 unsigned int data_end
;
4669 unsigned int old_data
;
4670 unsigned int old_size
;
4672 struct btrfs_map_token token
;
4674 btrfs_init_map_token(&token
);
4676 leaf
= path
->nodes
[0];
4678 nritems
= btrfs_header_nritems(leaf
);
4679 data_end
= leaf_data_end(fs_info
, leaf
);
4681 if (btrfs_leaf_free_space(fs_info
, leaf
) < data_size
) {
4682 btrfs_print_leaf(leaf
);
4685 slot
= path
->slots
[0];
4686 old_data
= btrfs_item_end_nr(leaf
, slot
);
4689 if (slot
>= nritems
) {
4690 btrfs_print_leaf(leaf
);
4691 btrfs_crit(fs_info
, "slot %d too large, nritems %d",
4697 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4699 /* first correct the data pointers */
4700 for (i
= slot
; i
< nritems
; i
++) {
4702 item
= btrfs_item_nr(i
);
4704 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4705 btrfs_set_token_item_offset(leaf
, item
,
4706 ioff
- data_size
, &token
);
4709 /* shift the data */
4710 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4711 data_end
- data_size
, BTRFS_LEAF_DATA_OFFSET
+
4712 data_end
, old_data
- data_end
);
4714 data_end
= old_data
;
4715 old_size
= btrfs_item_size_nr(leaf
, slot
);
4716 item
= btrfs_item_nr(slot
);
4717 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4718 btrfs_mark_buffer_dirty(leaf
);
4720 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4721 btrfs_print_leaf(leaf
);
4727 * this is a helper for btrfs_insert_empty_items, the main goal here is
4728 * to save stack depth by doing the bulk of the work in a function
4729 * that doesn't call btrfs_search_slot
4731 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4732 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4733 u32 total_data
, u32 total_size
, int nr
)
4735 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4736 struct btrfs_item
*item
;
4739 unsigned int data_end
;
4740 struct btrfs_disk_key disk_key
;
4741 struct extent_buffer
*leaf
;
4743 struct btrfs_map_token token
;
4745 if (path
->slots
[0] == 0) {
4746 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4747 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4749 btrfs_unlock_up_safe(path
, 1);
4751 btrfs_init_map_token(&token
);
4753 leaf
= path
->nodes
[0];
4754 slot
= path
->slots
[0];
4756 nritems
= btrfs_header_nritems(leaf
);
4757 data_end
= leaf_data_end(fs_info
, leaf
);
4759 if (btrfs_leaf_free_space(fs_info
, leaf
) < total_size
) {
4760 btrfs_print_leaf(leaf
);
4761 btrfs_crit(fs_info
, "not enough freespace need %u have %d",
4762 total_size
, btrfs_leaf_free_space(fs_info
, leaf
));
4766 if (slot
!= nritems
) {
4767 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4769 if (old_data
< data_end
) {
4770 btrfs_print_leaf(leaf
);
4771 btrfs_crit(fs_info
, "slot %d old_data %d data_end %d",
4772 slot
, old_data
, data_end
);
4776 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4778 /* first correct the data pointers */
4779 for (i
= slot
; i
< nritems
; i
++) {
4782 item
= btrfs_item_nr(i
);
4783 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4784 btrfs_set_token_item_offset(leaf
, item
,
4785 ioff
- total_data
, &token
);
4787 /* shift the items */
4788 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4789 btrfs_item_nr_offset(slot
),
4790 (nritems
- slot
) * sizeof(struct btrfs_item
));
4792 /* shift the data */
4793 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4794 data_end
- total_data
, BTRFS_LEAF_DATA_OFFSET
+
4795 data_end
, old_data
- data_end
);
4796 data_end
= old_data
;
4799 /* setup the item for the new data */
4800 for (i
= 0; i
< nr
; i
++) {
4801 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4802 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4803 item
= btrfs_item_nr(slot
+ i
);
4804 btrfs_set_token_item_offset(leaf
, item
,
4805 data_end
- data_size
[i
], &token
);
4806 data_end
-= data_size
[i
];
4807 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4810 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4811 btrfs_mark_buffer_dirty(leaf
);
4813 if (btrfs_leaf_free_space(fs_info
, leaf
) < 0) {
4814 btrfs_print_leaf(leaf
);
4820 * Given a key and some data, insert items into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4823 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4824 struct btrfs_root
*root
,
4825 struct btrfs_path
*path
,
4826 const struct btrfs_key
*cpu_key
, u32
*data_size
,
4835 for (i
= 0; i
< nr
; i
++)
4836 total_data
+= data_size
[i
];
4838 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4839 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4845 slot
= path
->slots
[0];
4848 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4849 total_data
, total_size
, nr
);
4854 * Given a key and some data, insert an item into the tree.
4855 * This does all the path init required, making room in the tree if needed.
4857 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4858 const struct btrfs_key
*cpu_key
, void *data
,
4862 struct btrfs_path
*path
;
4863 struct extent_buffer
*leaf
;
4866 path
= btrfs_alloc_path();
4869 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4871 leaf
= path
->nodes
[0];
4872 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4873 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4874 btrfs_mark_buffer_dirty(leaf
);
4876 btrfs_free_path(path
);
4881 * delete the pointer from a given node.
4883 * the tree should have been previously balanced so the deletion does not
4886 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4887 int level
, int slot
)
4889 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4890 struct extent_buffer
*parent
= path
->nodes
[level
];
4894 nritems
= btrfs_header_nritems(parent
);
4895 if (slot
!= nritems
- 1) {
4897 ret
= tree_mod_log_insert_move(parent
, slot
, slot
+ 1,
4898 nritems
- slot
- 1);
4901 memmove_extent_buffer(parent
,
4902 btrfs_node_key_ptr_offset(slot
),
4903 btrfs_node_key_ptr_offset(slot
+ 1),
4904 sizeof(struct btrfs_key_ptr
) *
4905 (nritems
- slot
- 1));
4907 ret
= tree_mod_log_insert_key(parent
, slot
, MOD_LOG_KEY_REMOVE
,
4913 btrfs_set_header_nritems(parent
, nritems
);
4914 if (nritems
== 0 && parent
== root
->node
) {
4915 BUG_ON(btrfs_header_level(root
->node
) != 1);
4916 /* just turn the root into a leaf and break */
4917 btrfs_set_header_level(root
->node
, 0);
4918 } else if (slot
== 0) {
4919 struct btrfs_disk_key disk_key
;
4921 btrfs_node_key(parent
, &disk_key
, 0);
4922 fixup_low_keys(fs_info
, path
, &disk_key
, level
+ 1);
4924 btrfs_mark_buffer_dirty(parent
);
4928 * a helper function to delete the leaf pointed to by path->slots[1] and
4931 * This deletes the pointer in path->nodes[1] and frees the leaf
4932 * block extent. zero is returned if it all worked out, < 0 otherwise.
4934 * The path must have already been setup for deleting the leaf, including
4935 * all the proper balancing. path->nodes[1] must be locked.
4937 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4938 struct btrfs_root
*root
,
4939 struct btrfs_path
*path
,
4940 struct extent_buffer
*leaf
)
4942 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4943 del_ptr(root
, path
, 1, path
->slots
[1]);
4946 * btrfs_free_extent is expensive, we want to make sure we
4947 * aren't holding any locks when we call it
4949 btrfs_unlock_up_safe(path
, 0);
4951 root_sub_used(root
, leaf
->len
);
4953 extent_buffer_get(leaf
);
4954 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4955 free_extent_buffer_stale(leaf
);
4958 * delete the item at the leaf level in path. If that empties
4959 * the leaf, remove it from the tree
4961 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4962 struct btrfs_path
*path
, int slot
, int nr
)
4964 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4965 struct extent_buffer
*leaf
;
4966 struct btrfs_item
*item
;
4973 struct btrfs_map_token token
;
4975 btrfs_init_map_token(&token
);
4977 leaf
= path
->nodes
[0];
4978 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4980 for (i
= 0; i
< nr
; i
++)
4981 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4983 nritems
= btrfs_header_nritems(leaf
);
4985 if (slot
+ nr
!= nritems
) {
4986 int data_end
= leaf_data_end(fs_info
, leaf
);
4988 memmove_extent_buffer(leaf
, BTRFS_LEAF_DATA_OFFSET
+
4990 BTRFS_LEAF_DATA_OFFSET
+ data_end
,
4991 last_off
- data_end
);
4993 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4996 item
= btrfs_item_nr(i
);
4997 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4998 btrfs_set_token_item_offset(leaf
, item
,
4999 ioff
+ dsize
, &token
);
5002 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
5003 btrfs_item_nr_offset(slot
+ nr
),
5004 sizeof(struct btrfs_item
) *
5005 (nritems
- slot
- nr
));
5007 btrfs_set_header_nritems(leaf
, nritems
- nr
);
5010 /* delete the leaf if we've emptied it */
5012 if (leaf
== root
->node
) {
5013 btrfs_set_header_level(leaf
, 0);
5015 btrfs_set_path_blocking(path
);
5016 clean_tree_block(fs_info
, leaf
);
5017 btrfs_del_leaf(trans
, root
, path
, leaf
);
5020 int used
= leaf_space_used(leaf
, 0, nritems
);
5022 struct btrfs_disk_key disk_key
;
5024 btrfs_item_key(leaf
, &disk_key
, 0);
5025 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
5028 /* delete the leaf if it is mostly empty */
5029 if (used
< BTRFS_LEAF_DATA_SIZE(fs_info
) / 3) {
5030 /* push_leaf_left fixes the path.
5031 * make sure the path still points to our leaf
5032 * for possible call to del_ptr below
5034 slot
= path
->slots
[1];
5035 extent_buffer_get(leaf
);
5037 btrfs_set_path_blocking(path
);
5038 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5040 if (wret
< 0 && wret
!= -ENOSPC
)
5043 if (path
->nodes
[0] == leaf
&&
5044 btrfs_header_nritems(leaf
)) {
5045 wret
= push_leaf_right(trans
, root
, path
, 1,
5047 if (wret
< 0 && wret
!= -ENOSPC
)
5051 if (btrfs_header_nritems(leaf
) == 0) {
5052 path
->slots
[1] = slot
;
5053 btrfs_del_leaf(trans
, root
, path
, leaf
);
5054 free_extent_buffer(leaf
);
5057 /* if we're still in the path, make sure
5058 * we're dirty. Otherwise, one of the
5059 * push_leaf functions must have already
5060 * dirtied this buffer
5062 if (path
->nodes
[0] == leaf
)
5063 btrfs_mark_buffer_dirty(leaf
);
5064 free_extent_buffer(leaf
);
5067 btrfs_mark_buffer_dirty(leaf
);
5074 * search the tree again to find a leaf with lesser keys
5075 * returns 0 if it found something or 1 if there are no lesser leaves.
5076 * returns < 0 on io errors.
5078 * This may release the path, and so you may lose any locks held at the
5081 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5083 struct btrfs_key key
;
5084 struct btrfs_disk_key found_key
;
5087 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5089 if (key
.offset
> 0) {
5091 } else if (key
.type
> 0) {
5093 key
.offset
= (u64
)-1;
5094 } else if (key
.objectid
> 0) {
5097 key
.offset
= (u64
)-1;
5102 btrfs_release_path(path
);
5103 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5106 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5107 ret
= comp_keys(&found_key
, &key
);
5109 * We might have had an item with the previous key in the tree right
5110 * before we released our path. And after we released our path, that
5111 * item might have been pushed to the first slot (0) of the leaf we
5112 * were holding due to a tree balance. Alternatively, an item with the
5113 * previous key can exist as the only element of a leaf (big fat item).
5114 * Therefore account for these 2 cases, so that our callers (like
5115 * btrfs_previous_item) don't miss an existing item with a key matching
5116 * the previous key we computed above.
5124 * A helper function to walk down the tree starting at min_key, and looking
5125 * for nodes or leaves that are have a minimum transaction id.
5126 * This is used by the btree defrag code, and tree logging
5128 * This does not cow, but it does stuff the starting key it finds back
5129 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5130 * key and get a writable path.
5132 * This honors path->lowest_level to prevent descent past a given level
5135 * min_trans indicates the oldest transaction that you are interested
5136 * in walking through. Any nodes or leaves older than min_trans are
5137 * skipped over (without reading them).
5139 * returns zero if something useful was found, < 0 on error and 1 if there
5140 * was nothing in the tree that matched the search criteria.
5142 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5143 struct btrfs_path
*path
,
5146 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5147 struct extent_buffer
*cur
;
5148 struct btrfs_key found_key
;
5154 int keep_locks
= path
->keep_locks
;
5156 path
->keep_locks
= 1;
5158 cur
= btrfs_read_lock_root_node(root
);
5159 level
= btrfs_header_level(cur
);
5160 WARN_ON(path
->nodes
[level
]);
5161 path
->nodes
[level
] = cur
;
5162 path
->locks
[level
] = BTRFS_READ_LOCK
;
5164 if (btrfs_header_generation(cur
) < min_trans
) {
5169 nritems
= btrfs_header_nritems(cur
);
5170 level
= btrfs_header_level(cur
);
5171 sret
= btrfs_bin_search(cur
, min_key
, level
, &slot
);
5173 /* at the lowest level, we're done, setup the path and exit */
5174 if (level
== path
->lowest_level
) {
5175 if (slot
>= nritems
)
5178 path
->slots
[level
] = slot
;
5179 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5182 if (sret
&& slot
> 0)
5185 * check this node pointer against the min_trans parameters.
5186 * If it is too old, old, skip to the next one.
5188 while (slot
< nritems
) {
5191 gen
= btrfs_node_ptr_generation(cur
, slot
);
5192 if (gen
< min_trans
) {
5200 * we didn't find a candidate key in this node, walk forward
5201 * and find another one
5203 if (slot
>= nritems
) {
5204 path
->slots
[level
] = slot
;
5205 btrfs_set_path_blocking(path
);
5206 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5209 btrfs_release_path(path
);
5215 /* save our key for returning back */
5216 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5217 path
->slots
[level
] = slot
;
5218 if (level
== path
->lowest_level
) {
5222 btrfs_set_path_blocking(path
);
5223 cur
= read_node_slot(fs_info
, cur
, slot
);
5229 btrfs_tree_read_lock(cur
);
5231 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5232 path
->nodes
[level
- 1] = cur
;
5233 unlock_up(path
, level
, 1, 0, NULL
);
5234 btrfs_clear_path_blocking(path
, NULL
, 0);
5237 path
->keep_locks
= keep_locks
;
5239 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5240 btrfs_set_path_blocking(path
);
5241 memcpy(min_key
, &found_key
, sizeof(found_key
));
5246 static int tree_move_down(struct btrfs_fs_info
*fs_info
,
5247 struct btrfs_path
*path
,
5250 struct extent_buffer
*eb
;
5252 BUG_ON(*level
== 0);
5253 eb
= read_node_slot(fs_info
, path
->nodes
[*level
], path
->slots
[*level
]);
5257 path
->nodes
[*level
- 1] = eb
;
5258 path
->slots
[*level
- 1] = 0;
5263 static int tree_move_next_or_upnext(struct btrfs_path
*path
,
5264 int *level
, int root_level
)
5268 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5270 path
->slots
[*level
]++;
5272 while (path
->slots
[*level
] >= nritems
) {
5273 if (*level
== root_level
)
5277 path
->slots
[*level
] = 0;
5278 free_extent_buffer(path
->nodes
[*level
]);
5279 path
->nodes
[*level
] = NULL
;
5281 path
->slots
[*level
]++;
5283 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5290 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5293 static int tree_advance(struct btrfs_fs_info
*fs_info
,
5294 struct btrfs_path
*path
,
5295 int *level
, int root_level
,
5297 struct btrfs_key
*key
)
5301 if (*level
== 0 || !allow_down
) {
5302 ret
= tree_move_next_or_upnext(path
, level
, root_level
);
5304 ret
= tree_move_down(fs_info
, path
, level
);
5308 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5309 path
->slots
[*level
]);
5311 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5312 path
->slots
[*level
]);
5317 static int tree_compare_item(struct btrfs_path
*left_path
,
5318 struct btrfs_path
*right_path
,
5323 unsigned long off1
, off2
;
5325 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5326 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5330 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5331 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5332 right_path
->slots
[0]);
5334 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5336 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5343 #define ADVANCE_ONLY_NEXT -1
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5358 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5359 struct btrfs_root
*right_root
,
5360 btrfs_changed_cb_t changed_cb
, void *ctx
)
5362 struct btrfs_fs_info
*fs_info
= left_root
->fs_info
;
5365 struct btrfs_path
*left_path
= NULL
;
5366 struct btrfs_path
*right_path
= NULL
;
5367 struct btrfs_key left_key
;
5368 struct btrfs_key right_key
;
5369 char *tmp_buf
= NULL
;
5370 int left_root_level
;
5371 int right_root_level
;
5374 int left_end_reached
;
5375 int right_end_reached
;
5383 left_path
= btrfs_alloc_path();
5388 right_path
= btrfs_alloc_path();
5394 tmp_buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
5400 left_path
->search_commit_root
= 1;
5401 left_path
->skip_locking
= 1;
5402 right_path
->search_commit_root
= 1;
5403 right_path
->skip_locking
= 1;
5406 * Strategy: Go to the first items of both trees. Then do
5408 * If both trees are at level 0
5409 * Compare keys of current items
5410 * If left < right treat left item as new, advance left tree
5412 * If left > right treat right item as deleted, advance right tree
5414 * If left == right do deep compare of items, treat as changed if
5415 * needed, advance both trees and repeat
5416 * If both trees are at the same level but not at level 0
5417 * Compare keys of current nodes/leafs
5418 * If left < right advance left tree and repeat
5419 * If left > right advance right tree and repeat
5420 * If left == right compare blockptrs of the next nodes/leafs
5421 * If they match advance both trees but stay at the same level
5423 * If they don't match advance both trees while allowing to go
5425 * If tree levels are different
5426 * Advance the tree that needs it and repeat
5428 * Advancing a tree means:
5429 * If we are at level 0, try to go to the next slot. If that's not
5430 * possible, go one level up and repeat. Stop when we found a level
5431 * where we could go to the next slot. We may at this point be on a
5434 * If we are not at level 0 and not on shared tree blocks, go one
5437 * If we are not at level 0 and on shared tree blocks, go one slot to
5438 * the right if possible or go up and right.
5441 down_read(&fs_info
->commit_root_sem
);
5442 left_level
= btrfs_header_level(left_root
->commit_root
);
5443 left_root_level
= left_level
;
5444 left_path
->nodes
[left_level
] =
5445 btrfs_clone_extent_buffer(left_root
->commit_root
);
5446 if (!left_path
->nodes
[left_level
]) {
5447 up_read(&fs_info
->commit_root_sem
);
5451 extent_buffer_get(left_path
->nodes
[left_level
]);
5453 right_level
= btrfs_header_level(right_root
->commit_root
);
5454 right_root_level
= right_level
;
5455 right_path
->nodes
[right_level
] =
5456 btrfs_clone_extent_buffer(right_root
->commit_root
);
5457 if (!right_path
->nodes
[right_level
]) {
5458 up_read(&fs_info
->commit_root_sem
);
5462 extent_buffer_get(right_path
->nodes
[right_level
]);
5463 up_read(&fs_info
->commit_root_sem
);
5465 if (left_level
== 0)
5466 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5467 &left_key
, left_path
->slots
[left_level
]);
5469 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5470 &left_key
, left_path
->slots
[left_level
]);
5471 if (right_level
== 0)
5472 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5473 &right_key
, right_path
->slots
[right_level
]);
5475 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5476 &right_key
, right_path
->slots
[right_level
]);
5478 left_end_reached
= right_end_reached
= 0;
5479 advance_left
= advance_right
= 0;
5482 if (advance_left
&& !left_end_reached
) {
5483 ret
= tree_advance(fs_info
, left_path
, &left_level
,
5485 advance_left
!= ADVANCE_ONLY_NEXT
,
5488 left_end_reached
= ADVANCE
;
5493 if (advance_right
&& !right_end_reached
) {
5494 ret
= tree_advance(fs_info
, right_path
, &right_level
,
5496 advance_right
!= ADVANCE_ONLY_NEXT
,
5499 right_end_reached
= ADVANCE
;
5505 if (left_end_reached
&& right_end_reached
) {
5508 } else if (left_end_reached
) {
5509 if (right_level
== 0) {
5510 ret
= changed_cb(left_path
, right_path
,
5512 BTRFS_COMPARE_TREE_DELETED
,
5517 advance_right
= ADVANCE
;
5519 } else if (right_end_reached
) {
5520 if (left_level
== 0) {
5521 ret
= changed_cb(left_path
, right_path
,
5523 BTRFS_COMPARE_TREE_NEW
,
5528 advance_left
= ADVANCE
;
5532 if (left_level
== 0 && right_level
== 0) {
5533 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5535 ret
= changed_cb(left_path
, right_path
,
5537 BTRFS_COMPARE_TREE_NEW
,
5541 advance_left
= ADVANCE
;
5542 } else if (cmp
> 0) {
5543 ret
= changed_cb(left_path
, right_path
,
5545 BTRFS_COMPARE_TREE_DELETED
,
5549 advance_right
= ADVANCE
;
5551 enum btrfs_compare_tree_result result
;
5553 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5554 ret
= tree_compare_item(left_path
, right_path
,
5557 result
= BTRFS_COMPARE_TREE_CHANGED
;
5559 result
= BTRFS_COMPARE_TREE_SAME
;
5560 ret
= changed_cb(left_path
, right_path
,
5561 &left_key
, result
, ctx
);
5564 advance_left
= ADVANCE
;
5565 advance_right
= ADVANCE
;
5567 } else if (left_level
== right_level
) {
5568 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5570 advance_left
= ADVANCE
;
5571 } else if (cmp
> 0) {
5572 advance_right
= ADVANCE
;
5574 left_blockptr
= btrfs_node_blockptr(
5575 left_path
->nodes
[left_level
],
5576 left_path
->slots
[left_level
]);
5577 right_blockptr
= btrfs_node_blockptr(
5578 right_path
->nodes
[right_level
],
5579 right_path
->slots
[right_level
]);
5580 left_gen
= btrfs_node_ptr_generation(
5581 left_path
->nodes
[left_level
],
5582 left_path
->slots
[left_level
]);
5583 right_gen
= btrfs_node_ptr_generation(
5584 right_path
->nodes
[right_level
],
5585 right_path
->slots
[right_level
]);
5586 if (left_blockptr
== right_blockptr
&&
5587 left_gen
== right_gen
) {
5589 * As we're on a shared block, don't
5590 * allow to go deeper.
5592 advance_left
= ADVANCE_ONLY_NEXT
;
5593 advance_right
= ADVANCE_ONLY_NEXT
;
5595 advance_left
= ADVANCE
;
5596 advance_right
= ADVANCE
;
5599 } else if (left_level
< right_level
) {
5600 advance_right
= ADVANCE
;
5602 advance_left
= ADVANCE
;
5607 btrfs_free_path(left_path
);
5608 btrfs_free_path(right_path
);
5614 * this is similar to btrfs_next_leaf, but does not try to preserve
5615 * and fixup the path. It looks for and returns the next key in the
5616 * tree based on the current path and the min_trans parameters.
5618 * 0 is returned if another key is found, < 0 if there are any errors
5619 * and 1 is returned if there are no higher keys in the tree
5621 * path->keep_locks should be set to 1 on the search made before
5622 * calling this function.
5624 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5625 struct btrfs_key
*key
, int level
, u64 min_trans
)
5628 struct extent_buffer
*c
;
5630 WARN_ON(!path
->keep_locks
);
5631 while (level
< BTRFS_MAX_LEVEL
) {
5632 if (!path
->nodes
[level
])
5635 slot
= path
->slots
[level
] + 1;
5636 c
= path
->nodes
[level
];
5638 if (slot
>= btrfs_header_nritems(c
)) {
5641 struct btrfs_key cur_key
;
5642 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5643 !path
->nodes
[level
+ 1])
5646 if (path
->locks
[level
+ 1]) {
5651 slot
= btrfs_header_nritems(c
) - 1;
5653 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5655 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5657 orig_lowest
= path
->lowest_level
;
5658 btrfs_release_path(path
);
5659 path
->lowest_level
= level
;
5660 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5662 path
->lowest_level
= orig_lowest
;
5666 c
= path
->nodes
[level
];
5667 slot
= path
->slots
[level
];
5674 btrfs_item_key_to_cpu(c
, key
, slot
);
5676 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5678 if (gen
< min_trans
) {
5682 btrfs_node_key_to_cpu(c
, key
, slot
);
5690 * search the tree again to find a leaf with greater keys
5691 * returns 0 if it found something or 1 if there are no greater leaves.
5692 * returns < 0 on io errors.
5694 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5696 return btrfs_next_old_leaf(root
, path
, 0);
5699 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5704 struct extent_buffer
*c
;
5705 struct extent_buffer
*next
;
5706 struct btrfs_key key
;
5709 int old_spinning
= path
->leave_spinning
;
5710 int next_rw_lock
= 0;
5712 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5716 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5721 btrfs_release_path(path
);
5723 path
->keep_locks
= 1;
5724 path
->leave_spinning
= 1;
5727 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5729 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5730 path
->keep_locks
= 0;
5735 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5737 * by releasing the path above we dropped all our locks. A balance
5738 * could have added more items next to the key that used to be
5739 * at the very end of the block. So, check again here and
5740 * advance the path if there are now more items available.
5742 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5749 * So the above check misses one case:
5750 * - after releasing the path above, someone has removed the item that
5751 * used to be at the very end of the block, and balance between leafs
5752 * gets another one with bigger key.offset to replace it.
5754 * This one should be returned as well, or we can get leaf corruption
5755 * later(esp. in __btrfs_drop_extents()).
5757 * And a bit more explanation about this check,
5758 * with ret > 0, the key isn't found, the path points to the slot
5759 * where it should be inserted, so the path->slots[0] item must be the
5762 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5767 while (level
< BTRFS_MAX_LEVEL
) {
5768 if (!path
->nodes
[level
]) {
5773 slot
= path
->slots
[level
] + 1;
5774 c
= path
->nodes
[level
];
5775 if (slot
>= btrfs_header_nritems(c
)) {
5777 if (level
== BTRFS_MAX_LEVEL
) {
5785 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5786 free_extent_buffer(next
);
5790 next_rw_lock
= path
->locks
[level
];
5791 ret
= read_block_for_search(root
, path
, &next
, level
,
5797 btrfs_release_path(path
);
5801 if (!path
->skip_locking
) {
5802 ret
= btrfs_try_tree_read_lock(next
);
5803 if (!ret
&& time_seq
) {
5805 * If we don't get the lock, we may be racing
5806 * with push_leaf_left, holding that lock while
5807 * itself waiting for the leaf we've currently
5808 * locked. To solve this situation, we give up
5809 * on our lock and cycle.
5811 free_extent_buffer(next
);
5812 btrfs_release_path(path
);
5817 btrfs_set_path_blocking(path
);
5818 btrfs_tree_read_lock(next
);
5819 btrfs_clear_path_blocking(path
, next
,
5822 next_rw_lock
= BTRFS_READ_LOCK
;
5826 path
->slots
[level
] = slot
;
5829 c
= path
->nodes
[level
];
5830 if (path
->locks
[level
])
5831 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5833 free_extent_buffer(c
);
5834 path
->nodes
[level
] = next
;
5835 path
->slots
[level
] = 0;
5836 if (!path
->skip_locking
)
5837 path
->locks
[level
] = next_rw_lock
;
5841 ret
= read_block_for_search(root
, path
, &next
, level
,
5847 btrfs_release_path(path
);
5851 if (!path
->skip_locking
) {
5852 ret
= btrfs_try_tree_read_lock(next
);
5854 btrfs_set_path_blocking(path
);
5855 btrfs_tree_read_lock(next
);
5856 btrfs_clear_path_blocking(path
, next
,
5859 next_rw_lock
= BTRFS_READ_LOCK
;
5864 unlock_up(path
, 0, 1, 0, NULL
);
5865 path
->leave_spinning
= old_spinning
;
5867 btrfs_set_path_blocking(path
);
5873 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5874 * searching until it gets past min_objectid or finds an item of 'type'
5876 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5878 int btrfs_previous_item(struct btrfs_root
*root
,
5879 struct btrfs_path
*path
, u64 min_objectid
,
5882 struct btrfs_key found_key
;
5883 struct extent_buffer
*leaf
;
5888 if (path
->slots
[0] == 0) {
5889 btrfs_set_path_blocking(path
);
5890 ret
= btrfs_prev_leaf(root
, path
);
5896 leaf
= path
->nodes
[0];
5897 nritems
= btrfs_header_nritems(leaf
);
5900 if (path
->slots
[0] == nritems
)
5903 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5904 if (found_key
.objectid
< min_objectid
)
5906 if (found_key
.type
== type
)
5908 if (found_key
.objectid
== min_objectid
&&
5909 found_key
.type
< type
)
5916 * search in extent tree to find a previous Metadata/Data extent item with
5919 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5921 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5922 struct btrfs_path
*path
, u64 min_objectid
)
5924 struct btrfs_key found_key
;
5925 struct extent_buffer
*leaf
;
5930 if (path
->slots
[0] == 0) {
5931 btrfs_set_path_blocking(path
);
5932 ret
= btrfs_prev_leaf(root
, path
);
5938 leaf
= path
->nodes
[0];
5939 nritems
= btrfs_header_nritems(leaf
);
5942 if (path
->slots
[0] == nritems
)
5945 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5946 if (found_key
.objectid
< min_objectid
)
5948 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5949 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5951 if (found_key
.objectid
== min_objectid
&&
5952 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)