Linux 4.18.10
[linux/fpc-iii.git] / fs / btrfs / disk-io.c
blobdfed08e70ec1166cc0061597e7946a6d23257cb5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 #include <linux/swap.h>
10 #include <linux/radix-tree.h>
11 #include <linux/writeback.h>
12 #include <linux/buffer_head.h>
13 #include <linux/workqueue.h>
14 #include <linux/kthread.h>
15 #include <linux/slab.h>
16 #include <linux/migrate.h>
17 #include <linux/ratelimit.h>
18 #include <linux/uuid.h>
19 #include <linux/semaphore.h>
20 #include <linux/error-injection.h>
21 #include <linux/crc32c.h>
22 #include <asm/unaligned.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
44 #ifdef CONFIG_X86
45 #include <asm/cpufeature.h>
46 #endif
48 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
55 static const struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
59 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
60 struct btrfs_fs_info *fs_info);
61 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
62 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *dirty_pages,
64 int mark);
65 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
66 struct extent_io_tree *pinned_extents);
67 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
68 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
71 * btrfs_end_io_wq structs are used to do processing in task context when an IO
72 * is complete. This is used during reads to verify checksums, and it is used
73 * by writes to insert metadata for new file extents after IO is complete.
75 struct btrfs_end_io_wq {
76 struct bio *bio;
77 bio_end_io_t *end_io;
78 void *private;
79 struct btrfs_fs_info *info;
80 blk_status_t status;
81 enum btrfs_wq_endio_type metadata;
82 struct btrfs_work work;
85 static struct kmem_cache *btrfs_end_io_wq_cache;
87 int __init btrfs_end_io_wq_init(void)
89 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
90 sizeof(struct btrfs_end_io_wq),
92 SLAB_MEM_SPREAD,
93 NULL);
94 if (!btrfs_end_io_wq_cache)
95 return -ENOMEM;
96 return 0;
99 void __cold btrfs_end_io_wq_exit(void)
101 kmem_cache_destroy(btrfs_end_io_wq_cache);
105 * async submit bios are used to offload expensive checksumming
106 * onto the worker threads. They checksum file and metadata bios
107 * just before they are sent down the IO stack.
109 struct async_submit_bio {
110 void *private_data;
111 struct btrfs_fs_info *fs_info;
112 struct bio *bio;
113 extent_submit_bio_start_t *submit_bio_start;
114 extent_submit_bio_done_t *submit_bio_done;
115 int mirror_num;
116 unsigned long bio_flags;
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
121 u64 bio_offset;
122 struct btrfs_work work;
123 blk_status_t status;
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->objectid. This ensures that all special purpose roots
135 * have separate keysets.
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 # error
152 # endif
154 static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172 { .id = 0, .name_stem = "tree" },
175 void __init btrfs_init_lockdep(void)
177 int i, j;
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
192 struct btrfs_lockdep_keyset *ks;
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
205 #endif
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 struct page *page, size_t pg_offset, u64 start, u64 len,
213 int create)
215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
216 struct extent_map_tree *em_tree = &inode->extent_tree;
217 struct extent_map *em;
218 int ret;
220 read_lock(&em_tree->lock);
221 em = lookup_extent_mapping(em_tree, start, len);
222 if (em) {
223 em->bdev = fs_info->fs_devices->latest_bdev;
224 read_unlock(&em_tree->lock);
225 goto out;
227 read_unlock(&em_tree->lock);
229 em = alloc_extent_map();
230 if (!em) {
231 em = ERR_PTR(-ENOMEM);
232 goto out;
234 em->start = 0;
235 em->len = (u64)-1;
236 em->block_len = (u64)-1;
237 em->block_start = 0;
238 em->bdev = fs_info->fs_devices->latest_bdev;
240 write_lock(&em_tree->lock);
241 ret = add_extent_mapping(em_tree, em, 0);
242 if (ret == -EEXIST) {
243 free_extent_map(em);
244 em = lookup_extent_mapping(em_tree, start, len);
245 if (!em)
246 em = ERR_PTR(-EIO);
247 } else if (ret) {
248 free_extent_map(em);
249 em = ERR_PTR(ret);
251 write_unlock(&em_tree->lock);
253 out:
254 return em;
257 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
259 return crc32c(seed, data, len);
262 void btrfs_csum_final(u32 crc, u8 *result)
264 put_unaligned_le32(~crc, result);
268 * compute the csum for a btree block, and either verify it or write it
269 * into the csum field of the block.
271 static int csum_tree_block(struct btrfs_fs_info *fs_info,
272 struct extent_buffer *buf,
273 int verify)
275 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
276 char result[BTRFS_CSUM_SIZE];
277 unsigned long len;
278 unsigned long cur_len;
279 unsigned long offset = BTRFS_CSUM_SIZE;
280 char *kaddr;
281 unsigned long map_start;
282 unsigned long map_len;
283 int err;
284 u32 crc = ~(u32)0;
286 len = buf->len - offset;
287 while (len > 0) {
288 err = map_private_extent_buffer(buf, offset, 32,
289 &kaddr, &map_start, &map_len);
290 if (err)
291 return err;
292 cur_len = min(len, map_len - (offset - map_start));
293 crc = btrfs_csum_data(kaddr + offset - map_start,
294 crc, cur_len);
295 len -= cur_len;
296 offset += cur_len;
298 memset(result, 0, BTRFS_CSUM_SIZE);
300 btrfs_csum_final(crc, result);
302 if (verify) {
303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
304 u32 val;
305 u32 found = 0;
306 memcpy(&found, result, csum_size);
308 read_extent_buffer(buf, &val, 0, csum_size);
309 btrfs_warn_rl(fs_info,
310 "%s checksum verify failed on %llu wanted %X found %X level %d",
311 fs_info->sb->s_id, buf->start,
312 val, found, btrfs_header_level(buf));
313 return -EUCLEAN;
315 } else {
316 write_extent_buffer(buf, result, 0, csum_size);
319 return 0;
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
328 static int verify_parent_transid(struct extent_io_tree *io_tree,
329 struct extent_buffer *eb, u64 parent_transid,
330 int atomic)
332 struct extent_state *cached_state = NULL;
333 int ret;
334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 return 0;
339 if (atomic)
340 return -EAGAIN;
342 if (need_lock) {
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348 &cached_state);
349 if (extent_buffer_uptodate(eb) &&
350 btrfs_header_generation(eb) == parent_transid) {
351 ret = 0;
352 goto out;
354 btrfs_err_rl(eb->fs_info,
355 "parent transid verify failed on %llu wanted %llu found %llu",
356 eb->start,
357 parent_transid, btrfs_header_generation(eb));
358 ret = 1;
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
363 * block that has been freed and re-allocated. So don't clear uptodate
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
368 if (!extent_buffer_under_io(eb))
369 clear_extent_buffer_uptodate(eb);
370 out:
371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (need_lock)
374 btrfs_tree_read_unlock_blocking(eb);
375 return ret;
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 char *raw_disk_sb)
385 struct btrfs_super_block *disk_sb =
386 (struct btrfs_super_block *)raw_disk_sb;
387 u16 csum_type = btrfs_super_csum_type(disk_sb);
388 int ret = 0;
390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391 u32 crc = ~(u32)0;
392 char result[sizeof(crc)];
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397 * is filled with zeros and is included in the checksum.
399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 btrfs_csum_final(crc, result);
403 if (memcmp(raw_disk_sb, result, sizeof(result)))
404 ret = 1;
407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
408 btrfs_err(fs_info, "unsupported checksum algorithm %u",
409 csum_type);
410 ret = 1;
413 return ret;
416 static int verify_level_key(struct btrfs_fs_info *fs_info,
417 struct extent_buffer *eb, int level,
418 struct btrfs_key *first_key, u64 parent_transid)
420 int found_level;
421 struct btrfs_key found_key;
422 int ret;
424 found_level = btrfs_header_level(eb);
425 if (found_level != level) {
426 #ifdef CONFIG_BTRFS_DEBUG
427 WARN_ON(1);
428 btrfs_err(fs_info,
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb->start, level, found_level);
431 #endif
432 return -EIO;
435 if (!first_key)
436 return 0;
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 return 0;
446 if (found_level)
447 btrfs_node_key_to_cpu(eb, &found_key, 0);
448 else
449 btrfs_item_key_to_cpu(eb, &found_key, 0);
450 ret = btrfs_comp_cpu_keys(first_key, &found_key);
452 #ifdef CONFIG_BTRFS_DEBUG
453 if (ret) {
454 WARN_ON(1);
455 btrfs_err(fs_info,
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb->start, parent_transid, first_key->objectid,
458 first_key->type, first_key->offset,
459 found_key.objectid, found_key.type,
460 found_key.offset);
462 #endif
463 return ret;
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
475 struct extent_buffer *eb,
476 u64 parent_transid, int level,
477 struct btrfs_key *first_key)
479 struct extent_io_tree *io_tree;
480 int failed = 0;
481 int ret;
482 int num_copies = 0;
483 int mirror_num = 0;
484 int failed_mirror = 0;
486 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
488 while (1) {
489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
490 mirror_num);
491 if (!ret) {
492 if (verify_parent_transid(io_tree, eb,
493 parent_transid, 0))
494 ret = -EIO;
495 else if (verify_level_key(fs_info, eb, level,
496 first_key, parent_transid))
497 ret = -EUCLEAN;
498 else
499 break;
503 * This buffer's crc is fine, but its contents are corrupted, so
504 * there is no reason to read the other copies, they won't be
505 * any less wrong.
507 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
508 ret == -EUCLEAN)
509 break;
511 num_copies = btrfs_num_copies(fs_info,
512 eb->start, eb->len);
513 if (num_copies == 1)
514 break;
516 if (!failed_mirror) {
517 failed = 1;
518 failed_mirror = eb->read_mirror;
521 mirror_num++;
522 if (mirror_num == failed_mirror)
523 mirror_num++;
525 if (mirror_num > num_copies)
526 break;
529 if (failed && !ret && failed_mirror)
530 repair_eb_io_failure(fs_info, eb, failed_mirror);
532 return ret;
536 * checksum a dirty tree block before IO. This has extra checks to make sure
537 * we only fill in the checksum field in the first page of a multi-page block
540 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
542 u64 start = page_offset(page);
543 u64 found_start;
544 struct extent_buffer *eb;
546 eb = (struct extent_buffer *)page->private;
547 if (page != eb->pages[0])
548 return 0;
550 found_start = btrfs_header_bytenr(eb);
552 * Please do not consolidate these warnings into a single if.
553 * It is useful to know what went wrong.
555 if (WARN_ON(found_start != start))
556 return -EUCLEAN;
557 if (WARN_ON(!PageUptodate(page)))
558 return -EUCLEAN;
560 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
561 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
563 return csum_tree_block(fs_info, eb, 0);
566 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
567 struct extent_buffer *eb)
569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
570 u8 fsid[BTRFS_FSID_SIZE];
571 int ret = 1;
573 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
574 while (fs_devices) {
575 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
576 ret = 0;
577 break;
579 fs_devices = fs_devices->seed;
581 return ret;
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
588 u64 found_start;
589 int found_level;
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592 struct btrfs_fs_info *fs_info = root->fs_info;
593 int ret = 0;
594 int reads_done;
596 if (!page->private)
597 goto out;
599 eb = (struct extent_buffer *)page->private;
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
604 extent_buffer_get(eb);
606 reads_done = atomic_dec_and_test(&eb->io_pages);
607 if (!reads_done)
608 goto err;
610 eb->read_mirror = mirror;
611 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
616 found_start = btrfs_header_bytenr(eb);
617 if (found_start != eb->start) {
618 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
619 found_start, eb->start);
620 ret = -EIO;
621 goto err;
623 if (check_tree_block_fsid(fs_info, eb)) {
624 btrfs_err_rl(fs_info, "bad fsid on block %llu",
625 eb->start);
626 ret = -EIO;
627 goto err;
629 found_level = btrfs_header_level(eb);
630 if (found_level >= BTRFS_MAX_LEVEL) {
631 btrfs_err(fs_info, "bad tree block level %d",
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
640 ret = csum_tree_block(fs_info, eb, 1);
641 if (ret)
642 goto err;
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
647 * return -EIO.
649 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
650 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651 ret = -EIO;
654 if (found_level > 0 && btrfs_check_node(fs_info, eb))
655 ret = -EIO;
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
659 err:
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 btree_readahead_hook(eb, ret);
664 if (ret) {
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
670 atomic_inc(&eb->io_pages);
671 clear_extent_buffer_uptodate(eb);
673 free_extent_buffer(eb);
674 out:
675 return ret;
678 static int btree_io_failed_hook(struct page *page, int failed_mirror)
680 struct extent_buffer *eb;
682 eb = (struct extent_buffer *)page->private;
683 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
684 eb->read_mirror = failed_mirror;
685 atomic_dec(&eb->io_pages);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(eb, -EIO);
688 return -EIO; /* we fixed nothing */
691 static void end_workqueue_bio(struct bio *bio)
693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
698 fs_info = end_io_wq->info;
699 end_io_wq->status = bio->bi_status;
701 if (bio_op(bio) == REQ_OP_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
715 } else {
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
726 } else {
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
736 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737 enum btrfs_wq_endio_type metadata)
739 struct btrfs_end_io_wq *end_io_wq;
741 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
742 if (!end_io_wq)
743 return BLK_STS_RESOURCE;
745 end_io_wq->private = bio->bi_private;
746 end_io_wq->end_io = bio->bi_end_io;
747 end_io_wq->info = info;
748 end_io_wq->status = 0;
749 end_io_wq->bio = bio;
750 end_io_wq->metadata = metadata;
752 bio->bi_private = end_io_wq;
753 bio->bi_end_io = end_workqueue_bio;
754 return 0;
757 static void run_one_async_start(struct btrfs_work *work)
759 struct async_submit_bio *async;
760 blk_status_t ret;
762 async = container_of(work, struct async_submit_bio, work);
763 ret = async->submit_bio_start(async->private_data, async->bio,
764 async->bio_offset);
765 if (ret)
766 async->status = ret;
769 static void run_one_async_done(struct btrfs_work *work)
771 struct async_submit_bio *async;
773 async = container_of(work, struct async_submit_bio, work);
775 /* If an error occurred we just want to clean up the bio and move on */
776 if (async->status) {
777 async->bio->bi_status = async->status;
778 bio_endio(async->bio);
779 return;
782 async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
785 static void run_one_async_free(struct btrfs_work *work)
787 struct async_submit_bio *async;
789 async = container_of(work, struct async_submit_bio, work);
790 kfree(async);
793 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
794 int mirror_num, unsigned long bio_flags,
795 u64 bio_offset, void *private_data,
796 extent_submit_bio_start_t *submit_bio_start,
797 extent_submit_bio_done_t *submit_bio_done)
799 struct async_submit_bio *async;
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
803 return BLK_STS_RESOURCE;
805 async->private_data = private_data;
806 async->fs_info = fs_info;
807 async->bio = bio;
808 async->mirror_num = mirror_num;
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
812 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
813 run_one_async_done, run_one_async_free);
815 async->bio_flags = bio_flags;
816 async->bio_offset = bio_offset;
818 async->status = 0;
820 if (op_is_sync(bio->bi_opf))
821 btrfs_set_work_high_priority(&async->work);
823 btrfs_queue_work(fs_info->workers, &async->work);
824 return 0;
827 static blk_status_t btree_csum_one_bio(struct bio *bio)
829 struct bio_vec *bvec;
830 struct btrfs_root *root;
831 int i, ret = 0;
833 ASSERT(!bio_flagged(bio, BIO_CLONED));
834 bio_for_each_segment_all(bvec, bio, i) {
835 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
836 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
837 if (ret)
838 break;
841 return errno_to_blk_status(ret);
844 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
845 u64 bio_offset)
848 * when we're called for a write, we're already in the async
849 * submission context. Just jump into btrfs_map_bio
851 return btree_csum_one_bio(bio);
854 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
855 int mirror_num)
857 struct inode *inode = private_data;
858 blk_status_t ret;
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
864 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
865 if (ret) {
866 bio->bi_status = ret;
867 bio_endio(bio);
869 return ret;
872 static int check_async_write(struct btrfs_inode *bi)
874 if (atomic_read(&bi->sync_writers))
875 return 0;
876 #ifdef CONFIG_X86
877 if (static_cpu_has(X86_FEATURE_XMM4_2))
878 return 0;
879 #endif
880 return 1;
883 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
884 int mirror_num, unsigned long bio_flags,
885 u64 bio_offset)
887 struct inode *inode = private_data;
888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
889 int async = check_async_write(BTRFS_I(inode));
890 blk_status_t ret;
892 if (bio_op(bio) != REQ_OP_WRITE) {
894 * called for a read, do the setup so that checksum validation
895 * can happen in the async kernel threads
897 ret = btrfs_bio_wq_end_io(fs_info, bio,
898 BTRFS_WQ_ENDIO_METADATA);
899 if (ret)
900 goto out_w_error;
901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
902 } else if (!async) {
903 ret = btree_csum_one_bio(bio);
904 if (ret)
905 goto out_w_error;
906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
907 } else {
909 * kthread helpers are used to submit writes so that
910 * checksumming can happen in parallel across all CPUs
912 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
913 bio_offset, private_data,
914 btree_submit_bio_start,
915 btree_submit_bio_done);
918 if (ret)
919 goto out_w_error;
920 return 0;
922 out_w_error:
923 bio->bi_status = ret;
924 bio_endio(bio);
925 return ret;
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space *mapping,
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
937 if (PageDirty(page))
938 return -EAGAIN;
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
946 return migrate_page(mapping, newpage, page, mode);
948 #endif
951 static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
954 struct btrfs_fs_info *fs_info;
955 int ret;
957 if (wbc->sync_mode == WB_SYNC_NONE) {
959 if (wbc->for_kupdate)
960 return 0;
962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
963 /* this is a bit racy, but that's ok */
964 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH,
966 fs_info->dirty_metadata_batch);
967 if (ret < 0)
968 return 0;
970 return btree_write_cache_pages(mapping, wbc);
973 static int btree_readpage(struct file *file, struct page *page)
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
977 return extent_read_full_page(tree, page, btree_get_extent, 0);
980 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
982 if (PageWriteback(page) || PageDirty(page))
983 return 0;
985 return try_release_extent_buffer(page);
988 static void btree_invalidatepage(struct page *page, unsigned int offset,
989 unsigned int length)
991 struct extent_io_tree *tree;
992 tree = &BTRFS_I(page->mapping->host)->io_tree;
993 extent_invalidatepage(tree, page, offset);
994 btree_releasepage(page, GFP_NOFS);
995 if (PagePrivate(page)) {
996 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997 "page private not zero on page %llu",
998 (unsigned long long)page_offset(page));
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
1001 put_page(page);
1005 static int btree_set_page_dirty(struct page *page)
1007 #ifdef DEBUG
1008 struct extent_buffer *eb;
1010 BUG_ON(!PagePrivate(page));
1011 eb = (struct extent_buffer *)page->private;
1012 BUG_ON(!eb);
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014 BUG_ON(!atomic_read(&eb->refs));
1015 btrfs_assert_tree_locked(eb);
1016 #endif
1017 return __set_page_dirty_nobuffers(page);
1020 static const struct address_space_operations btree_aops = {
1021 .readpage = btree_readpage,
1022 .writepages = btree_writepages,
1023 .releasepage = btree_releasepage,
1024 .invalidatepage = btree_invalidatepage,
1025 #ifdef CONFIG_MIGRATION
1026 .migratepage = btree_migratepage,
1027 #endif
1028 .set_page_dirty = btree_set_page_dirty,
1031 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1033 struct extent_buffer *buf = NULL;
1034 struct inode *btree_inode = fs_info->btree_inode;
1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1037 if (IS_ERR(buf))
1038 return;
1039 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1040 buf, WAIT_NONE, 0);
1041 free_extent_buffer(buf);
1044 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1045 int mirror_num, struct extent_buffer **eb)
1047 struct extent_buffer *buf = NULL;
1048 struct inode *btree_inode = fs_info->btree_inode;
1049 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1050 int ret;
1052 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1053 if (IS_ERR(buf))
1054 return 0;
1056 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1058 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1059 mirror_num);
1060 if (ret) {
1061 free_extent_buffer(buf);
1062 return ret;
1065 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1066 free_extent_buffer(buf);
1067 return -EIO;
1068 } else if (extent_buffer_uptodate(buf)) {
1069 *eb = buf;
1070 } else {
1071 free_extent_buffer(buf);
1073 return 0;
1076 struct extent_buffer *btrfs_find_create_tree_block(
1077 struct btrfs_fs_info *fs_info,
1078 u64 bytenr)
1080 if (btrfs_is_testing(fs_info))
1081 return alloc_test_extent_buffer(fs_info, bytenr);
1082 return alloc_extent_buffer(fs_info, bytenr);
1086 int btrfs_write_tree_block(struct extent_buffer *buf)
1088 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1089 buf->start + buf->len - 1);
1092 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1094 filemap_fdatawait_range(buf->pages[0]->mapping,
1095 buf->start, buf->start + buf->len - 1);
1099 * Read tree block at logical address @bytenr and do variant basic but critical
1100 * verification.
1102 * @parent_transid: expected transid of this tree block, skip check if 0
1103 * @level: expected level, mandatory check
1104 * @first_key: expected key in slot 0, skip check if NULL
1106 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1107 u64 parent_transid, int level,
1108 struct btrfs_key *first_key)
1110 struct extent_buffer *buf = NULL;
1111 int ret;
1113 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1114 if (IS_ERR(buf))
1115 return buf;
1117 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1118 level, first_key);
1119 if (ret) {
1120 free_extent_buffer(buf);
1121 return ERR_PTR(ret);
1123 return buf;
1127 void clean_tree_block(struct btrfs_fs_info *fs_info,
1128 struct extent_buffer *buf)
1130 if (btrfs_header_generation(buf) ==
1131 fs_info->running_transaction->transid) {
1132 btrfs_assert_tree_locked(buf);
1134 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1135 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1136 -buf->len,
1137 fs_info->dirty_metadata_batch);
1138 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1139 btrfs_set_lock_blocking(buf);
1140 clear_extent_buffer_dirty(buf);
1145 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1147 struct btrfs_subvolume_writers *writers;
1148 int ret;
1150 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1151 if (!writers)
1152 return ERR_PTR(-ENOMEM);
1154 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1155 if (ret < 0) {
1156 kfree(writers);
1157 return ERR_PTR(ret);
1160 init_waitqueue_head(&writers->wait);
1161 return writers;
1164 static void
1165 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1167 percpu_counter_destroy(&writers->counter);
1168 kfree(writers);
1171 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1172 u64 objectid)
1174 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1175 root->node = NULL;
1176 root->commit_root = NULL;
1177 root->state = 0;
1178 root->orphan_cleanup_state = 0;
1180 root->objectid = objectid;
1181 root->last_trans = 0;
1182 root->highest_objectid = 0;
1183 root->nr_delalloc_inodes = 0;
1184 root->nr_ordered_extents = 0;
1185 root->name = NULL;
1186 root->inode_tree = RB_ROOT;
1187 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1188 root->block_rsv = NULL;
1190 INIT_LIST_HEAD(&root->dirty_list);
1191 INIT_LIST_HEAD(&root->root_list);
1192 INIT_LIST_HEAD(&root->delalloc_inodes);
1193 INIT_LIST_HEAD(&root->delalloc_root);
1194 INIT_LIST_HEAD(&root->ordered_extents);
1195 INIT_LIST_HEAD(&root->ordered_root);
1196 INIT_LIST_HEAD(&root->logged_list[0]);
1197 INIT_LIST_HEAD(&root->logged_list[1]);
1198 spin_lock_init(&root->inode_lock);
1199 spin_lock_init(&root->delalloc_lock);
1200 spin_lock_init(&root->ordered_extent_lock);
1201 spin_lock_init(&root->accounting_lock);
1202 spin_lock_init(&root->log_extents_lock[0]);
1203 spin_lock_init(&root->log_extents_lock[1]);
1204 spin_lock_init(&root->qgroup_meta_rsv_lock);
1205 mutex_init(&root->objectid_mutex);
1206 mutex_init(&root->log_mutex);
1207 mutex_init(&root->ordered_extent_mutex);
1208 mutex_init(&root->delalloc_mutex);
1209 init_waitqueue_head(&root->log_writer_wait);
1210 init_waitqueue_head(&root->log_commit_wait[0]);
1211 init_waitqueue_head(&root->log_commit_wait[1]);
1212 INIT_LIST_HEAD(&root->log_ctxs[0]);
1213 INIT_LIST_HEAD(&root->log_ctxs[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
1217 atomic_set(&root->log_batch, 0);
1218 refcount_set(&root->refs, 1);
1219 atomic_set(&root->will_be_snapshotted, 0);
1220 root->log_transid = 0;
1221 root->log_transid_committed = -1;
1222 root->last_log_commit = 0;
1223 if (!dummy)
1224 extent_io_tree_init(&root->dirty_log_pages, NULL);
1226 memset(&root->root_key, 0, sizeof(root->root_key));
1227 memset(&root->root_item, 0, sizeof(root->root_item));
1228 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1229 if (!dummy)
1230 root->defrag_trans_start = fs_info->generation;
1231 else
1232 root->defrag_trans_start = 0;
1233 root->root_key.objectid = objectid;
1234 root->anon_dev = 0;
1236 spin_lock_init(&root->root_item_lock);
1239 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1240 gfp_t flags)
1242 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1243 if (root)
1244 root->fs_info = fs_info;
1245 return root;
1248 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1249 /* Should only be used by the testing infrastructure */
1250 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1252 struct btrfs_root *root;
1254 if (!fs_info)
1255 return ERR_PTR(-EINVAL);
1257 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1258 if (!root)
1259 return ERR_PTR(-ENOMEM);
1261 /* We don't use the stripesize in selftest, set it as sectorsize */
1262 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1263 root->alloc_bytenr = 0;
1265 return root;
1267 #endif
1269 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1270 struct btrfs_fs_info *fs_info,
1271 u64 objectid)
1273 struct extent_buffer *leaf;
1274 struct btrfs_root *tree_root = fs_info->tree_root;
1275 struct btrfs_root *root;
1276 struct btrfs_key key;
1277 int ret = 0;
1278 uuid_le uuid = NULL_UUID_LE;
1280 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1281 if (!root)
1282 return ERR_PTR(-ENOMEM);
1284 __setup_root(root, fs_info, objectid);
1285 root->root_key.objectid = objectid;
1286 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1287 root->root_key.offset = 0;
1289 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1290 if (IS_ERR(leaf)) {
1291 ret = PTR_ERR(leaf);
1292 leaf = NULL;
1293 goto fail;
1296 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1297 btrfs_set_header_bytenr(leaf, leaf->start);
1298 btrfs_set_header_generation(leaf, trans->transid);
1299 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1300 btrfs_set_header_owner(leaf, objectid);
1301 root->node = leaf;
1303 write_extent_buffer_fsid(leaf, fs_info->fsid);
1304 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1305 btrfs_mark_buffer_dirty(leaf);
1307 root->commit_root = btrfs_root_node(root);
1308 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1310 root->root_item.flags = 0;
1311 root->root_item.byte_limit = 0;
1312 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1313 btrfs_set_root_generation(&root->root_item, trans->transid);
1314 btrfs_set_root_level(&root->root_item, 0);
1315 btrfs_set_root_refs(&root->root_item, 1);
1316 btrfs_set_root_used(&root->root_item, leaf->len);
1317 btrfs_set_root_last_snapshot(&root->root_item, 0);
1318 btrfs_set_root_dirid(&root->root_item, 0);
1319 if (is_fstree(objectid))
1320 uuid_le_gen(&uuid);
1321 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1322 root->root_item.drop_level = 0;
1324 key.objectid = objectid;
1325 key.type = BTRFS_ROOT_ITEM_KEY;
1326 key.offset = 0;
1327 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1328 if (ret)
1329 goto fail;
1331 btrfs_tree_unlock(leaf);
1333 return root;
1335 fail:
1336 if (leaf) {
1337 btrfs_tree_unlock(leaf);
1338 free_extent_buffer(root->commit_root);
1339 free_extent_buffer(leaf);
1341 kfree(root);
1343 return ERR_PTR(ret);
1346 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1347 struct btrfs_fs_info *fs_info)
1349 struct btrfs_root *root;
1350 struct extent_buffer *leaf;
1352 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1353 if (!root)
1354 return ERR_PTR(-ENOMEM);
1356 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1358 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1359 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1360 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363 * DON'T set REF_COWS for log trees
1365 * log trees do not get reference counted because they go away
1366 * before a real commit is actually done. They do store pointers
1367 * to file data extents, and those reference counts still get
1368 * updated (along with back refs to the log tree).
1371 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1372 NULL, 0, 0, 0);
1373 if (IS_ERR(leaf)) {
1374 kfree(root);
1375 return ERR_CAST(leaf);
1378 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1379 btrfs_set_header_bytenr(leaf, leaf->start);
1380 btrfs_set_header_generation(leaf, trans->transid);
1381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1382 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1383 root->node = leaf;
1385 write_extent_buffer_fsid(root->node, fs_info->fsid);
1386 btrfs_mark_buffer_dirty(root->node);
1387 btrfs_tree_unlock(root->node);
1388 return root;
1391 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1392 struct btrfs_fs_info *fs_info)
1394 struct btrfs_root *log_root;
1396 log_root = alloc_log_tree(trans, fs_info);
1397 if (IS_ERR(log_root))
1398 return PTR_ERR(log_root);
1399 WARN_ON(fs_info->log_root_tree);
1400 fs_info->log_root_tree = log_root;
1401 return 0;
1404 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1405 struct btrfs_root *root)
1407 struct btrfs_fs_info *fs_info = root->fs_info;
1408 struct btrfs_root *log_root;
1409 struct btrfs_inode_item *inode_item;
1411 log_root = alloc_log_tree(trans, fs_info);
1412 if (IS_ERR(log_root))
1413 return PTR_ERR(log_root);
1415 log_root->last_trans = trans->transid;
1416 log_root->root_key.offset = root->root_key.objectid;
1418 inode_item = &log_root->root_item.inode;
1419 btrfs_set_stack_inode_generation(inode_item, 1);
1420 btrfs_set_stack_inode_size(inode_item, 3);
1421 btrfs_set_stack_inode_nlink(inode_item, 1);
1422 btrfs_set_stack_inode_nbytes(inode_item,
1423 fs_info->nodesize);
1424 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1426 btrfs_set_root_node(&log_root->root_item, log_root->node);
1428 WARN_ON(root->log_root);
1429 root->log_root = log_root;
1430 root->log_transid = 0;
1431 root->log_transid_committed = -1;
1432 root->last_log_commit = 0;
1433 return 0;
1436 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1437 struct btrfs_key *key)
1439 struct btrfs_root *root;
1440 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441 struct btrfs_path *path;
1442 u64 generation;
1443 int ret;
1444 int level;
1446 path = btrfs_alloc_path();
1447 if (!path)
1448 return ERR_PTR(-ENOMEM);
1450 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1451 if (!root) {
1452 ret = -ENOMEM;
1453 goto alloc_fail;
1456 __setup_root(root, fs_info, key->objectid);
1458 ret = btrfs_find_root(tree_root, key, path,
1459 &root->root_item, &root->root_key);
1460 if (ret) {
1461 if (ret > 0)
1462 ret = -ENOENT;
1463 goto find_fail;
1466 generation = btrfs_root_generation(&root->root_item);
1467 level = btrfs_root_level(&root->root_item);
1468 root->node = read_tree_block(fs_info,
1469 btrfs_root_bytenr(&root->root_item),
1470 generation, level, NULL);
1471 if (IS_ERR(root->node)) {
1472 ret = PTR_ERR(root->node);
1473 goto find_fail;
1474 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1475 ret = -EIO;
1476 free_extent_buffer(root->node);
1477 goto find_fail;
1479 root->commit_root = btrfs_root_node(root);
1480 out:
1481 btrfs_free_path(path);
1482 return root;
1484 find_fail:
1485 kfree(root);
1486 alloc_fail:
1487 root = ERR_PTR(ret);
1488 goto out;
1491 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1492 struct btrfs_key *location)
1494 struct btrfs_root *root;
1496 root = btrfs_read_tree_root(tree_root, location);
1497 if (IS_ERR(root))
1498 return root;
1500 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1501 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1502 btrfs_check_and_init_root_item(&root->root_item);
1505 return root;
1508 int btrfs_init_fs_root(struct btrfs_root *root)
1510 int ret;
1511 struct btrfs_subvolume_writers *writers;
1513 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1514 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1515 GFP_NOFS);
1516 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1517 ret = -ENOMEM;
1518 goto fail;
1521 writers = btrfs_alloc_subvolume_writers();
1522 if (IS_ERR(writers)) {
1523 ret = PTR_ERR(writers);
1524 goto fail;
1526 root->subv_writers = writers;
1528 btrfs_init_free_ino_ctl(root);
1529 spin_lock_init(&root->ino_cache_lock);
1530 init_waitqueue_head(&root->ino_cache_wait);
1532 ret = get_anon_bdev(&root->anon_dev);
1533 if (ret)
1534 goto fail;
1536 mutex_lock(&root->objectid_mutex);
1537 ret = btrfs_find_highest_objectid(root,
1538 &root->highest_objectid);
1539 if (ret) {
1540 mutex_unlock(&root->objectid_mutex);
1541 goto fail;
1544 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1546 mutex_unlock(&root->objectid_mutex);
1548 return 0;
1549 fail:
1550 /* the caller is responsible to call free_fs_root */
1551 return ret;
1554 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1555 u64 root_id)
1557 struct btrfs_root *root;
1559 spin_lock(&fs_info->fs_roots_radix_lock);
1560 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1561 (unsigned long)root_id);
1562 spin_unlock(&fs_info->fs_roots_radix_lock);
1563 return root;
1566 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1567 struct btrfs_root *root)
1569 int ret;
1571 ret = radix_tree_preload(GFP_NOFS);
1572 if (ret)
1573 return ret;
1575 spin_lock(&fs_info->fs_roots_radix_lock);
1576 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1577 (unsigned long)root->root_key.objectid,
1578 root);
1579 if (ret == 0)
1580 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1581 spin_unlock(&fs_info->fs_roots_radix_lock);
1582 radix_tree_preload_end();
1584 return ret;
1587 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1588 struct btrfs_key *location,
1589 bool check_ref)
1591 struct btrfs_root *root;
1592 struct btrfs_path *path;
1593 struct btrfs_key key;
1594 int ret;
1596 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1597 return fs_info->tree_root;
1598 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1599 return fs_info->extent_root;
1600 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1601 return fs_info->chunk_root;
1602 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1603 return fs_info->dev_root;
1604 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1605 return fs_info->csum_root;
1606 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1607 return fs_info->quota_root ? fs_info->quota_root :
1608 ERR_PTR(-ENOENT);
1609 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1610 return fs_info->uuid_root ? fs_info->uuid_root :
1611 ERR_PTR(-ENOENT);
1612 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1613 return fs_info->free_space_root ? fs_info->free_space_root :
1614 ERR_PTR(-ENOENT);
1615 again:
1616 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1617 if (root) {
1618 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1619 return ERR_PTR(-ENOENT);
1620 return root;
1623 root = btrfs_read_fs_root(fs_info->tree_root, location);
1624 if (IS_ERR(root))
1625 return root;
1627 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1628 ret = -ENOENT;
1629 goto fail;
1632 ret = btrfs_init_fs_root(root);
1633 if (ret)
1634 goto fail;
1636 path = btrfs_alloc_path();
1637 if (!path) {
1638 ret = -ENOMEM;
1639 goto fail;
1641 key.objectid = BTRFS_ORPHAN_OBJECTID;
1642 key.type = BTRFS_ORPHAN_ITEM_KEY;
1643 key.offset = location->objectid;
1645 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1646 btrfs_free_path(path);
1647 if (ret < 0)
1648 goto fail;
1649 if (ret == 0)
1650 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1652 ret = btrfs_insert_fs_root(fs_info, root);
1653 if (ret) {
1654 if (ret == -EEXIST) {
1655 free_fs_root(root);
1656 goto again;
1658 goto fail;
1660 return root;
1661 fail:
1662 free_fs_root(root);
1663 return ERR_PTR(ret);
1666 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1668 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1669 int ret = 0;
1670 struct btrfs_device *device;
1671 struct backing_dev_info *bdi;
1673 rcu_read_lock();
1674 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1675 if (!device->bdev)
1676 continue;
1677 bdi = device->bdev->bd_bdi;
1678 if (bdi_congested(bdi, bdi_bits)) {
1679 ret = 1;
1680 break;
1683 rcu_read_unlock();
1684 return ret;
1688 * called by the kthread helper functions to finally call the bio end_io
1689 * functions. This is where read checksum verification actually happens
1691 static void end_workqueue_fn(struct btrfs_work *work)
1693 struct bio *bio;
1694 struct btrfs_end_io_wq *end_io_wq;
1696 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1697 bio = end_io_wq->bio;
1699 bio->bi_status = end_io_wq->status;
1700 bio->bi_private = end_io_wq->private;
1701 bio->bi_end_io = end_io_wq->end_io;
1702 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1703 bio_endio(bio);
1706 static int cleaner_kthread(void *arg)
1708 struct btrfs_root *root = arg;
1709 struct btrfs_fs_info *fs_info = root->fs_info;
1710 int again;
1711 struct btrfs_trans_handle *trans;
1713 do {
1714 again = 0;
1716 /* Make the cleaner go to sleep early. */
1717 if (btrfs_need_cleaner_sleep(fs_info))
1718 goto sleep;
1721 * Do not do anything if we might cause open_ctree() to block
1722 * before we have finished mounting the filesystem.
1724 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1725 goto sleep;
1727 if (!mutex_trylock(&fs_info->cleaner_mutex))
1728 goto sleep;
1731 * Avoid the problem that we change the status of the fs
1732 * during the above check and trylock.
1734 if (btrfs_need_cleaner_sleep(fs_info)) {
1735 mutex_unlock(&fs_info->cleaner_mutex);
1736 goto sleep;
1739 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1740 btrfs_run_delayed_iputs(fs_info);
1741 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1743 again = btrfs_clean_one_deleted_snapshot(root);
1744 mutex_unlock(&fs_info->cleaner_mutex);
1747 * The defragger has dealt with the R/O remount and umount,
1748 * needn't do anything special here.
1750 btrfs_run_defrag_inodes(fs_info);
1753 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1754 * with relocation (btrfs_relocate_chunk) and relocation
1755 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1756 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1757 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1758 * unused block groups.
1760 btrfs_delete_unused_bgs(fs_info);
1761 sleep:
1762 if (!again) {
1763 set_current_state(TASK_INTERRUPTIBLE);
1764 if (!kthread_should_stop())
1765 schedule();
1766 __set_current_state(TASK_RUNNING);
1768 } while (!kthread_should_stop());
1771 * Transaction kthread is stopped before us and wakes us up.
1772 * However we might have started a new transaction and COWed some
1773 * tree blocks when deleting unused block groups for example. So
1774 * make sure we commit the transaction we started to have a clean
1775 * shutdown when evicting the btree inode - if it has dirty pages
1776 * when we do the final iput() on it, eviction will trigger a
1777 * writeback for it which will fail with null pointer dereferences
1778 * since work queues and other resources were already released and
1779 * destroyed by the time the iput/eviction/writeback is made.
1781 trans = btrfs_attach_transaction(root);
1782 if (IS_ERR(trans)) {
1783 if (PTR_ERR(trans) != -ENOENT)
1784 btrfs_err(fs_info,
1785 "cleaner transaction attach returned %ld",
1786 PTR_ERR(trans));
1787 } else {
1788 int ret;
1790 ret = btrfs_commit_transaction(trans);
1791 if (ret)
1792 btrfs_err(fs_info,
1793 "cleaner open transaction commit returned %d",
1794 ret);
1797 return 0;
1800 static int transaction_kthread(void *arg)
1802 struct btrfs_root *root = arg;
1803 struct btrfs_fs_info *fs_info = root->fs_info;
1804 struct btrfs_trans_handle *trans;
1805 struct btrfs_transaction *cur;
1806 u64 transid;
1807 unsigned long now;
1808 unsigned long delay;
1809 bool cannot_commit;
1811 do {
1812 cannot_commit = false;
1813 delay = HZ * fs_info->commit_interval;
1814 mutex_lock(&fs_info->transaction_kthread_mutex);
1816 spin_lock(&fs_info->trans_lock);
1817 cur = fs_info->running_transaction;
1818 if (!cur) {
1819 spin_unlock(&fs_info->trans_lock);
1820 goto sleep;
1823 now = get_seconds();
1824 if (cur->state < TRANS_STATE_BLOCKED &&
1825 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1826 (now < cur->start_time ||
1827 now - cur->start_time < fs_info->commit_interval)) {
1828 spin_unlock(&fs_info->trans_lock);
1829 delay = HZ * 5;
1830 goto sleep;
1832 transid = cur->transid;
1833 spin_unlock(&fs_info->trans_lock);
1835 /* If the file system is aborted, this will always fail. */
1836 trans = btrfs_attach_transaction(root);
1837 if (IS_ERR(trans)) {
1838 if (PTR_ERR(trans) != -ENOENT)
1839 cannot_commit = true;
1840 goto sleep;
1842 if (transid == trans->transid) {
1843 btrfs_commit_transaction(trans);
1844 } else {
1845 btrfs_end_transaction(trans);
1847 sleep:
1848 wake_up_process(fs_info->cleaner_kthread);
1849 mutex_unlock(&fs_info->transaction_kthread_mutex);
1851 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1852 &fs_info->fs_state)))
1853 btrfs_cleanup_transaction(fs_info);
1854 if (!kthread_should_stop() &&
1855 (!btrfs_transaction_blocked(fs_info) ||
1856 cannot_commit))
1857 schedule_timeout_interruptible(delay);
1858 } while (!kthread_should_stop());
1859 return 0;
1863 * this will find the highest generation in the array of
1864 * root backups. The index of the highest array is returned,
1865 * or -1 if we can't find anything.
1867 * We check to make sure the array is valid by comparing the
1868 * generation of the latest root in the array with the generation
1869 * in the super block. If they don't match we pitch it.
1871 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1873 u64 cur;
1874 int newest_index = -1;
1875 struct btrfs_root_backup *root_backup;
1876 int i;
1878 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1879 root_backup = info->super_copy->super_roots + i;
1880 cur = btrfs_backup_tree_root_gen(root_backup);
1881 if (cur == newest_gen)
1882 newest_index = i;
1885 /* check to see if we actually wrapped around */
1886 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1887 root_backup = info->super_copy->super_roots;
1888 cur = btrfs_backup_tree_root_gen(root_backup);
1889 if (cur == newest_gen)
1890 newest_index = 0;
1892 return newest_index;
1897 * find the oldest backup so we know where to store new entries
1898 * in the backup array. This will set the backup_root_index
1899 * field in the fs_info struct
1901 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1902 u64 newest_gen)
1904 int newest_index = -1;
1906 newest_index = find_newest_super_backup(info, newest_gen);
1907 /* if there was garbage in there, just move along */
1908 if (newest_index == -1) {
1909 info->backup_root_index = 0;
1910 } else {
1911 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1916 * copy all the root pointers into the super backup array.
1917 * this will bump the backup pointer by one when it is
1918 * done
1920 static void backup_super_roots(struct btrfs_fs_info *info)
1922 int next_backup;
1923 struct btrfs_root_backup *root_backup;
1924 int last_backup;
1926 next_backup = info->backup_root_index;
1927 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1928 BTRFS_NUM_BACKUP_ROOTS;
1931 * just overwrite the last backup if we're at the same generation
1932 * this happens only at umount
1934 root_backup = info->super_for_commit->super_roots + last_backup;
1935 if (btrfs_backup_tree_root_gen(root_backup) ==
1936 btrfs_header_generation(info->tree_root->node))
1937 next_backup = last_backup;
1939 root_backup = info->super_for_commit->super_roots + next_backup;
1942 * make sure all of our padding and empty slots get zero filled
1943 * regardless of which ones we use today
1945 memset(root_backup, 0, sizeof(*root_backup));
1947 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1949 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1950 btrfs_set_backup_tree_root_gen(root_backup,
1951 btrfs_header_generation(info->tree_root->node));
1953 btrfs_set_backup_tree_root_level(root_backup,
1954 btrfs_header_level(info->tree_root->node));
1956 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1957 btrfs_set_backup_chunk_root_gen(root_backup,
1958 btrfs_header_generation(info->chunk_root->node));
1959 btrfs_set_backup_chunk_root_level(root_backup,
1960 btrfs_header_level(info->chunk_root->node));
1962 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1963 btrfs_set_backup_extent_root_gen(root_backup,
1964 btrfs_header_generation(info->extent_root->node));
1965 btrfs_set_backup_extent_root_level(root_backup,
1966 btrfs_header_level(info->extent_root->node));
1969 * we might commit during log recovery, which happens before we set
1970 * the fs_root. Make sure it is valid before we fill it in.
1972 if (info->fs_root && info->fs_root->node) {
1973 btrfs_set_backup_fs_root(root_backup,
1974 info->fs_root->node->start);
1975 btrfs_set_backup_fs_root_gen(root_backup,
1976 btrfs_header_generation(info->fs_root->node));
1977 btrfs_set_backup_fs_root_level(root_backup,
1978 btrfs_header_level(info->fs_root->node));
1981 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1982 btrfs_set_backup_dev_root_gen(root_backup,
1983 btrfs_header_generation(info->dev_root->node));
1984 btrfs_set_backup_dev_root_level(root_backup,
1985 btrfs_header_level(info->dev_root->node));
1987 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1988 btrfs_set_backup_csum_root_gen(root_backup,
1989 btrfs_header_generation(info->csum_root->node));
1990 btrfs_set_backup_csum_root_level(root_backup,
1991 btrfs_header_level(info->csum_root->node));
1993 btrfs_set_backup_total_bytes(root_backup,
1994 btrfs_super_total_bytes(info->super_copy));
1995 btrfs_set_backup_bytes_used(root_backup,
1996 btrfs_super_bytes_used(info->super_copy));
1997 btrfs_set_backup_num_devices(root_backup,
1998 btrfs_super_num_devices(info->super_copy));
2001 * if we don't copy this out to the super_copy, it won't get remembered
2002 * for the next commit
2004 memcpy(&info->super_copy->super_roots,
2005 &info->super_for_commit->super_roots,
2006 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2010 * this copies info out of the root backup array and back into
2011 * the in-memory super block. It is meant to help iterate through
2012 * the array, so you send it the number of backups you've already
2013 * tried and the last backup index you used.
2015 * this returns -1 when it has tried all the backups
2017 static noinline int next_root_backup(struct btrfs_fs_info *info,
2018 struct btrfs_super_block *super,
2019 int *num_backups_tried, int *backup_index)
2021 struct btrfs_root_backup *root_backup;
2022 int newest = *backup_index;
2024 if (*num_backups_tried == 0) {
2025 u64 gen = btrfs_super_generation(super);
2027 newest = find_newest_super_backup(info, gen);
2028 if (newest == -1)
2029 return -1;
2031 *backup_index = newest;
2032 *num_backups_tried = 1;
2033 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2034 /* we've tried all the backups, all done */
2035 return -1;
2036 } else {
2037 /* jump to the next oldest backup */
2038 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2039 BTRFS_NUM_BACKUP_ROOTS;
2040 *backup_index = newest;
2041 *num_backups_tried += 1;
2043 root_backup = super->super_roots + newest;
2045 btrfs_set_super_generation(super,
2046 btrfs_backup_tree_root_gen(root_backup));
2047 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2048 btrfs_set_super_root_level(super,
2049 btrfs_backup_tree_root_level(root_backup));
2050 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2053 * fixme: the total bytes and num_devices need to match or we should
2054 * need a fsck
2056 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2057 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2058 return 0;
2061 /* helper to cleanup workers */
2062 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2064 btrfs_destroy_workqueue(fs_info->fixup_workers);
2065 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2066 btrfs_destroy_workqueue(fs_info->workers);
2067 btrfs_destroy_workqueue(fs_info->endio_workers);
2068 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2069 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2070 btrfs_destroy_workqueue(fs_info->rmw_workers);
2071 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2072 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2073 btrfs_destroy_workqueue(fs_info->submit_workers);
2074 btrfs_destroy_workqueue(fs_info->delayed_workers);
2075 btrfs_destroy_workqueue(fs_info->caching_workers);
2076 btrfs_destroy_workqueue(fs_info->readahead_workers);
2077 btrfs_destroy_workqueue(fs_info->flush_workers);
2078 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2079 btrfs_destroy_workqueue(fs_info->extent_workers);
2081 * Now that all other work queues are destroyed, we can safely destroy
2082 * the queues used for metadata I/O, since tasks from those other work
2083 * queues can do metadata I/O operations.
2085 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2086 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2089 static void free_root_extent_buffers(struct btrfs_root *root)
2091 if (root) {
2092 free_extent_buffer(root->node);
2093 free_extent_buffer(root->commit_root);
2094 root->node = NULL;
2095 root->commit_root = NULL;
2099 /* helper to cleanup tree roots */
2100 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2102 free_root_extent_buffers(info->tree_root);
2104 free_root_extent_buffers(info->dev_root);
2105 free_root_extent_buffers(info->extent_root);
2106 free_root_extent_buffers(info->csum_root);
2107 free_root_extent_buffers(info->quota_root);
2108 free_root_extent_buffers(info->uuid_root);
2109 if (chunk_root)
2110 free_root_extent_buffers(info->chunk_root);
2111 free_root_extent_buffers(info->free_space_root);
2114 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2116 int ret;
2117 struct btrfs_root *gang[8];
2118 int i;
2120 while (!list_empty(&fs_info->dead_roots)) {
2121 gang[0] = list_entry(fs_info->dead_roots.next,
2122 struct btrfs_root, root_list);
2123 list_del(&gang[0]->root_list);
2125 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2126 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2127 } else {
2128 free_extent_buffer(gang[0]->node);
2129 free_extent_buffer(gang[0]->commit_root);
2130 btrfs_put_fs_root(gang[0]);
2134 while (1) {
2135 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2136 (void **)gang, 0,
2137 ARRAY_SIZE(gang));
2138 if (!ret)
2139 break;
2140 for (i = 0; i < ret; i++)
2141 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2144 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2145 btrfs_free_log_root_tree(NULL, fs_info);
2146 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2150 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2152 mutex_init(&fs_info->scrub_lock);
2153 atomic_set(&fs_info->scrubs_running, 0);
2154 atomic_set(&fs_info->scrub_pause_req, 0);
2155 atomic_set(&fs_info->scrubs_paused, 0);
2156 atomic_set(&fs_info->scrub_cancel_req, 0);
2157 init_waitqueue_head(&fs_info->scrub_pause_wait);
2158 fs_info->scrub_workers_refcnt = 0;
2161 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2163 spin_lock_init(&fs_info->balance_lock);
2164 mutex_init(&fs_info->balance_mutex);
2165 atomic_set(&fs_info->balance_pause_req, 0);
2166 atomic_set(&fs_info->balance_cancel_req, 0);
2167 fs_info->balance_ctl = NULL;
2168 init_waitqueue_head(&fs_info->balance_wait_q);
2171 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2173 struct inode *inode = fs_info->btree_inode;
2175 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2176 set_nlink(inode, 1);
2178 * we set the i_size on the btree inode to the max possible int.
2179 * the real end of the address space is determined by all of
2180 * the devices in the system
2182 inode->i_size = OFFSET_MAX;
2183 inode->i_mapping->a_ops = &btree_aops;
2185 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2186 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2187 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2188 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2190 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2192 BTRFS_I(inode)->root = fs_info->tree_root;
2193 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2194 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2195 btrfs_insert_inode_hash(inode);
2198 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2200 fs_info->dev_replace.lock_owner = 0;
2201 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2202 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2203 rwlock_init(&fs_info->dev_replace.lock);
2204 atomic_set(&fs_info->dev_replace.read_locks, 0);
2205 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2206 init_waitqueue_head(&fs_info->replace_wait);
2207 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2210 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2212 spin_lock_init(&fs_info->qgroup_lock);
2213 mutex_init(&fs_info->qgroup_ioctl_lock);
2214 fs_info->qgroup_tree = RB_ROOT;
2215 fs_info->qgroup_op_tree = RB_ROOT;
2216 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2217 fs_info->qgroup_seq = 1;
2218 fs_info->qgroup_ulist = NULL;
2219 fs_info->qgroup_rescan_running = false;
2220 mutex_init(&fs_info->qgroup_rescan_lock);
2223 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2224 struct btrfs_fs_devices *fs_devices)
2226 u32 max_active = fs_info->thread_pool_size;
2227 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2229 fs_info->workers =
2230 btrfs_alloc_workqueue(fs_info, "worker",
2231 flags | WQ_HIGHPRI, max_active, 16);
2233 fs_info->delalloc_workers =
2234 btrfs_alloc_workqueue(fs_info, "delalloc",
2235 flags, max_active, 2);
2237 fs_info->flush_workers =
2238 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2239 flags, max_active, 0);
2241 fs_info->caching_workers =
2242 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2245 * a higher idle thresh on the submit workers makes it much more
2246 * likely that bios will be send down in a sane order to the
2247 * devices
2249 fs_info->submit_workers =
2250 btrfs_alloc_workqueue(fs_info, "submit", flags,
2251 min_t(u64, fs_devices->num_devices,
2252 max_active), 64);
2254 fs_info->fixup_workers =
2255 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2258 * endios are largely parallel and should have a very
2259 * low idle thresh
2261 fs_info->endio_workers =
2262 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2263 fs_info->endio_meta_workers =
2264 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2265 max_active, 4);
2266 fs_info->endio_meta_write_workers =
2267 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2268 max_active, 2);
2269 fs_info->endio_raid56_workers =
2270 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2271 max_active, 4);
2272 fs_info->endio_repair_workers =
2273 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2274 fs_info->rmw_workers =
2275 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2276 fs_info->endio_write_workers =
2277 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2278 max_active, 2);
2279 fs_info->endio_freespace_worker =
2280 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2281 max_active, 0);
2282 fs_info->delayed_workers =
2283 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2284 max_active, 0);
2285 fs_info->readahead_workers =
2286 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2287 max_active, 2);
2288 fs_info->qgroup_rescan_workers =
2289 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2290 fs_info->extent_workers =
2291 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2292 min_t(u64, fs_devices->num_devices,
2293 max_active), 8);
2295 if (!(fs_info->workers && fs_info->delalloc_workers &&
2296 fs_info->submit_workers && fs_info->flush_workers &&
2297 fs_info->endio_workers && fs_info->endio_meta_workers &&
2298 fs_info->endio_meta_write_workers &&
2299 fs_info->endio_repair_workers &&
2300 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2301 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2302 fs_info->caching_workers && fs_info->readahead_workers &&
2303 fs_info->fixup_workers && fs_info->delayed_workers &&
2304 fs_info->extent_workers &&
2305 fs_info->qgroup_rescan_workers)) {
2306 return -ENOMEM;
2309 return 0;
2312 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2313 struct btrfs_fs_devices *fs_devices)
2315 int ret;
2316 struct btrfs_root *log_tree_root;
2317 struct btrfs_super_block *disk_super = fs_info->super_copy;
2318 u64 bytenr = btrfs_super_log_root(disk_super);
2319 int level = btrfs_super_log_root_level(disk_super);
2321 if (fs_devices->rw_devices == 0) {
2322 btrfs_warn(fs_info, "log replay required on RO media");
2323 return -EIO;
2326 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2327 if (!log_tree_root)
2328 return -ENOMEM;
2330 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2332 log_tree_root->node = read_tree_block(fs_info, bytenr,
2333 fs_info->generation + 1,
2334 level, NULL);
2335 if (IS_ERR(log_tree_root->node)) {
2336 btrfs_warn(fs_info, "failed to read log tree");
2337 ret = PTR_ERR(log_tree_root->node);
2338 kfree(log_tree_root);
2339 return ret;
2340 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2341 btrfs_err(fs_info, "failed to read log tree");
2342 free_extent_buffer(log_tree_root->node);
2343 kfree(log_tree_root);
2344 return -EIO;
2346 /* returns with log_tree_root freed on success */
2347 ret = btrfs_recover_log_trees(log_tree_root);
2348 if (ret) {
2349 btrfs_handle_fs_error(fs_info, ret,
2350 "Failed to recover log tree");
2351 free_extent_buffer(log_tree_root->node);
2352 kfree(log_tree_root);
2353 return ret;
2356 if (sb_rdonly(fs_info->sb)) {
2357 ret = btrfs_commit_super(fs_info);
2358 if (ret)
2359 return ret;
2362 return 0;
2365 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2367 struct btrfs_root *tree_root = fs_info->tree_root;
2368 struct btrfs_root *root;
2369 struct btrfs_key location;
2370 int ret;
2372 BUG_ON(!fs_info->tree_root);
2374 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2375 location.type = BTRFS_ROOT_ITEM_KEY;
2376 location.offset = 0;
2378 root = btrfs_read_tree_root(tree_root, &location);
2379 if (IS_ERR(root)) {
2380 ret = PTR_ERR(root);
2381 goto out;
2383 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2384 fs_info->extent_root = root;
2386 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2387 root = btrfs_read_tree_root(tree_root, &location);
2388 if (IS_ERR(root)) {
2389 ret = PTR_ERR(root);
2390 goto out;
2392 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2393 fs_info->dev_root = root;
2394 btrfs_init_devices_late(fs_info);
2396 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2397 root = btrfs_read_tree_root(tree_root, &location);
2398 if (IS_ERR(root)) {
2399 ret = PTR_ERR(root);
2400 goto out;
2402 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2403 fs_info->csum_root = root;
2405 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2406 root = btrfs_read_tree_root(tree_root, &location);
2407 if (!IS_ERR(root)) {
2408 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2409 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2410 fs_info->quota_root = root;
2413 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2414 root = btrfs_read_tree_root(tree_root, &location);
2415 if (IS_ERR(root)) {
2416 ret = PTR_ERR(root);
2417 if (ret != -ENOENT)
2418 goto out;
2419 } else {
2420 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2421 fs_info->uuid_root = root;
2424 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2425 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2426 root = btrfs_read_tree_root(tree_root, &location);
2427 if (IS_ERR(root)) {
2428 ret = PTR_ERR(root);
2429 goto out;
2431 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2432 fs_info->free_space_root = root;
2435 return 0;
2436 out:
2437 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2438 location.objectid, ret);
2439 return ret;
2443 * Real super block validation
2444 * NOTE: super csum type and incompat features will not be checked here.
2446 * @sb: super block to check
2447 * @mirror_num: the super block number to check its bytenr:
2448 * 0 the primary (1st) sb
2449 * 1, 2 2nd and 3rd backup copy
2450 * -1 skip bytenr check
2452 static int validate_super(struct btrfs_fs_info *fs_info,
2453 struct btrfs_super_block *sb, int mirror_num)
2455 u64 nodesize = btrfs_super_nodesize(sb);
2456 u64 sectorsize = btrfs_super_sectorsize(sb);
2457 int ret = 0;
2459 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2460 btrfs_err(fs_info, "no valid FS found");
2461 ret = -EINVAL;
2463 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2464 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2465 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2466 ret = -EINVAL;
2468 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2469 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2470 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2471 ret = -EINVAL;
2473 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2474 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2475 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2476 ret = -EINVAL;
2478 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2479 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2480 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2481 ret = -EINVAL;
2485 * Check sectorsize and nodesize first, other check will need it.
2486 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2488 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2489 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2490 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2491 ret = -EINVAL;
2493 /* Only PAGE SIZE is supported yet */
2494 if (sectorsize != PAGE_SIZE) {
2495 btrfs_err(fs_info,
2496 "sectorsize %llu not supported yet, only support %lu",
2497 sectorsize, PAGE_SIZE);
2498 ret = -EINVAL;
2500 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2501 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2502 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2503 ret = -EINVAL;
2505 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2506 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2507 le32_to_cpu(sb->__unused_leafsize), nodesize);
2508 ret = -EINVAL;
2511 /* Root alignment check */
2512 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2513 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2514 btrfs_super_root(sb));
2515 ret = -EINVAL;
2517 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2518 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2519 btrfs_super_chunk_root(sb));
2520 ret = -EINVAL;
2522 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2523 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2524 btrfs_super_log_root(sb));
2525 ret = -EINVAL;
2528 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2529 btrfs_err(fs_info,
2530 "dev_item UUID does not match fsid: %pU != %pU",
2531 fs_info->fsid, sb->dev_item.fsid);
2532 ret = -EINVAL;
2536 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2537 * done later
2539 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2540 btrfs_err(fs_info, "bytes_used is too small %llu",
2541 btrfs_super_bytes_used(sb));
2542 ret = -EINVAL;
2544 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2545 btrfs_err(fs_info, "invalid stripesize %u",
2546 btrfs_super_stripesize(sb));
2547 ret = -EINVAL;
2549 if (btrfs_super_num_devices(sb) > (1UL << 31))
2550 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2551 btrfs_super_num_devices(sb));
2552 if (btrfs_super_num_devices(sb) == 0) {
2553 btrfs_err(fs_info, "number of devices is 0");
2554 ret = -EINVAL;
2557 if (mirror_num >= 0 &&
2558 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2559 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2560 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2561 ret = -EINVAL;
2565 * Obvious sys_chunk_array corruptions, it must hold at least one key
2566 * and one chunk
2568 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2569 btrfs_err(fs_info, "system chunk array too big %u > %u",
2570 btrfs_super_sys_array_size(sb),
2571 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2572 ret = -EINVAL;
2574 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2575 + sizeof(struct btrfs_chunk)) {
2576 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2577 btrfs_super_sys_array_size(sb),
2578 sizeof(struct btrfs_disk_key)
2579 + sizeof(struct btrfs_chunk));
2580 ret = -EINVAL;
2584 * The generation is a global counter, we'll trust it more than the others
2585 * but it's still possible that it's the one that's wrong.
2587 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2588 btrfs_warn(fs_info,
2589 "suspicious: generation < chunk_root_generation: %llu < %llu",
2590 btrfs_super_generation(sb),
2591 btrfs_super_chunk_root_generation(sb));
2592 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2593 && btrfs_super_cache_generation(sb) != (u64)-1)
2594 btrfs_warn(fs_info,
2595 "suspicious: generation < cache_generation: %llu < %llu",
2596 btrfs_super_generation(sb),
2597 btrfs_super_cache_generation(sb));
2599 return ret;
2603 * Validation of super block at mount time.
2604 * Some checks already done early at mount time, like csum type and incompat
2605 * flags will be skipped.
2607 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2609 return validate_super(fs_info, fs_info->super_copy, 0);
2613 * Validation of super block at write time.
2614 * Some checks like bytenr check will be skipped as their values will be
2615 * overwritten soon.
2616 * Extra checks like csum type and incompat flags will be done here.
2618 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2619 struct btrfs_super_block *sb)
2621 int ret;
2623 ret = validate_super(fs_info, sb, -1);
2624 if (ret < 0)
2625 goto out;
2626 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2627 ret = -EUCLEAN;
2628 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2629 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2630 goto out;
2632 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2633 ret = -EUCLEAN;
2634 btrfs_err(fs_info,
2635 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2636 btrfs_super_incompat_flags(sb),
2637 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2638 goto out;
2640 out:
2641 if (ret < 0)
2642 btrfs_err(fs_info,
2643 "super block corruption detected before writing it to disk");
2644 return ret;
2647 int open_ctree(struct super_block *sb,
2648 struct btrfs_fs_devices *fs_devices,
2649 char *options)
2651 u32 sectorsize;
2652 u32 nodesize;
2653 u32 stripesize;
2654 u64 generation;
2655 u64 features;
2656 struct btrfs_key location;
2657 struct buffer_head *bh;
2658 struct btrfs_super_block *disk_super;
2659 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2660 struct btrfs_root *tree_root;
2661 struct btrfs_root *chunk_root;
2662 int ret;
2663 int err = -EINVAL;
2664 int num_backups_tried = 0;
2665 int backup_index = 0;
2666 int clear_free_space_tree = 0;
2667 int level;
2669 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2670 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2671 if (!tree_root || !chunk_root) {
2672 err = -ENOMEM;
2673 goto fail;
2676 ret = init_srcu_struct(&fs_info->subvol_srcu);
2677 if (ret) {
2678 err = ret;
2679 goto fail;
2682 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2683 if (ret) {
2684 err = ret;
2685 goto fail_srcu;
2687 fs_info->dirty_metadata_batch = PAGE_SIZE *
2688 (1 + ilog2(nr_cpu_ids));
2690 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2691 if (ret) {
2692 err = ret;
2693 goto fail_dirty_metadata_bytes;
2696 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2697 if (ret) {
2698 err = ret;
2699 goto fail_delalloc_bytes;
2702 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704 INIT_LIST_HEAD(&fs_info->trans_list);
2705 INIT_LIST_HEAD(&fs_info->dead_roots);
2706 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2708 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2710 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2711 spin_lock_init(&fs_info->delalloc_root_lock);
2712 spin_lock_init(&fs_info->trans_lock);
2713 spin_lock_init(&fs_info->fs_roots_radix_lock);
2714 spin_lock_init(&fs_info->delayed_iput_lock);
2715 spin_lock_init(&fs_info->defrag_inodes_lock);
2716 spin_lock_init(&fs_info->tree_mod_seq_lock);
2717 spin_lock_init(&fs_info->super_lock);
2718 spin_lock_init(&fs_info->qgroup_op_lock);
2719 spin_lock_init(&fs_info->buffer_lock);
2720 spin_lock_init(&fs_info->unused_bgs_lock);
2721 rwlock_init(&fs_info->tree_mod_log_lock);
2722 mutex_init(&fs_info->unused_bg_unpin_mutex);
2723 mutex_init(&fs_info->delete_unused_bgs_mutex);
2724 mutex_init(&fs_info->reloc_mutex);
2725 mutex_init(&fs_info->delalloc_root_mutex);
2726 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2727 seqlock_init(&fs_info->profiles_lock);
2729 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2730 INIT_LIST_HEAD(&fs_info->space_info);
2731 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2732 INIT_LIST_HEAD(&fs_info->unused_bgs);
2733 btrfs_mapping_init(&fs_info->mapping_tree);
2734 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2735 BTRFS_BLOCK_RSV_GLOBAL);
2736 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2737 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2738 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2739 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2740 BTRFS_BLOCK_RSV_DELOPS);
2741 atomic_set(&fs_info->async_delalloc_pages, 0);
2742 atomic_set(&fs_info->defrag_running, 0);
2743 atomic_set(&fs_info->qgroup_op_seq, 0);
2744 atomic_set(&fs_info->reada_works_cnt, 0);
2745 atomic64_set(&fs_info->tree_mod_seq, 0);
2746 fs_info->sb = sb;
2747 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2748 fs_info->metadata_ratio = 0;
2749 fs_info->defrag_inodes = RB_ROOT;
2750 atomic64_set(&fs_info->free_chunk_space, 0);
2751 fs_info->tree_mod_log = RB_ROOT;
2752 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2753 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2754 /* readahead state */
2755 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2756 spin_lock_init(&fs_info->reada_lock);
2757 btrfs_init_ref_verify(fs_info);
2759 fs_info->thread_pool_size = min_t(unsigned long,
2760 num_online_cpus() + 2, 8);
2762 INIT_LIST_HEAD(&fs_info->ordered_roots);
2763 spin_lock_init(&fs_info->ordered_root_lock);
2765 fs_info->btree_inode = new_inode(sb);
2766 if (!fs_info->btree_inode) {
2767 err = -ENOMEM;
2768 goto fail_bio_counter;
2770 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2772 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2773 GFP_KERNEL);
2774 if (!fs_info->delayed_root) {
2775 err = -ENOMEM;
2776 goto fail_iput;
2778 btrfs_init_delayed_root(fs_info->delayed_root);
2780 btrfs_init_scrub(fs_info);
2781 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2782 fs_info->check_integrity_print_mask = 0;
2783 #endif
2784 btrfs_init_balance(fs_info);
2785 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2787 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2788 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2790 btrfs_init_btree_inode(fs_info);
2792 spin_lock_init(&fs_info->block_group_cache_lock);
2793 fs_info->block_group_cache_tree = RB_ROOT;
2794 fs_info->first_logical_byte = (u64)-1;
2796 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2797 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2798 fs_info->pinned_extents = &fs_info->freed_extents[0];
2799 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2801 mutex_init(&fs_info->ordered_operations_mutex);
2802 mutex_init(&fs_info->tree_log_mutex);
2803 mutex_init(&fs_info->chunk_mutex);
2804 mutex_init(&fs_info->transaction_kthread_mutex);
2805 mutex_init(&fs_info->cleaner_mutex);
2806 mutex_init(&fs_info->ro_block_group_mutex);
2807 init_rwsem(&fs_info->commit_root_sem);
2808 init_rwsem(&fs_info->cleanup_work_sem);
2809 init_rwsem(&fs_info->subvol_sem);
2810 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2812 btrfs_init_dev_replace_locks(fs_info);
2813 btrfs_init_qgroup(fs_info);
2815 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2816 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2818 init_waitqueue_head(&fs_info->transaction_throttle);
2819 init_waitqueue_head(&fs_info->transaction_wait);
2820 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2821 init_waitqueue_head(&fs_info->async_submit_wait);
2823 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2825 /* Usable values until the real ones are cached from the superblock */
2826 fs_info->nodesize = 4096;
2827 fs_info->sectorsize = 4096;
2828 fs_info->stripesize = 4096;
2830 ret = btrfs_alloc_stripe_hash_table(fs_info);
2831 if (ret) {
2832 err = ret;
2833 goto fail_alloc;
2836 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2838 invalidate_bdev(fs_devices->latest_bdev);
2841 * Read super block and check the signature bytes only
2843 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2844 if (IS_ERR(bh)) {
2845 err = PTR_ERR(bh);
2846 goto fail_alloc;
2850 * We want to check superblock checksum, the type is stored inside.
2851 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2853 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2854 btrfs_err(fs_info, "superblock checksum mismatch");
2855 err = -EINVAL;
2856 brelse(bh);
2857 goto fail_alloc;
2861 * super_copy is zeroed at allocation time and we never touch the
2862 * following bytes up to INFO_SIZE, the checksum is calculated from
2863 * the whole block of INFO_SIZE
2865 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2866 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2867 sizeof(*fs_info->super_for_commit));
2868 brelse(bh);
2870 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2872 ret = btrfs_validate_mount_super(fs_info);
2873 if (ret) {
2874 btrfs_err(fs_info, "superblock contains fatal errors");
2875 err = -EINVAL;
2876 goto fail_alloc;
2879 disk_super = fs_info->super_copy;
2880 if (!btrfs_super_root(disk_super))
2881 goto fail_alloc;
2883 /* check FS state, whether FS is broken. */
2884 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2885 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2888 * run through our array of backup supers and setup
2889 * our ring pointer to the oldest one
2891 generation = btrfs_super_generation(disk_super);
2892 find_oldest_super_backup(fs_info, generation);
2895 * In the long term, we'll store the compression type in the super
2896 * block, and it'll be used for per file compression control.
2898 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2900 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2901 if (ret) {
2902 err = ret;
2903 goto fail_alloc;
2906 features = btrfs_super_incompat_flags(disk_super) &
2907 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2908 if (features) {
2909 btrfs_err(fs_info,
2910 "cannot mount because of unsupported optional features (%llx)",
2911 features);
2912 err = -EINVAL;
2913 goto fail_alloc;
2916 features = btrfs_super_incompat_flags(disk_super);
2917 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2918 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2919 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2920 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2921 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2923 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2924 btrfs_info(fs_info, "has skinny extents");
2927 * flag our filesystem as having big metadata blocks if
2928 * they are bigger than the page size
2930 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2931 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2932 btrfs_info(fs_info,
2933 "flagging fs with big metadata feature");
2934 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2937 nodesize = btrfs_super_nodesize(disk_super);
2938 sectorsize = btrfs_super_sectorsize(disk_super);
2939 stripesize = sectorsize;
2940 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2941 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2943 /* Cache block sizes */
2944 fs_info->nodesize = nodesize;
2945 fs_info->sectorsize = sectorsize;
2946 fs_info->stripesize = stripesize;
2949 * mixed block groups end up with duplicate but slightly offset
2950 * extent buffers for the same range. It leads to corruptions
2952 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2953 (sectorsize != nodesize)) {
2954 btrfs_err(fs_info,
2955 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2956 nodesize, sectorsize);
2957 goto fail_alloc;
2961 * Needn't use the lock because there is no other task which will
2962 * update the flag.
2964 btrfs_set_super_incompat_flags(disk_super, features);
2966 features = btrfs_super_compat_ro_flags(disk_super) &
2967 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2968 if (!sb_rdonly(sb) && features) {
2969 btrfs_err(fs_info,
2970 "cannot mount read-write because of unsupported optional features (%llx)",
2971 features);
2972 err = -EINVAL;
2973 goto fail_alloc;
2976 ret = btrfs_init_workqueues(fs_info, fs_devices);
2977 if (ret) {
2978 err = ret;
2979 goto fail_sb_buffer;
2982 sb->s_bdi->congested_fn = btrfs_congested_fn;
2983 sb->s_bdi->congested_data = fs_info;
2984 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2985 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2986 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2987 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2989 sb->s_blocksize = sectorsize;
2990 sb->s_blocksize_bits = blksize_bits(sectorsize);
2991 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2993 mutex_lock(&fs_info->chunk_mutex);
2994 ret = btrfs_read_sys_array(fs_info);
2995 mutex_unlock(&fs_info->chunk_mutex);
2996 if (ret) {
2997 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2998 goto fail_sb_buffer;
3001 generation = btrfs_super_chunk_root_generation(disk_super);
3002 level = btrfs_super_chunk_root_level(disk_super);
3004 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3006 chunk_root->node = read_tree_block(fs_info,
3007 btrfs_super_chunk_root(disk_super),
3008 generation, level, NULL);
3009 if (IS_ERR(chunk_root->node) ||
3010 !extent_buffer_uptodate(chunk_root->node)) {
3011 btrfs_err(fs_info, "failed to read chunk root");
3012 if (!IS_ERR(chunk_root->node))
3013 free_extent_buffer(chunk_root->node);
3014 chunk_root->node = NULL;
3015 goto fail_tree_roots;
3017 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3018 chunk_root->commit_root = btrfs_root_node(chunk_root);
3020 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3021 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3023 ret = btrfs_read_chunk_tree(fs_info);
3024 if (ret) {
3025 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3026 goto fail_tree_roots;
3030 * Keep the devid that is marked to be the target device for the
3031 * device replace procedure
3033 btrfs_free_extra_devids(fs_devices, 0);
3035 if (!fs_devices->latest_bdev) {
3036 btrfs_err(fs_info, "failed to read devices");
3037 goto fail_tree_roots;
3040 retry_root_backup:
3041 generation = btrfs_super_generation(disk_super);
3042 level = btrfs_super_root_level(disk_super);
3044 tree_root->node = read_tree_block(fs_info,
3045 btrfs_super_root(disk_super),
3046 generation, level, NULL);
3047 if (IS_ERR(tree_root->node) ||
3048 !extent_buffer_uptodate(tree_root->node)) {
3049 btrfs_warn(fs_info, "failed to read tree root");
3050 if (!IS_ERR(tree_root->node))
3051 free_extent_buffer(tree_root->node);
3052 tree_root->node = NULL;
3053 goto recovery_tree_root;
3056 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3057 tree_root->commit_root = btrfs_root_node(tree_root);
3058 btrfs_set_root_refs(&tree_root->root_item, 1);
3060 mutex_lock(&tree_root->objectid_mutex);
3061 ret = btrfs_find_highest_objectid(tree_root,
3062 &tree_root->highest_objectid);
3063 if (ret) {
3064 mutex_unlock(&tree_root->objectid_mutex);
3065 goto recovery_tree_root;
3068 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3070 mutex_unlock(&tree_root->objectid_mutex);
3072 ret = btrfs_read_roots(fs_info);
3073 if (ret)
3074 goto recovery_tree_root;
3076 fs_info->generation = generation;
3077 fs_info->last_trans_committed = generation;
3079 ret = btrfs_recover_balance(fs_info);
3080 if (ret) {
3081 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3082 goto fail_block_groups;
3085 ret = btrfs_init_dev_stats(fs_info);
3086 if (ret) {
3087 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3088 goto fail_block_groups;
3091 ret = btrfs_init_dev_replace(fs_info);
3092 if (ret) {
3093 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3094 goto fail_block_groups;
3097 btrfs_free_extra_devids(fs_devices, 1);
3099 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3100 if (ret) {
3101 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3102 ret);
3103 goto fail_block_groups;
3106 ret = btrfs_sysfs_add_device(fs_devices);
3107 if (ret) {
3108 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3109 ret);
3110 goto fail_fsdev_sysfs;
3113 ret = btrfs_sysfs_add_mounted(fs_info);
3114 if (ret) {
3115 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3116 goto fail_fsdev_sysfs;
3119 ret = btrfs_init_space_info(fs_info);
3120 if (ret) {
3121 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3122 goto fail_sysfs;
3125 ret = btrfs_read_block_groups(fs_info);
3126 if (ret) {
3127 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3128 goto fail_sysfs;
3131 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3132 btrfs_warn(fs_info,
3133 "writeable mount is not allowed due to too many missing devices");
3134 goto fail_sysfs;
3137 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3138 "btrfs-cleaner");
3139 if (IS_ERR(fs_info->cleaner_kthread))
3140 goto fail_sysfs;
3142 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3143 tree_root,
3144 "btrfs-transaction");
3145 if (IS_ERR(fs_info->transaction_kthread))
3146 goto fail_cleaner;
3148 if (!btrfs_test_opt(fs_info, NOSSD) &&
3149 !fs_info->fs_devices->rotating) {
3150 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3154 * Mount does not set all options immediately, we can do it now and do
3155 * not have to wait for transaction commit
3157 btrfs_apply_pending_changes(fs_info);
3159 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3160 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3161 ret = btrfsic_mount(fs_info, fs_devices,
3162 btrfs_test_opt(fs_info,
3163 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3164 1 : 0,
3165 fs_info->check_integrity_print_mask);
3166 if (ret)
3167 btrfs_warn(fs_info,
3168 "failed to initialize integrity check module: %d",
3169 ret);
3171 #endif
3172 ret = btrfs_read_qgroup_config(fs_info);
3173 if (ret)
3174 goto fail_trans_kthread;
3176 if (btrfs_build_ref_tree(fs_info))
3177 btrfs_err(fs_info, "couldn't build ref tree");
3179 /* do not make disk changes in broken FS or nologreplay is given */
3180 if (btrfs_super_log_root(disk_super) != 0 &&
3181 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3182 ret = btrfs_replay_log(fs_info, fs_devices);
3183 if (ret) {
3184 err = ret;
3185 goto fail_qgroup;
3189 ret = btrfs_find_orphan_roots(fs_info);
3190 if (ret)
3191 goto fail_qgroup;
3193 if (!sb_rdonly(sb)) {
3194 ret = btrfs_cleanup_fs_roots(fs_info);
3195 if (ret)
3196 goto fail_qgroup;
3198 mutex_lock(&fs_info->cleaner_mutex);
3199 ret = btrfs_recover_relocation(tree_root);
3200 mutex_unlock(&fs_info->cleaner_mutex);
3201 if (ret < 0) {
3202 btrfs_warn(fs_info, "failed to recover relocation: %d",
3203 ret);
3204 err = -EINVAL;
3205 goto fail_qgroup;
3209 location.objectid = BTRFS_FS_TREE_OBJECTID;
3210 location.type = BTRFS_ROOT_ITEM_KEY;
3211 location.offset = 0;
3213 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3214 if (IS_ERR(fs_info->fs_root)) {
3215 err = PTR_ERR(fs_info->fs_root);
3216 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3217 goto fail_qgroup;
3220 if (sb_rdonly(sb))
3221 return 0;
3223 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3224 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3225 clear_free_space_tree = 1;
3226 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3227 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3228 btrfs_warn(fs_info, "free space tree is invalid");
3229 clear_free_space_tree = 1;
3232 if (clear_free_space_tree) {
3233 btrfs_info(fs_info, "clearing free space tree");
3234 ret = btrfs_clear_free_space_tree(fs_info);
3235 if (ret) {
3236 btrfs_warn(fs_info,
3237 "failed to clear free space tree: %d", ret);
3238 close_ctree(fs_info);
3239 return ret;
3243 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3244 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3245 btrfs_info(fs_info, "creating free space tree");
3246 ret = btrfs_create_free_space_tree(fs_info);
3247 if (ret) {
3248 btrfs_warn(fs_info,
3249 "failed to create free space tree: %d", ret);
3250 close_ctree(fs_info);
3251 return ret;
3255 down_read(&fs_info->cleanup_work_sem);
3256 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3257 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3258 up_read(&fs_info->cleanup_work_sem);
3259 close_ctree(fs_info);
3260 return ret;
3262 up_read(&fs_info->cleanup_work_sem);
3264 ret = btrfs_resume_balance_async(fs_info);
3265 if (ret) {
3266 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3267 close_ctree(fs_info);
3268 return ret;
3271 ret = btrfs_resume_dev_replace_async(fs_info);
3272 if (ret) {
3273 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3274 close_ctree(fs_info);
3275 return ret;
3278 btrfs_qgroup_rescan_resume(fs_info);
3280 if (!fs_info->uuid_root) {
3281 btrfs_info(fs_info, "creating UUID tree");
3282 ret = btrfs_create_uuid_tree(fs_info);
3283 if (ret) {
3284 btrfs_warn(fs_info,
3285 "failed to create the UUID tree: %d", ret);
3286 close_ctree(fs_info);
3287 return ret;
3289 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3290 fs_info->generation !=
3291 btrfs_super_uuid_tree_generation(disk_super)) {
3292 btrfs_info(fs_info, "checking UUID tree");
3293 ret = btrfs_check_uuid_tree(fs_info);
3294 if (ret) {
3295 btrfs_warn(fs_info,
3296 "failed to check the UUID tree: %d", ret);
3297 close_ctree(fs_info);
3298 return ret;
3300 } else {
3301 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3303 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3306 * backuproot only affect mount behavior, and if open_ctree succeeded,
3307 * no need to keep the flag
3309 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3311 return 0;
3313 fail_qgroup:
3314 btrfs_free_qgroup_config(fs_info);
3315 fail_trans_kthread:
3316 kthread_stop(fs_info->transaction_kthread);
3317 btrfs_cleanup_transaction(fs_info);
3318 btrfs_free_fs_roots(fs_info);
3319 fail_cleaner:
3320 kthread_stop(fs_info->cleaner_kthread);
3323 * make sure we're done with the btree inode before we stop our
3324 * kthreads
3326 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3328 fail_sysfs:
3329 btrfs_sysfs_remove_mounted(fs_info);
3331 fail_fsdev_sysfs:
3332 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3334 fail_block_groups:
3335 btrfs_put_block_group_cache(fs_info);
3337 fail_tree_roots:
3338 free_root_pointers(fs_info, 1);
3339 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3341 fail_sb_buffer:
3342 btrfs_stop_all_workers(fs_info);
3343 btrfs_free_block_groups(fs_info);
3344 fail_alloc:
3345 fail_iput:
3346 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3348 iput(fs_info->btree_inode);
3349 fail_bio_counter:
3350 percpu_counter_destroy(&fs_info->bio_counter);
3351 fail_delalloc_bytes:
3352 percpu_counter_destroy(&fs_info->delalloc_bytes);
3353 fail_dirty_metadata_bytes:
3354 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3355 fail_srcu:
3356 cleanup_srcu_struct(&fs_info->subvol_srcu);
3357 fail:
3358 btrfs_free_stripe_hash_table(fs_info);
3359 btrfs_close_devices(fs_info->fs_devices);
3360 return err;
3362 recovery_tree_root:
3363 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3364 goto fail_tree_roots;
3366 free_root_pointers(fs_info, 0);
3368 /* don't use the log in recovery mode, it won't be valid */
3369 btrfs_set_super_log_root(disk_super, 0);
3371 /* we can't trust the free space cache either */
3372 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3374 ret = next_root_backup(fs_info, fs_info->super_copy,
3375 &num_backups_tried, &backup_index);
3376 if (ret == -1)
3377 goto fail_block_groups;
3378 goto retry_root_backup;
3380 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3382 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3384 if (uptodate) {
3385 set_buffer_uptodate(bh);
3386 } else {
3387 struct btrfs_device *device = (struct btrfs_device *)
3388 bh->b_private;
3390 btrfs_warn_rl_in_rcu(device->fs_info,
3391 "lost page write due to IO error on %s",
3392 rcu_str_deref(device->name));
3393 /* note, we don't set_buffer_write_io_error because we have
3394 * our own ways of dealing with the IO errors
3396 clear_buffer_uptodate(bh);
3397 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3399 unlock_buffer(bh);
3400 put_bh(bh);
3403 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3404 struct buffer_head **bh_ret)
3406 struct buffer_head *bh;
3407 struct btrfs_super_block *super;
3408 u64 bytenr;
3410 bytenr = btrfs_sb_offset(copy_num);
3411 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3412 return -EINVAL;
3414 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3416 * If we fail to read from the underlying devices, as of now
3417 * the best option we have is to mark it EIO.
3419 if (!bh)
3420 return -EIO;
3422 super = (struct btrfs_super_block *)bh->b_data;
3423 if (btrfs_super_bytenr(super) != bytenr ||
3424 btrfs_super_magic(super) != BTRFS_MAGIC) {
3425 brelse(bh);
3426 return -EINVAL;
3429 *bh_ret = bh;
3430 return 0;
3434 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3436 struct buffer_head *bh;
3437 struct buffer_head *latest = NULL;
3438 struct btrfs_super_block *super;
3439 int i;
3440 u64 transid = 0;
3441 int ret = -EINVAL;
3443 /* we would like to check all the supers, but that would make
3444 * a btrfs mount succeed after a mkfs from a different FS.
3445 * So, we need to add a special mount option to scan for
3446 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3448 for (i = 0; i < 1; i++) {
3449 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3450 if (ret)
3451 continue;
3453 super = (struct btrfs_super_block *)bh->b_data;
3455 if (!latest || btrfs_super_generation(super) > transid) {
3456 brelse(latest);
3457 latest = bh;
3458 transid = btrfs_super_generation(super);
3459 } else {
3460 brelse(bh);
3464 if (!latest)
3465 return ERR_PTR(ret);
3467 return latest;
3471 * Write superblock @sb to the @device. Do not wait for completion, all the
3472 * buffer heads we write are pinned.
3474 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3475 * the expected device size at commit time. Note that max_mirrors must be
3476 * same for write and wait phases.
3478 * Return number of errors when buffer head is not found or submission fails.
3480 static int write_dev_supers(struct btrfs_device *device,
3481 struct btrfs_super_block *sb, int max_mirrors)
3483 struct buffer_head *bh;
3484 int i;
3485 int ret;
3486 int errors = 0;
3487 u32 crc;
3488 u64 bytenr;
3489 int op_flags;
3491 if (max_mirrors == 0)
3492 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3494 for (i = 0; i < max_mirrors; i++) {
3495 bytenr = btrfs_sb_offset(i);
3496 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3497 device->commit_total_bytes)
3498 break;
3500 btrfs_set_super_bytenr(sb, bytenr);
3502 crc = ~(u32)0;
3503 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3504 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3505 btrfs_csum_final(crc, sb->csum);
3507 /* One reference for us, and we leave it for the caller */
3508 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3509 BTRFS_SUPER_INFO_SIZE);
3510 if (!bh) {
3511 btrfs_err(device->fs_info,
3512 "couldn't get super buffer head for bytenr %llu",
3513 bytenr);
3514 errors++;
3515 continue;
3518 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3520 /* one reference for submit_bh */
3521 get_bh(bh);
3523 set_buffer_uptodate(bh);
3524 lock_buffer(bh);
3525 bh->b_end_io = btrfs_end_buffer_write_sync;
3526 bh->b_private = device;
3529 * we fua the first super. The others we allow
3530 * to go down lazy.
3532 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3533 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3534 op_flags |= REQ_FUA;
3535 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3536 if (ret)
3537 errors++;
3539 return errors < i ? 0 : -1;
3543 * Wait for write completion of superblocks done by write_dev_supers,
3544 * @max_mirrors same for write and wait phases.
3546 * Return number of errors when buffer head is not found or not marked up to
3547 * date.
3549 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3551 struct buffer_head *bh;
3552 int i;
3553 int errors = 0;
3554 bool primary_failed = false;
3555 u64 bytenr;
3557 if (max_mirrors == 0)
3558 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3560 for (i = 0; i < max_mirrors; i++) {
3561 bytenr = btrfs_sb_offset(i);
3562 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3563 device->commit_total_bytes)
3564 break;
3566 bh = __find_get_block(device->bdev,
3567 bytenr / BTRFS_BDEV_BLOCKSIZE,
3568 BTRFS_SUPER_INFO_SIZE);
3569 if (!bh) {
3570 errors++;
3571 if (i == 0)
3572 primary_failed = true;
3573 continue;
3575 wait_on_buffer(bh);
3576 if (!buffer_uptodate(bh)) {
3577 errors++;
3578 if (i == 0)
3579 primary_failed = true;
3582 /* drop our reference */
3583 brelse(bh);
3585 /* drop the reference from the writing run */
3586 brelse(bh);
3589 /* log error, force error return */
3590 if (primary_failed) {
3591 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3592 device->devid);
3593 return -1;
3596 return errors < i ? 0 : -1;
3600 * endio for the write_dev_flush, this will wake anyone waiting
3601 * for the barrier when it is done
3603 static void btrfs_end_empty_barrier(struct bio *bio)
3605 complete(bio->bi_private);
3609 * Submit a flush request to the device if it supports it. Error handling is
3610 * done in the waiting counterpart.
3612 static void write_dev_flush(struct btrfs_device *device)
3614 struct request_queue *q = bdev_get_queue(device->bdev);
3615 struct bio *bio = device->flush_bio;
3617 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3618 return;
3620 bio_reset(bio);
3621 bio->bi_end_io = btrfs_end_empty_barrier;
3622 bio_set_dev(bio, device->bdev);
3623 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3624 init_completion(&device->flush_wait);
3625 bio->bi_private = &device->flush_wait;
3627 btrfsic_submit_bio(bio);
3628 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3632 * If the flush bio has been submitted by write_dev_flush, wait for it.
3634 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3636 struct bio *bio = device->flush_bio;
3638 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3639 return BLK_STS_OK;
3641 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3642 wait_for_completion_io(&device->flush_wait);
3644 return bio->bi_status;
3647 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3649 if (!btrfs_check_rw_degradable(fs_info, NULL))
3650 return -EIO;
3651 return 0;
3655 * send an empty flush down to each device in parallel,
3656 * then wait for them
3658 static int barrier_all_devices(struct btrfs_fs_info *info)
3660 struct list_head *head;
3661 struct btrfs_device *dev;
3662 int errors_wait = 0;
3663 blk_status_t ret;
3665 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3666 /* send down all the barriers */
3667 head = &info->fs_devices->devices;
3668 list_for_each_entry(dev, head, dev_list) {
3669 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3670 continue;
3671 if (!dev->bdev)
3672 continue;
3673 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3674 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3675 continue;
3677 write_dev_flush(dev);
3678 dev->last_flush_error = BLK_STS_OK;
3681 /* wait for all the barriers */
3682 list_for_each_entry(dev, head, dev_list) {
3683 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3684 continue;
3685 if (!dev->bdev) {
3686 errors_wait++;
3687 continue;
3689 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3690 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3691 continue;
3693 ret = wait_dev_flush(dev);
3694 if (ret) {
3695 dev->last_flush_error = ret;
3696 btrfs_dev_stat_inc_and_print(dev,
3697 BTRFS_DEV_STAT_FLUSH_ERRS);
3698 errors_wait++;
3702 if (errors_wait) {
3704 * At some point we need the status of all disks
3705 * to arrive at the volume status. So error checking
3706 * is being pushed to a separate loop.
3708 return check_barrier_error(info);
3710 return 0;
3713 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3715 int raid_type;
3716 int min_tolerated = INT_MAX;
3718 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3719 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3720 min_tolerated = min(min_tolerated,
3721 btrfs_raid_array[BTRFS_RAID_SINGLE].
3722 tolerated_failures);
3724 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3725 if (raid_type == BTRFS_RAID_SINGLE)
3726 continue;
3727 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3728 continue;
3729 min_tolerated = min(min_tolerated,
3730 btrfs_raid_array[raid_type].
3731 tolerated_failures);
3734 if (min_tolerated == INT_MAX) {
3735 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3736 min_tolerated = 0;
3739 return min_tolerated;
3742 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3744 struct list_head *head;
3745 struct btrfs_device *dev;
3746 struct btrfs_super_block *sb;
3747 struct btrfs_dev_item *dev_item;
3748 int ret;
3749 int do_barriers;
3750 int max_errors;
3751 int total_errors = 0;
3752 u64 flags;
3754 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3757 * max_mirrors == 0 indicates we're from commit_transaction,
3758 * not from fsync where the tree roots in fs_info have not
3759 * been consistent on disk.
3761 if (max_mirrors == 0)
3762 backup_super_roots(fs_info);
3764 sb = fs_info->super_for_commit;
3765 dev_item = &sb->dev_item;
3767 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3768 head = &fs_info->fs_devices->devices;
3769 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3771 if (do_barriers) {
3772 ret = barrier_all_devices(fs_info);
3773 if (ret) {
3774 mutex_unlock(
3775 &fs_info->fs_devices->device_list_mutex);
3776 btrfs_handle_fs_error(fs_info, ret,
3777 "errors while submitting device barriers.");
3778 return ret;
3782 list_for_each_entry(dev, head, dev_list) {
3783 if (!dev->bdev) {
3784 total_errors++;
3785 continue;
3787 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3788 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3789 continue;
3791 btrfs_set_stack_device_generation(dev_item, 0);
3792 btrfs_set_stack_device_type(dev_item, dev->type);
3793 btrfs_set_stack_device_id(dev_item, dev->devid);
3794 btrfs_set_stack_device_total_bytes(dev_item,
3795 dev->commit_total_bytes);
3796 btrfs_set_stack_device_bytes_used(dev_item,
3797 dev->commit_bytes_used);
3798 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3799 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3800 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3801 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3802 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3804 flags = btrfs_super_flags(sb);
3805 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3807 ret = btrfs_validate_write_super(fs_info, sb);
3808 if (ret < 0) {
3809 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3810 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3811 "unexpected superblock corruption detected");
3812 return -EUCLEAN;
3815 ret = write_dev_supers(dev, sb, max_mirrors);
3816 if (ret)
3817 total_errors++;
3819 if (total_errors > max_errors) {
3820 btrfs_err(fs_info, "%d errors while writing supers",
3821 total_errors);
3822 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3824 /* FUA is masked off if unsupported and can't be the reason */
3825 btrfs_handle_fs_error(fs_info, -EIO,
3826 "%d errors while writing supers",
3827 total_errors);
3828 return -EIO;
3831 total_errors = 0;
3832 list_for_each_entry(dev, head, dev_list) {
3833 if (!dev->bdev)
3834 continue;
3835 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3836 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3837 continue;
3839 ret = wait_dev_supers(dev, max_mirrors);
3840 if (ret)
3841 total_errors++;
3843 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3844 if (total_errors > max_errors) {
3845 btrfs_handle_fs_error(fs_info, -EIO,
3846 "%d errors while writing supers",
3847 total_errors);
3848 return -EIO;
3850 return 0;
3853 /* Drop a fs root from the radix tree and free it. */
3854 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3855 struct btrfs_root *root)
3857 spin_lock(&fs_info->fs_roots_radix_lock);
3858 radix_tree_delete(&fs_info->fs_roots_radix,
3859 (unsigned long)root->root_key.objectid);
3860 spin_unlock(&fs_info->fs_roots_radix_lock);
3862 if (btrfs_root_refs(&root->root_item) == 0)
3863 synchronize_srcu(&fs_info->subvol_srcu);
3865 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3866 btrfs_free_log(NULL, root);
3867 if (root->reloc_root) {
3868 free_extent_buffer(root->reloc_root->node);
3869 free_extent_buffer(root->reloc_root->commit_root);
3870 btrfs_put_fs_root(root->reloc_root);
3871 root->reloc_root = NULL;
3875 if (root->free_ino_pinned)
3876 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3877 if (root->free_ino_ctl)
3878 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3879 free_fs_root(root);
3882 static void free_fs_root(struct btrfs_root *root)
3884 iput(root->ino_cache_inode);
3885 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3886 if (root->anon_dev)
3887 free_anon_bdev(root->anon_dev);
3888 if (root->subv_writers)
3889 btrfs_free_subvolume_writers(root->subv_writers);
3890 free_extent_buffer(root->node);
3891 free_extent_buffer(root->commit_root);
3892 kfree(root->free_ino_ctl);
3893 kfree(root->free_ino_pinned);
3894 kfree(root->name);
3895 btrfs_put_fs_root(root);
3898 void btrfs_free_fs_root(struct btrfs_root *root)
3900 free_fs_root(root);
3903 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3905 u64 root_objectid = 0;
3906 struct btrfs_root *gang[8];
3907 int i = 0;
3908 int err = 0;
3909 unsigned int ret = 0;
3910 int index;
3912 while (1) {
3913 index = srcu_read_lock(&fs_info->subvol_srcu);
3914 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3915 (void **)gang, root_objectid,
3916 ARRAY_SIZE(gang));
3917 if (!ret) {
3918 srcu_read_unlock(&fs_info->subvol_srcu, index);
3919 break;
3921 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3923 for (i = 0; i < ret; i++) {
3924 /* Avoid to grab roots in dead_roots */
3925 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3926 gang[i] = NULL;
3927 continue;
3929 /* grab all the search result for later use */
3930 gang[i] = btrfs_grab_fs_root(gang[i]);
3932 srcu_read_unlock(&fs_info->subvol_srcu, index);
3934 for (i = 0; i < ret; i++) {
3935 if (!gang[i])
3936 continue;
3937 root_objectid = gang[i]->root_key.objectid;
3938 err = btrfs_orphan_cleanup(gang[i]);
3939 if (err)
3940 break;
3941 btrfs_put_fs_root(gang[i]);
3943 root_objectid++;
3946 /* release the uncleaned roots due to error */
3947 for (; i < ret; i++) {
3948 if (gang[i])
3949 btrfs_put_fs_root(gang[i]);
3951 return err;
3954 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3956 struct btrfs_root *root = fs_info->tree_root;
3957 struct btrfs_trans_handle *trans;
3959 mutex_lock(&fs_info->cleaner_mutex);
3960 btrfs_run_delayed_iputs(fs_info);
3961 mutex_unlock(&fs_info->cleaner_mutex);
3962 wake_up_process(fs_info->cleaner_kthread);
3964 /* wait until ongoing cleanup work done */
3965 down_write(&fs_info->cleanup_work_sem);
3966 up_write(&fs_info->cleanup_work_sem);
3968 trans = btrfs_join_transaction(root);
3969 if (IS_ERR(trans))
3970 return PTR_ERR(trans);
3971 return btrfs_commit_transaction(trans);
3974 void close_ctree(struct btrfs_fs_info *fs_info)
3976 int ret;
3978 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3980 /* wait for the qgroup rescan worker to stop */
3981 btrfs_qgroup_wait_for_completion(fs_info, false);
3983 /* wait for the uuid_scan task to finish */
3984 down(&fs_info->uuid_tree_rescan_sem);
3985 /* avoid complains from lockdep et al., set sem back to initial state */
3986 up(&fs_info->uuid_tree_rescan_sem);
3988 /* pause restriper - we want to resume on mount */
3989 btrfs_pause_balance(fs_info);
3991 btrfs_dev_replace_suspend_for_unmount(fs_info);
3993 btrfs_scrub_cancel(fs_info);
3995 /* wait for any defraggers to finish */
3996 wait_event(fs_info->transaction_wait,
3997 (atomic_read(&fs_info->defrag_running) == 0));
3999 /* clear out the rbtree of defraggable inodes */
4000 btrfs_cleanup_defrag_inodes(fs_info);
4002 cancel_work_sync(&fs_info->async_reclaim_work);
4004 if (!sb_rdonly(fs_info->sb)) {
4006 * If the cleaner thread is stopped and there are
4007 * block groups queued for removal, the deletion will be
4008 * skipped when we quit the cleaner thread.
4010 btrfs_delete_unused_bgs(fs_info);
4012 ret = btrfs_commit_super(fs_info);
4013 if (ret)
4014 btrfs_err(fs_info, "commit super ret %d", ret);
4017 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4018 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4019 btrfs_error_commit_super(fs_info);
4021 kthread_stop(fs_info->transaction_kthread);
4022 kthread_stop(fs_info->cleaner_kthread);
4024 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4026 btrfs_free_qgroup_config(fs_info);
4027 ASSERT(list_empty(&fs_info->delalloc_roots));
4029 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4030 btrfs_info(fs_info, "at unmount delalloc count %lld",
4031 percpu_counter_sum(&fs_info->delalloc_bytes));
4034 btrfs_sysfs_remove_mounted(fs_info);
4035 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4037 btrfs_free_fs_roots(fs_info);
4039 btrfs_put_block_group_cache(fs_info);
4042 * we must make sure there is not any read request to
4043 * submit after we stopping all workers.
4045 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4046 btrfs_stop_all_workers(fs_info);
4048 btrfs_free_block_groups(fs_info);
4050 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4051 free_root_pointers(fs_info, 1);
4053 iput(fs_info->btree_inode);
4055 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4056 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4057 btrfsic_unmount(fs_info->fs_devices);
4058 #endif
4060 btrfs_close_devices(fs_info->fs_devices);
4061 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4063 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4064 percpu_counter_destroy(&fs_info->delalloc_bytes);
4065 percpu_counter_destroy(&fs_info->bio_counter);
4066 cleanup_srcu_struct(&fs_info->subvol_srcu);
4068 btrfs_free_stripe_hash_table(fs_info);
4069 btrfs_free_ref_cache(fs_info);
4071 while (!list_empty(&fs_info->pinned_chunks)) {
4072 struct extent_map *em;
4074 em = list_first_entry(&fs_info->pinned_chunks,
4075 struct extent_map, list);
4076 list_del_init(&em->list);
4077 free_extent_map(em);
4081 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4082 int atomic)
4084 int ret;
4085 struct inode *btree_inode = buf->pages[0]->mapping->host;
4087 ret = extent_buffer_uptodate(buf);
4088 if (!ret)
4089 return ret;
4091 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4092 parent_transid, atomic);
4093 if (ret == -EAGAIN)
4094 return ret;
4095 return !ret;
4098 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4100 struct btrfs_fs_info *fs_info;
4101 struct btrfs_root *root;
4102 u64 transid = btrfs_header_generation(buf);
4103 int was_dirty;
4105 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4107 * This is a fast path so only do this check if we have sanity tests
4108 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4109 * outside of the sanity tests.
4111 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4112 return;
4113 #endif
4114 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4115 fs_info = root->fs_info;
4116 btrfs_assert_tree_locked(buf);
4117 if (transid != fs_info->generation)
4118 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4119 buf->start, transid, fs_info->generation);
4120 was_dirty = set_extent_buffer_dirty(buf);
4121 if (!was_dirty)
4122 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4123 buf->len,
4124 fs_info->dirty_metadata_batch);
4125 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4127 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4128 * but item data not updated.
4129 * So here we should only check item pointers, not item data.
4131 if (btrfs_header_level(buf) == 0 &&
4132 btrfs_check_leaf_relaxed(fs_info, buf)) {
4133 btrfs_print_leaf(buf);
4134 ASSERT(0);
4136 #endif
4139 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4140 int flush_delayed)
4143 * looks as though older kernels can get into trouble with
4144 * this code, they end up stuck in balance_dirty_pages forever
4146 int ret;
4148 if (current->flags & PF_MEMALLOC)
4149 return;
4151 if (flush_delayed)
4152 btrfs_balance_delayed_items(fs_info);
4154 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4155 BTRFS_DIRTY_METADATA_THRESH,
4156 fs_info->dirty_metadata_batch);
4157 if (ret > 0) {
4158 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4162 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4164 __btrfs_btree_balance_dirty(fs_info, 1);
4167 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4169 __btrfs_btree_balance_dirty(fs_info, 0);
4172 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4173 struct btrfs_key *first_key)
4175 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4176 struct btrfs_fs_info *fs_info = root->fs_info;
4178 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4179 level, first_key);
4182 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4184 /* cleanup FS via transaction */
4185 btrfs_cleanup_transaction(fs_info);
4187 mutex_lock(&fs_info->cleaner_mutex);
4188 btrfs_run_delayed_iputs(fs_info);
4189 mutex_unlock(&fs_info->cleaner_mutex);
4191 down_write(&fs_info->cleanup_work_sem);
4192 up_write(&fs_info->cleanup_work_sem);
4195 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4197 struct btrfs_ordered_extent *ordered;
4199 spin_lock(&root->ordered_extent_lock);
4201 * This will just short circuit the ordered completion stuff which will
4202 * make sure the ordered extent gets properly cleaned up.
4204 list_for_each_entry(ordered, &root->ordered_extents,
4205 root_extent_list)
4206 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4207 spin_unlock(&root->ordered_extent_lock);
4210 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4212 struct btrfs_root *root;
4213 struct list_head splice;
4215 INIT_LIST_HEAD(&splice);
4217 spin_lock(&fs_info->ordered_root_lock);
4218 list_splice_init(&fs_info->ordered_roots, &splice);
4219 while (!list_empty(&splice)) {
4220 root = list_first_entry(&splice, struct btrfs_root,
4221 ordered_root);
4222 list_move_tail(&root->ordered_root,
4223 &fs_info->ordered_roots);
4225 spin_unlock(&fs_info->ordered_root_lock);
4226 btrfs_destroy_ordered_extents(root);
4228 cond_resched();
4229 spin_lock(&fs_info->ordered_root_lock);
4231 spin_unlock(&fs_info->ordered_root_lock);
4234 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4235 struct btrfs_fs_info *fs_info)
4237 struct rb_node *node;
4238 struct btrfs_delayed_ref_root *delayed_refs;
4239 struct btrfs_delayed_ref_node *ref;
4240 int ret = 0;
4242 delayed_refs = &trans->delayed_refs;
4244 spin_lock(&delayed_refs->lock);
4245 if (atomic_read(&delayed_refs->num_entries) == 0) {
4246 spin_unlock(&delayed_refs->lock);
4247 btrfs_info(fs_info, "delayed_refs has NO entry");
4248 return ret;
4251 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4252 struct btrfs_delayed_ref_head *head;
4253 struct rb_node *n;
4254 bool pin_bytes = false;
4256 head = rb_entry(node, struct btrfs_delayed_ref_head,
4257 href_node);
4258 if (!mutex_trylock(&head->mutex)) {
4259 refcount_inc(&head->refs);
4260 spin_unlock(&delayed_refs->lock);
4262 mutex_lock(&head->mutex);
4263 mutex_unlock(&head->mutex);
4264 btrfs_put_delayed_ref_head(head);
4265 spin_lock(&delayed_refs->lock);
4266 continue;
4268 spin_lock(&head->lock);
4269 while ((n = rb_first(&head->ref_tree)) != NULL) {
4270 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4271 ref_node);
4272 ref->in_tree = 0;
4273 rb_erase(&ref->ref_node, &head->ref_tree);
4274 RB_CLEAR_NODE(&ref->ref_node);
4275 if (!list_empty(&ref->add_list))
4276 list_del(&ref->add_list);
4277 atomic_dec(&delayed_refs->num_entries);
4278 btrfs_put_delayed_ref(ref);
4280 if (head->must_insert_reserved)
4281 pin_bytes = true;
4282 btrfs_free_delayed_extent_op(head->extent_op);
4283 delayed_refs->num_heads--;
4284 if (head->processing == 0)
4285 delayed_refs->num_heads_ready--;
4286 atomic_dec(&delayed_refs->num_entries);
4287 rb_erase(&head->href_node, &delayed_refs->href_root);
4288 RB_CLEAR_NODE(&head->href_node);
4289 spin_unlock(&head->lock);
4290 spin_unlock(&delayed_refs->lock);
4291 mutex_unlock(&head->mutex);
4293 if (pin_bytes)
4294 btrfs_pin_extent(fs_info, head->bytenr,
4295 head->num_bytes, 1);
4296 btrfs_put_delayed_ref_head(head);
4297 cond_resched();
4298 spin_lock(&delayed_refs->lock);
4301 spin_unlock(&delayed_refs->lock);
4303 return ret;
4306 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4308 struct btrfs_inode *btrfs_inode;
4309 struct list_head splice;
4311 INIT_LIST_HEAD(&splice);
4313 spin_lock(&root->delalloc_lock);
4314 list_splice_init(&root->delalloc_inodes, &splice);
4316 while (!list_empty(&splice)) {
4317 struct inode *inode = NULL;
4318 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4319 delalloc_inodes);
4320 __btrfs_del_delalloc_inode(root, btrfs_inode);
4321 spin_unlock(&root->delalloc_lock);
4324 * Make sure we get a live inode and that it'll not disappear
4325 * meanwhile.
4327 inode = igrab(&btrfs_inode->vfs_inode);
4328 if (inode) {
4329 invalidate_inode_pages2(inode->i_mapping);
4330 iput(inode);
4332 spin_lock(&root->delalloc_lock);
4334 spin_unlock(&root->delalloc_lock);
4337 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339 struct btrfs_root *root;
4340 struct list_head splice;
4342 INIT_LIST_HEAD(&splice);
4344 spin_lock(&fs_info->delalloc_root_lock);
4345 list_splice_init(&fs_info->delalloc_roots, &splice);
4346 while (!list_empty(&splice)) {
4347 root = list_first_entry(&splice, struct btrfs_root,
4348 delalloc_root);
4349 root = btrfs_grab_fs_root(root);
4350 BUG_ON(!root);
4351 spin_unlock(&fs_info->delalloc_root_lock);
4353 btrfs_destroy_delalloc_inodes(root);
4354 btrfs_put_fs_root(root);
4356 spin_lock(&fs_info->delalloc_root_lock);
4358 spin_unlock(&fs_info->delalloc_root_lock);
4361 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4362 struct extent_io_tree *dirty_pages,
4363 int mark)
4365 int ret;
4366 struct extent_buffer *eb;
4367 u64 start = 0;
4368 u64 end;
4370 while (1) {
4371 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4372 mark, NULL);
4373 if (ret)
4374 break;
4376 clear_extent_bits(dirty_pages, start, end, mark);
4377 while (start <= end) {
4378 eb = find_extent_buffer(fs_info, start);
4379 start += fs_info->nodesize;
4380 if (!eb)
4381 continue;
4382 wait_on_extent_buffer_writeback(eb);
4384 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4385 &eb->bflags))
4386 clear_extent_buffer_dirty(eb);
4387 free_extent_buffer_stale(eb);
4391 return ret;
4394 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4395 struct extent_io_tree *pinned_extents)
4397 struct extent_io_tree *unpin;
4398 u64 start;
4399 u64 end;
4400 int ret;
4401 bool loop = true;
4403 unpin = pinned_extents;
4404 again:
4405 while (1) {
4406 ret = find_first_extent_bit(unpin, 0, &start, &end,
4407 EXTENT_DIRTY, NULL);
4408 if (ret)
4409 break;
4411 clear_extent_dirty(unpin, start, end);
4412 btrfs_error_unpin_extent_range(fs_info, start, end);
4413 cond_resched();
4416 if (loop) {
4417 if (unpin == &fs_info->freed_extents[0])
4418 unpin = &fs_info->freed_extents[1];
4419 else
4420 unpin = &fs_info->freed_extents[0];
4421 loop = false;
4422 goto again;
4425 return 0;
4428 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4430 struct inode *inode;
4432 inode = cache->io_ctl.inode;
4433 if (inode) {
4434 invalidate_inode_pages2(inode->i_mapping);
4435 BTRFS_I(inode)->generation = 0;
4436 cache->io_ctl.inode = NULL;
4437 iput(inode);
4439 btrfs_put_block_group(cache);
4442 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4443 struct btrfs_fs_info *fs_info)
4445 struct btrfs_block_group_cache *cache;
4447 spin_lock(&cur_trans->dirty_bgs_lock);
4448 while (!list_empty(&cur_trans->dirty_bgs)) {
4449 cache = list_first_entry(&cur_trans->dirty_bgs,
4450 struct btrfs_block_group_cache,
4451 dirty_list);
4453 if (!list_empty(&cache->io_list)) {
4454 spin_unlock(&cur_trans->dirty_bgs_lock);
4455 list_del_init(&cache->io_list);
4456 btrfs_cleanup_bg_io(cache);
4457 spin_lock(&cur_trans->dirty_bgs_lock);
4460 list_del_init(&cache->dirty_list);
4461 spin_lock(&cache->lock);
4462 cache->disk_cache_state = BTRFS_DC_ERROR;
4463 spin_unlock(&cache->lock);
4465 spin_unlock(&cur_trans->dirty_bgs_lock);
4466 btrfs_put_block_group(cache);
4467 spin_lock(&cur_trans->dirty_bgs_lock);
4469 spin_unlock(&cur_trans->dirty_bgs_lock);
4472 * Refer to the definition of io_bgs member for details why it's safe
4473 * to use it without any locking
4475 while (!list_empty(&cur_trans->io_bgs)) {
4476 cache = list_first_entry(&cur_trans->io_bgs,
4477 struct btrfs_block_group_cache,
4478 io_list);
4480 list_del_init(&cache->io_list);
4481 spin_lock(&cache->lock);
4482 cache->disk_cache_state = BTRFS_DC_ERROR;
4483 spin_unlock(&cache->lock);
4484 btrfs_cleanup_bg_io(cache);
4488 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4489 struct btrfs_fs_info *fs_info)
4491 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4492 ASSERT(list_empty(&cur_trans->dirty_bgs));
4493 ASSERT(list_empty(&cur_trans->io_bgs));
4495 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4497 cur_trans->state = TRANS_STATE_COMMIT_START;
4498 wake_up(&fs_info->transaction_blocked_wait);
4500 cur_trans->state = TRANS_STATE_UNBLOCKED;
4501 wake_up(&fs_info->transaction_wait);
4503 btrfs_destroy_delayed_inodes(fs_info);
4504 btrfs_assert_delayed_root_empty(fs_info);
4506 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4507 EXTENT_DIRTY);
4508 btrfs_destroy_pinned_extent(fs_info,
4509 fs_info->pinned_extents);
4511 cur_trans->state =TRANS_STATE_COMPLETED;
4512 wake_up(&cur_trans->commit_wait);
4515 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4517 struct btrfs_transaction *t;
4519 mutex_lock(&fs_info->transaction_kthread_mutex);
4521 spin_lock(&fs_info->trans_lock);
4522 while (!list_empty(&fs_info->trans_list)) {
4523 t = list_first_entry(&fs_info->trans_list,
4524 struct btrfs_transaction, list);
4525 if (t->state >= TRANS_STATE_COMMIT_START) {
4526 refcount_inc(&t->use_count);
4527 spin_unlock(&fs_info->trans_lock);
4528 btrfs_wait_for_commit(fs_info, t->transid);
4529 btrfs_put_transaction(t);
4530 spin_lock(&fs_info->trans_lock);
4531 continue;
4533 if (t == fs_info->running_transaction) {
4534 t->state = TRANS_STATE_COMMIT_DOING;
4535 spin_unlock(&fs_info->trans_lock);
4537 * We wait for 0 num_writers since we don't hold a trans
4538 * handle open currently for this transaction.
4540 wait_event(t->writer_wait,
4541 atomic_read(&t->num_writers) == 0);
4542 } else {
4543 spin_unlock(&fs_info->trans_lock);
4545 btrfs_cleanup_one_transaction(t, fs_info);
4547 spin_lock(&fs_info->trans_lock);
4548 if (t == fs_info->running_transaction)
4549 fs_info->running_transaction = NULL;
4550 list_del_init(&t->list);
4551 spin_unlock(&fs_info->trans_lock);
4553 btrfs_put_transaction(t);
4554 trace_btrfs_transaction_commit(fs_info->tree_root);
4555 spin_lock(&fs_info->trans_lock);
4557 spin_unlock(&fs_info->trans_lock);
4558 btrfs_destroy_all_ordered_extents(fs_info);
4559 btrfs_destroy_delayed_inodes(fs_info);
4560 btrfs_assert_delayed_root_empty(fs_info);
4561 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4562 btrfs_destroy_all_delalloc_inodes(fs_info);
4563 mutex_unlock(&fs_info->transaction_kthread_mutex);
4565 return 0;
4568 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4570 struct inode *inode = private_data;
4571 return btrfs_sb(inode->i_sb);
4574 static const struct extent_io_ops btree_extent_io_ops = {
4575 /* mandatory callbacks */
4576 .submit_bio_hook = btree_submit_bio_hook,
4577 .readpage_end_io_hook = btree_readpage_end_io_hook,
4578 /* note we're sharing with inode.c for the merge bio hook */
4579 .merge_bio_hook = btrfs_merge_bio_hook,
4580 .readpage_io_failed_hook = btree_io_failed_hook,
4581 .set_range_writeback = btrfs_set_range_writeback,
4582 .tree_fs_info = btree_fs_info,
4584 /* optional callbacks */