1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/scatterlist.h>
9 #include <linux/swap.h>
10 #include <linux/radix-tree.h>
11 #include <linux/writeback.h>
12 #include <linux/buffer_head.h>
13 #include <linux/workqueue.h>
14 #include <linux/kthread.h>
15 #include <linux/slab.h>
16 #include <linux/migrate.h>
17 #include <linux/ratelimit.h>
18 #include <linux/uuid.h>
19 #include <linux/semaphore.h>
20 #include <linux/error-injection.h>
21 #include <linux/crc32c.h>
22 #include <asm/unaligned.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
28 #include "print-tree.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
45 #include <asm/cpufeature.h>
48 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
55 static const struct extent_io_ops btree_extent_io_ops
;
56 static void end_workqueue_fn(struct btrfs_work
*work
);
57 static void free_fs_root(struct btrfs_root
*root
);
58 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
59 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
60 struct btrfs_fs_info
*fs_info
);
61 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
62 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
63 struct extent_io_tree
*dirty_pages
,
65 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
66 struct extent_io_tree
*pinned_extents
);
67 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
68 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
71 * btrfs_end_io_wq structs are used to do processing in task context when an IO
72 * is complete. This is used during reads to verify checksums, and it is used
73 * by writes to insert metadata for new file extents after IO is complete.
75 struct btrfs_end_io_wq
{
79 struct btrfs_fs_info
*info
;
81 enum btrfs_wq_endio_type metadata
;
82 struct btrfs_work work
;
85 static struct kmem_cache
*btrfs_end_io_wq_cache
;
87 int __init
btrfs_end_io_wq_init(void)
89 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
90 sizeof(struct btrfs_end_io_wq
),
94 if (!btrfs_end_io_wq_cache
)
99 void __cold
btrfs_end_io_wq_exit(void)
101 kmem_cache_destroy(btrfs_end_io_wq_cache
);
105 * async submit bios are used to offload expensive checksumming
106 * onto the worker threads. They checksum file and metadata bios
107 * just before they are sent down the IO stack.
109 struct async_submit_bio
{
111 struct btrfs_fs_info
*fs_info
;
113 extent_submit_bio_start_t
*submit_bio_start
;
114 extent_submit_bio_done_t
*submit_bio_done
;
116 unsigned long bio_flags
;
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
122 struct btrfs_work work
;
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->objectid. This ensures that all special purpose roots
135 * have separate keysets.
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
154 static struct btrfs_lockdep_keyset
{
155 u64 id
; /* root objectid */
156 const char *name_stem
; /* lock name stem */
157 char names
[BTRFS_MAX_LEVEL
+ 1][20];
158 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
159 } btrfs_lockdep_keysets
[] = {
160 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
161 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
162 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
163 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
164 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
165 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
166 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
167 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
168 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
169 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
170 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
171 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
172 { .id
= 0, .name_stem
= "tree" },
175 void __init
btrfs_init_lockdep(void)
179 /* initialize lockdep class names */
180 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
181 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
183 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
184 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
185 "btrfs-%s-%02d", ks
->name_stem
, j
);
189 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
192 struct btrfs_lockdep_keyset
*ks
;
194 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
198 if (ks
->id
== objectid
)
201 lockdep_set_class_and_name(&eb
->lock
,
202 &ks
->keys
[level
], ks
->names
[level
]);
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
211 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
212 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
215 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
216 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
217 struct extent_map
*em
;
220 read_lock(&em_tree
->lock
);
221 em
= lookup_extent_mapping(em_tree
, start
, len
);
223 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
224 read_unlock(&em_tree
->lock
);
227 read_unlock(&em_tree
->lock
);
229 em
= alloc_extent_map();
231 em
= ERR_PTR(-ENOMEM
);
236 em
->block_len
= (u64
)-1;
238 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
240 write_lock(&em_tree
->lock
);
241 ret
= add_extent_mapping(em_tree
, em
, 0);
242 if (ret
== -EEXIST
) {
244 em
= lookup_extent_mapping(em_tree
, start
, len
);
251 write_unlock(&em_tree
->lock
);
257 u32
btrfs_csum_data(const char *data
, u32 seed
, size_t len
)
259 return crc32c(seed
, data
, len
);
262 void btrfs_csum_final(u32 crc
, u8
*result
)
264 put_unaligned_le32(~crc
, result
);
268 * compute the csum for a btree block, and either verify it or write it
269 * into the csum field of the block.
271 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
272 struct extent_buffer
*buf
,
275 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
276 char result
[BTRFS_CSUM_SIZE
];
278 unsigned long cur_len
;
279 unsigned long offset
= BTRFS_CSUM_SIZE
;
281 unsigned long map_start
;
282 unsigned long map_len
;
286 len
= buf
->len
- offset
;
288 err
= map_private_extent_buffer(buf
, offset
, 32,
289 &kaddr
, &map_start
, &map_len
);
292 cur_len
= min(len
, map_len
- (offset
- map_start
));
293 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
298 memset(result
, 0, BTRFS_CSUM_SIZE
);
300 btrfs_csum_final(crc
, result
);
303 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
306 memcpy(&found
, result
, csum_size
);
308 read_extent_buffer(buf
, &val
, 0, csum_size
);
309 btrfs_warn_rl(fs_info
,
310 "%s checksum verify failed on %llu wanted %X found %X level %d",
311 fs_info
->sb
->s_id
, buf
->start
,
312 val
, found
, btrfs_header_level(buf
));
316 write_extent_buffer(buf
, result
, 0, csum_size
);
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
328 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
329 struct extent_buffer
*eb
, u64 parent_transid
,
332 struct extent_state
*cached_state
= NULL
;
334 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
336 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
343 btrfs_tree_read_lock(eb
);
344 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
347 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
349 if (extent_buffer_uptodate(eb
) &&
350 btrfs_header_generation(eb
) == parent_transid
) {
354 btrfs_err_rl(eb
->fs_info
,
355 "parent transid verify failed on %llu wanted %llu found %llu",
357 parent_transid
, btrfs_header_generation(eb
));
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
363 * block that has been freed and re-allocated. So don't clear uptodate
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
368 if (!extent_buffer_under_io(eb
))
369 clear_extent_buffer_uptodate(eb
);
371 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
374 btrfs_tree_read_unlock_blocking(eb
);
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
382 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
385 struct btrfs_super_block
*disk_sb
=
386 (struct btrfs_super_block
*)raw_disk_sb
;
387 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
390 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
392 char result
[sizeof(crc
)];
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
397 * is filled with zeros and is included in the checksum.
399 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
400 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
401 btrfs_csum_final(crc
, result
);
403 if (memcmp(raw_disk_sb
, result
, sizeof(result
)))
407 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
408 btrfs_err(fs_info
, "unsupported checksum algorithm %u",
416 static int verify_level_key(struct btrfs_fs_info
*fs_info
,
417 struct extent_buffer
*eb
, int level
,
418 struct btrfs_key
*first_key
, u64 parent_transid
)
421 struct btrfs_key found_key
;
424 found_level
= btrfs_header_level(eb
);
425 if (found_level
!= level
) {
426 #ifdef CONFIG_BTRFS_DEBUG
429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb
->start
, level
, found_level
);
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
444 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
447 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
449 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
450 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
452 #ifdef CONFIG_BTRFS_DEBUG
456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb
->start
, parent_transid
, first_key
->objectid
,
458 first_key
->type
, first_key
->offset
,
459 found_key
.objectid
, found_key
.type
,
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info
*fs_info
,
475 struct extent_buffer
*eb
,
476 u64 parent_transid
, int level
,
477 struct btrfs_key
*first_key
)
479 struct extent_io_tree
*io_tree
;
484 int failed_mirror
= 0;
486 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
487 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
489 ret
= read_extent_buffer_pages(io_tree
, eb
, WAIT_COMPLETE
,
492 if (verify_parent_transid(io_tree
, eb
,
495 else if (verify_level_key(fs_info
, eb
, level
,
496 first_key
, parent_transid
))
503 * This buffer's crc is fine, but its contents are corrupted, so
504 * there is no reason to read the other copies, they won't be
507 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
) ||
511 num_copies
= btrfs_num_copies(fs_info
,
516 if (!failed_mirror
) {
518 failed_mirror
= eb
->read_mirror
;
522 if (mirror_num
== failed_mirror
)
525 if (mirror_num
> num_copies
)
529 if (failed
&& !ret
&& failed_mirror
)
530 repair_eb_io_failure(fs_info
, eb
, failed_mirror
);
536 * checksum a dirty tree block before IO. This has extra checks to make sure
537 * we only fill in the checksum field in the first page of a multi-page block
540 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
542 u64 start
= page_offset(page
);
544 struct extent_buffer
*eb
;
546 eb
= (struct extent_buffer
*)page
->private;
547 if (page
!= eb
->pages
[0])
550 found_start
= btrfs_header_bytenr(eb
);
552 * Please do not consolidate these warnings into a single if.
553 * It is useful to know what went wrong.
555 if (WARN_ON(found_start
!= start
))
557 if (WARN_ON(!PageUptodate(page
)))
560 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
561 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
563 return csum_tree_block(fs_info
, eb
, 0);
566 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
567 struct extent_buffer
*eb
)
569 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
570 u8 fsid
[BTRFS_FSID_SIZE
];
573 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
575 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
579 fs_devices
= fs_devices
->seed
;
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
585 u64 phy_offset
, struct page
*page
,
586 u64 start
, u64 end
, int mirror
)
590 struct extent_buffer
*eb
;
591 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
592 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
599 eb
= (struct extent_buffer
*)page
->private;
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
604 extent_buffer_get(eb
);
606 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
610 eb
->read_mirror
= mirror
;
611 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
616 found_start
= btrfs_header_bytenr(eb
);
617 if (found_start
!= eb
->start
) {
618 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
619 found_start
, eb
->start
);
623 if (check_tree_block_fsid(fs_info
, eb
)) {
624 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
629 found_level
= btrfs_header_level(eb
);
630 if (found_level
>= BTRFS_MAX_LEVEL
) {
631 btrfs_err(fs_info
, "bad tree block level %d",
632 (int)btrfs_header_level(eb
));
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
640 ret
= csum_tree_block(fs_info
, eb
, 1);
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
649 if (found_level
== 0 && btrfs_check_leaf_full(fs_info
, eb
)) {
650 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
654 if (found_level
> 0 && btrfs_check_node(fs_info
, eb
))
658 set_extent_buffer_uptodate(eb
);
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
662 btree_readahead_hook(eb
, ret
);
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
670 atomic_inc(&eb
->io_pages
);
671 clear_extent_buffer_uptodate(eb
);
673 free_extent_buffer(eb
);
678 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
680 struct extent_buffer
*eb
;
682 eb
= (struct extent_buffer
*)page
->private;
683 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
684 eb
->read_mirror
= failed_mirror
;
685 atomic_dec(&eb
->io_pages
);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
687 btree_readahead_hook(eb
, -EIO
);
688 return -EIO
; /* we fixed nothing */
691 static void end_workqueue_bio(struct bio
*bio
)
693 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
694 struct btrfs_fs_info
*fs_info
;
695 struct btrfs_workqueue
*wq
;
696 btrfs_work_func_t func
;
698 fs_info
= end_io_wq
->info
;
699 end_io_wq
->status
= bio
->bi_status
;
701 if (bio_op(bio
) == REQ_OP_WRITE
) {
702 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
703 wq
= fs_info
->endio_meta_write_workers
;
704 func
= btrfs_endio_meta_write_helper
;
705 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
706 wq
= fs_info
->endio_freespace_worker
;
707 func
= btrfs_freespace_write_helper
;
708 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
709 wq
= fs_info
->endio_raid56_workers
;
710 func
= btrfs_endio_raid56_helper
;
712 wq
= fs_info
->endio_write_workers
;
713 func
= btrfs_endio_write_helper
;
716 if (unlikely(end_io_wq
->metadata
==
717 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
718 wq
= fs_info
->endio_repair_workers
;
719 func
= btrfs_endio_repair_helper
;
720 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
721 wq
= fs_info
->endio_raid56_workers
;
722 func
= btrfs_endio_raid56_helper
;
723 } else if (end_io_wq
->metadata
) {
724 wq
= fs_info
->endio_meta_workers
;
725 func
= btrfs_endio_meta_helper
;
727 wq
= fs_info
->endio_workers
;
728 func
= btrfs_endio_helper
;
732 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
733 btrfs_queue_work(wq
, &end_io_wq
->work
);
736 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
737 enum btrfs_wq_endio_type metadata
)
739 struct btrfs_end_io_wq
*end_io_wq
;
741 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
743 return BLK_STS_RESOURCE
;
745 end_io_wq
->private = bio
->bi_private
;
746 end_io_wq
->end_io
= bio
->bi_end_io
;
747 end_io_wq
->info
= info
;
748 end_io_wq
->status
= 0;
749 end_io_wq
->bio
= bio
;
750 end_io_wq
->metadata
= metadata
;
752 bio
->bi_private
= end_io_wq
;
753 bio
->bi_end_io
= end_workqueue_bio
;
757 static void run_one_async_start(struct btrfs_work
*work
)
759 struct async_submit_bio
*async
;
762 async
= container_of(work
, struct async_submit_bio
, work
);
763 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
769 static void run_one_async_done(struct btrfs_work
*work
)
771 struct async_submit_bio
*async
;
773 async
= container_of(work
, struct async_submit_bio
, work
);
775 /* If an error occurred we just want to clean up the bio and move on */
777 async
->bio
->bi_status
= async
->status
;
778 bio_endio(async
->bio
);
782 async
->submit_bio_done(async
->private_data
, async
->bio
, async
->mirror_num
);
785 static void run_one_async_free(struct btrfs_work
*work
)
787 struct async_submit_bio
*async
;
789 async
= container_of(work
, struct async_submit_bio
, work
);
793 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
794 int mirror_num
, unsigned long bio_flags
,
795 u64 bio_offset
, void *private_data
,
796 extent_submit_bio_start_t
*submit_bio_start
,
797 extent_submit_bio_done_t
*submit_bio_done
)
799 struct async_submit_bio
*async
;
801 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
803 return BLK_STS_RESOURCE
;
805 async
->private_data
= private_data
;
806 async
->fs_info
= fs_info
;
808 async
->mirror_num
= mirror_num
;
809 async
->submit_bio_start
= submit_bio_start
;
810 async
->submit_bio_done
= submit_bio_done
;
812 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
813 run_one_async_done
, run_one_async_free
);
815 async
->bio_flags
= bio_flags
;
816 async
->bio_offset
= bio_offset
;
820 if (op_is_sync(bio
->bi_opf
))
821 btrfs_set_work_high_priority(&async
->work
);
823 btrfs_queue_work(fs_info
->workers
, &async
->work
);
827 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
829 struct bio_vec
*bvec
;
830 struct btrfs_root
*root
;
833 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
834 bio_for_each_segment_all(bvec
, bio
, i
) {
835 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
836 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
841 return errno_to_blk_status(ret
);
844 static blk_status_t
btree_submit_bio_start(void *private_data
, struct bio
*bio
,
848 * when we're called for a write, we're already in the async
849 * submission context. Just jump into btrfs_map_bio
851 return btree_csum_one_bio(bio
);
854 static blk_status_t
btree_submit_bio_done(void *private_data
, struct bio
*bio
,
857 struct inode
*inode
= private_data
;
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
864 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), bio
, mirror_num
, 1);
866 bio
->bi_status
= ret
;
872 static int check_async_write(struct btrfs_inode
*bi
)
874 if (atomic_read(&bi
->sync_writers
))
877 if (static_cpu_has(X86_FEATURE_XMM4_2
))
883 static blk_status_t
btree_submit_bio_hook(void *private_data
, struct bio
*bio
,
884 int mirror_num
, unsigned long bio_flags
,
887 struct inode
*inode
= private_data
;
888 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
889 int async
= check_async_write(BTRFS_I(inode
));
892 if (bio_op(bio
) != REQ_OP_WRITE
) {
894 * called for a read, do the setup so that checksum validation
895 * can happen in the async kernel threads
897 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
898 BTRFS_WQ_ENDIO_METADATA
);
901 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
903 ret
= btree_csum_one_bio(bio
);
906 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
909 * kthread helpers are used to submit writes so that
910 * checksumming can happen in parallel across all CPUs
912 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
913 bio_offset
, private_data
,
914 btree_submit_bio_start
,
915 btree_submit_bio_done
);
923 bio
->bi_status
= ret
;
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space
*mapping
,
930 struct page
*newpage
, struct page
*page
,
931 enum migrate_mode mode
)
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
943 if (page_has_private(page
) &&
944 !try_to_release_page(page
, GFP_KERNEL
))
946 return migrate_page(mapping
, newpage
, page
, mode
);
951 static int btree_writepages(struct address_space
*mapping
,
952 struct writeback_control
*wbc
)
954 struct btrfs_fs_info
*fs_info
;
957 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
959 if (wbc
->for_kupdate
)
962 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
963 /* this is a bit racy, but that's ok */
964 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
965 BTRFS_DIRTY_METADATA_THRESH
,
966 fs_info
->dirty_metadata_batch
);
970 return btree_write_cache_pages(mapping
, wbc
);
973 static int btree_readpage(struct file
*file
, struct page
*page
)
975 struct extent_io_tree
*tree
;
976 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
977 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
980 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
982 if (PageWriteback(page
) || PageDirty(page
))
985 return try_release_extent_buffer(page
);
988 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
991 struct extent_io_tree
*tree
;
992 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
993 extent_invalidatepage(tree
, page
, offset
);
994 btree_releasepage(page
, GFP_NOFS
);
995 if (PagePrivate(page
)) {
996 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
997 "page private not zero on page %llu",
998 (unsigned long long)page_offset(page
));
999 ClearPagePrivate(page
);
1000 set_page_private(page
, 0);
1005 static int btree_set_page_dirty(struct page
*page
)
1008 struct extent_buffer
*eb
;
1010 BUG_ON(!PagePrivate(page
));
1011 eb
= (struct extent_buffer
*)page
->private;
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1014 BUG_ON(!atomic_read(&eb
->refs
));
1015 btrfs_assert_tree_locked(eb
);
1017 return __set_page_dirty_nobuffers(page
);
1020 static const struct address_space_operations btree_aops
= {
1021 .readpage
= btree_readpage
,
1022 .writepages
= btree_writepages
,
1023 .releasepage
= btree_releasepage
,
1024 .invalidatepage
= btree_invalidatepage
,
1025 #ifdef CONFIG_MIGRATION
1026 .migratepage
= btree_migratepage
,
1028 .set_page_dirty
= btree_set_page_dirty
,
1031 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1033 struct extent_buffer
*buf
= NULL
;
1034 struct inode
*btree_inode
= fs_info
->btree_inode
;
1036 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1039 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1041 free_extent_buffer(buf
);
1044 int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1045 int mirror_num
, struct extent_buffer
**eb
)
1047 struct extent_buffer
*buf
= NULL
;
1048 struct inode
*btree_inode
= fs_info
->btree_inode
;
1049 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1052 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1056 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1058 ret
= read_extent_buffer_pages(io_tree
, buf
, WAIT_PAGE_LOCK
,
1061 free_extent_buffer(buf
);
1065 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1066 free_extent_buffer(buf
);
1068 } else if (extent_buffer_uptodate(buf
)) {
1071 free_extent_buffer(buf
);
1076 struct extent_buffer
*btrfs_find_create_tree_block(
1077 struct btrfs_fs_info
*fs_info
,
1080 if (btrfs_is_testing(fs_info
))
1081 return alloc_test_extent_buffer(fs_info
, bytenr
);
1082 return alloc_extent_buffer(fs_info
, bytenr
);
1086 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1088 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1089 buf
->start
+ buf
->len
- 1);
1092 void btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1094 filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1095 buf
->start
, buf
->start
+ buf
->len
- 1);
1099 * Read tree block at logical address @bytenr and do variant basic but critical
1102 * @parent_transid: expected transid of this tree block, skip check if 0
1103 * @level: expected level, mandatory check
1104 * @first_key: expected key in slot 0, skip check if NULL
1106 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1107 u64 parent_transid
, int level
,
1108 struct btrfs_key
*first_key
)
1110 struct extent_buffer
*buf
= NULL
;
1113 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1117 ret
= btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
1120 free_extent_buffer(buf
);
1121 return ERR_PTR(ret
);
1127 void clean_tree_block(struct btrfs_fs_info
*fs_info
,
1128 struct extent_buffer
*buf
)
1130 if (btrfs_header_generation(buf
) ==
1131 fs_info
->running_transaction
->transid
) {
1132 btrfs_assert_tree_locked(buf
);
1134 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1135 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1137 fs_info
->dirty_metadata_batch
);
1138 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1139 btrfs_set_lock_blocking(buf
);
1140 clear_extent_buffer_dirty(buf
);
1145 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1147 struct btrfs_subvolume_writers
*writers
;
1150 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1152 return ERR_PTR(-ENOMEM
);
1154 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_NOFS
);
1157 return ERR_PTR(ret
);
1160 init_waitqueue_head(&writers
->wait
);
1165 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1167 percpu_counter_destroy(&writers
->counter
);
1171 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1174 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1176 root
->commit_root
= NULL
;
1178 root
->orphan_cleanup_state
= 0;
1180 root
->objectid
= objectid
;
1181 root
->last_trans
= 0;
1182 root
->highest_objectid
= 0;
1183 root
->nr_delalloc_inodes
= 0;
1184 root
->nr_ordered_extents
= 0;
1186 root
->inode_tree
= RB_ROOT
;
1187 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1188 root
->block_rsv
= NULL
;
1190 INIT_LIST_HEAD(&root
->dirty_list
);
1191 INIT_LIST_HEAD(&root
->root_list
);
1192 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1193 INIT_LIST_HEAD(&root
->delalloc_root
);
1194 INIT_LIST_HEAD(&root
->ordered_extents
);
1195 INIT_LIST_HEAD(&root
->ordered_root
);
1196 INIT_LIST_HEAD(&root
->logged_list
[0]);
1197 INIT_LIST_HEAD(&root
->logged_list
[1]);
1198 spin_lock_init(&root
->inode_lock
);
1199 spin_lock_init(&root
->delalloc_lock
);
1200 spin_lock_init(&root
->ordered_extent_lock
);
1201 spin_lock_init(&root
->accounting_lock
);
1202 spin_lock_init(&root
->log_extents_lock
[0]);
1203 spin_lock_init(&root
->log_extents_lock
[1]);
1204 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1205 mutex_init(&root
->objectid_mutex
);
1206 mutex_init(&root
->log_mutex
);
1207 mutex_init(&root
->ordered_extent_mutex
);
1208 mutex_init(&root
->delalloc_mutex
);
1209 init_waitqueue_head(&root
->log_writer_wait
);
1210 init_waitqueue_head(&root
->log_commit_wait
[0]);
1211 init_waitqueue_head(&root
->log_commit_wait
[1]);
1212 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1213 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1214 atomic_set(&root
->log_commit
[0], 0);
1215 atomic_set(&root
->log_commit
[1], 0);
1216 atomic_set(&root
->log_writers
, 0);
1217 atomic_set(&root
->log_batch
, 0);
1218 refcount_set(&root
->refs
, 1);
1219 atomic_set(&root
->will_be_snapshotted
, 0);
1220 root
->log_transid
= 0;
1221 root
->log_transid_committed
= -1;
1222 root
->last_log_commit
= 0;
1224 extent_io_tree_init(&root
->dirty_log_pages
, NULL
);
1226 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1227 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1228 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1230 root
->defrag_trans_start
= fs_info
->generation
;
1232 root
->defrag_trans_start
= 0;
1233 root
->root_key
.objectid
= objectid
;
1236 spin_lock_init(&root
->root_item_lock
);
1239 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1242 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1244 root
->fs_info
= fs_info
;
1248 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1249 /* Should only be used by the testing infrastructure */
1250 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1252 struct btrfs_root
*root
;
1255 return ERR_PTR(-EINVAL
);
1257 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1259 return ERR_PTR(-ENOMEM
);
1261 /* We don't use the stripesize in selftest, set it as sectorsize */
1262 __setup_root(root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1263 root
->alloc_bytenr
= 0;
1269 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1270 struct btrfs_fs_info
*fs_info
,
1273 struct extent_buffer
*leaf
;
1274 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1275 struct btrfs_root
*root
;
1276 struct btrfs_key key
;
1278 uuid_le uuid
= NULL_UUID_LE
;
1280 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1282 return ERR_PTR(-ENOMEM
);
1284 __setup_root(root
, fs_info
, objectid
);
1285 root
->root_key
.objectid
= objectid
;
1286 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1287 root
->root_key
.offset
= 0;
1289 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1291 ret
= PTR_ERR(leaf
);
1296 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1297 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1298 btrfs_set_header_generation(leaf
, trans
->transid
);
1299 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1300 btrfs_set_header_owner(leaf
, objectid
);
1303 write_extent_buffer_fsid(leaf
, fs_info
->fsid
);
1304 write_extent_buffer_chunk_tree_uuid(leaf
, fs_info
->chunk_tree_uuid
);
1305 btrfs_mark_buffer_dirty(leaf
);
1307 root
->commit_root
= btrfs_root_node(root
);
1308 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1310 root
->root_item
.flags
= 0;
1311 root
->root_item
.byte_limit
= 0;
1312 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1313 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1314 btrfs_set_root_level(&root
->root_item
, 0);
1315 btrfs_set_root_refs(&root
->root_item
, 1);
1316 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1317 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1318 btrfs_set_root_dirid(&root
->root_item
, 0);
1319 if (is_fstree(objectid
))
1321 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1322 root
->root_item
.drop_level
= 0;
1324 key
.objectid
= objectid
;
1325 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1327 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1331 btrfs_tree_unlock(leaf
);
1337 btrfs_tree_unlock(leaf
);
1338 free_extent_buffer(root
->commit_root
);
1339 free_extent_buffer(leaf
);
1343 return ERR_PTR(ret
);
1346 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1347 struct btrfs_fs_info
*fs_info
)
1349 struct btrfs_root
*root
;
1350 struct extent_buffer
*leaf
;
1352 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1354 return ERR_PTR(-ENOMEM
);
1356 __setup_root(root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1358 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1359 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1360 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1363 * DON'T set REF_COWS for log trees
1365 * log trees do not get reference counted because they go away
1366 * before a real commit is actually done. They do store pointers
1367 * to file data extents, and those reference counts still get
1368 * updated (along with back refs to the log tree).
1371 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1375 return ERR_CAST(leaf
);
1378 memzero_extent_buffer(leaf
, 0, sizeof(struct btrfs_header
));
1379 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1380 btrfs_set_header_generation(leaf
, trans
->transid
);
1381 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1382 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1385 write_extent_buffer_fsid(root
->node
, fs_info
->fsid
);
1386 btrfs_mark_buffer_dirty(root
->node
);
1387 btrfs_tree_unlock(root
->node
);
1391 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1392 struct btrfs_fs_info
*fs_info
)
1394 struct btrfs_root
*log_root
;
1396 log_root
= alloc_log_tree(trans
, fs_info
);
1397 if (IS_ERR(log_root
))
1398 return PTR_ERR(log_root
);
1399 WARN_ON(fs_info
->log_root_tree
);
1400 fs_info
->log_root_tree
= log_root
;
1404 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1405 struct btrfs_root
*root
)
1407 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1408 struct btrfs_root
*log_root
;
1409 struct btrfs_inode_item
*inode_item
;
1411 log_root
= alloc_log_tree(trans
, fs_info
);
1412 if (IS_ERR(log_root
))
1413 return PTR_ERR(log_root
);
1415 log_root
->last_trans
= trans
->transid
;
1416 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1418 inode_item
= &log_root
->root_item
.inode
;
1419 btrfs_set_stack_inode_generation(inode_item
, 1);
1420 btrfs_set_stack_inode_size(inode_item
, 3);
1421 btrfs_set_stack_inode_nlink(inode_item
, 1);
1422 btrfs_set_stack_inode_nbytes(inode_item
,
1424 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1426 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1428 WARN_ON(root
->log_root
);
1429 root
->log_root
= log_root
;
1430 root
->log_transid
= 0;
1431 root
->log_transid_committed
= -1;
1432 root
->last_log_commit
= 0;
1436 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1437 struct btrfs_key
*key
)
1439 struct btrfs_root
*root
;
1440 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1441 struct btrfs_path
*path
;
1446 path
= btrfs_alloc_path();
1448 return ERR_PTR(-ENOMEM
);
1450 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1456 __setup_root(root
, fs_info
, key
->objectid
);
1458 ret
= btrfs_find_root(tree_root
, key
, path
,
1459 &root
->root_item
, &root
->root_key
);
1466 generation
= btrfs_root_generation(&root
->root_item
);
1467 level
= btrfs_root_level(&root
->root_item
);
1468 root
->node
= read_tree_block(fs_info
,
1469 btrfs_root_bytenr(&root
->root_item
),
1470 generation
, level
, NULL
);
1471 if (IS_ERR(root
->node
)) {
1472 ret
= PTR_ERR(root
->node
);
1474 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1476 free_extent_buffer(root
->node
);
1479 root
->commit_root
= btrfs_root_node(root
);
1481 btrfs_free_path(path
);
1487 root
= ERR_PTR(ret
);
1491 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1492 struct btrfs_key
*location
)
1494 struct btrfs_root
*root
;
1496 root
= btrfs_read_tree_root(tree_root
, location
);
1500 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1501 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1502 btrfs_check_and_init_root_item(&root
->root_item
);
1508 int btrfs_init_fs_root(struct btrfs_root
*root
)
1511 struct btrfs_subvolume_writers
*writers
;
1513 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1514 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1516 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1521 writers
= btrfs_alloc_subvolume_writers();
1522 if (IS_ERR(writers
)) {
1523 ret
= PTR_ERR(writers
);
1526 root
->subv_writers
= writers
;
1528 btrfs_init_free_ino_ctl(root
);
1529 spin_lock_init(&root
->ino_cache_lock
);
1530 init_waitqueue_head(&root
->ino_cache_wait
);
1532 ret
= get_anon_bdev(&root
->anon_dev
);
1536 mutex_lock(&root
->objectid_mutex
);
1537 ret
= btrfs_find_highest_objectid(root
,
1538 &root
->highest_objectid
);
1540 mutex_unlock(&root
->objectid_mutex
);
1544 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1546 mutex_unlock(&root
->objectid_mutex
);
1550 /* the caller is responsible to call free_fs_root */
1554 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1557 struct btrfs_root
*root
;
1559 spin_lock(&fs_info
->fs_roots_radix_lock
);
1560 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1561 (unsigned long)root_id
);
1562 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1566 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1567 struct btrfs_root
*root
)
1571 ret
= radix_tree_preload(GFP_NOFS
);
1575 spin_lock(&fs_info
->fs_roots_radix_lock
);
1576 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1577 (unsigned long)root
->root_key
.objectid
,
1580 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1581 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1582 radix_tree_preload_end();
1587 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1588 struct btrfs_key
*location
,
1591 struct btrfs_root
*root
;
1592 struct btrfs_path
*path
;
1593 struct btrfs_key key
;
1596 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1597 return fs_info
->tree_root
;
1598 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1599 return fs_info
->extent_root
;
1600 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1601 return fs_info
->chunk_root
;
1602 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1603 return fs_info
->dev_root
;
1604 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1605 return fs_info
->csum_root
;
1606 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1607 return fs_info
->quota_root
? fs_info
->quota_root
:
1609 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1610 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1612 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1613 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1616 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1618 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1619 return ERR_PTR(-ENOENT
);
1623 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1627 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1632 ret
= btrfs_init_fs_root(root
);
1636 path
= btrfs_alloc_path();
1641 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1642 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1643 key
.offset
= location
->objectid
;
1645 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1646 btrfs_free_path(path
);
1650 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1652 ret
= btrfs_insert_fs_root(fs_info
, root
);
1654 if (ret
== -EEXIST
) {
1663 return ERR_PTR(ret
);
1666 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1668 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1670 struct btrfs_device
*device
;
1671 struct backing_dev_info
*bdi
;
1674 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1677 bdi
= device
->bdev
->bd_bdi
;
1678 if (bdi_congested(bdi
, bdi_bits
)) {
1688 * called by the kthread helper functions to finally call the bio end_io
1689 * functions. This is where read checksum verification actually happens
1691 static void end_workqueue_fn(struct btrfs_work
*work
)
1694 struct btrfs_end_io_wq
*end_io_wq
;
1696 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1697 bio
= end_io_wq
->bio
;
1699 bio
->bi_status
= end_io_wq
->status
;
1700 bio
->bi_private
= end_io_wq
->private;
1701 bio
->bi_end_io
= end_io_wq
->end_io
;
1702 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1706 static int cleaner_kthread(void *arg
)
1708 struct btrfs_root
*root
= arg
;
1709 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1711 struct btrfs_trans_handle
*trans
;
1716 /* Make the cleaner go to sleep early. */
1717 if (btrfs_need_cleaner_sleep(fs_info
))
1721 * Do not do anything if we might cause open_ctree() to block
1722 * before we have finished mounting the filesystem.
1724 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1727 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1731 * Avoid the problem that we change the status of the fs
1732 * during the above check and trylock.
1734 if (btrfs_need_cleaner_sleep(fs_info
)) {
1735 mutex_unlock(&fs_info
->cleaner_mutex
);
1739 mutex_lock(&fs_info
->cleaner_delayed_iput_mutex
);
1740 btrfs_run_delayed_iputs(fs_info
);
1741 mutex_unlock(&fs_info
->cleaner_delayed_iput_mutex
);
1743 again
= btrfs_clean_one_deleted_snapshot(root
);
1744 mutex_unlock(&fs_info
->cleaner_mutex
);
1747 * The defragger has dealt with the R/O remount and umount,
1748 * needn't do anything special here.
1750 btrfs_run_defrag_inodes(fs_info
);
1753 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1754 * with relocation (btrfs_relocate_chunk) and relocation
1755 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1756 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1757 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1758 * unused block groups.
1760 btrfs_delete_unused_bgs(fs_info
);
1763 set_current_state(TASK_INTERRUPTIBLE
);
1764 if (!kthread_should_stop())
1766 __set_current_state(TASK_RUNNING
);
1768 } while (!kthread_should_stop());
1771 * Transaction kthread is stopped before us and wakes us up.
1772 * However we might have started a new transaction and COWed some
1773 * tree blocks when deleting unused block groups for example. So
1774 * make sure we commit the transaction we started to have a clean
1775 * shutdown when evicting the btree inode - if it has dirty pages
1776 * when we do the final iput() on it, eviction will trigger a
1777 * writeback for it which will fail with null pointer dereferences
1778 * since work queues and other resources were already released and
1779 * destroyed by the time the iput/eviction/writeback is made.
1781 trans
= btrfs_attach_transaction(root
);
1782 if (IS_ERR(trans
)) {
1783 if (PTR_ERR(trans
) != -ENOENT
)
1785 "cleaner transaction attach returned %ld",
1790 ret
= btrfs_commit_transaction(trans
);
1793 "cleaner open transaction commit returned %d",
1800 static int transaction_kthread(void *arg
)
1802 struct btrfs_root
*root
= arg
;
1803 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1804 struct btrfs_trans_handle
*trans
;
1805 struct btrfs_transaction
*cur
;
1808 unsigned long delay
;
1812 cannot_commit
= false;
1813 delay
= HZ
* fs_info
->commit_interval
;
1814 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1816 spin_lock(&fs_info
->trans_lock
);
1817 cur
= fs_info
->running_transaction
;
1819 spin_unlock(&fs_info
->trans_lock
);
1823 now
= get_seconds();
1824 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1825 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
) &&
1826 (now
< cur
->start_time
||
1827 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1828 spin_unlock(&fs_info
->trans_lock
);
1832 transid
= cur
->transid
;
1833 spin_unlock(&fs_info
->trans_lock
);
1835 /* If the file system is aborted, this will always fail. */
1836 trans
= btrfs_attach_transaction(root
);
1837 if (IS_ERR(trans
)) {
1838 if (PTR_ERR(trans
) != -ENOENT
)
1839 cannot_commit
= true;
1842 if (transid
== trans
->transid
) {
1843 btrfs_commit_transaction(trans
);
1845 btrfs_end_transaction(trans
);
1848 wake_up_process(fs_info
->cleaner_kthread
);
1849 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1851 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1852 &fs_info
->fs_state
)))
1853 btrfs_cleanup_transaction(fs_info
);
1854 if (!kthread_should_stop() &&
1855 (!btrfs_transaction_blocked(fs_info
) ||
1857 schedule_timeout_interruptible(delay
);
1858 } while (!kthread_should_stop());
1863 * this will find the highest generation in the array of
1864 * root backups. The index of the highest array is returned,
1865 * or -1 if we can't find anything.
1867 * We check to make sure the array is valid by comparing the
1868 * generation of the latest root in the array with the generation
1869 * in the super block. If they don't match we pitch it.
1871 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1874 int newest_index
= -1;
1875 struct btrfs_root_backup
*root_backup
;
1878 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1879 root_backup
= info
->super_copy
->super_roots
+ i
;
1880 cur
= btrfs_backup_tree_root_gen(root_backup
);
1881 if (cur
== newest_gen
)
1885 /* check to see if we actually wrapped around */
1886 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1887 root_backup
= info
->super_copy
->super_roots
;
1888 cur
= btrfs_backup_tree_root_gen(root_backup
);
1889 if (cur
== newest_gen
)
1892 return newest_index
;
1897 * find the oldest backup so we know where to store new entries
1898 * in the backup array. This will set the backup_root_index
1899 * field in the fs_info struct
1901 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1904 int newest_index
= -1;
1906 newest_index
= find_newest_super_backup(info
, newest_gen
);
1907 /* if there was garbage in there, just move along */
1908 if (newest_index
== -1) {
1909 info
->backup_root_index
= 0;
1911 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1916 * copy all the root pointers into the super backup array.
1917 * this will bump the backup pointer by one when it is
1920 static void backup_super_roots(struct btrfs_fs_info
*info
)
1923 struct btrfs_root_backup
*root_backup
;
1926 next_backup
= info
->backup_root_index
;
1927 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1928 BTRFS_NUM_BACKUP_ROOTS
;
1931 * just overwrite the last backup if we're at the same generation
1932 * this happens only at umount
1934 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1935 if (btrfs_backup_tree_root_gen(root_backup
) ==
1936 btrfs_header_generation(info
->tree_root
->node
))
1937 next_backup
= last_backup
;
1939 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1942 * make sure all of our padding and empty slots get zero filled
1943 * regardless of which ones we use today
1945 memset(root_backup
, 0, sizeof(*root_backup
));
1947 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1949 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1950 btrfs_set_backup_tree_root_gen(root_backup
,
1951 btrfs_header_generation(info
->tree_root
->node
));
1953 btrfs_set_backup_tree_root_level(root_backup
,
1954 btrfs_header_level(info
->tree_root
->node
));
1956 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1957 btrfs_set_backup_chunk_root_gen(root_backup
,
1958 btrfs_header_generation(info
->chunk_root
->node
));
1959 btrfs_set_backup_chunk_root_level(root_backup
,
1960 btrfs_header_level(info
->chunk_root
->node
));
1962 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1963 btrfs_set_backup_extent_root_gen(root_backup
,
1964 btrfs_header_generation(info
->extent_root
->node
));
1965 btrfs_set_backup_extent_root_level(root_backup
,
1966 btrfs_header_level(info
->extent_root
->node
));
1969 * we might commit during log recovery, which happens before we set
1970 * the fs_root. Make sure it is valid before we fill it in.
1972 if (info
->fs_root
&& info
->fs_root
->node
) {
1973 btrfs_set_backup_fs_root(root_backup
,
1974 info
->fs_root
->node
->start
);
1975 btrfs_set_backup_fs_root_gen(root_backup
,
1976 btrfs_header_generation(info
->fs_root
->node
));
1977 btrfs_set_backup_fs_root_level(root_backup
,
1978 btrfs_header_level(info
->fs_root
->node
));
1981 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1982 btrfs_set_backup_dev_root_gen(root_backup
,
1983 btrfs_header_generation(info
->dev_root
->node
));
1984 btrfs_set_backup_dev_root_level(root_backup
,
1985 btrfs_header_level(info
->dev_root
->node
));
1987 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1988 btrfs_set_backup_csum_root_gen(root_backup
,
1989 btrfs_header_generation(info
->csum_root
->node
));
1990 btrfs_set_backup_csum_root_level(root_backup
,
1991 btrfs_header_level(info
->csum_root
->node
));
1993 btrfs_set_backup_total_bytes(root_backup
,
1994 btrfs_super_total_bytes(info
->super_copy
));
1995 btrfs_set_backup_bytes_used(root_backup
,
1996 btrfs_super_bytes_used(info
->super_copy
));
1997 btrfs_set_backup_num_devices(root_backup
,
1998 btrfs_super_num_devices(info
->super_copy
));
2001 * if we don't copy this out to the super_copy, it won't get remembered
2002 * for the next commit
2004 memcpy(&info
->super_copy
->super_roots
,
2005 &info
->super_for_commit
->super_roots
,
2006 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2010 * this copies info out of the root backup array and back into
2011 * the in-memory super block. It is meant to help iterate through
2012 * the array, so you send it the number of backups you've already
2013 * tried and the last backup index you used.
2015 * this returns -1 when it has tried all the backups
2017 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2018 struct btrfs_super_block
*super
,
2019 int *num_backups_tried
, int *backup_index
)
2021 struct btrfs_root_backup
*root_backup
;
2022 int newest
= *backup_index
;
2024 if (*num_backups_tried
== 0) {
2025 u64 gen
= btrfs_super_generation(super
);
2027 newest
= find_newest_super_backup(info
, gen
);
2031 *backup_index
= newest
;
2032 *num_backups_tried
= 1;
2033 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2034 /* we've tried all the backups, all done */
2037 /* jump to the next oldest backup */
2038 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2039 BTRFS_NUM_BACKUP_ROOTS
;
2040 *backup_index
= newest
;
2041 *num_backups_tried
+= 1;
2043 root_backup
= super
->super_roots
+ newest
;
2045 btrfs_set_super_generation(super
,
2046 btrfs_backup_tree_root_gen(root_backup
));
2047 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2048 btrfs_set_super_root_level(super
,
2049 btrfs_backup_tree_root_level(root_backup
));
2050 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2053 * fixme: the total bytes and num_devices need to match or we should
2056 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2057 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2061 /* helper to cleanup workers */
2062 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2064 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2065 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2066 btrfs_destroy_workqueue(fs_info
->workers
);
2067 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2068 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2069 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2070 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2071 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2072 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2073 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2074 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2075 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2076 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2077 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2078 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2079 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2081 * Now that all other work queues are destroyed, we can safely destroy
2082 * the queues used for metadata I/O, since tasks from those other work
2083 * queues can do metadata I/O operations.
2085 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2086 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2089 static void free_root_extent_buffers(struct btrfs_root
*root
)
2092 free_extent_buffer(root
->node
);
2093 free_extent_buffer(root
->commit_root
);
2095 root
->commit_root
= NULL
;
2099 /* helper to cleanup tree roots */
2100 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2102 free_root_extent_buffers(info
->tree_root
);
2104 free_root_extent_buffers(info
->dev_root
);
2105 free_root_extent_buffers(info
->extent_root
);
2106 free_root_extent_buffers(info
->csum_root
);
2107 free_root_extent_buffers(info
->quota_root
);
2108 free_root_extent_buffers(info
->uuid_root
);
2110 free_root_extent_buffers(info
->chunk_root
);
2111 free_root_extent_buffers(info
->free_space_root
);
2114 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2117 struct btrfs_root
*gang
[8];
2120 while (!list_empty(&fs_info
->dead_roots
)) {
2121 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2122 struct btrfs_root
, root_list
);
2123 list_del(&gang
[0]->root_list
);
2125 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2126 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2128 free_extent_buffer(gang
[0]->node
);
2129 free_extent_buffer(gang
[0]->commit_root
);
2130 btrfs_put_fs_root(gang
[0]);
2135 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2140 for (i
= 0; i
< ret
; i
++)
2141 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2144 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2145 btrfs_free_log_root_tree(NULL
, fs_info
);
2146 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
2150 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2152 mutex_init(&fs_info
->scrub_lock
);
2153 atomic_set(&fs_info
->scrubs_running
, 0);
2154 atomic_set(&fs_info
->scrub_pause_req
, 0);
2155 atomic_set(&fs_info
->scrubs_paused
, 0);
2156 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2157 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2158 fs_info
->scrub_workers_refcnt
= 0;
2161 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2163 spin_lock_init(&fs_info
->balance_lock
);
2164 mutex_init(&fs_info
->balance_mutex
);
2165 atomic_set(&fs_info
->balance_pause_req
, 0);
2166 atomic_set(&fs_info
->balance_cancel_req
, 0);
2167 fs_info
->balance_ctl
= NULL
;
2168 init_waitqueue_head(&fs_info
->balance_wait_q
);
2171 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2173 struct inode
*inode
= fs_info
->btree_inode
;
2175 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2176 set_nlink(inode
, 1);
2178 * we set the i_size on the btree inode to the max possible int.
2179 * the real end of the address space is determined by all of
2180 * the devices in the system
2182 inode
->i_size
= OFFSET_MAX
;
2183 inode
->i_mapping
->a_ops
= &btree_aops
;
2185 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2186 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
, inode
);
2187 BTRFS_I(inode
)->io_tree
.track_uptodate
= 0;
2188 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2190 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2192 BTRFS_I(inode
)->root
= fs_info
->tree_root
;
2193 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2194 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2195 btrfs_insert_inode_hash(inode
);
2198 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2200 fs_info
->dev_replace
.lock_owner
= 0;
2201 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2202 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2203 rwlock_init(&fs_info
->dev_replace
.lock
);
2204 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2205 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2206 init_waitqueue_head(&fs_info
->replace_wait
);
2207 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2210 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2212 spin_lock_init(&fs_info
->qgroup_lock
);
2213 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2214 fs_info
->qgroup_tree
= RB_ROOT
;
2215 fs_info
->qgroup_op_tree
= RB_ROOT
;
2216 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2217 fs_info
->qgroup_seq
= 1;
2218 fs_info
->qgroup_ulist
= NULL
;
2219 fs_info
->qgroup_rescan_running
= false;
2220 mutex_init(&fs_info
->qgroup_rescan_lock
);
2223 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2224 struct btrfs_fs_devices
*fs_devices
)
2226 u32 max_active
= fs_info
->thread_pool_size
;
2227 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2230 btrfs_alloc_workqueue(fs_info
, "worker",
2231 flags
| WQ_HIGHPRI
, max_active
, 16);
2233 fs_info
->delalloc_workers
=
2234 btrfs_alloc_workqueue(fs_info
, "delalloc",
2235 flags
, max_active
, 2);
2237 fs_info
->flush_workers
=
2238 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2239 flags
, max_active
, 0);
2241 fs_info
->caching_workers
=
2242 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2245 * a higher idle thresh on the submit workers makes it much more
2246 * likely that bios will be send down in a sane order to the
2249 fs_info
->submit_workers
=
2250 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2251 min_t(u64
, fs_devices
->num_devices
,
2254 fs_info
->fixup_workers
=
2255 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2258 * endios are largely parallel and should have a very
2261 fs_info
->endio_workers
=
2262 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2263 fs_info
->endio_meta_workers
=
2264 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2266 fs_info
->endio_meta_write_workers
=
2267 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2269 fs_info
->endio_raid56_workers
=
2270 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2272 fs_info
->endio_repair_workers
=
2273 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2274 fs_info
->rmw_workers
=
2275 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2276 fs_info
->endio_write_workers
=
2277 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2279 fs_info
->endio_freespace_worker
=
2280 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2282 fs_info
->delayed_workers
=
2283 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2285 fs_info
->readahead_workers
=
2286 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2288 fs_info
->qgroup_rescan_workers
=
2289 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2290 fs_info
->extent_workers
=
2291 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2292 min_t(u64
, fs_devices
->num_devices
,
2295 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2296 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2297 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2298 fs_info
->endio_meta_write_workers
&&
2299 fs_info
->endio_repair_workers
&&
2300 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2301 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2302 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2303 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2304 fs_info
->extent_workers
&&
2305 fs_info
->qgroup_rescan_workers
)) {
2312 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2313 struct btrfs_fs_devices
*fs_devices
)
2316 struct btrfs_root
*log_tree_root
;
2317 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2318 u64 bytenr
= btrfs_super_log_root(disk_super
);
2319 int level
= btrfs_super_log_root_level(disk_super
);
2321 if (fs_devices
->rw_devices
== 0) {
2322 btrfs_warn(fs_info
, "log replay required on RO media");
2326 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2330 __setup_root(log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2332 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2333 fs_info
->generation
+ 1,
2335 if (IS_ERR(log_tree_root
->node
)) {
2336 btrfs_warn(fs_info
, "failed to read log tree");
2337 ret
= PTR_ERR(log_tree_root
->node
);
2338 kfree(log_tree_root
);
2340 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2341 btrfs_err(fs_info
, "failed to read log tree");
2342 free_extent_buffer(log_tree_root
->node
);
2343 kfree(log_tree_root
);
2346 /* returns with log_tree_root freed on success */
2347 ret
= btrfs_recover_log_trees(log_tree_root
);
2349 btrfs_handle_fs_error(fs_info
, ret
,
2350 "Failed to recover log tree");
2351 free_extent_buffer(log_tree_root
->node
);
2352 kfree(log_tree_root
);
2356 if (sb_rdonly(fs_info
->sb
)) {
2357 ret
= btrfs_commit_super(fs_info
);
2365 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2367 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2368 struct btrfs_root
*root
;
2369 struct btrfs_key location
;
2372 BUG_ON(!fs_info
->tree_root
);
2374 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2375 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2376 location
.offset
= 0;
2378 root
= btrfs_read_tree_root(tree_root
, &location
);
2380 ret
= PTR_ERR(root
);
2383 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2384 fs_info
->extent_root
= root
;
2386 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2387 root
= btrfs_read_tree_root(tree_root
, &location
);
2389 ret
= PTR_ERR(root
);
2392 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2393 fs_info
->dev_root
= root
;
2394 btrfs_init_devices_late(fs_info
);
2396 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2397 root
= btrfs_read_tree_root(tree_root
, &location
);
2399 ret
= PTR_ERR(root
);
2402 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2403 fs_info
->csum_root
= root
;
2405 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2406 root
= btrfs_read_tree_root(tree_root
, &location
);
2407 if (!IS_ERR(root
)) {
2408 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2409 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2410 fs_info
->quota_root
= root
;
2413 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2414 root
= btrfs_read_tree_root(tree_root
, &location
);
2416 ret
= PTR_ERR(root
);
2420 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2421 fs_info
->uuid_root
= root
;
2424 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2425 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2426 root
= btrfs_read_tree_root(tree_root
, &location
);
2428 ret
= PTR_ERR(root
);
2431 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2432 fs_info
->free_space_root
= root
;
2437 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2438 location
.objectid
, ret
);
2443 * Real super block validation
2444 * NOTE: super csum type and incompat features will not be checked here.
2446 * @sb: super block to check
2447 * @mirror_num: the super block number to check its bytenr:
2448 * 0 the primary (1st) sb
2449 * 1, 2 2nd and 3rd backup copy
2450 * -1 skip bytenr check
2452 static int validate_super(struct btrfs_fs_info
*fs_info
,
2453 struct btrfs_super_block
*sb
, int mirror_num
)
2455 u64 nodesize
= btrfs_super_nodesize(sb
);
2456 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2459 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2460 btrfs_err(fs_info
, "no valid FS found");
2463 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
2464 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
2465 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2468 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2469 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2470 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2473 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2474 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2475 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2478 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2479 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2480 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2485 * Check sectorsize and nodesize first, other check will need it.
2486 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2488 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2489 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2490 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2493 /* Only PAGE SIZE is supported yet */
2494 if (sectorsize
!= PAGE_SIZE
) {
2496 "sectorsize %llu not supported yet, only support %lu",
2497 sectorsize
, PAGE_SIZE
);
2500 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2501 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2502 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2505 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2506 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2507 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2511 /* Root alignment check */
2512 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2513 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2514 btrfs_super_root(sb
));
2517 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2518 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2519 btrfs_super_chunk_root(sb
));
2522 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2523 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2524 btrfs_super_log_root(sb
));
2528 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_FSID_SIZE
) != 0) {
2530 "dev_item UUID does not match fsid: %pU != %pU",
2531 fs_info
->fsid
, sb
->dev_item
.fsid
);
2536 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2539 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2540 btrfs_err(fs_info
, "bytes_used is too small %llu",
2541 btrfs_super_bytes_used(sb
));
2544 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2545 btrfs_err(fs_info
, "invalid stripesize %u",
2546 btrfs_super_stripesize(sb
));
2549 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2550 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2551 btrfs_super_num_devices(sb
));
2552 if (btrfs_super_num_devices(sb
) == 0) {
2553 btrfs_err(fs_info
, "number of devices is 0");
2557 if (mirror_num
>= 0 &&
2558 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2559 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2560 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2565 * Obvious sys_chunk_array corruptions, it must hold at least one key
2568 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2569 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2570 btrfs_super_sys_array_size(sb
),
2571 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2574 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2575 + sizeof(struct btrfs_chunk
)) {
2576 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2577 btrfs_super_sys_array_size(sb
),
2578 sizeof(struct btrfs_disk_key
)
2579 + sizeof(struct btrfs_chunk
));
2584 * The generation is a global counter, we'll trust it more than the others
2585 * but it's still possible that it's the one that's wrong.
2587 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2589 "suspicious: generation < chunk_root_generation: %llu < %llu",
2590 btrfs_super_generation(sb
),
2591 btrfs_super_chunk_root_generation(sb
));
2592 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2593 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2595 "suspicious: generation < cache_generation: %llu < %llu",
2596 btrfs_super_generation(sb
),
2597 btrfs_super_cache_generation(sb
));
2603 * Validation of super block at mount time.
2604 * Some checks already done early at mount time, like csum type and incompat
2605 * flags will be skipped.
2607 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2609 return validate_super(fs_info
, fs_info
->super_copy
, 0);
2613 * Validation of super block at write time.
2614 * Some checks like bytenr check will be skipped as their values will be
2616 * Extra checks like csum type and incompat flags will be done here.
2618 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2619 struct btrfs_super_block
*sb
)
2623 ret
= validate_super(fs_info
, sb
, -1);
2626 if (btrfs_super_csum_type(sb
) != BTRFS_CSUM_TYPE_CRC32
) {
2628 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2629 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2632 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2635 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2636 btrfs_super_incompat_flags(sb
),
2637 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2643 "super block corruption detected before writing it to disk");
2647 int open_ctree(struct super_block
*sb
,
2648 struct btrfs_fs_devices
*fs_devices
,
2656 struct btrfs_key location
;
2657 struct buffer_head
*bh
;
2658 struct btrfs_super_block
*disk_super
;
2659 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2660 struct btrfs_root
*tree_root
;
2661 struct btrfs_root
*chunk_root
;
2664 int num_backups_tried
= 0;
2665 int backup_index
= 0;
2666 int clear_free_space_tree
= 0;
2669 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2670 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2671 if (!tree_root
|| !chunk_root
) {
2676 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2682 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2687 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2688 (1 + ilog2(nr_cpu_ids
));
2690 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2693 goto fail_dirty_metadata_bytes
;
2696 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2699 goto fail_delalloc_bytes
;
2702 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2703 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2704 INIT_LIST_HEAD(&fs_info
->trans_list
);
2705 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2706 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2707 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2708 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2709 INIT_LIST_HEAD(&fs_info
->pending_raid_kobjs
);
2710 spin_lock_init(&fs_info
->pending_raid_kobjs_lock
);
2711 spin_lock_init(&fs_info
->delalloc_root_lock
);
2712 spin_lock_init(&fs_info
->trans_lock
);
2713 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2714 spin_lock_init(&fs_info
->delayed_iput_lock
);
2715 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2716 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2717 spin_lock_init(&fs_info
->super_lock
);
2718 spin_lock_init(&fs_info
->qgroup_op_lock
);
2719 spin_lock_init(&fs_info
->buffer_lock
);
2720 spin_lock_init(&fs_info
->unused_bgs_lock
);
2721 rwlock_init(&fs_info
->tree_mod_log_lock
);
2722 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2723 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2724 mutex_init(&fs_info
->reloc_mutex
);
2725 mutex_init(&fs_info
->delalloc_root_mutex
);
2726 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2727 seqlock_init(&fs_info
->profiles_lock
);
2729 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2730 INIT_LIST_HEAD(&fs_info
->space_info
);
2731 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2732 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2733 btrfs_mapping_init(&fs_info
->mapping_tree
);
2734 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2735 BTRFS_BLOCK_RSV_GLOBAL
);
2736 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2737 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2738 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2739 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2740 BTRFS_BLOCK_RSV_DELOPS
);
2741 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2742 atomic_set(&fs_info
->defrag_running
, 0);
2743 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2744 atomic_set(&fs_info
->reada_works_cnt
, 0);
2745 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2747 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2748 fs_info
->metadata_ratio
= 0;
2749 fs_info
->defrag_inodes
= RB_ROOT
;
2750 atomic64_set(&fs_info
->free_chunk_space
, 0);
2751 fs_info
->tree_mod_log
= RB_ROOT
;
2752 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2753 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2754 /* readahead state */
2755 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2756 spin_lock_init(&fs_info
->reada_lock
);
2757 btrfs_init_ref_verify(fs_info
);
2759 fs_info
->thread_pool_size
= min_t(unsigned long,
2760 num_online_cpus() + 2, 8);
2762 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2763 spin_lock_init(&fs_info
->ordered_root_lock
);
2765 fs_info
->btree_inode
= new_inode(sb
);
2766 if (!fs_info
->btree_inode
) {
2768 goto fail_bio_counter
;
2770 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2772 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2774 if (!fs_info
->delayed_root
) {
2778 btrfs_init_delayed_root(fs_info
->delayed_root
);
2780 btrfs_init_scrub(fs_info
);
2781 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2782 fs_info
->check_integrity_print_mask
= 0;
2784 btrfs_init_balance(fs_info
);
2785 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2787 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2788 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2790 btrfs_init_btree_inode(fs_info
);
2792 spin_lock_init(&fs_info
->block_group_cache_lock
);
2793 fs_info
->block_group_cache_tree
= RB_ROOT
;
2794 fs_info
->first_logical_byte
= (u64
)-1;
2796 extent_io_tree_init(&fs_info
->freed_extents
[0], NULL
);
2797 extent_io_tree_init(&fs_info
->freed_extents
[1], NULL
);
2798 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2799 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2801 mutex_init(&fs_info
->ordered_operations_mutex
);
2802 mutex_init(&fs_info
->tree_log_mutex
);
2803 mutex_init(&fs_info
->chunk_mutex
);
2804 mutex_init(&fs_info
->transaction_kthread_mutex
);
2805 mutex_init(&fs_info
->cleaner_mutex
);
2806 mutex_init(&fs_info
->ro_block_group_mutex
);
2807 init_rwsem(&fs_info
->commit_root_sem
);
2808 init_rwsem(&fs_info
->cleanup_work_sem
);
2809 init_rwsem(&fs_info
->subvol_sem
);
2810 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2812 btrfs_init_dev_replace_locks(fs_info
);
2813 btrfs_init_qgroup(fs_info
);
2815 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2816 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2818 init_waitqueue_head(&fs_info
->transaction_throttle
);
2819 init_waitqueue_head(&fs_info
->transaction_wait
);
2820 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2821 init_waitqueue_head(&fs_info
->async_submit_wait
);
2823 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2825 /* Usable values until the real ones are cached from the superblock */
2826 fs_info
->nodesize
= 4096;
2827 fs_info
->sectorsize
= 4096;
2828 fs_info
->stripesize
= 4096;
2830 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2836 __setup_root(tree_root
, fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2838 invalidate_bdev(fs_devices
->latest_bdev
);
2841 * Read super block and check the signature bytes only
2843 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2850 * We want to check superblock checksum, the type is stored inside.
2851 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2853 if (btrfs_check_super_csum(fs_info
, bh
->b_data
)) {
2854 btrfs_err(fs_info
, "superblock checksum mismatch");
2861 * super_copy is zeroed at allocation time and we never touch the
2862 * following bytes up to INFO_SIZE, the checksum is calculated from
2863 * the whole block of INFO_SIZE
2865 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2866 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2867 sizeof(*fs_info
->super_for_commit
));
2870 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2872 ret
= btrfs_validate_mount_super(fs_info
);
2874 btrfs_err(fs_info
, "superblock contains fatal errors");
2879 disk_super
= fs_info
->super_copy
;
2880 if (!btrfs_super_root(disk_super
))
2883 /* check FS state, whether FS is broken. */
2884 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2885 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2888 * run through our array of backup supers and setup
2889 * our ring pointer to the oldest one
2891 generation
= btrfs_super_generation(disk_super
);
2892 find_oldest_super_backup(fs_info
, generation
);
2895 * In the long term, we'll store the compression type in the super
2896 * block, and it'll be used for per file compression control.
2898 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2900 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2906 features
= btrfs_super_incompat_flags(disk_super
) &
2907 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2910 "cannot mount because of unsupported optional features (%llx)",
2916 features
= btrfs_super_incompat_flags(disk_super
);
2917 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2918 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2919 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2920 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
2921 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
2923 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2924 btrfs_info(fs_info
, "has skinny extents");
2927 * flag our filesystem as having big metadata blocks if
2928 * they are bigger than the page size
2930 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2931 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2933 "flagging fs with big metadata feature");
2934 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2937 nodesize
= btrfs_super_nodesize(disk_super
);
2938 sectorsize
= btrfs_super_sectorsize(disk_super
);
2939 stripesize
= sectorsize
;
2940 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2941 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2943 /* Cache block sizes */
2944 fs_info
->nodesize
= nodesize
;
2945 fs_info
->sectorsize
= sectorsize
;
2946 fs_info
->stripesize
= stripesize
;
2949 * mixed block groups end up with duplicate but slightly offset
2950 * extent buffers for the same range. It leads to corruptions
2952 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2953 (sectorsize
!= nodesize
)) {
2955 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2956 nodesize
, sectorsize
);
2961 * Needn't use the lock because there is no other task which will
2964 btrfs_set_super_incompat_flags(disk_super
, features
);
2966 features
= btrfs_super_compat_ro_flags(disk_super
) &
2967 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2968 if (!sb_rdonly(sb
) && features
) {
2970 "cannot mount read-write because of unsupported optional features (%llx)",
2976 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2979 goto fail_sb_buffer
;
2982 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
2983 sb
->s_bdi
->congested_data
= fs_info
;
2984 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
2985 sb
->s_bdi
->ra_pages
= VM_MAX_READAHEAD
* SZ_1K
/ PAGE_SIZE
;
2986 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
2987 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
2989 sb
->s_blocksize
= sectorsize
;
2990 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2991 memcpy(&sb
->s_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
);
2993 mutex_lock(&fs_info
->chunk_mutex
);
2994 ret
= btrfs_read_sys_array(fs_info
);
2995 mutex_unlock(&fs_info
->chunk_mutex
);
2997 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2998 goto fail_sb_buffer
;
3001 generation
= btrfs_super_chunk_root_generation(disk_super
);
3002 level
= btrfs_super_chunk_root_level(disk_super
);
3004 __setup_root(chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
3006 chunk_root
->node
= read_tree_block(fs_info
,
3007 btrfs_super_chunk_root(disk_super
),
3008 generation
, level
, NULL
);
3009 if (IS_ERR(chunk_root
->node
) ||
3010 !extent_buffer_uptodate(chunk_root
->node
)) {
3011 btrfs_err(fs_info
, "failed to read chunk root");
3012 if (!IS_ERR(chunk_root
->node
))
3013 free_extent_buffer(chunk_root
->node
);
3014 chunk_root
->node
= NULL
;
3015 goto fail_tree_roots
;
3017 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
3018 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
3020 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
3021 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
3023 ret
= btrfs_read_chunk_tree(fs_info
);
3025 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
3026 goto fail_tree_roots
;
3030 * Keep the devid that is marked to be the target device for the
3031 * device replace procedure
3033 btrfs_free_extra_devids(fs_devices
, 0);
3035 if (!fs_devices
->latest_bdev
) {
3036 btrfs_err(fs_info
, "failed to read devices");
3037 goto fail_tree_roots
;
3041 generation
= btrfs_super_generation(disk_super
);
3042 level
= btrfs_super_root_level(disk_super
);
3044 tree_root
->node
= read_tree_block(fs_info
,
3045 btrfs_super_root(disk_super
),
3046 generation
, level
, NULL
);
3047 if (IS_ERR(tree_root
->node
) ||
3048 !extent_buffer_uptodate(tree_root
->node
)) {
3049 btrfs_warn(fs_info
, "failed to read tree root");
3050 if (!IS_ERR(tree_root
->node
))
3051 free_extent_buffer(tree_root
->node
);
3052 tree_root
->node
= NULL
;
3053 goto recovery_tree_root
;
3056 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
3057 tree_root
->commit_root
= btrfs_root_node(tree_root
);
3058 btrfs_set_root_refs(&tree_root
->root_item
, 1);
3060 mutex_lock(&tree_root
->objectid_mutex
);
3061 ret
= btrfs_find_highest_objectid(tree_root
,
3062 &tree_root
->highest_objectid
);
3064 mutex_unlock(&tree_root
->objectid_mutex
);
3065 goto recovery_tree_root
;
3068 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
3070 mutex_unlock(&tree_root
->objectid_mutex
);
3072 ret
= btrfs_read_roots(fs_info
);
3074 goto recovery_tree_root
;
3076 fs_info
->generation
= generation
;
3077 fs_info
->last_trans_committed
= generation
;
3079 ret
= btrfs_recover_balance(fs_info
);
3081 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3082 goto fail_block_groups
;
3085 ret
= btrfs_init_dev_stats(fs_info
);
3087 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3088 goto fail_block_groups
;
3091 ret
= btrfs_init_dev_replace(fs_info
);
3093 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3094 goto fail_block_groups
;
3097 btrfs_free_extra_devids(fs_devices
, 1);
3099 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
3101 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3103 goto fail_block_groups
;
3106 ret
= btrfs_sysfs_add_device(fs_devices
);
3108 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
3110 goto fail_fsdev_sysfs
;
3113 ret
= btrfs_sysfs_add_mounted(fs_info
);
3115 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3116 goto fail_fsdev_sysfs
;
3119 ret
= btrfs_init_space_info(fs_info
);
3121 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3125 ret
= btrfs_read_block_groups(fs_info
);
3127 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3131 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3133 "writeable mount is not allowed due to too many missing devices");
3137 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3139 if (IS_ERR(fs_info
->cleaner_kthread
))
3142 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3144 "btrfs-transaction");
3145 if (IS_ERR(fs_info
->transaction_kthread
))
3148 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
3149 !fs_info
->fs_devices
->rotating
) {
3150 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
3154 * Mount does not set all options immediately, we can do it now and do
3155 * not have to wait for transaction commit
3157 btrfs_apply_pending_changes(fs_info
);
3159 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3160 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3161 ret
= btrfsic_mount(fs_info
, fs_devices
,
3162 btrfs_test_opt(fs_info
,
3163 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3165 fs_info
->check_integrity_print_mask
);
3168 "failed to initialize integrity check module: %d",
3172 ret
= btrfs_read_qgroup_config(fs_info
);
3174 goto fail_trans_kthread
;
3176 if (btrfs_build_ref_tree(fs_info
))
3177 btrfs_err(fs_info
, "couldn't build ref tree");
3179 /* do not make disk changes in broken FS or nologreplay is given */
3180 if (btrfs_super_log_root(disk_super
) != 0 &&
3181 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3182 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3189 ret
= btrfs_find_orphan_roots(fs_info
);
3193 if (!sb_rdonly(sb
)) {
3194 ret
= btrfs_cleanup_fs_roots(fs_info
);
3198 mutex_lock(&fs_info
->cleaner_mutex
);
3199 ret
= btrfs_recover_relocation(tree_root
);
3200 mutex_unlock(&fs_info
->cleaner_mutex
);
3202 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3209 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3210 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3211 location
.offset
= 0;
3213 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3214 if (IS_ERR(fs_info
->fs_root
)) {
3215 err
= PTR_ERR(fs_info
->fs_root
);
3216 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3223 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3224 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3225 clear_free_space_tree
= 1;
3226 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3227 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3228 btrfs_warn(fs_info
, "free space tree is invalid");
3229 clear_free_space_tree
= 1;
3232 if (clear_free_space_tree
) {
3233 btrfs_info(fs_info
, "clearing free space tree");
3234 ret
= btrfs_clear_free_space_tree(fs_info
);
3237 "failed to clear free space tree: %d", ret
);
3238 close_ctree(fs_info
);
3243 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3244 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3245 btrfs_info(fs_info
, "creating free space tree");
3246 ret
= btrfs_create_free_space_tree(fs_info
);
3249 "failed to create free space tree: %d", ret
);
3250 close_ctree(fs_info
);
3255 down_read(&fs_info
->cleanup_work_sem
);
3256 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3257 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3258 up_read(&fs_info
->cleanup_work_sem
);
3259 close_ctree(fs_info
);
3262 up_read(&fs_info
->cleanup_work_sem
);
3264 ret
= btrfs_resume_balance_async(fs_info
);
3266 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3267 close_ctree(fs_info
);
3271 ret
= btrfs_resume_dev_replace_async(fs_info
);
3273 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3274 close_ctree(fs_info
);
3278 btrfs_qgroup_rescan_resume(fs_info
);
3280 if (!fs_info
->uuid_root
) {
3281 btrfs_info(fs_info
, "creating UUID tree");
3282 ret
= btrfs_create_uuid_tree(fs_info
);
3285 "failed to create the UUID tree: %d", ret
);
3286 close_ctree(fs_info
);
3289 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3290 fs_info
->generation
!=
3291 btrfs_super_uuid_tree_generation(disk_super
)) {
3292 btrfs_info(fs_info
, "checking UUID tree");
3293 ret
= btrfs_check_uuid_tree(fs_info
);
3296 "failed to check the UUID tree: %d", ret
);
3297 close_ctree(fs_info
);
3301 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3303 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3306 * backuproot only affect mount behavior, and if open_ctree succeeded,
3307 * no need to keep the flag
3309 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3314 btrfs_free_qgroup_config(fs_info
);
3316 kthread_stop(fs_info
->transaction_kthread
);
3317 btrfs_cleanup_transaction(fs_info
);
3318 btrfs_free_fs_roots(fs_info
);
3320 kthread_stop(fs_info
->cleaner_kthread
);
3323 * make sure we're done with the btree inode before we stop our
3326 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3329 btrfs_sysfs_remove_mounted(fs_info
);
3332 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3335 btrfs_put_block_group_cache(fs_info
);
3338 free_root_pointers(fs_info
, 1);
3339 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3342 btrfs_stop_all_workers(fs_info
);
3343 btrfs_free_block_groups(fs_info
);
3346 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3348 iput(fs_info
->btree_inode
);
3350 percpu_counter_destroy(&fs_info
->bio_counter
);
3351 fail_delalloc_bytes
:
3352 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3353 fail_dirty_metadata_bytes
:
3354 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3356 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3358 btrfs_free_stripe_hash_table(fs_info
);
3359 btrfs_close_devices(fs_info
->fs_devices
);
3363 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
3364 goto fail_tree_roots
;
3366 free_root_pointers(fs_info
, 0);
3368 /* don't use the log in recovery mode, it won't be valid */
3369 btrfs_set_super_log_root(disk_super
, 0);
3371 /* we can't trust the free space cache either */
3372 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3374 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3375 &num_backups_tried
, &backup_index
);
3377 goto fail_block_groups
;
3378 goto retry_root_backup
;
3380 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3382 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3385 set_buffer_uptodate(bh
);
3387 struct btrfs_device
*device
= (struct btrfs_device
*)
3390 btrfs_warn_rl_in_rcu(device
->fs_info
,
3391 "lost page write due to IO error on %s",
3392 rcu_str_deref(device
->name
));
3393 /* note, we don't set_buffer_write_io_error because we have
3394 * our own ways of dealing with the IO errors
3396 clear_buffer_uptodate(bh
);
3397 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3403 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3404 struct buffer_head
**bh_ret
)
3406 struct buffer_head
*bh
;
3407 struct btrfs_super_block
*super
;
3410 bytenr
= btrfs_sb_offset(copy_num
);
3411 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3414 bh
= __bread(bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
, BTRFS_SUPER_INFO_SIZE
);
3416 * If we fail to read from the underlying devices, as of now
3417 * the best option we have is to mark it EIO.
3422 super
= (struct btrfs_super_block
*)bh
->b_data
;
3423 if (btrfs_super_bytenr(super
) != bytenr
||
3424 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3434 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3436 struct buffer_head
*bh
;
3437 struct buffer_head
*latest
= NULL
;
3438 struct btrfs_super_block
*super
;
3443 /* we would like to check all the supers, but that would make
3444 * a btrfs mount succeed after a mkfs from a different FS.
3445 * So, we need to add a special mount option to scan for
3446 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3448 for (i
= 0; i
< 1; i
++) {
3449 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3453 super
= (struct btrfs_super_block
*)bh
->b_data
;
3455 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3458 transid
= btrfs_super_generation(super
);
3465 return ERR_PTR(ret
);
3471 * Write superblock @sb to the @device. Do not wait for completion, all the
3472 * buffer heads we write are pinned.
3474 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3475 * the expected device size at commit time. Note that max_mirrors must be
3476 * same for write and wait phases.
3478 * Return number of errors when buffer head is not found or submission fails.
3480 static int write_dev_supers(struct btrfs_device
*device
,
3481 struct btrfs_super_block
*sb
, int max_mirrors
)
3483 struct buffer_head
*bh
;
3491 if (max_mirrors
== 0)
3492 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3494 for (i
= 0; i
< max_mirrors
; i
++) {
3495 bytenr
= btrfs_sb_offset(i
);
3496 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3497 device
->commit_total_bytes
)
3500 btrfs_set_super_bytenr(sb
, bytenr
);
3503 crc
= btrfs_csum_data((const char *)sb
+ BTRFS_CSUM_SIZE
, crc
,
3504 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
3505 btrfs_csum_final(crc
, sb
->csum
);
3507 /* One reference for us, and we leave it for the caller */
3508 bh
= __getblk(device
->bdev
, bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3509 BTRFS_SUPER_INFO_SIZE
);
3511 btrfs_err(device
->fs_info
,
3512 "couldn't get super buffer head for bytenr %llu",
3518 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3520 /* one reference for submit_bh */
3523 set_buffer_uptodate(bh
);
3525 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3526 bh
->b_private
= device
;
3529 * we fua the first super. The others we allow
3532 op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
;
3533 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3534 op_flags
|= REQ_FUA
;
3535 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3539 return errors
< i
? 0 : -1;
3543 * Wait for write completion of superblocks done by write_dev_supers,
3544 * @max_mirrors same for write and wait phases.
3546 * Return number of errors when buffer head is not found or not marked up to
3549 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3551 struct buffer_head
*bh
;
3554 bool primary_failed
= false;
3557 if (max_mirrors
== 0)
3558 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3560 for (i
= 0; i
< max_mirrors
; i
++) {
3561 bytenr
= btrfs_sb_offset(i
);
3562 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3563 device
->commit_total_bytes
)
3566 bh
= __find_get_block(device
->bdev
,
3567 bytenr
/ BTRFS_BDEV_BLOCKSIZE
,
3568 BTRFS_SUPER_INFO_SIZE
);
3572 primary_failed
= true;
3576 if (!buffer_uptodate(bh
)) {
3579 primary_failed
= true;
3582 /* drop our reference */
3585 /* drop the reference from the writing run */
3589 /* log error, force error return */
3590 if (primary_failed
) {
3591 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3596 return errors
< i
? 0 : -1;
3600 * endio for the write_dev_flush, this will wake anyone waiting
3601 * for the barrier when it is done
3603 static void btrfs_end_empty_barrier(struct bio
*bio
)
3605 complete(bio
->bi_private
);
3609 * Submit a flush request to the device if it supports it. Error handling is
3610 * done in the waiting counterpart.
3612 static void write_dev_flush(struct btrfs_device
*device
)
3614 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3615 struct bio
*bio
= device
->flush_bio
;
3617 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3621 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3622 bio_set_dev(bio
, device
->bdev
);
3623 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3624 init_completion(&device
->flush_wait
);
3625 bio
->bi_private
= &device
->flush_wait
;
3627 btrfsic_submit_bio(bio
);
3628 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3632 * If the flush bio has been submitted by write_dev_flush, wait for it.
3634 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3636 struct bio
*bio
= device
->flush_bio
;
3638 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3641 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3642 wait_for_completion_io(&device
->flush_wait
);
3644 return bio
->bi_status
;
3647 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3649 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3655 * send an empty flush down to each device in parallel,
3656 * then wait for them
3658 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3660 struct list_head
*head
;
3661 struct btrfs_device
*dev
;
3662 int errors_wait
= 0;
3665 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3666 /* send down all the barriers */
3667 head
= &info
->fs_devices
->devices
;
3668 list_for_each_entry(dev
, head
, dev_list
) {
3669 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3673 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3674 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3677 write_dev_flush(dev
);
3678 dev
->last_flush_error
= BLK_STS_OK
;
3681 /* wait for all the barriers */
3682 list_for_each_entry(dev
, head
, dev_list
) {
3683 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3689 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3690 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3693 ret
= wait_dev_flush(dev
);
3695 dev
->last_flush_error
= ret
;
3696 btrfs_dev_stat_inc_and_print(dev
,
3697 BTRFS_DEV_STAT_FLUSH_ERRS
);
3704 * At some point we need the status of all disks
3705 * to arrive at the volume status. So error checking
3706 * is being pushed to a separate loop.
3708 return check_barrier_error(info
);
3713 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3716 int min_tolerated
= INT_MAX
;
3718 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3719 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3720 min_tolerated
= min(min_tolerated
,
3721 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3722 tolerated_failures
);
3724 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3725 if (raid_type
== BTRFS_RAID_SINGLE
)
3727 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3729 min_tolerated
= min(min_tolerated
,
3730 btrfs_raid_array
[raid_type
].
3731 tolerated_failures
);
3734 if (min_tolerated
== INT_MAX
) {
3735 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3739 return min_tolerated
;
3742 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3744 struct list_head
*head
;
3745 struct btrfs_device
*dev
;
3746 struct btrfs_super_block
*sb
;
3747 struct btrfs_dev_item
*dev_item
;
3751 int total_errors
= 0;
3754 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3757 * max_mirrors == 0 indicates we're from commit_transaction,
3758 * not from fsync where the tree roots in fs_info have not
3759 * been consistent on disk.
3761 if (max_mirrors
== 0)
3762 backup_super_roots(fs_info
);
3764 sb
= fs_info
->super_for_commit
;
3765 dev_item
= &sb
->dev_item
;
3767 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3768 head
= &fs_info
->fs_devices
->devices
;
3769 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3772 ret
= barrier_all_devices(fs_info
);
3775 &fs_info
->fs_devices
->device_list_mutex
);
3776 btrfs_handle_fs_error(fs_info
, ret
,
3777 "errors while submitting device barriers.");
3782 list_for_each_entry(dev
, head
, dev_list
) {
3787 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3788 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3791 btrfs_set_stack_device_generation(dev_item
, 0);
3792 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3793 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3794 btrfs_set_stack_device_total_bytes(dev_item
,
3795 dev
->commit_total_bytes
);
3796 btrfs_set_stack_device_bytes_used(dev_item
,
3797 dev
->commit_bytes_used
);
3798 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3799 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3800 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3801 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3802 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3804 flags
= btrfs_super_flags(sb
);
3805 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3807 ret
= btrfs_validate_write_super(fs_info
, sb
);
3809 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3810 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
3811 "unexpected superblock corruption detected");
3815 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3819 if (total_errors
> max_errors
) {
3820 btrfs_err(fs_info
, "%d errors while writing supers",
3822 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3824 /* FUA is masked off if unsupported and can't be the reason */
3825 btrfs_handle_fs_error(fs_info
, -EIO
,
3826 "%d errors while writing supers",
3832 list_for_each_entry(dev
, head
, dev_list
) {
3835 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3836 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3839 ret
= wait_dev_supers(dev
, max_mirrors
);
3843 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3844 if (total_errors
> max_errors
) {
3845 btrfs_handle_fs_error(fs_info
, -EIO
,
3846 "%d errors while writing supers",
3853 /* Drop a fs root from the radix tree and free it. */
3854 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3855 struct btrfs_root
*root
)
3857 spin_lock(&fs_info
->fs_roots_radix_lock
);
3858 radix_tree_delete(&fs_info
->fs_roots_radix
,
3859 (unsigned long)root
->root_key
.objectid
);
3860 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3862 if (btrfs_root_refs(&root
->root_item
) == 0)
3863 synchronize_srcu(&fs_info
->subvol_srcu
);
3865 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3866 btrfs_free_log(NULL
, root
);
3867 if (root
->reloc_root
) {
3868 free_extent_buffer(root
->reloc_root
->node
);
3869 free_extent_buffer(root
->reloc_root
->commit_root
);
3870 btrfs_put_fs_root(root
->reloc_root
);
3871 root
->reloc_root
= NULL
;
3875 if (root
->free_ino_pinned
)
3876 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3877 if (root
->free_ino_ctl
)
3878 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3882 static void free_fs_root(struct btrfs_root
*root
)
3884 iput(root
->ino_cache_inode
);
3885 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3887 free_anon_bdev(root
->anon_dev
);
3888 if (root
->subv_writers
)
3889 btrfs_free_subvolume_writers(root
->subv_writers
);
3890 free_extent_buffer(root
->node
);
3891 free_extent_buffer(root
->commit_root
);
3892 kfree(root
->free_ino_ctl
);
3893 kfree(root
->free_ino_pinned
);
3895 btrfs_put_fs_root(root
);
3898 void btrfs_free_fs_root(struct btrfs_root
*root
)
3903 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3905 u64 root_objectid
= 0;
3906 struct btrfs_root
*gang
[8];
3909 unsigned int ret
= 0;
3913 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3914 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3915 (void **)gang
, root_objectid
,
3918 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3921 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3923 for (i
= 0; i
< ret
; i
++) {
3924 /* Avoid to grab roots in dead_roots */
3925 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3929 /* grab all the search result for later use */
3930 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3932 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3934 for (i
= 0; i
< ret
; i
++) {
3937 root_objectid
= gang
[i
]->root_key
.objectid
;
3938 err
= btrfs_orphan_cleanup(gang
[i
]);
3941 btrfs_put_fs_root(gang
[i
]);
3946 /* release the uncleaned roots due to error */
3947 for (; i
< ret
; i
++) {
3949 btrfs_put_fs_root(gang
[i
]);
3954 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3956 struct btrfs_root
*root
= fs_info
->tree_root
;
3957 struct btrfs_trans_handle
*trans
;
3959 mutex_lock(&fs_info
->cleaner_mutex
);
3960 btrfs_run_delayed_iputs(fs_info
);
3961 mutex_unlock(&fs_info
->cleaner_mutex
);
3962 wake_up_process(fs_info
->cleaner_kthread
);
3964 /* wait until ongoing cleanup work done */
3965 down_write(&fs_info
->cleanup_work_sem
);
3966 up_write(&fs_info
->cleanup_work_sem
);
3968 trans
= btrfs_join_transaction(root
);
3970 return PTR_ERR(trans
);
3971 return btrfs_commit_transaction(trans
);
3974 void close_ctree(struct btrfs_fs_info
*fs_info
)
3978 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3980 /* wait for the qgroup rescan worker to stop */
3981 btrfs_qgroup_wait_for_completion(fs_info
, false);
3983 /* wait for the uuid_scan task to finish */
3984 down(&fs_info
->uuid_tree_rescan_sem
);
3985 /* avoid complains from lockdep et al., set sem back to initial state */
3986 up(&fs_info
->uuid_tree_rescan_sem
);
3988 /* pause restriper - we want to resume on mount */
3989 btrfs_pause_balance(fs_info
);
3991 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3993 btrfs_scrub_cancel(fs_info
);
3995 /* wait for any defraggers to finish */
3996 wait_event(fs_info
->transaction_wait
,
3997 (atomic_read(&fs_info
->defrag_running
) == 0));
3999 /* clear out the rbtree of defraggable inodes */
4000 btrfs_cleanup_defrag_inodes(fs_info
);
4002 cancel_work_sync(&fs_info
->async_reclaim_work
);
4004 if (!sb_rdonly(fs_info
->sb
)) {
4006 * If the cleaner thread is stopped and there are
4007 * block groups queued for removal, the deletion will be
4008 * skipped when we quit the cleaner thread.
4010 btrfs_delete_unused_bgs(fs_info
);
4012 ret
= btrfs_commit_super(fs_info
);
4014 btrfs_err(fs_info
, "commit super ret %d", ret
);
4017 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
4018 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
4019 btrfs_error_commit_super(fs_info
);
4021 kthread_stop(fs_info
->transaction_kthread
);
4022 kthread_stop(fs_info
->cleaner_kthread
);
4024 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
4026 btrfs_free_qgroup_config(fs_info
);
4027 ASSERT(list_empty(&fs_info
->delalloc_roots
));
4029 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
4030 btrfs_info(fs_info
, "at unmount delalloc count %lld",
4031 percpu_counter_sum(&fs_info
->delalloc_bytes
));
4034 btrfs_sysfs_remove_mounted(fs_info
);
4035 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
4037 btrfs_free_fs_roots(fs_info
);
4039 btrfs_put_block_group_cache(fs_info
);
4042 * we must make sure there is not any read request to
4043 * submit after we stopping all workers.
4045 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4046 btrfs_stop_all_workers(fs_info
);
4048 btrfs_free_block_groups(fs_info
);
4050 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4051 free_root_pointers(fs_info
, 1);
4053 iput(fs_info
->btree_inode
);
4055 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4056 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
4057 btrfsic_unmount(fs_info
->fs_devices
);
4060 btrfs_close_devices(fs_info
->fs_devices
);
4061 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4063 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
4064 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
4065 percpu_counter_destroy(&fs_info
->bio_counter
);
4066 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
4068 btrfs_free_stripe_hash_table(fs_info
);
4069 btrfs_free_ref_cache(fs_info
);
4071 while (!list_empty(&fs_info
->pinned_chunks
)) {
4072 struct extent_map
*em
;
4074 em
= list_first_entry(&fs_info
->pinned_chunks
,
4075 struct extent_map
, list
);
4076 list_del_init(&em
->list
);
4077 free_extent_map(em
);
4081 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4085 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4087 ret
= extent_buffer_uptodate(buf
);
4091 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4092 parent_transid
, atomic
);
4098 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4100 struct btrfs_fs_info
*fs_info
;
4101 struct btrfs_root
*root
;
4102 u64 transid
= btrfs_header_generation(buf
);
4105 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4107 * This is a fast path so only do this check if we have sanity tests
4108 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4109 * outside of the sanity tests.
4111 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
4114 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4115 fs_info
= root
->fs_info
;
4116 btrfs_assert_tree_locked(buf
);
4117 if (transid
!= fs_info
->generation
)
4118 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4119 buf
->start
, transid
, fs_info
->generation
);
4120 was_dirty
= set_extent_buffer_dirty(buf
);
4122 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
4124 fs_info
->dirty_metadata_batch
);
4125 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4127 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4128 * but item data not updated.
4129 * So here we should only check item pointers, not item data.
4131 if (btrfs_header_level(buf
) == 0 &&
4132 btrfs_check_leaf_relaxed(fs_info
, buf
)) {
4133 btrfs_print_leaf(buf
);
4139 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4143 * looks as though older kernels can get into trouble with
4144 * this code, they end up stuck in balance_dirty_pages forever
4148 if (current
->flags
& PF_MEMALLOC
)
4152 btrfs_balance_delayed_items(fs_info
);
4154 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4155 BTRFS_DIRTY_METADATA_THRESH
,
4156 fs_info
->dirty_metadata_batch
);
4158 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4162 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4164 __btrfs_btree_balance_dirty(fs_info
, 1);
4167 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4169 __btrfs_btree_balance_dirty(fs_info
, 0);
4172 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
4173 struct btrfs_key
*first_key
)
4175 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4176 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4178 return btree_read_extent_buffer_pages(fs_info
, buf
, parent_transid
,
4182 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4184 /* cleanup FS via transaction */
4185 btrfs_cleanup_transaction(fs_info
);
4187 mutex_lock(&fs_info
->cleaner_mutex
);
4188 btrfs_run_delayed_iputs(fs_info
);
4189 mutex_unlock(&fs_info
->cleaner_mutex
);
4191 down_write(&fs_info
->cleanup_work_sem
);
4192 up_write(&fs_info
->cleanup_work_sem
);
4195 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4197 struct btrfs_ordered_extent
*ordered
;
4199 spin_lock(&root
->ordered_extent_lock
);
4201 * This will just short circuit the ordered completion stuff which will
4202 * make sure the ordered extent gets properly cleaned up.
4204 list_for_each_entry(ordered
, &root
->ordered_extents
,
4206 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4207 spin_unlock(&root
->ordered_extent_lock
);
4210 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4212 struct btrfs_root
*root
;
4213 struct list_head splice
;
4215 INIT_LIST_HEAD(&splice
);
4217 spin_lock(&fs_info
->ordered_root_lock
);
4218 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4219 while (!list_empty(&splice
)) {
4220 root
= list_first_entry(&splice
, struct btrfs_root
,
4222 list_move_tail(&root
->ordered_root
,
4223 &fs_info
->ordered_roots
);
4225 spin_unlock(&fs_info
->ordered_root_lock
);
4226 btrfs_destroy_ordered_extents(root
);
4229 spin_lock(&fs_info
->ordered_root_lock
);
4231 spin_unlock(&fs_info
->ordered_root_lock
);
4234 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4235 struct btrfs_fs_info
*fs_info
)
4237 struct rb_node
*node
;
4238 struct btrfs_delayed_ref_root
*delayed_refs
;
4239 struct btrfs_delayed_ref_node
*ref
;
4242 delayed_refs
= &trans
->delayed_refs
;
4244 spin_lock(&delayed_refs
->lock
);
4245 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4246 spin_unlock(&delayed_refs
->lock
);
4247 btrfs_info(fs_info
, "delayed_refs has NO entry");
4251 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4252 struct btrfs_delayed_ref_head
*head
;
4254 bool pin_bytes
= false;
4256 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4258 if (!mutex_trylock(&head
->mutex
)) {
4259 refcount_inc(&head
->refs
);
4260 spin_unlock(&delayed_refs
->lock
);
4262 mutex_lock(&head
->mutex
);
4263 mutex_unlock(&head
->mutex
);
4264 btrfs_put_delayed_ref_head(head
);
4265 spin_lock(&delayed_refs
->lock
);
4268 spin_lock(&head
->lock
);
4269 while ((n
= rb_first(&head
->ref_tree
)) != NULL
) {
4270 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4273 rb_erase(&ref
->ref_node
, &head
->ref_tree
);
4274 RB_CLEAR_NODE(&ref
->ref_node
);
4275 if (!list_empty(&ref
->add_list
))
4276 list_del(&ref
->add_list
);
4277 atomic_dec(&delayed_refs
->num_entries
);
4278 btrfs_put_delayed_ref(ref
);
4280 if (head
->must_insert_reserved
)
4282 btrfs_free_delayed_extent_op(head
->extent_op
);
4283 delayed_refs
->num_heads
--;
4284 if (head
->processing
== 0)
4285 delayed_refs
->num_heads_ready
--;
4286 atomic_dec(&delayed_refs
->num_entries
);
4287 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4288 RB_CLEAR_NODE(&head
->href_node
);
4289 spin_unlock(&head
->lock
);
4290 spin_unlock(&delayed_refs
->lock
);
4291 mutex_unlock(&head
->mutex
);
4294 btrfs_pin_extent(fs_info
, head
->bytenr
,
4295 head
->num_bytes
, 1);
4296 btrfs_put_delayed_ref_head(head
);
4298 spin_lock(&delayed_refs
->lock
);
4301 spin_unlock(&delayed_refs
->lock
);
4306 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4308 struct btrfs_inode
*btrfs_inode
;
4309 struct list_head splice
;
4311 INIT_LIST_HEAD(&splice
);
4313 spin_lock(&root
->delalloc_lock
);
4314 list_splice_init(&root
->delalloc_inodes
, &splice
);
4316 while (!list_empty(&splice
)) {
4317 struct inode
*inode
= NULL
;
4318 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4320 __btrfs_del_delalloc_inode(root
, btrfs_inode
);
4321 spin_unlock(&root
->delalloc_lock
);
4324 * Make sure we get a live inode and that it'll not disappear
4327 inode
= igrab(&btrfs_inode
->vfs_inode
);
4329 invalidate_inode_pages2(inode
->i_mapping
);
4332 spin_lock(&root
->delalloc_lock
);
4334 spin_unlock(&root
->delalloc_lock
);
4337 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4339 struct btrfs_root
*root
;
4340 struct list_head splice
;
4342 INIT_LIST_HEAD(&splice
);
4344 spin_lock(&fs_info
->delalloc_root_lock
);
4345 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4346 while (!list_empty(&splice
)) {
4347 root
= list_first_entry(&splice
, struct btrfs_root
,
4349 root
= btrfs_grab_fs_root(root
);
4351 spin_unlock(&fs_info
->delalloc_root_lock
);
4353 btrfs_destroy_delalloc_inodes(root
);
4354 btrfs_put_fs_root(root
);
4356 spin_lock(&fs_info
->delalloc_root_lock
);
4358 spin_unlock(&fs_info
->delalloc_root_lock
);
4361 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4362 struct extent_io_tree
*dirty_pages
,
4366 struct extent_buffer
*eb
;
4371 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4376 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4377 while (start
<= end
) {
4378 eb
= find_extent_buffer(fs_info
, start
);
4379 start
+= fs_info
->nodesize
;
4382 wait_on_extent_buffer_writeback(eb
);
4384 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4386 clear_extent_buffer_dirty(eb
);
4387 free_extent_buffer_stale(eb
);
4394 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4395 struct extent_io_tree
*pinned_extents
)
4397 struct extent_io_tree
*unpin
;
4403 unpin
= pinned_extents
;
4406 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4407 EXTENT_DIRTY
, NULL
);
4411 clear_extent_dirty(unpin
, start
, end
);
4412 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4417 if (unpin
== &fs_info
->freed_extents
[0])
4418 unpin
= &fs_info
->freed_extents
[1];
4420 unpin
= &fs_info
->freed_extents
[0];
4428 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache
*cache
)
4430 struct inode
*inode
;
4432 inode
= cache
->io_ctl
.inode
;
4434 invalidate_inode_pages2(inode
->i_mapping
);
4435 BTRFS_I(inode
)->generation
= 0;
4436 cache
->io_ctl
.inode
= NULL
;
4439 btrfs_put_block_group(cache
);
4442 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4443 struct btrfs_fs_info
*fs_info
)
4445 struct btrfs_block_group_cache
*cache
;
4447 spin_lock(&cur_trans
->dirty_bgs_lock
);
4448 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4449 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4450 struct btrfs_block_group_cache
,
4453 if (!list_empty(&cache
->io_list
)) {
4454 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4455 list_del_init(&cache
->io_list
);
4456 btrfs_cleanup_bg_io(cache
);
4457 spin_lock(&cur_trans
->dirty_bgs_lock
);
4460 list_del_init(&cache
->dirty_list
);
4461 spin_lock(&cache
->lock
);
4462 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4463 spin_unlock(&cache
->lock
);
4465 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4466 btrfs_put_block_group(cache
);
4467 spin_lock(&cur_trans
->dirty_bgs_lock
);
4469 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4472 * Refer to the definition of io_bgs member for details why it's safe
4473 * to use it without any locking
4475 while (!list_empty(&cur_trans
->io_bgs
)) {
4476 cache
= list_first_entry(&cur_trans
->io_bgs
,
4477 struct btrfs_block_group_cache
,
4480 list_del_init(&cache
->io_list
);
4481 spin_lock(&cache
->lock
);
4482 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4483 spin_unlock(&cache
->lock
);
4484 btrfs_cleanup_bg_io(cache
);
4488 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4489 struct btrfs_fs_info
*fs_info
)
4491 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4492 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4493 ASSERT(list_empty(&cur_trans
->io_bgs
));
4495 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4497 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4498 wake_up(&fs_info
->transaction_blocked_wait
);
4500 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4501 wake_up(&fs_info
->transaction_wait
);
4503 btrfs_destroy_delayed_inodes(fs_info
);
4504 btrfs_assert_delayed_root_empty(fs_info
);
4506 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4508 btrfs_destroy_pinned_extent(fs_info
,
4509 fs_info
->pinned_extents
);
4511 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4512 wake_up(&cur_trans
->commit_wait
);
4515 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4517 struct btrfs_transaction
*t
;
4519 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4521 spin_lock(&fs_info
->trans_lock
);
4522 while (!list_empty(&fs_info
->trans_list
)) {
4523 t
= list_first_entry(&fs_info
->trans_list
,
4524 struct btrfs_transaction
, list
);
4525 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4526 refcount_inc(&t
->use_count
);
4527 spin_unlock(&fs_info
->trans_lock
);
4528 btrfs_wait_for_commit(fs_info
, t
->transid
);
4529 btrfs_put_transaction(t
);
4530 spin_lock(&fs_info
->trans_lock
);
4533 if (t
== fs_info
->running_transaction
) {
4534 t
->state
= TRANS_STATE_COMMIT_DOING
;
4535 spin_unlock(&fs_info
->trans_lock
);
4537 * We wait for 0 num_writers since we don't hold a trans
4538 * handle open currently for this transaction.
4540 wait_event(t
->writer_wait
,
4541 atomic_read(&t
->num_writers
) == 0);
4543 spin_unlock(&fs_info
->trans_lock
);
4545 btrfs_cleanup_one_transaction(t
, fs_info
);
4547 spin_lock(&fs_info
->trans_lock
);
4548 if (t
== fs_info
->running_transaction
)
4549 fs_info
->running_transaction
= NULL
;
4550 list_del_init(&t
->list
);
4551 spin_unlock(&fs_info
->trans_lock
);
4553 btrfs_put_transaction(t
);
4554 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4555 spin_lock(&fs_info
->trans_lock
);
4557 spin_unlock(&fs_info
->trans_lock
);
4558 btrfs_destroy_all_ordered_extents(fs_info
);
4559 btrfs_destroy_delayed_inodes(fs_info
);
4560 btrfs_assert_delayed_root_empty(fs_info
);
4561 btrfs_destroy_pinned_extent(fs_info
, fs_info
->pinned_extents
);
4562 btrfs_destroy_all_delalloc_inodes(fs_info
);
4563 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4568 static struct btrfs_fs_info
*btree_fs_info(void *private_data
)
4570 struct inode
*inode
= private_data
;
4571 return btrfs_sb(inode
->i_sb
);
4574 static const struct extent_io_ops btree_extent_io_ops
= {
4575 /* mandatory callbacks */
4576 .submit_bio_hook
= btree_submit_bio_hook
,
4577 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4578 /* note we're sharing with inode.c for the merge bio hook */
4579 .merge_bio_hook
= btrfs_merge_bio_hook
,
4580 .readpage_io_failed_hook
= btree_io_failed_hook
,
4581 .set_range_writeback
= btrfs_set_range_writeback
,
4582 .tree_fs_info
= btree_fs_info
,
4584 /* optional callbacks */