1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 #include "check-integrity.h"
23 #include "rcu-string.h"
27 static struct kmem_cache
*extent_state_cache
;
28 static struct kmem_cache
*extent_buffer_cache
;
29 static struct bio_set btrfs_bioset
;
31 static inline bool extent_state_in_tree(const struct extent_state
*state
)
33 return !RB_EMPTY_NODE(&state
->rb_node
);
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers
);
38 static LIST_HEAD(states
);
40 static DEFINE_SPINLOCK(leak_lock
);
43 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
47 spin_lock_irqsave(&leak_lock
, flags
);
49 spin_unlock_irqrestore(&leak_lock
, flags
);
53 void btrfs_leak_debug_del(struct list_head
*entry
)
57 spin_lock_irqsave(&leak_lock
, flags
);
59 spin_unlock_irqrestore(&leak_lock
, flags
);
63 void btrfs_leak_debug_check(void)
65 struct extent_state
*state
;
66 struct extent_buffer
*eb
;
68 while (!list_empty(&states
)) {
69 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state
->start
, state
->end
, state
->state
,
72 extent_state_in_tree(state
),
73 refcount_read(&state
->refs
));
74 list_del(&state
->leak_list
);
75 kmem_cache_free(extent_state_cache
, state
);
78 while (!list_empty(&buffers
)) {
79 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb
->start
, eb
->len
, atomic_read(&eb
->refs
), eb
->bflags
);
82 list_del(&eb
->leak_list
);
83 kmem_cache_free(extent_buffer_cache
, eb
);
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
90 struct extent_io_tree
*tree
, u64 start
, u64 end
)
92 if (tree
->ops
&& tree
->ops
->check_extent_io_range
)
93 tree
->ops
->check_extent_io_range(tree
->private_data
, caller
,
97 #define btrfs_leak_debug_add(new, head) do {} while (0)
98 #define btrfs_leak_debug_del(entry) do {} while (0)
99 #define btrfs_leak_debug_check() do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
103 #define BUFFER_LRU_MAX 64
108 struct rb_node rb_node
;
111 struct extent_page_data
{
113 struct extent_io_tree
*tree
;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
117 unsigned int extent_locked
:1;
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io
:1;
123 static int add_extent_changeset(struct extent_state
*state
, unsigned bits
,
124 struct extent_changeset
*changeset
,
131 if (set
&& (state
->state
& bits
) == bits
)
133 if (!set
&& (state
->state
& bits
) == 0)
135 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
136 ret
= ulist_add(&changeset
->range_changed
, state
->start
, state
->end
,
141 static void flush_write_bio(struct extent_page_data
*epd
);
143 static inline struct btrfs_fs_info
*
144 tree_fs_info(struct extent_io_tree
*tree
)
147 return tree
->ops
->tree_fs_info(tree
->private_data
);
151 int __init
extent_io_init(void)
153 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state
), 0,
155 SLAB_MEM_SPREAD
, NULL
);
156 if (!extent_state_cache
)
159 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer
), 0,
161 SLAB_MEM_SPREAD
, NULL
);
162 if (!extent_buffer_cache
)
163 goto free_state_cache
;
165 if (bioset_init(&btrfs_bioset
, BIO_POOL_SIZE
,
166 offsetof(struct btrfs_io_bio
, bio
),
168 goto free_buffer_cache
;
170 if (bioset_integrity_create(&btrfs_bioset
, BIO_POOL_SIZE
))
176 bioset_exit(&btrfs_bioset
);
179 kmem_cache_destroy(extent_buffer_cache
);
180 extent_buffer_cache
= NULL
;
183 kmem_cache_destroy(extent_state_cache
);
184 extent_state_cache
= NULL
;
188 void __cold
extent_io_exit(void)
190 btrfs_leak_debug_check();
193 * Make sure all delayed rcu free are flushed before we
197 kmem_cache_destroy(extent_state_cache
);
198 kmem_cache_destroy(extent_buffer_cache
);
199 bioset_exit(&btrfs_bioset
);
202 void extent_io_tree_init(struct extent_io_tree
*tree
,
205 tree
->state
= RB_ROOT
;
207 tree
->dirty_bytes
= 0;
208 spin_lock_init(&tree
->lock
);
209 tree
->private_data
= private_data
;
212 static struct extent_state
*alloc_extent_state(gfp_t mask
)
214 struct extent_state
*state
;
217 * The given mask might be not appropriate for the slab allocator,
218 * drop the unsupported bits
220 mask
&= ~(__GFP_DMA32
|__GFP_HIGHMEM
);
221 state
= kmem_cache_alloc(extent_state_cache
, mask
);
225 state
->failrec
= NULL
;
226 RB_CLEAR_NODE(&state
->rb_node
);
227 btrfs_leak_debug_add(&state
->leak_list
, &states
);
228 refcount_set(&state
->refs
, 1);
229 init_waitqueue_head(&state
->wq
);
230 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
234 void free_extent_state(struct extent_state
*state
)
238 if (refcount_dec_and_test(&state
->refs
)) {
239 WARN_ON(extent_state_in_tree(state
));
240 btrfs_leak_debug_del(&state
->leak_list
);
241 trace_free_extent_state(state
, _RET_IP_
);
242 kmem_cache_free(extent_state_cache
, state
);
246 static struct rb_node
*tree_insert(struct rb_root
*root
,
247 struct rb_node
*search_start
,
249 struct rb_node
*node
,
250 struct rb_node
***p_in
,
251 struct rb_node
**parent_in
)
254 struct rb_node
*parent
= NULL
;
255 struct tree_entry
*entry
;
257 if (p_in
&& parent_in
) {
263 p
= search_start
? &search_start
: &root
->rb_node
;
266 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
268 if (offset
< entry
->start
)
270 else if (offset
> entry
->end
)
277 rb_link_node(node
, parent
, p
);
278 rb_insert_color(node
, root
);
282 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
283 struct rb_node
**prev_ret
,
284 struct rb_node
**next_ret
,
285 struct rb_node
***p_ret
,
286 struct rb_node
**parent_ret
)
288 struct rb_root
*root
= &tree
->state
;
289 struct rb_node
**n
= &root
->rb_node
;
290 struct rb_node
*prev
= NULL
;
291 struct rb_node
*orig_prev
= NULL
;
292 struct tree_entry
*entry
;
293 struct tree_entry
*prev_entry
= NULL
;
297 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
300 if (offset
< entry
->start
)
302 else if (offset
> entry
->end
)
315 while (prev
&& offset
> prev_entry
->end
) {
316 prev
= rb_next(prev
);
317 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
324 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
325 while (prev
&& offset
< prev_entry
->start
) {
326 prev
= rb_prev(prev
);
327 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
334 static inline struct rb_node
*
335 tree_search_for_insert(struct extent_io_tree
*tree
,
337 struct rb_node
***p_ret
,
338 struct rb_node
**parent_ret
)
340 struct rb_node
*prev
= NULL
;
343 ret
= __etree_search(tree
, offset
, &prev
, NULL
, p_ret
, parent_ret
);
349 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
352 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
355 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
356 struct extent_state
*other
)
358 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
359 tree
->ops
->merge_extent_hook(tree
->private_data
, new, other
);
363 * utility function to look for merge candidates inside a given range.
364 * Any extents with matching state are merged together into a single
365 * extent in the tree. Extents with EXTENT_IO in their state field
366 * are not merged because the end_io handlers need to be able to do
367 * operations on them without sleeping (or doing allocations/splits).
369 * This should be called with the tree lock held.
371 static void merge_state(struct extent_io_tree
*tree
,
372 struct extent_state
*state
)
374 struct extent_state
*other
;
375 struct rb_node
*other_node
;
377 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
380 other_node
= rb_prev(&state
->rb_node
);
382 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
383 if (other
->end
== state
->start
- 1 &&
384 other
->state
== state
->state
) {
385 merge_cb(tree
, state
, other
);
386 state
->start
= other
->start
;
387 rb_erase(&other
->rb_node
, &tree
->state
);
388 RB_CLEAR_NODE(&other
->rb_node
);
389 free_extent_state(other
);
392 other_node
= rb_next(&state
->rb_node
);
394 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
395 if (other
->start
== state
->end
+ 1 &&
396 other
->state
== state
->state
) {
397 merge_cb(tree
, state
, other
);
398 state
->end
= other
->end
;
399 rb_erase(&other
->rb_node
, &tree
->state
);
400 RB_CLEAR_NODE(&other
->rb_node
);
401 free_extent_state(other
);
406 static void set_state_cb(struct extent_io_tree
*tree
,
407 struct extent_state
*state
, unsigned *bits
)
409 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
410 tree
->ops
->set_bit_hook(tree
->private_data
, state
, bits
);
413 static void clear_state_cb(struct extent_io_tree
*tree
,
414 struct extent_state
*state
, unsigned *bits
)
416 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
417 tree
->ops
->clear_bit_hook(tree
->private_data
, state
, bits
);
420 static void set_state_bits(struct extent_io_tree
*tree
,
421 struct extent_state
*state
, unsigned *bits
,
422 struct extent_changeset
*changeset
);
425 * insert an extent_state struct into the tree. 'bits' are set on the
426 * struct before it is inserted.
428 * This may return -EEXIST if the extent is already there, in which case the
429 * state struct is freed.
431 * The tree lock is not taken internally. This is a utility function and
432 * probably isn't what you want to call (see set/clear_extent_bit).
434 static int insert_state(struct extent_io_tree
*tree
,
435 struct extent_state
*state
, u64 start
, u64 end
,
437 struct rb_node
**parent
,
438 unsigned *bits
, struct extent_changeset
*changeset
)
440 struct rb_node
*node
;
443 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
445 state
->start
= start
;
448 set_state_bits(tree
, state
, bits
, changeset
);
450 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
452 struct extent_state
*found
;
453 found
= rb_entry(node
, struct extent_state
, rb_node
);
454 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
455 found
->start
, found
->end
, start
, end
);
458 merge_state(tree
, state
);
462 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
465 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
466 tree
->ops
->split_extent_hook(tree
->private_data
, orig
, split
);
470 * split a given extent state struct in two, inserting the preallocated
471 * struct 'prealloc' as the newly created second half. 'split' indicates an
472 * offset inside 'orig' where it should be split.
475 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
476 * are two extent state structs in the tree:
477 * prealloc: [orig->start, split - 1]
478 * orig: [ split, orig->end ]
480 * The tree locks are not taken by this function. They need to be held
483 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
484 struct extent_state
*prealloc
, u64 split
)
486 struct rb_node
*node
;
488 split_cb(tree
, orig
, split
);
490 prealloc
->start
= orig
->start
;
491 prealloc
->end
= split
- 1;
492 prealloc
->state
= orig
->state
;
495 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
496 &prealloc
->rb_node
, NULL
, NULL
);
498 free_extent_state(prealloc
);
504 static struct extent_state
*next_state(struct extent_state
*state
)
506 struct rb_node
*next
= rb_next(&state
->rb_node
);
508 return rb_entry(next
, struct extent_state
, rb_node
);
514 * utility function to clear some bits in an extent state struct.
515 * it will optionally wake up any one waiting on this state (wake == 1).
517 * If no bits are set on the state struct after clearing things, the
518 * struct is freed and removed from the tree
520 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
521 struct extent_state
*state
,
522 unsigned *bits
, int wake
,
523 struct extent_changeset
*changeset
)
525 struct extent_state
*next
;
526 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
529 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
530 u64 range
= state
->end
- state
->start
+ 1;
531 WARN_ON(range
> tree
->dirty_bytes
);
532 tree
->dirty_bytes
-= range
;
534 clear_state_cb(tree
, state
, bits
);
535 ret
= add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
537 state
->state
&= ~bits_to_clear
;
540 if (state
->state
== 0) {
541 next
= next_state(state
);
542 if (extent_state_in_tree(state
)) {
543 rb_erase(&state
->rb_node
, &tree
->state
);
544 RB_CLEAR_NODE(&state
->rb_node
);
545 free_extent_state(state
);
550 merge_state(tree
, state
);
551 next
= next_state(state
);
556 static struct extent_state
*
557 alloc_extent_state_atomic(struct extent_state
*prealloc
)
560 prealloc
= alloc_extent_state(GFP_ATOMIC
);
565 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
567 btrfs_panic(tree_fs_info(tree
), err
,
568 "Locking error: Extent tree was modified by another thread while locked.");
572 * clear some bits on a range in the tree. This may require splitting
573 * or inserting elements in the tree, so the gfp mask is used to
574 * indicate which allocations or sleeping are allowed.
576 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
577 * the given range from the tree regardless of state (ie for truncate).
579 * the range [start, end] is inclusive.
581 * This takes the tree lock, and returns 0 on success and < 0 on error.
583 int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
584 unsigned bits
, int wake
, int delete,
585 struct extent_state
**cached_state
,
586 gfp_t mask
, struct extent_changeset
*changeset
)
588 struct extent_state
*state
;
589 struct extent_state
*cached
;
590 struct extent_state
*prealloc
= NULL
;
591 struct rb_node
*node
;
596 btrfs_debug_check_extent_io_range(tree
, start
, end
);
598 if (bits
& EXTENT_DELALLOC
)
599 bits
|= EXTENT_NORESERVE
;
602 bits
|= ~EXTENT_CTLBITS
;
603 bits
|= EXTENT_FIRST_DELALLOC
;
605 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
608 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
610 * Don't care for allocation failure here because we might end
611 * up not needing the pre-allocated extent state at all, which
612 * is the case if we only have in the tree extent states that
613 * cover our input range and don't cover too any other range.
614 * If we end up needing a new extent state we allocate it later.
616 prealloc
= alloc_extent_state(mask
);
619 spin_lock(&tree
->lock
);
621 cached
= *cached_state
;
624 *cached_state
= NULL
;
628 if (cached
&& extent_state_in_tree(cached
) &&
629 cached
->start
<= start
&& cached
->end
> start
) {
631 refcount_dec(&cached
->refs
);
636 free_extent_state(cached
);
639 * this search will find the extents that end after
642 node
= tree_search(tree
, start
);
645 state
= rb_entry(node
, struct extent_state
, rb_node
);
647 if (state
->start
> end
)
649 WARN_ON(state
->end
< start
);
650 last_end
= state
->end
;
652 /* the state doesn't have the wanted bits, go ahead */
653 if (!(state
->state
& bits
)) {
654 state
= next_state(state
);
659 * | ---- desired range ---- |
661 * | ------------- state -------------- |
663 * We need to split the extent we found, and may flip
664 * bits on second half.
666 * If the extent we found extends past our range, we
667 * just split and search again. It'll get split again
668 * the next time though.
670 * If the extent we found is inside our range, we clear
671 * the desired bit on it.
674 if (state
->start
< start
) {
675 prealloc
= alloc_extent_state_atomic(prealloc
);
677 err
= split_state(tree
, state
, prealloc
, start
);
679 extent_io_tree_panic(tree
, err
);
684 if (state
->end
<= end
) {
685 state
= clear_state_bit(tree
, state
, &bits
, wake
,
692 * | ---- desired range ---- |
694 * We need to split the extent, and clear the bit
697 if (state
->start
<= end
&& state
->end
> end
) {
698 prealloc
= alloc_extent_state_atomic(prealloc
);
700 err
= split_state(tree
, state
, prealloc
, end
+ 1);
702 extent_io_tree_panic(tree
, err
);
707 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
713 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
715 if (last_end
== (u64
)-1)
717 start
= last_end
+ 1;
718 if (start
<= end
&& state
&& !need_resched())
724 spin_unlock(&tree
->lock
);
725 if (gfpflags_allow_blocking(mask
))
730 spin_unlock(&tree
->lock
);
732 free_extent_state(prealloc
);
738 static void wait_on_state(struct extent_io_tree
*tree
,
739 struct extent_state
*state
)
740 __releases(tree
->lock
)
741 __acquires(tree
->lock
)
744 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
745 spin_unlock(&tree
->lock
);
747 spin_lock(&tree
->lock
);
748 finish_wait(&state
->wq
, &wait
);
752 * waits for one or more bits to clear on a range in the state tree.
753 * The range [start, end] is inclusive.
754 * The tree lock is taken by this function
756 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
759 struct extent_state
*state
;
760 struct rb_node
*node
;
762 btrfs_debug_check_extent_io_range(tree
, start
, end
);
764 spin_lock(&tree
->lock
);
768 * this search will find all the extents that end after
771 node
= tree_search(tree
, start
);
776 state
= rb_entry(node
, struct extent_state
, rb_node
);
778 if (state
->start
> end
)
781 if (state
->state
& bits
) {
782 start
= state
->start
;
783 refcount_inc(&state
->refs
);
784 wait_on_state(tree
, state
);
785 free_extent_state(state
);
788 start
= state
->end
+ 1;
793 if (!cond_resched_lock(&tree
->lock
)) {
794 node
= rb_next(node
);
799 spin_unlock(&tree
->lock
);
802 static void set_state_bits(struct extent_io_tree
*tree
,
803 struct extent_state
*state
,
804 unsigned *bits
, struct extent_changeset
*changeset
)
806 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
809 set_state_cb(tree
, state
, bits
);
810 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
811 u64 range
= state
->end
- state
->start
+ 1;
812 tree
->dirty_bytes
+= range
;
814 ret
= add_extent_changeset(state
, bits_to_set
, changeset
, 1);
816 state
->state
|= bits_to_set
;
819 static void cache_state_if_flags(struct extent_state
*state
,
820 struct extent_state
**cached_ptr
,
823 if (cached_ptr
&& !(*cached_ptr
)) {
824 if (!flags
|| (state
->state
& flags
)) {
826 refcount_inc(&state
->refs
);
831 static void cache_state(struct extent_state
*state
,
832 struct extent_state
**cached_ptr
)
834 return cache_state_if_flags(state
, cached_ptr
,
835 EXTENT_IOBITS
| EXTENT_BOUNDARY
);
839 * set some bits on a range in the tree. This may require allocations or
840 * sleeping, so the gfp mask is used to indicate what is allowed.
842 * If any of the exclusive bits are set, this will fail with -EEXIST if some
843 * part of the range already has the desired bits set. The start of the
844 * existing range is returned in failed_start in this case.
846 * [start, end] is inclusive This takes the tree lock.
849 static int __must_check
850 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
851 unsigned bits
, unsigned exclusive_bits
,
852 u64
*failed_start
, struct extent_state
**cached_state
,
853 gfp_t mask
, struct extent_changeset
*changeset
)
855 struct extent_state
*state
;
856 struct extent_state
*prealloc
= NULL
;
857 struct rb_node
*node
;
859 struct rb_node
*parent
;
864 btrfs_debug_check_extent_io_range(tree
, start
, end
);
866 bits
|= EXTENT_FIRST_DELALLOC
;
868 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
870 * Don't care for allocation failure here because we might end
871 * up not needing the pre-allocated extent state at all, which
872 * is the case if we only have in the tree extent states that
873 * cover our input range and don't cover too any other range.
874 * If we end up needing a new extent state we allocate it later.
876 prealloc
= alloc_extent_state(mask
);
879 spin_lock(&tree
->lock
);
880 if (cached_state
&& *cached_state
) {
881 state
= *cached_state
;
882 if (state
->start
<= start
&& state
->end
> start
&&
883 extent_state_in_tree(state
)) {
884 node
= &state
->rb_node
;
889 * this search will find all the extents that end after
892 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
894 prealloc
= alloc_extent_state_atomic(prealloc
);
896 err
= insert_state(tree
, prealloc
, start
, end
,
897 &p
, &parent
, &bits
, changeset
);
899 extent_io_tree_panic(tree
, err
);
901 cache_state(prealloc
, cached_state
);
905 state
= rb_entry(node
, struct extent_state
, rb_node
);
907 last_start
= state
->start
;
908 last_end
= state
->end
;
911 * | ---- desired range ---- |
914 * Just lock what we found and keep going
916 if (state
->start
== start
&& state
->end
<= end
) {
917 if (state
->state
& exclusive_bits
) {
918 *failed_start
= state
->start
;
923 set_state_bits(tree
, state
, &bits
, changeset
);
924 cache_state(state
, cached_state
);
925 merge_state(tree
, state
);
926 if (last_end
== (u64
)-1)
928 start
= last_end
+ 1;
929 state
= next_state(state
);
930 if (start
< end
&& state
&& state
->start
== start
&&
937 * | ---- desired range ---- |
940 * | ------------- state -------------- |
942 * We need to split the extent we found, and may flip bits on
945 * If the extent we found extends past our
946 * range, we just split and search again. It'll get split
947 * again the next time though.
949 * If the extent we found is inside our range, we set the
952 if (state
->start
< start
) {
953 if (state
->state
& exclusive_bits
) {
954 *failed_start
= start
;
959 prealloc
= alloc_extent_state_atomic(prealloc
);
961 err
= split_state(tree
, state
, prealloc
, start
);
963 extent_io_tree_panic(tree
, err
);
968 if (state
->end
<= end
) {
969 set_state_bits(tree
, state
, &bits
, changeset
);
970 cache_state(state
, cached_state
);
971 merge_state(tree
, state
);
972 if (last_end
== (u64
)-1)
974 start
= last_end
+ 1;
975 state
= next_state(state
);
976 if (start
< end
&& state
&& state
->start
== start
&&
983 * | ---- desired range ---- |
984 * | state | or | state |
986 * There's a hole, we need to insert something in it and
987 * ignore the extent we found.
989 if (state
->start
> start
) {
991 if (end
< last_start
)
994 this_end
= last_start
- 1;
996 prealloc
= alloc_extent_state_atomic(prealloc
);
1000 * Avoid to free 'prealloc' if it can be merged with
1003 err
= insert_state(tree
, prealloc
, start
, this_end
,
1004 NULL
, NULL
, &bits
, changeset
);
1006 extent_io_tree_panic(tree
, err
);
1008 cache_state(prealloc
, cached_state
);
1010 start
= this_end
+ 1;
1014 * | ---- desired range ---- |
1016 * We need to split the extent, and set the bit
1019 if (state
->start
<= end
&& state
->end
> end
) {
1020 if (state
->state
& exclusive_bits
) {
1021 *failed_start
= start
;
1026 prealloc
= alloc_extent_state_atomic(prealloc
);
1028 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1030 extent_io_tree_panic(tree
, err
);
1032 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1033 cache_state(prealloc
, cached_state
);
1034 merge_state(tree
, prealloc
);
1042 spin_unlock(&tree
->lock
);
1043 if (gfpflags_allow_blocking(mask
))
1048 spin_unlock(&tree
->lock
);
1050 free_extent_state(prealloc
);
1056 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1057 unsigned bits
, u64
* failed_start
,
1058 struct extent_state
**cached_state
, gfp_t mask
)
1060 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1061 cached_state
, mask
, NULL
);
1066 * convert_extent_bit - convert all bits in a given range from one bit to
1068 * @tree: the io tree to search
1069 * @start: the start offset in bytes
1070 * @end: the end offset in bytes (inclusive)
1071 * @bits: the bits to set in this range
1072 * @clear_bits: the bits to clear in this range
1073 * @cached_state: state that we're going to cache
1075 * This will go through and set bits for the given range. If any states exist
1076 * already in this range they are set with the given bit and cleared of the
1077 * clear_bits. This is only meant to be used by things that are mergeable, ie
1078 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1079 * boundary bits like LOCK.
1081 * All allocations are done with GFP_NOFS.
1083 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1084 unsigned bits
, unsigned clear_bits
,
1085 struct extent_state
**cached_state
)
1087 struct extent_state
*state
;
1088 struct extent_state
*prealloc
= NULL
;
1089 struct rb_node
*node
;
1091 struct rb_node
*parent
;
1095 bool first_iteration
= true;
1097 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1102 * Best effort, don't worry if extent state allocation fails
1103 * here for the first iteration. We might have a cached state
1104 * that matches exactly the target range, in which case no
1105 * extent state allocations are needed. We'll only know this
1106 * after locking the tree.
1108 prealloc
= alloc_extent_state(GFP_NOFS
);
1109 if (!prealloc
&& !first_iteration
)
1113 spin_lock(&tree
->lock
);
1114 if (cached_state
&& *cached_state
) {
1115 state
= *cached_state
;
1116 if (state
->start
<= start
&& state
->end
> start
&&
1117 extent_state_in_tree(state
)) {
1118 node
= &state
->rb_node
;
1124 * this search will find all the extents that end after
1127 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1129 prealloc
= alloc_extent_state_atomic(prealloc
);
1134 err
= insert_state(tree
, prealloc
, start
, end
,
1135 &p
, &parent
, &bits
, NULL
);
1137 extent_io_tree_panic(tree
, err
);
1138 cache_state(prealloc
, cached_state
);
1142 state
= rb_entry(node
, struct extent_state
, rb_node
);
1144 last_start
= state
->start
;
1145 last_end
= state
->end
;
1148 * | ---- desired range ---- |
1151 * Just lock what we found and keep going
1153 if (state
->start
== start
&& state
->end
<= end
) {
1154 set_state_bits(tree
, state
, &bits
, NULL
);
1155 cache_state(state
, cached_state
);
1156 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1157 if (last_end
== (u64
)-1)
1159 start
= last_end
+ 1;
1160 if (start
< end
&& state
&& state
->start
== start
&&
1167 * | ---- desired range ---- |
1170 * | ------------- state -------------- |
1172 * We need to split the extent we found, and may flip bits on
1175 * If the extent we found extends past our
1176 * range, we just split and search again. It'll get split
1177 * again the next time though.
1179 * If the extent we found is inside our range, we set the
1180 * desired bit on it.
1182 if (state
->start
< start
) {
1183 prealloc
= alloc_extent_state_atomic(prealloc
);
1188 err
= split_state(tree
, state
, prealloc
, start
);
1190 extent_io_tree_panic(tree
, err
);
1194 if (state
->end
<= end
) {
1195 set_state_bits(tree
, state
, &bits
, NULL
);
1196 cache_state(state
, cached_state
);
1197 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1199 if (last_end
== (u64
)-1)
1201 start
= last_end
+ 1;
1202 if (start
< end
&& state
&& state
->start
== start
&&
1209 * | ---- desired range ---- |
1210 * | state | or | state |
1212 * There's a hole, we need to insert something in it and
1213 * ignore the extent we found.
1215 if (state
->start
> start
) {
1217 if (end
< last_start
)
1220 this_end
= last_start
- 1;
1222 prealloc
= alloc_extent_state_atomic(prealloc
);
1229 * Avoid to free 'prealloc' if it can be merged with
1232 err
= insert_state(tree
, prealloc
, start
, this_end
,
1233 NULL
, NULL
, &bits
, NULL
);
1235 extent_io_tree_panic(tree
, err
);
1236 cache_state(prealloc
, cached_state
);
1238 start
= this_end
+ 1;
1242 * | ---- desired range ---- |
1244 * We need to split the extent, and set the bit
1247 if (state
->start
<= end
&& state
->end
> end
) {
1248 prealloc
= alloc_extent_state_atomic(prealloc
);
1254 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1256 extent_io_tree_panic(tree
, err
);
1258 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1259 cache_state(prealloc
, cached_state
);
1260 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1268 spin_unlock(&tree
->lock
);
1270 first_iteration
= false;
1274 spin_unlock(&tree
->lock
);
1276 free_extent_state(prealloc
);
1281 /* wrappers around set/clear extent bit */
1282 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1283 unsigned bits
, struct extent_changeset
*changeset
)
1286 * We don't support EXTENT_LOCKED yet, as current changeset will
1287 * record any bits changed, so for EXTENT_LOCKED case, it will
1288 * either fail with -EEXIST or changeset will record the whole
1291 BUG_ON(bits
& EXTENT_LOCKED
);
1293 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, GFP_NOFS
,
1297 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1298 unsigned bits
, int wake
, int delete,
1299 struct extent_state
**cached
)
1301 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1302 cached
, GFP_NOFS
, NULL
);
1305 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1306 unsigned bits
, struct extent_changeset
*changeset
)
1309 * Don't support EXTENT_LOCKED case, same reason as
1310 * set_record_extent_bits().
1312 BUG_ON(bits
& EXTENT_LOCKED
);
1314 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, GFP_NOFS
,
1319 * either insert or lock state struct between start and end use mask to tell
1320 * us if waiting is desired.
1322 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1323 struct extent_state
**cached_state
)
1329 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
,
1330 EXTENT_LOCKED
, &failed_start
,
1331 cached_state
, GFP_NOFS
, NULL
);
1332 if (err
== -EEXIST
) {
1333 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1334 start
= failed_start
;
1337 WARN_ON(start
> end
);
1342 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1347 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1348 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1349 if (err
== -EEXIST
) {
1350 if (failed_start
> start
)
1351 clear_extent_bit(tree
, start
, failed_start
- 1,
1352 EXTENT_LOCKED
, 1, 0, NULL
);
1358 void extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1360 unsigned long index
= start
>> PAGE_SHIFT
;
1361 unsigned long end_index
= end
>> PAGE_SHIFT
;
1364 while (index
<= end_index
) {
1365 page
= find_get_page(inode
->i_mapping
, index
);
1366 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1367 clear_page_dirty_for_io(page
);
1373 void extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1375 unsigned long index
= start
>> PAGE_SHIFT
;
1376 unsigned long end_index
= end
>> PAGE_SHIFT
;
1379 while (index
<= end_index
) {
1380 page
= find_get_page(inode
->i_mapping
, index
);
1381 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1382 __set_page_dirty_nobuffers(page
);
1383 account_page_redirty(page
);
1390 * helper function to set both pages and extents in the tree writeback
1392 static void set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1394 tree
->ops
->set_range_writeback(tree
->private_data
, start
, end
);
1397 /* find the first state struct with 'bits' set after 'start', and
1398 * return it. tree->lock must be held. NULL will returned if
1399 * nothing was found after 'start'
1401 static struct extent_state
*
1402 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1403 u64 start
, unsigned bits
)
1405 struct rb_node
*node
;
1406 struct extent_state
*state
;
1409 * this search will find all the extents that end after
1412 node
= tree_search(tree
, start
);
1417 state
= rb_entry(node
, struct extent_state
, rb_node
);
1418 if (state
->end
>= start
&& (state
->state
& bits
))
1421 node
= rb_next(node
);
1430 * find the first offset in the io tree with 'bits' set. zero is
1431 * returned if we find something, and *start_ret and *end_ret are
1432 * set to reflect the state struct that was found.
1434 * If nothing was found, 1 is returned. If found something, return 0.
1436 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1437 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1438 struct extent_state
**cached_state
)
1440 struct extent_state
*state
;
1444 spin_lock(&tree
->lock
);
1445 if (cached_state
&& *cached_state
) {
1446 state
= *cached_state
;
1447 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1448 n
= rb_next(&state
->rb_node
);
1450 state
= rb_entry(n
, struct extent_state
,
1452 if (state
->state
& bits
)
1456 free_extent_state(*cached_state
);
1457 *cached_state
= NULL
;
1460 free_extent_state(*cached_state
);
1461 *cached_state
= NULL
;
1464 state
= find_first_extent_bit_state(tree
, start
, bits
);
1467 cache_state_if_flags(state
, cached_state
, 0);
1468 *start_ret
= state
->start
;
1469 *end_ret
= state
->end
;
1473 spin_unlock(&tree
->lock
);
1478 * find a contiguous range of bytes in the file marked as delalloc, not
1479 * more than 'max_bytes'. start and end are used to return the range,
1481 * 1 is returned if we find something, 0 if nothing was in the tree
1483 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1484 u64
*start
, u64
*end
, u64 max_bytes
,
1485 struct extent_state
**cached_state
)
1487 struct rb_node
*node
;
1488 struct extent_state
*state
;
1489 u64 cur_start
= *start
;
1491 u64 total_bytes
= 0;
1493 spin_lock(&tree
->lock
);
1496 * this search will find all the extents that end after
1499 node
= tree_search(tree
, cur_start
);
1507 state
= rb_entry(node
, struct extent_state
, rb_node
);
1508 if (found
&& (state
->start
!= cur_start
||
1509 (state
->state
& EXTENT_BOUNDARY
))) {
1512 if (!(state
->state
& EXTENT_DELALLOC
)) {
1518 *start
= state
->start
;
1519 *cached_state
= state
;
1520 refcount_inc(&state
->refs
);
1524 cur_start
= state
->end
+ 1;
1525 node
= rb_next(node
);
1526 total_bytes
+= state
->end
- state
->start
+ 1;
1527 if (total_bytes
>= max_bytes
)
1533 spin_unlock(&tree
->lock
);
1537 static int __process_pages_contig(struct address_space
*mapping
,
1538 struct page
*locked_page
,
1539 pgoff_t start_index
, pgoff_t end_index
,
1540 unsigned long page_ops
, pgoff_t
*index_ret
);
1542 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1543 struct page
*locked_page
,
1546 unsigned long index
= start
>> PAGE_SHIFT
;
1547 unsigned long end_index
= end
>> PAGE_SHIFT
;
1549 ASSERT(locked_page
);
1550 if (index
== locked_page
->index
&& end_index
== index
)
1553 __process_pages_contig(inode
->i_mapping
, locked_page
, index
, end_index
,
1557 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1558 struct page
*locked_page
,
1562 unsigned long index
= delalloc_start
>> PAGE_SHIFT
;
1563 unsigned long index_ret
= index
;
1564 unsigned long end_index
= delalloc_end
>> PAGE_SHIFT
;
1567 ASSERT(locked_page
);
1568 if (index
== locked_page
->index
&& index
== end_index
)
1571 ret
= __process_pages_contig(inode
->i_mapping
, locked_page
, index
,
1572 end_index
, PAGE_LOCK
, &index_ret
);
1574 __unlock_for_delalloc(inode
, locked_page
, delalloc_start
,
1575 (u64
)index_ret
<< PAGE_SHIFT
);
1580 * find a contiguous range of bytes in the file marked as delalloc, not
1581 * more than 'max_bytes'. start and end are used to return the range,
1583 * 1 is returned if we find something, 0 if nothing was in the tree
1585 STATIC u64
find_lock_delalloc_range(struct inode
*inode
,
1586 struct extent_io_tree
*tree
,
1587 struct page
*locked_page
, u64
*start
,
1588 u64
*end
, u64 max_bytes
)
1593 struct extent_state
*cached_state
= NULL
;
1598 /* step one, find a bunch of delalloc bytes starting at start */
1599 delalloc_start
= *start
;
1601 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1602 max_bytes
, &cached_state
);
1603 if (!found
|| delalloc_end
<= *start
) {
1604 *start
= delalloc_start
;
1605 *end
= delalloc_end
;
1606 free_extent_state(cached_state
);
1611 * start comes from the offset of locked_page. We have to lock
1612 * pages in order, so we can't process delalloc bytes before
1615 if (delalloc_start
< *start
)
1616 delalloc_start
= *start
;
1619 * make sure to limit the number of pages we try to lock down
1621 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1622 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1624 /* step two, lock all the pages after the page that has start */
1625 ret
= lock_delalloc_pages(inode
, locked_page
,
1626 delalloc_start
, delalloc_end
);
1627 if (ret
== -EAGAIN
) {
1628 /* some of the pages are gone, lets avoid looping by
1629 * shortening the size of the delalloc range we're searching
1631 free_extent_state(cached_state
);
1632 cached_state
= NULL
;
1634 max_bytes
= PAGE_SIZE
;
1642 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1644 /* step three, lock the state bits for the whole range */
1645 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, &cached_state
);
1647 /* then test to make sure it is all still delalloc */
1648 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1649 EXTENT_DELALLOC
, 1, cached_state
);
1651 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1653 __unlock_for_delalloc(inode
, locked_page
,
1654 delalloc_start
, delalloc_end
);
1658 free_extent_state(cached_state
);
1659 *start
= delalloc_start
;
1660 *end
= delalloc_end
;
1665 static int __process_pages_contig(struct address_space
*mapping
,
1666 struct page
*locked_page
,
1667 pgoff_t start_index
, pgoff_t end_index
,
1668 unsigned long page_ops
, pgoff_t
*index_ret
)
1670 unsigned long nr_pages
= end_index
- start_index
+ 1;
1671 unsigned long pages_locked
= 0;
1672 pgoff_t index
= start_index
;
1673 struct page
*pages
[16];
1678 if (page_ops
& PAGE_LOCK
) {
1679 ASSERT(page_ops
== PAGE_LOCK
);
1680 ASSERT(index_ret
&& *index_ret
== start_index
);
1683 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1684 mapping_set_error(mapping
, -EIO
);
1686 while (nr_pages
> 0) {
1687 ret
= find_get_pages_contig(mapping
, index
,
1688 min_t(unsigned long,
1689 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1692 * Only if we're going to lock these pages,
1693 * can we find nothing at @index.
1695 ASSERT(page_ops
& PAGE_LOCK
);
1700 for (i
= 0; i
< ret
; i
++) {
1701 if (page_ops
& PAGE_SET_PRIVATE2
)
1702 SetPagePrivate2(pages
[i
]);
1704 if (pages
[i
] == locked_page
) {
1709 if (page_ops
& PAGE_CLEAR_DIRTY
)
1710 clear_page_dirty_for_io(pages
[i
]);
1711 if (page_ops
& PAGE_SET_WRITEBACK
)
1712 set_page_writeback(pages
[i
]);
1713 if (page_ops
& PAGE_SET_ERROR
)
1714 SetPageError(pages
[i
]);
1715 if (page_ops
& PAGE_END_WRITEBACK
)
1716 end_page_writeback(pages
[i
]);
1717 if (page_ops
& PAGE_UNLOCK
)
1718 unlock_page(pages
[i
]);
1719 if (page_ops
& PAGE_LOCK
) {
1720 lock_page(pages
[i
]);
1721 if (!PageDirty(pages
[i
]) ||
1722 pages
[i
]->mapping
!= mapping
) {
1723 unlock_page(pages
[i
]);
1737 if (err
&& index_ret
)
1738 *index_ret
= start_index
+ pages_locked
- 1;
1742 void extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1743 u64 delalloc_end
, struct page
*locked_page
,
1744 unsigned clear_bits
,
1745 unsigned long page_ops
)
1747 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, clear_bits
, 1, 0,
1750 __process_pages_contig(inode
->i_mapping
, locked_page
,
1751 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
,
1756 * count the number of bytes in the tree that have a given bit(s)
1757 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1758 * cached. The total number found is returned.
1760 u64
count_range_bits(struct extent_io_tree
*tree
,
1761 u64
*start
, u64 search_end
, u64 max_bytes
,
1762 unsigned bits
, int contig
)
1764 struct rb_node
*node
;
1765 struct extent_state
*state
;
1766 u64 cur_start
= *start
;
1767 u64 total_bytes
= 0;
1771 if (WARN_ON(search_end
<= cur_start
))
1774 spin_lock(&tree
->lock
);
1775 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1776 total_bytes
= tree
->dirty_bytes
;
1780 * this search will find all the extents that end after
1783 node
= tree_search(tree
, cur_start
);
1788 state
= rb_entry(node
, struct extent_state
, rb_node
);
1789 if (state
->start
> search_end
)
1791 if (contig
&& found
&& state
->start
> last
+ 1)
1793 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1794 total_bytes
+= min(search_end
, state
->end
) + 1 -
1795 max(cur_start
, state
->start
);
1796 if (total_bytes
>= max_bytes
)
1799 *start
= max(cur_start
, state
->start
);
1803 } else if (contig
&& found
) {
1806 node
= rb_next(node
);
1811 spin_unlock(&tree
->lock
);
1816 * set the private field for a given byte offset in the tree. If there isn't
1817 * an extent_state there already, this does nothing.
1819 static noinline
int set_state_failrec(struct extent_io_tree
*tree
, u64 start
,
1820 struct io_failure_record
*failrec
)
1822 struct rb_node
*node
;
1823 struct extent_state
*state
;
1826 spin_lock(&tree
->lock
);
1828 * this search will find all the extents that end after
1831 node
= tree_search(tree
, start
);
1836 state
= rb_entry(node
, struct extent_state
, rb_node
);
1837 if (state
->start
!= start
) {
1841 state
->failrec
= failrec
;
1843 spin_unlock(&tree
->lock
);
1847 static noinline
int get_state_failrec(struct extent_io_tree
*tree
, u64 start
,
1848 struct io_failure_record
**failrec
)
1850 struct rb_node
*node
;
1851 struct extent_state
*state
;
1854 spin_lock(&tree
->lock
);
1856 * this search will find all the extents that end after
1859 node
= tree_search(tree
, start
);
1864 state
= rb_entry(node
, struct extent_state
, rb_node
);
1865 if (state
->start
!= start
) {
1869 *failrec
= state
->failrec
;
1871 spin_unlock(&tree
->lock
);
1876 * searches a range in the state tree for a given mask.
1877 * If 'filled' == 1, this returns 1 only if every extent in the tree
1878 * has the bits set. Otherwise, 1 is returned if any bit in the
1879 * range is found set.
1881 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1882 unsigned bits
, int filled
, struct extent_state
*cached
)
1884 struct extent_state
*state
= NULL
;
1885 struct rb_node
*node
;
1888 spin_lock(&tree
->lock
);
1889 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
1890 cached
->end
> start
)
1891 node
= &cached
->rb_node
;
1893 node
= tree_search(tree
, start
);
1894 while (node
&& start
<= end
) {
1895 state
= rb_entry(node
, struct extent_state
, rb_node
);
1897 if (filled
&& state
->start
> start
) {
1902 if (state
->start
> end
)
1905 if (state
->state
& bits
) {
1909 } else if (filled
) {
1914 if (state
->end
== (u64
)-1)
1917 start
= state
->end
+ 1;
1920 node
= rb_next(node
);
1927 spin_unlock(&tree
->lock
);
1932 * helper function to set a given page up to date if all the
1933 * extents in the tree for that page are up to date
1935 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
1937 u64 start
= page_offset(page
);
1938 u64 end
= start
+ PAGE_SIZE
- 1;
1939 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1940 SetPageUptodate(page
);
1943 int free_io_failure(struct extent_io_tree
*failure_tree
,
1944 struct extent_io_tree
*io_tree
,
1945 struct io_failure_record
*rec
)
1950 set_state_failrec(failure_tree
, rec
->start
, NULL
);
1951 ret
= clear_extent_bits(failure_tree
, rec
->start
,
1952 rec
->start
+ rec
->len
- 1,
1953 EXTENT_LOCKED
| EXTENT_DIRTY
);
1957 ret
= clear_extent_bits(io_tree
, rec
->start
,
1958 rec
->start
+ rec
->len
- 1,
1968 * this bypasses the standard btrfs submit functions deliberately, as
1969 * the standard behavior is to write all copies in a raid setup. here we only
1970 * want to write the one bad copy. so we do the mapping for ourselves and issue
1971 * submit_bio directly.
1972 * to avoid any synchronization issues, wait for the data after writing, which
1973 * actually prevents the read that triggered the error from finishing.
1974 * currently, there can be no more than two copies of every data bit. thus,
1975 * exactly one rewrite is required.
1977 int repair_io_failure(struct btrfs_fs_info
*fs_info
, u64 ino
, u64 start
,
1978 u64 length
, u64 logical
, struct page
*page
,
1979 unsigned int pg_offset
, int mirror_num
)
1982 struct btrfs_device
*dev
;
1985 struct btrfs_bio
*bbio
= NULL
;
1988 ASSERT(!(fs_info
->sb
->s_flags
& SB_RDONLY
));
1989 BUG_ON(!mirror_num
);
1991 bio
= btrfs_io_bio_alloc(1);
1992 bio
->bi_iter
.bi_size
= 0;
1993 map_length
= length
;
1996 * Avoid races with device replace and make sure our bbio has devices
1997 * associated to its stripes that don't go away while we are doing the
1998 * read repair operation.
2000 btrfs_bio_counter_inc_blocked(fs_info
);
2001 if (btrfs_is_parity_mirror(fs_info
, logical
, length
)) {
2003 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004 * to update all raid stripes, but here we just want to correct
2005 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006 * stripe's dev and sector.
2008 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, logical
,
2009 &map_length
, &bbio
, 0);
2011 btrfs_bio_counter_dec(fs_info
);
2015 ASSERT(bbio
->mirror_num
== 1);
2017 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_WRITE
, logical
,
2018 &map_length
, &bbio
, mirror_num
);
2020 btrfs_bio_counter_dec(fs_info
);
2024 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2027 sector
= bbio
->stripes
[bbio
->mirror_num
- 1].physical
>> 9;
2028 bio
->bi_iter
.bi_sector
= sector
;
2029 dev
= bbio
->stripes
[bbio
->mirror_num
- 1].dev
;
2030 btrfs_put_bbio(bbio
);
2031 if (!dev
|| !dev
->bdev
||
2032 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
2033 btrfs_bio_counter_dec(fs_info
);
2037 bio_set_dev(bio
, dev
->bdev
);
2038 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
2039 bio_add_page(bio
, page
, length
, pg_offset
);
2041 if (btrfsic_submit_bio_wait(bio
)) {
2042 /* try to remap that extent elsewhere? */
2043 btrfs_bio_counter_dec(fs_info
);
2045 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2049 btrfs_info_rl_in_rcu(fs_info
,
2050 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2052 rcu_str_deref(dev
->name
), sector
);
2053 btrfs_bio_counter_dec(fs_info
);
2058 int repair_eb_io_failure(struct btrfs_fs_info
*fs_info
,
2059 struct extent_buffer
*eb
, int mirror_num
)
2061 u64 start
= eb
->start
;
2062 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2065 if (sb_rdonly(fs_info
->sb
))
2068 for (i
= 0; i
< num_pages
; i
++) {
2069 struct page
*p
= eb
->pages
[i
];
2071 ret
= repair_io_failure(fs_info
, 0, start
, PAGE_SIZE
, start
, p
,
2072 start
- page_offset(p
), mirror_num
);
2082 * each time an IO finishes, we do a fast check in the IO failure tree
2083 * to see if we need to process or clean up an io_failure_record
2085 int clean_io_failure(struct btrfs_fs_info
*fs_info
,
2086 struct extent_io_tree
*failure_tree
,
2087 struct extent_io_tree
*io_tree
, u64 start
,
2088 struct page
*page
, u64 ino
, unsigned int pg_offset
)
2091 struct io_failure_record
*failrec
;
2092 struct extent_state
*state
;
2097 ret
= count_range_bits(failure_tree
, &private, (u64
)-1, 1,
2102 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2106 BUG_ON(!failrec
->this_mirror
);
2108 if (failrec
->in_validation
) {
2109 /* there was no real error, just free the record */
2110 btrfs_debug(fs_info
,
2111 "clean_io_failure: freeing dummy error at %llu",
2115 if (sb_rdonly(fs_info
->sb
))
2118 spin_lock(&io_tree
->lock
);
2119 state
= find_first_extent_bit_state(io_tree
,
2122 spin_unlock(&io_tree
->lock
);
2124 if (state
&& state
->start
<= failrec
->start
&&
2125 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2126 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2128 if (num_copies
> 1) {
2129 repair_io_failure(fs_info
, ino
, start
, failrec
->len
,
2130 failrec
->logical
, page
, pg_offset
,
2131 failrec
->failed_mirror
);
2136 free_io_failure(failure_tree
, io_tree
, failrec
);
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2147 void btrfs_free_io_failure_record(struct btrfs_inode
*inode
, u64 start
, u64 end
)
2149 struct extent_io_tree
*failure_tree
= &inode
->io_failure_tree
;
2150 struct io_failure_record
*failrec
;
2151 struct extent_state
*state
, *next
;
2153 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2156 spin_lock(&failure_tree
->lock
);
2157 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2159 if (state
->start
> end
)
2162 ASSERT(state
->end
<= end
);
2164 next
= next_state(state
);
2166 failrec
= state
->failrec
;
2167 free_extent_state(state
);
2172 spin_unlock(&failure_tree
->lock
);
2175 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2176 struct io_failure_record
**failrec_ret
)
2178 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2179 struct io_failure_record
*failrec
;
2180 struct extent_map
*em
;
2181 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2182 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2183 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2187 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2189 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2193 failrec
->start
= start
;
2194 failrec
->len
= end
- start
+ 1;
2195 failrec
->this_mirror
= 0;
2196 failrec
->bio_flags
= 0;
2197 failrec
->in_validation
= 0;
2199 read_lock(&em_tree
->lock
);
2200 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2202 read_unlock(&em_tree
->lock
);
2207 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2208 free_extent_map(em
);
2211 read_unlock(&em_tree
->lock
);
2217 logical
= start
- em
->start
;
2218 logical
= em
->block_start
+ logical
;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2220 logical
= em
->block_start
;
2221 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2222 extent_set_compress_type(&failrec
->bio_flags
,
2226 btrfs_debug(fs_info
,
2227 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2228 logical
, start
, failrec
->len
);
2230 failrec
->logical
= logical
;
2231 free_extent_map(em
);
2233 /* set the bits in the private failure tree */
2234 ret
= set_extent_bits(failure_tree
, start
, end
,
2235 EXTENT_LOCKED
| EXTENT_DIRTY
);
2237 ret
= set_state_failrec(failure_tree
, start
, failrec
);
2238 /* set the bits in the inode's tree */
2240 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
);
2246 btrfs_debug(fs_info
,
2247 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2248 failrec
->logical
, failrec
->start
, failrec
->len
,
2249 failrec
->in_validation
);
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2257 *failrec_ret
= failrec
;
2262 bool btrfs_check_repairable(struct inode
*inode
, unsigned failed_bio_pages
,
2263 struct io_failure_record
*failrec
, int failed_mirror
)
2265 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2268 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
2269 if (num_copies
== 1) {
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2275 btrfs_debug(fs_info
,
2276 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2277 num_copies
, failrec
->this_mirror
, failed_mirror
);
2282 * there are two premises:
2283 * a) deliver good data to the caller
2284 * b) correct the bad sectors on disk
2286 if (failed_bio_pages
> 1) {
2288 * to fulfill b), we need to know the exact failing sectors, as
2289 * we don't want to rewrite any more than the failed ones. thus,
2290 * we need separate read requests for the failed bio
2292 * if the following BUG_ON triggers, our validation request got
2293 * merged. we need separate requests for our algorithm to work.
2295 BUG_ON(failrec
->in_validation
);
2296 failrec
->in_validation
= 1;
2297 failrec
->this_mirror
= failed_mirror
;
2300 * we're ready to fulfill a) and b) alongside. get a good copy
2301 * of the failed sector and if we succeed, we have setup
2302 * everything for repair_io_failure to do the rest for us.
2304 if (failrec
->in_validation
) {
2305 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2306 failrec
->in_validation
= 0;
2307 failrec
->this_mirror
= 0;
2309 failrec
->failed_mirror
= failed_mirror
;
2310 failrec
->this_mirror
++;
2311 if (failrec
->this_mirror
== failed_mirror
)
2312 failrec
->this_mirror
++;
2315 if (failrec
->this_mirror
> num_copies
) {
2316 btrfs_debug(fs_info
,
2317 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2318 num_copies
, failrec
->this_mirror
, failed_mirror
);
2326 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2327 struct io_failure_record
*failrec
,
2328 struct page
*page
, int pg_offset
, int icsum
,
2329 bio_end_io_t
*endio_func
, void *data
)
2331 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2333 struct btrfs_io_bio
*btrfs_failed_bio
;
2334 struct btrfs_io_bio
*btrfs_bio
;
2336 bio
= btrfs_io_bio_alloc(1);
2337 bio
->bi_end_io
= endio_func
;
2338 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2339 bio_set_dev(bio
, fs_info
->fs_devices
->latest_bdev
);
2340 bio
->bi_iter
.bi_size
= 0;
2341 bio
->bi_private
= data
;
2343 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2344 if (btrfs_failed_bio
->csum
) {
2345 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2347 btrfs_bio
= btrfs_io_bio(bio
);
2348 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2350 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2354 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2360 * this is a generic handler for readpage errors (default
2361 * readpage_io_failed_hook). if other copies exist, read those and write back
2362 * good data to the failed position. does not investigate in remapping the
2363 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2368 struct page
*page
, u64 start
, u64 end
,
2371 struct io_failure_record
*failrec
;
2372 struct inode
*inode
= page
->mapping
->host
;
2373 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2374 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2377 blk_status_t status
;
2379 unsigned failed_bio_pages
= bio_pages_all(failed_bio
);
2381 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
2383 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2387 if (!btrfs_check_repairable(inode
, failed_bio_pages
, failrec
,
2389 free_io_failure(failure_tree
, tree
, failrec
);
2393 if (failed_bio_pages
> 1)
2394 read_mode
|= REQ_FAILFAST_DEV
;
2396 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2397 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2398 start
- page_offset(page
),
2399 (int)phy_offset
, failed_bio
->bi_end_io
,
2401 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
2403 btrfs_debug(btrfs_sb(inode
->i_sb
),
2404 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2405 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2407 status
= tree
->ops
->submit_bio_hook(tree
->private_data
, bio
, failrec
->this_mirror
,
2408 failrec
->bio_flags
, 0);
2410 free_io_failure(failure_tree
, tree
, failrec
);
2412 ret
= blk_status_to_errno(status
);
2418 /* lots and lots of room for performance fixes in the end_bio funcs */
2420 void end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2422 int uptodate
= (err
== 0);
2423 struct extent_io_tree
*tree
;
2426 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2428 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2429 tree
->ops
->writepage_end_io_hook(page
, start
, end
, NULL
,
2433 ClearPageUptodate(page
);
2435 ret
= err
< 0 ? err
: -EIO
;
2436 mapping_set_error(page
->mapping
, ret
);
2441 * after a writepage IO is done, we need to:
2442 * clear the uptodate bits on error
2443 * clear the writeback bits in the extent tree for this IO
2444 * end_page_writeback if the page has no more pending IO
2446 * Scheduling is not allowed, so the extent state tree is expected
2447 * to have one and only one object corresponding to this IO.
2449 static void end_bio_extent_writepage(struct bio
*bio
)
2451 int error
= blk_status_to_errno(bio
->bi_status
);
2452 struct bio_vec
*bvec
;
2457 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2458 bio_for_each_segment_all(bvec
, bio
, i
) {
2459 struct page
*page
= bvec
->bv_page
;
2460 struct inode
*inode
= page
->mapping
->host
;
2461 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2463 /* We always issue full-page reads, but if some block
2464 * in a page fails to read, blk_update_request() will
2465 * advance bv_offset and adjust bv_len to compensate.
2466 * Print a warning for nonzero offsets, and an error
2467 * if they don't add up to a full page. */
2468 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2469 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2471 "partial page write in btrfs with offset %u and length %u",
2472 bvec
->bv_offset
, bvec
->bv_len
);
2475 "incomplete page write in btrfs with offset %u and length %u",
2476 bvec
->bv_offset
, bvec
->bv_len
);
2479 start
= page_offset(page
);
2480 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2482 end_extent_writepage(page
, error
, start
, end
);
2483 end_page_writeback(page
);
2490 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2493 struct extent_state
*cached
= NULL
;
2494 u64 end
= start
+ len
- 1;
2496 if (uptodate
&& tree
->track_uptodate
)
2497 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2498 unlock_extent_cached_atomic(tree
, start
, end
, &cached
);
2502 * after a readpage IO is done, we need to:
2503 * clear the uptodate bits on error
2504 * set the uptodate bits if things worked
2505 * set the page up to date if all extents in the tree are uptodate
2506 * clear the lock bit in the extent tree
2507 * unlock the page if there are no other extents locked for it
2509 * Scheduling is not allowed, so the extent state tree is expected
2510 * to have one and only one object corresponding to this IO.
2512 static void end_bio_extent_readpage(struct bio
*bio
)
2514 struct bio_vec
*bvec
;
2515 int uptodate
= !bio
->bi_status
;
2516 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2517 struct extent_io_tree
*tree
, *failure_tree
;
2522 u64 extent_start
= 0;
2528 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2529 bio_for_each_segment_all(bvec
, bio
, i
) {
2530 struct page
*page
= bvec
->bv_page
;
2531 struct inode
*inode
= page
->mapping
->host
;
2532 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2534 btrfs_debug(fs_info
,
2535 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2536 (u64
)bio
->bi_iter
.bi_sector
, bio
->bi_status
,
2537 io_bio
->mirror_num
);
2538 tree
= &BTRFS_I(inode
)->io_tree
;
2539 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2541 /* We always issue full-page reads, but if some block
2542 * in a page fails to read, blk_update_request() will
2543 * advance bv_offset and adjust bv_len to compensate.
2544 * Print a warning for nonzero offsets, and an error
2545 * if they don't add up to a full page. */
2546 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2547 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2549 "partial page read in btrfs with offset %u and length %u",
2550 bvec
->bv_offset
, bvec
->bv_len
);
2553 "incomplete page read in btrfs with offset %u and length %u",
2554 bvec
->bv_offset
, bvec
->bv_len
);
2557 start
= page_offset(page
);
2558 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2561 mirror
= io_bio
->mirror_num
;
2562 if (likely(uptodate
&& tree
->ops
)) {
2563 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2569 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
2570 failure_tree
, tree
, start
,
2572 btrfs_ino(BTRFS_I(inode
)), 0);
2575 if (likely(uptodate
))
2579 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2580 if (ret
== -EAGAIN
) {
2582 * Data inode's readpage_io_failed_hook() always
2585 * The generic bio_readpage_error handles errors
2586 * the following way: If possible, new read
2587 * requests are created and submitted and will
2588 * end up in end_bio_extent_readpage as well (if
2589 * we're lucky, not in the !uptodate case). In
2590 * that case it returns 0 and we just go on with
2591 * the next page in our bio. If it can't handle
2592 * the error it will return -EIO and we remain
2593 * responsible for that page.
2595 ret
= bio_readpage_error(bio
, offset
, page
,
2596 start
, end
, mirror
);
2598 uptodate
= !bio
->bi_status
;
2605 * metadata's readpage_io_failed_hook() always returns
2606 * -EIO and fixes nothing. -EIO is also returned if
2607 * data inode error could not be fixed.
2609 ASSERT(ret
== -EIO
);
2612 if (likely(uptodate
)) {
2613 loff_t i_size
= i_size_read(inode
);
2614 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2617 /* Zero out the end if this page straddles i_size */
2618 off
= i_size
& (PAGE_SIZE
-1);
2619 if (page
->index
== end_index
&& off
)
2620 zero_user_segment(page
, off
, PAGE_SIZE
);
2621 SetPageUptodate(page
);
2623 ClearPageUptodate(page
);
2629 if (unlikely(!uptodate
)) {
2631 endio_readpage_release_extent(tree
,
2637 endio_readpage_release_extent(tree
, start
,
2638 end
- start
+ 1, 0);
2639 } else if (!extent_len
) {
2640 extent_start
= start
;
2641 extent_len
= end
+ 1 - start
;
2642 } else if (extent_start
+ extent_len
== start
) {
2643 extent_len
+= end
+ 1 - start
;
2645 endio_readpage_release_extent(tree
, extent_start
,
2646 extent_len
, uptodate
);
2647 extent_start
= start
;
2648 extent_len
= end
+ 1 - start
;
2653 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2656 io_bio
->end_io(io_bio
, blk_status_to_errno(bio
->bi_status
));
2661 * Initialize the members up to but not including 'bio'. Use after allocating a
2662 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2663 * 'bio' because use of __GFP_ZERO is not supported.
2665 static inline void btrfs_io_bio_init(struct btrfs_io_bio
*btrfs_bio
)
2667 memset(btrfs_bio
, 0, offsetof(struct btrfs_io_bio
, bio
));
2671 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2672 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2673 * for the appropriate container_of magic
2675 struct bio
*btrfs_bio_alloc(struct block_device
*bdev
, u64 first_byte
)
2679 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, &btrfs_bioset
);
2680 bio_set_dev(bio
, bdev
);
2681 bio
->bi_iter
.bi_sector
= first_byte
>> 9;
2682 btrfs_io_bio_init(btrfs_io_bio(bio
));
2686 struct bio
*btrfs_bio_clone(struct bio
*bio
)
2688 struct btrfs_io_bio
*btrfs_bio
;
2691 /* Bio allocation backed by a bioset does not fail */
2692 new = bio_clone_fast(bio
, GFP_NOFS
, &btrfs_bioset
);
2693 btrfs_bio
= btrfs_io_bio(new);
2694 btrfs_io_bio_init(btrfs_bio
);
2695 btrfs_bio
->iter
= bio
->bi_iter
;
2699 struct bio
*btrfs_io_bio_alloc(unsigned int nr_iovecs
)
2703 /* Bio allocation backed by a bioset does not fail */
2704 bio
= bio_alloc_bioset(GFP_NOFS
, nr_iovecs
, &btrfs_bioset
);
2705 btrfs_io_bio_init(btrfs_io_bio(bio
));
2709 struct bio
*btrfs_bio_clone_partial(struct bio
*orig
, int offset
, int size
)
2712 struct btrfs_io_bio
*btrfs_bio
;
2714 /* this will never fail when it's backed by a bioset */
2715 bio
= bio_clone_fast(orig
, GFP_NOFS
, &btrfs_bioset
);
2718 btrfs_bio
= btrfs_io_bio(bio
);
2719 btrfs_io_bio_init(btrfs_bio
);
2721 bio_trim(bio
, offset
>> 9, size
>> 9);
2722 btrfs_bio
->iter
= bio
->bi_iter
;
2726 static int __must_check
submit_one_bio(struct bio
*bio
, int mirror_num
,
2727 unsigned long bio_flags
)
2729 blk_status_t ret
= 0;
2730 struct bio_vec
*bvec
= bio_last_bvec_all(bio
);
2731 struct page
*page
= bvec
->bv_page
;
2732 struct extent_io_tree
*tree
= bio
->bi_private
;
2735 start
= page_offset(page
) + bvec
->bv_offset
;
2737 bio
->bi_private
= NULL
;
2740 ret
= tree
->ops
->submit_bio_hook(tree
->private_data
, bio
,
2741 mirror_num
, bio_flags
, start
);
2743 btrfsic_submit_bio(bio
);
2745 return blk_status_to_errno(ret
);
2749 * @opf: bio REQ_OP_* and REQ_* flags as one value
2750 * @tree: tree so we can call our merge_bio hook
2751 * @wbc: optional writeback control for io accounting
2752 * @page: page to add to the bio
2753 * @pg_offset: offset of the new bio or to check whether we are adding
2754 * a contiguous page to the previous one
2755 * @size: portion of page that we want to write
2756 * @offset: starting offset in the page
2757 * @bdev: attach newly created bios to this bdev
2758 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2759 * @end_io_func: end_io callback for new bio
2760 * @mirror_num: desired mirror to read/write
2761 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2762 * @bio_flags: flags of the current bio to see if we can merge them
2764 static int submit_extent_page(unsigned int opf
, struct extent_io_tree
*tree
,
2765 struct writeback_control
*wbc
,
2766 struct page
*page
, u64 offset
,
2767 size_t size
, unsigned long pg_offset
,
2768 struct block_device
*bdev
,
2769 struct bio
**bio_ret
,
2770 bio_end_io_t end_io_func
,
2772 unsigned long prev_bio_flags
,
2773 unsigned long bio_flags
,
2774 bool force_bio_submit
)
2778 size_t page_size
= min_t(size_t, size
, PAGE_SIZE
);
2779 sector_t sector
= offset
>> 9;
2785 bool can_merge
= true;
2788 if (prev_bio_flags
& EXTENT_BIO_COMPRESSED
)
2789 contig
= bio
->bi_iter
.bi_sector
== sector
;
2791 contig
= bio_end_sector(bio
) == sector
;
2793 if (tree
->ops
&& tree
->ops
->merge_bio_hook(page
, offset
,
2794 page_size
, bio
, bio_flags
))
2797 if (prev_bio_flags
!= bio_flags
|| !contig
|| !can_merge
||
2799 bio_add_page(bio
, page
, page_size
, pg_offset
) < page_size
) {
2800 ret
= submit_one_bio(bio
, mirror_num
, prev_bio_flags
);
2808 wbc_account_io(wbc
, page
, page_size
);
2813 bio
= btrfs_bio_alloc(bdev
, offset
);
2814 bio_add_page(bio
, page
, page_size
, pg_offset
);
2815 bio
->bi_end_io
= end_io_func
;
2816 bio
->bi_private
= tree
;
2817 bio
->bi_write_hint
= page
->mapping
->host
->i_write_hint
;
2820 wbc_init_bio(wbc
, bio
);
2821 wbc_account_io(wbc
, page
, page_size
);
2829 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2832 if (!PagePrivate(page
)) {
2833 SetPagePrivate(page
);
2835 set_page_private(page
, (unsigned long)eb
);
2837 WARN_ON(page
->private != (unsigned long)eb
);
2841 void set_page_extent_mapped(struct page
*page
)
2843 if (!PagePrivate(page
)) {
2844 SetPagePrivate(page
);
2846 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2850 static struct extent_map
*
2851 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2852 u64 start
, u64 len
, get_extent_t
*get_extent
,
2853 struct extent_map
**em_cached
)
2855 struct extent_map
*em
;
2857 if (em_cached
&& *em_cached
) {
2859 if (extent_map_in_tree(em
) && start
>= em
->start
&&
2860 start
< extent_map_end(em
)) {
2861 refcount_inc(&em
->refs
);
2865 free_extent_map(em
);
2869 em
= get_extent(BTRFS_I(inode
), page
, pg_offset
, start
, len
, 0);
2870 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2872 refcount_inc(&em
->refs
);
2878 * basic readpage implementation. Locked extent state structs are inserted
2879 * into the tree that are removed when the IO is done (by the end_io
2881 * XXX JDM: This needs looking at to ensure proper page locking
2882 * return 0 on success, otherwise return error
2884 static int __do_readpage(struct extent_io_tree
*tree
,
2886 get_extent_t
*get_extent
,
2887 struct extent_map
**em_cached
,
2888 struct bio
**bio
, int mirror_num
,
2889 unsigned long *bio_flags
, unsigned int read_flags
,
2892 struct inode
*inode
= page
->mapping
->host
;
2893 u64 start
= page_offset(page
);
2894 const u64 end
= start
+ PAGE_SIZE
- 1;
2897 u64 last_byte
= i_size_read(inode
);
2900 struct extent_map
*em
;
2901 struct block_device
*bdev
;
2904 size_t pg_offset
= 0;
2906 size_t disk_io_size
;
2907 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2908 unsigned long this_bio_flag
= 0;
2910 set_page_extent_mapped(page
);
2912 if (!PageUptodate(page
)) {
2913 if (cleancache_get_page(page
) == 0) {
2914 BUG_ON(blocksize
!= PAGE_SIZE
);
2915 unlock_extent(tree
, start
, end
);
2920 if (page
->index
== last_byte
>> PAGE_SHIFT
) {
2922 size_t zero_offset
= last_byte
& (PAGE_SIZE
- 1);
2925 iosize
= PAGE_SIZE
- zero_offset
;
2926 userpage
= kmap_atomic(page
);
2927 memset(userpage
+ zero_offset
, 0, iosize
);
2928 flush_dcache_page(page
);
2929 kunmap_atomic(userpage
);
2932 while (cur
<= end
) {
2933 bool force_bio_submit
= false;
2936 if (cur
>= last_byte
) {
2938 struct extent_state
*cached
= NULL
;
2940 iosize
= PAGE_SIZE
- pg_offset
;
2941 userpage
= kmap_atomic(page
);
2942 memset(userpage
+ pg_offset
, 0, iosize
);
2943 flush_dcache_page(page
);
2944 kunmap_atomic(userpage
);
2945 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2947 unlock_extent_cached(tree
, cur
,
2948 cur
+ iosize
- 1, &cached
);
2951 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
2952 end
- cur
+ 1, get_extent
, em_cached
);
2953 if (IS_ERR_OR_NULL(em
)) {
2955 unlock_extent(tree
, cur
, end
);
2958 extent_offset
= cur
- em
->start
;
2959 BUG_ON(extent_map_end(em
) <= cur
);
2962 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2963 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
2964 extent_set_compress_type(&this_bio_flag
,
2968 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2969 cur_end
= min(extent_map_end(em
) - 1, end
);
2970 iosize
= ALIGN(iosize
, blocksize
);
2971 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2972 disk_io_size
= em
->block_len
;
2973 offset
= em
->block_start
;
2975 offset
= em
->block_start
+ extent_offset
;
2976 disk_io_size
= iosize
;
2979 block_start
= em
->block_start
;
2980 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2981 block_start
= EXTENT_MAP_HOLE
;
2984 * If we have a file range that points to a compressed extent
2985 * and it's followed by a consecutive file range that points to
2986 * to the same compressed extent (possibly with a different
2987 * offset and/or length, so it either points to the whole extent
2988 * or only part of it), we must make sure we do not submit a
2989 * single bio to populate the pages for the 2 ranges because
2990 * this makes the compressed extent read zero out the pages
2991 * belonging to the 2nd range. Imagine the following scenario:
2994 * [0 - 8K] [8K - 24K]
2997 * points to extent X, points to extent X,
2998 * offset 4K, length of 8K offset 0, length 16K
3000 * [extent X, compressed length = 4K uncompressed length = 16K]
3002 * If the bio to read the compressed extent covers both ranges,
3003 * it will decompress extent X into the pages belonging to the
3004 * first range and then it will stop, zeroing out the remaining
3005 * pages that belong to the other range that points to extent X.
3006 * So here we make sure we submit 2 bios, one for the first
3007 * range and another one for the third range. Both will target
3008 * the same physical extent from disk, but we can't currently
3009 * make the compressed bio endio callback populate the pages
3010 * for both ranges because each compressed bio is tightly
3011 * coupled with a single extent map, and each range can have
3012 * an extent map with a different offset value relative to the
3013 * uncompressed data of our extent and different lengths. This
3014 * is a corner case so we prioritize correctness over
3015 * non-optimal behavior (submitting 2 bios for the same extent).
3017 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3018 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3019 *prev_em_start
!= em
->orig_start
)
3020 force_bio_submit
= true;
3023 *prev_em_start
= em
->orig_start
;
3025 free_extent_map(em
);
3028 /* we've found a hole, just zero and go on */
3029 if (block_start
== EXTENT_MAP_HOLE
) {
3031 struct extent_state
*cached
= NULL
;
3033 userpage
= kmap_atomic(page
);
3034 memset(userpage
+ pg_offset
, 0, iosize
);
3035 flush_dcache_page(page
);
3036 kunmap_atomic(userpage
);
3038 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3040 unlock_extent_cached(tree
, cur
,
3041 cur
+ iosize
- 1, &cached
);
3043 pg_offset
+= iosize
;
3046 /* the get_extent function already copied into the page */
3047 if (test_range_bit(tree
, cur
, cur_end
,
3048 EXTENT_UPTODATE
, 1, NULL
)) {
3049 check_page_uptodate(tree
, page
);
3050 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3052 pg_offset
+= iosize
;
3055 /* we have an inline extent but it didn't get marked up
3056 * to date. Error out
3058 if (block_start
== EXTENT_MAP_INLINE
) {
3060 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3062 pg_offset
+= iosize
;
3066 ret
= submit_extent_page(REQ_OP_READ
| read_flags
, tree
, NULL
,
3067 page
, offset
, disk_io_size
,
3068 pg_offset
, bdev
, bio
,
3069 end_bio_extent_readpage
, mirror_num
,
3075 *bio_flags
= this_bio_flag
;
3078 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3082 pg_offset
+= iosize
;
3086 if (!PageError(page
))
3087 SetPageUptodate(page
);
3093 static inline void __do_contiguous_readpages(struct extent_io_tree
*tree
,
3094 struct page
*pages
[], int nr_pages
,
3096 struct extent_map
**em_cached
,
3098 unsigned long *bio_flags
,
3101 struct inode
*inode
;
3102 struct btrfs_ordered_extent
*ordered
;
3105 inode
= pages
[0]->mapping
->host
;
3107 lock_extent(tree
, start
, end
);
3108 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
3112 unlock_extent(tree
, start
, end
);
3113 btrfs_start_ordered_extent(inode
, ordered
, 1);
3114 btrfs_put_ordered_extent(ordered
);
3117 for (index
= 0; index
< nr_pages
; index
++) {
3118 __do_readpage(tree
, pages
[index
], btrfs_get_extent
, em_cached
,
3119 bio
, 0, bio_flags
, 0, prev_em_start
);
3120 put_page(pages
[index
]);
3124 static void __extent_readpages(struct extent_io_tree
*tree
,
3125 struct page
*pages
[],
3127 struct extent_map
**em_cached
,
3128 struct bio
**bio
, unsigned long *bio_flags
,
3135 int first_index
= 0;
3137 for (index
= 0; index
< nr_pages
; index
++) {
3138 page_start
= page_offset(pages
[index
]);
3141 end
= start
+ PAGE_SIZE
- 1;
3142 first_index
= index
;
3143 } else if (end
+ 1 == page_start
) {
3146 __do_contiguous_readpages(tree
, &pages
[first_index
],
3147 index
- first_index
, start
,
3152 end
= start
+ PAGE_SIZE
- 1;
3153 first_index
= index
;
3158 __do_contiguous_readpages(tree
, &pages
[first_index
],
3159 index
- first_index
, start
,
3160 end
, em_cached
, bio
,
3161 bio_flags
, prev_em_start
);
3164 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3166 get_extent_t
*get_extent
,
3167 struct bio
**bio
, int mirror_num
,
3168 unsigned long *bio_flags
,
3169 unsigned int read_flags
)
3171 struct inode
*inode
= page
->mapping
->host
;
3172 struct btrfs_ordered_extent
*ordered
;
3173 u64 start
= page_offset(page
);
3174 u64 end
= start
+ PAGE_SIZE
- 1;
3178 lock_extent(tree
, start
, end
);
3179 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
3183 unlock_extent(tree
, start
, end
);
3184 btrfs_start_ordered_extent(inode
, ordered
, 1);
3185 btrfs_put_ordered_extent(ordered
);
3188 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3189 bio_flags
, read_flags
, NULL
);
3193 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3194 get_extent_t
*get_extent
, int mirror_num
)
3196 struct bio
*bio
= NULL
;
3197 unsigned long bio_flags
= 0;
3200 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3203 ret
= submit_one_bio(bio
, mirror_num
, bio_flags
);
3207 static void update_nr_written(struct writeback_control
*wbc
,
3208 unsigned long nr_written
)
3210 wbc
->nr_to_write
-= nr_written
;
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3223 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3224 struct page
*page
, struct writeback_control
*wbc
,
3225 struct extent_page_data
*epd
,
3227 unsigned long *nr_written
)
3229 struct extent_io_tree
*tree
= epd
->tree
;
3230 u64 page_end
= delalloc_start
+ PAGE_SIZE
- 1;
3232 u64 delalloc_to_write
= 0;
3233 u64 delalloc_end
= 0;
3235 int page_started
= 0;
3237 if (epd
->extent_locked
|| !tree
->ops
|| !tree
->ops
->fill_delalloc
)
3240 while (delalloc_end
< page_end
) {
3241 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3245 BTRFS_MAX_EXTENT_SIZE
);
3246 if (nr_delalloc
== 0) {
3247 delalloc_start
= delalloc_end
+ 1;
3250 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3255 /* File system has been set read-only */
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3263 ret
= ret
< 0 ? ret
: -EIO
;
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
3270 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3271 PAGE_SIZE
) >> PAGE_SHIFT
;
3272 delalloc_start
= delalloc_end
+ 1;
3274 if (wbc
->nr_to_write
< delalloc_to_write
) {
3277 if (delalloc_to_write
< thresh
* 2)
3278 thresh
= delalloc_to_write
;
3279 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3283 /* did the fill delalloc function already unlock and start
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3292 wbc
->nr_to_write
-= *nr_written
;
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3310 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3312 struct writeback_control
*wbc
,
3313 struct extent_page_data
*epd
,
3315 unsigned long nr_written
,
3316 unsigned int write_flags
, int *nr_ret
)
3318 struct extent_io_tree
*tree
= epd
->tree
;
3319 u64 start
= page_offset(page
);
3320 u64 page_end
= start
+ PAGE_SIZE
- 1;
3326 struct extent_map
*em
;
3327 struct block_device
*bdev
;
3328 size_t pg_offset
= 0;
3334 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3335 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3338 /* Fixup worker will requeue */
3340 wbc
->pages_skipped
++;
3342 redirty_page_for_writepage(wbc
, page
);
3344 update_nr_written(wbc
, nr_written
);
3351 * we don't want to touch the inode after unlocking the page,
3352 * so we update the mapping writeback index now
3354 update_nr_written(wbc
, nr_written
+ 1);
3357 if (i_size
<= start
) {
3358 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3359 tree
->ops
->writepage_end_io_hook(page
, start
,
3364 blocksize
= inode
->i_sb
->s_blocksize
;
3366 while (cur
<= end
) {
3370 if (cur
>= i_size
) {
3371 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3372 tree
->ops
->writepage_end_io_hook(page
, cur
,
3376 em
= btrfs_get_extent(BTRFS_I(inode
), page
, pg_offset
, cur
,
3378 if (IS_ERR_OR_NULL(em
)) {
3380 ret
= PTR_ERR_OR_ZERO(em
);
3384 extent_offset
= cur
- em
->start
;
3385 em_end
= extent_map_end(em
);
3386 BUG_ON(em_end
<= cur
);
3388 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3389 iosize
= ALIGN(iosize
, blocksize
);
3390 offset
= em
->block_start
+ extent_offset
;
3392 block_start
= em
->block_start
;
3393 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3394 free_extent_map(em
);
3398 * compressed and inline extents are written through other
3401 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3402 block_start
== EXTENT_MAP_INLINE
) {
3404 * end_io notification does not happen here for
3405 * compressed extents
3407 if (!compressed
&& tree
->ops
&&
3408 tree
->ops
->writepage_end_io_hook
)
3409 tree
->ops
->writepage_end_io_hook(page
, cur
,
3412 else if (compressed
) {
3413 /* we don't want to end_page_writeback on
3414 * a compressed extent. this happens
3421 pg_offset
+= iosize
;
3425 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3426 if (!PageWriteback(page
)) {
3427 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3428 "page %lu not writeback, cur %llu end %llu",
3429 page
->index
, cur
, end
);
3432 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, tree
, wbc
,
3433 page
, offset
, iosize
, pg_offset
,
3435 end_bio_extent_writepage
,
3439 if (PageWriteback(page
))
3440 end_page_writeback(page
);
3444 pg_offset
+= iosize
;
3453 * the writepage semantics are similar to regular writepage. extent
3454 * records are inserted to lock ranges in the tree, and as dirty areas
3455 * are found, they are marked writeback. Then the lock bits are removed
3456 * and the end_io handler clears the writeback ranges
3458 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3459 struct extent_page_data
*epd
)
3461 struct inode
*inode
= page
->mapping
->host
;
3462 u64 start
= page_offset(page
);
3463 u64 page_end
= start
+ PAGE_SIZE
- 1;
3466 size_t pg_offset
= 0;
3467 loff_t i_size
= i_size_read(inode
);
3468 unsigned long end_index
= i_size
>> PAGE_SHIFT
;
3469 unsigned int write_flags
= 0;
3470 unsigned long nr_written
= 0;
3472 write_flags
= wbc_to_write_flags(wbc
);
3474 trace___extent_writepage(page
, inode
, wbc
);
3476 WARN_ON(!PageLocked(page
));
3478 ClearPageError(page
);
3480 pg_offset
= i_size
& (PAGE_SIZE
- 1);
3481 if (page
->index
> end_index
||
3482 (page
->index
== end_index
&& !pg_offset
)) {
3483 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_SIZE
);
3488 if (page
->index
== end_index
) {
3491 userpage
= kmap_atomic(page
);
3492 memset(userpage
+ pg_offset
, 0,
3493 PAGE_SIZE
- pg_offset
);
3494 kunmap_atomic(userpage
);
3495 flush_dcache_page(page
);
3500 set_page_extent_mapped(page
);
3502 ret
= writepage_delalloc(inode
, page
, wbc
, epd
, start
, &nr_written
);
3508 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3509 i_size
, nr_written
, write_flags
, &nr
);
3515 /* make sure the mapping tag for page dirty gets cleared */
3516 set_page_writeback(page
);
3517 end_page_writeback(page
);
3519 if (PageError(page
)) {
3520 ret
= ret
< 0 ? ret
: -EIO
;
3521 end_extent_writepage(page
, ret
, start
, page_end
);
3530 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3532 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3533 TASK_UNINTERRUPTIBLE
);
3536 static noinline_for_stack
int
3537 lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3538 struct btrfs_fs_info
*fs_info
,
3539 struct extent_page_data
*epd
)
3541 unsigned long i
, num_pages
;
3545 if (!btrfs_try_tree_write_lock(eb
)) {
3547 flush_write_bio(epd
);
3548 btrfs_tree_lock(eb
);
3551 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3552 btrfs_tree_unlock(eb
);
3556 flush_write_bio(epd
);
3560 wait_on_extent_buffer_writeback(eb
);
3561 btrfs_tree_lock(eb
);
3562 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3564 btrfs_tree_unlock(eb
);
3569 * We need to do this to prevent races in people who check if the eb is
3570 * under IO since we can end up having no IO bits set for a short period
3573 spin_lock(&eb
->refs_lock
);
3574 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3575 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3576 spin_unlock(&eb
->refs_lock
);
3577 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3578 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3580 fs_info
->dirty_metadata_batch
);
3583 spin_unlock(&eb
->refs_lock
);
3586 btrfs_tree_unlock(eb
);
3591 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3592 for (i
= 0; i
< num_pages
; i
++) {
3593 struct page
*p
= eb
->pages
[i
];
3595 if (!trylock_page(p
)) {
3597 flush_write_bio(epd
);
3607 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3609 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3610 smp_mb__after_atomic();
3611 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3614 static void set_btree_ioerr(struct page
*page
)
3616 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3619 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3623 * If writeback for a btree extent that doesn't belong to a log tree
3624 * failed, increment the counter transaction->eb_write_errors.
3625 * We do this because while the transaction is running and before it's
3626 * committing (when we call filemap_fdata[write|wait]_range against
3627 * the btree inode), we might have
3628 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3629 * returns an error or an error happens during writeback, when we're
3630 * committing the transaction we wouldn't know about it, since the pages
3631 * can be no longer dirty nor marked anymore for writeback (if a
3632 * subsequent modification to the extent buffer didn't happen before the
3633 * transaction commit), which makes filemap_fdata[write|wait]_range not
3634 * able to find the pages tagged with SetPageError at transaction
3635 * commit time. So if this happens we must abort the transaction,
3636 * otherwise we commit a super block with btree roots that point to
3637 * btree nodes/leafs whose content on disk is invalid - either garbage
3638 * or the content of some node/leaf from a past generation that got
3639 * cowed or deleted and is no longer valid.
3641 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3642 * not be enough - we need to distinguish between log tree extents vs
3643 * non-log tree extents, and the next filemap_fdatawait_range() call
3644 * will catch and clear such errors in the mapping - and that call might
3645 * be from a log sync and not from a transaction commit. Also, checking
3646 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3647 * not done and would not be reliable - the eb might have been released
3648 * from memory and reading it back again means that flag would not be
3649 * set (since it's a runtime flag, not persisted on disk).
3651 * Using the flags below in the btree inode also makes us achieve the
3652 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3653 * writeback for all dirty pages and before filemap_fdatawait_range()
3654 * is called, the writeback for all dirty pages had already finished
3655 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3656 * filemap_fdatawait_range() would return success, as it could not know
3657 * that writeback errors happened (the pages were no longer tagged for
3660 switch (eb
->log_index
) {
3662 set_bit(BTRFS_FS_BTREE_ERR
, &eb
->fs_info
->flags
);
3665 set_bit(BTRFS_FS_LOG1_ERR
, &eb
->fs_info
->flags
);
3668 set_bit(BTRFS_FS_LOG2_ERR
, &eb
->fs_info
->flags
);
3671 BUG(); /* unexpected, logic error */
3675 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3677 struct bio_vec
*bvec
;
3678 struct extent_buffer
*eb
;
3681 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
3682 bio_for_each_segment_all(bvec
, bio
, i
) {
3683 struct page
*page
= bvec
->bv_page
;
3685 eb
= (struct extent_buffer
*)page
->private;
3687 done
= atomic_dec_and_test(&eb
->io_pages
);
3689 if (bio
->bi_status
||
3690 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3691 ClearPageUptodate(page
);
3692 set_btree_ioerr(page
);
3695 end_page_writeback(page
);
3700 end_extent_buffer_writeback(eb
);
3706 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3707 struct btrfs_fs_info
*fs_info
,
3708 struct writeback_control
*wbc
,
3709 struct extent_page_data
*epd
)
3711 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3712 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3713 u64 offset
= eb
->start
;
3715 unsigned long i
, num_pages
;
3716 unsigned long start
, end
;
3717 unsigned int write_flags
= wbc_to_write_flags(wbc
) | REQ_META
;
3720 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3721 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3722 atomic_set(&eb
->io_pages
, num_pages
);
3724 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 nritems
= btrfs_header_nritems(eb
);
3726 if (btrfs_header_level(eb
) > 0) {
3727 end
= btrfs_node_key_ptr_offset(nritems
);
3729 memzero_extent_buffer(eb
, end
, eb
->len
- end
);
3733 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3735 start
= btrfs_item_nr_offset(nritems
);
3736 end
= BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(fs_info
, eb
);
3737 memzero_extent_buffer(eb
, start
, end
- start
);
3740 for (i
= 0; i
< num_pages
; i
++) {
3741 struct page
*p
= eb
->pages
[i
];
3743 clear_page_dirty_for_io(p
);
3744 set_page_writeback(p
);
3745 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, tree
, wbc
,
3746 p
, offset
, PAGE_SIZE
, 0, bdev
,
3748 end_bio_extent_buffer_writepage
,
3752 if (PageWriteback(p
))
3753 end_page_writeback(p
);
3754 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3755 end_extent_buffer_writeback(eb
);
3759 offset
+= PAGE_SIZE
;
3760 update_nr_written(wbc
, 1);
3764 if (unlikely(ret
)) {
3765 for (; i
< num_pages
; i
++) {
3766 struct page
*p
= eb
->pages
[i
];
3767 clear_page_dirty_for_io(p
);
3775 int btree_write_cache_pages(struct address_space
*mapping
,
3776 struct writeback_control
*wbc
)
3778 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3779 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3780 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3781 struct extent_page_data epd
= {
3785 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3789 int nr_to_write_done
= 0;
3790 struct pagevec pvec
;
3793 pgoff_t end
; /* Inclusive */
3797 pagevec_init(&pvec
);
3798 if (wbc
->range_cyclic
) {
3799 index
= mapping
->writeback_index
; /* Start from prev offset */
3802 index
= wbc
->range_start
>> PAGE_SHIFT
;
3803 end
= wbc
->range_end
>> PAGE_SHIFT
;
3806 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3807 tag
= PAGECACHE_TAG_TOWRITE
;
3809 tag
= PAGECACHE_TAG_DIRTY
;
3811 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3812 tag_pages_for_writeback(mapping
, index
, end
);
3813 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3814 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
3819 for (i
= 0; i
< nr_pages
; i
++) {
3820 struct page
*page
= pvec
.pages
[i
];
3822 if (!PagePrivate(page
))
3825 spin_lock(&mapping
->private_lock
);
3826 if (!PagePrivate(page
)) {
3827 spin_unlock(&mapping
->private_lock
);
3831 eb
= (struct extent_buffer
*)page
->private;
3834 * Shouldn't happen and normally this would be a BUG_ON
3835 * but no sense in crashing the users box for something
3836 * we can survive anyway.
3839 spin_unlock(&mapping
->private_lock
);
3843 if (eb
== prev_eb
) {
3844 spin_unlock(&mapping
->private_lock
);
3848 ret
= atomic_inc_not_zero(&eb
->refs
);
3849 spin_unlock(&mapping
->private_lock
);
3854 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
3856 free_extent_buffer(eb
);
3860 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
3863 free_extent_buffer(eb
);
3866 free_extent_buffer(eb
);
3869 * the filesystem may choose to bump up nr_to_write.
3870 * We have to make sure to honor the new nr_to_write
3873 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3875 pagevec_release(&pvec
);
3878 if (!scanned
&& !done
) {
3880 * We hit the last page and there is more work to be done: wrap
3881 * back to the start of the file
3887 flush_write_bio(&epd
);
3892 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3893 * @mapping: address space structure to write
3894 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3895 * @data: data passed to __extent_writepage function
3897 * If a page is already under I/O, write_cache_pages() skips it, even
3898 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3899 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3900 * and msync() need to guarantee that all the data which was dirty at the time
3901 * the call was made get new I/O started against them. If wbc->sync_mode is
3902 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3903 * existing IO to complete.
3905 static int extent_write_cache_pages(struct address_space
*mapping
,
3906 struct writeback_control
*wbc
,
3907 struct extent_page_data
*epd
)
3909 struct inode
*inode
= mapping
->host
;
3912 int nr_to_write_done
= 0;
3913 struct pagevec pvec
;
3916 pgoff_t end
; /* Inclusive */
3918 int range_whole
= 0;
3923 * We have to hold onto the inode so that ordered extents can do their
3924 * work when the IO finishes. The alternative to this is failing to add
3925 * an ordered extent if the igrab() fails there and that is a huge pain
3926 * to deal with, so instead just hold onto the inode throughout the
3927 * writepages operation. If it fails here we are freeing up the inode
3928 * anyway and we'd rather not waste our time writing out stuff that is
3929 * going to be truncated anyway.
3934 pagevec_init(&pvec
);
3935 if (wbc
->range_cyclic
) {
3936 index
= mapping
->writeback_index
; /* Start from prev offset */
3939 index
= wbc
->range_start
>> PAGE_SHIFT
;
3940 end
= wbc
->range_end
>> PAGE_SHIFT
;
3941 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
3945 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3946 tag
= PAGECACHE_TAG_TOWRITE
;
3948 tag
= PAGECACHE_TAG_DIRTY
;
3950 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3951 tag_pages_for_writeback(mapping
, index
, end
);
3953 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3954 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
,
3955 &index
, end
, tag
))) {
3959 for (i
= 0; i
< nr_pages
; i
++) {
3960 struct page
*page
= pvec
.pages
[i
];
3962 done_index
= page
->index
;
3964 * At this point we hold neither the i_pages lock nor
3965 * the page lock: the page may be truncated or
3966 * invalidated (changing page->mapping to NULL),
3967 * or even swizzled back from swapper_space to
3968 * tmpfs file mapping
3970 if (!trylock_page(page
)) {
3971 flush_write_bio(epd
);
3975 if (unlikely(page
->mapping
!= mapping
)) {
3980 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
3981 if (PageWriteback(page
))
3982 flush_write_bio(epd
);
3983 wait_on_page_writeback(page
);
3986 if (PageWriteback(page
) ||
3987 !clear_page_dirty_for_io(page
)) {
3992 ret
= __extent_writepage(page
, wbc
, epd
);
3994 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
4000 * done_index is set past this page,
4001 * so media errors will not choke
4002 * background writeout for the entire
4003 * file. This has consequences for
4004 * range_cyclic semantics (ie. it may
4005 * not be suitable for data integrity
4008 done_index
= page
->index
+ 1;
4014 * the filesystem may choose to bump up nr_to_write.
4015 * We have to make sure to honor the new nr_to_write
4018 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4020 pagevec_release(&pvec
);
4023 if (!scanned
&& !done
) {
4025 * We hit the last page and there is more work to be done: wrap
4026 * back to the start of the file
4033 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 && range_whole
))
4034 mapping
->writeback_index
= done_index
;
4036 btrfs_add_delayed_iput(inode
);
4040 static void flush_write_bio(struct extent_page_data
*epd
)
4045 ret
= submit_one_bio(epd
->bio
, 0, 0);
4046 BUG_ON(ret
< 0); /* -ENOMEM */
4051 int extent_write_full_page(struct page
*page
, struct writeback_control
*wbc
)
4054 struct extent_page_data epd
= {
4056 .tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
,
4058 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4061 ret
= __extent_writepage(page
, wbc
, &epd
);
4063 flush_write_bio(&epd
);
4067 int extent_write_locked_range(struct inode
*inode
, u64 start
, u64 end
,
4071 struct address_space
*mapping
= inode
->i_mapping
;
4072 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
4074 unsigned long nr_pages
= (end
- start
+ PAGE_SIZE
) >>
4077 struct extent_page_data epd
= {
4081 .sync_io
= mode
== WB_SYNC_ALL
,
4083 struct writeback_control wbc_writepages
= {
4085 .nr_to_write
= nr_pages
* 2,
4086 .range_start
= start
,
4087 .range_end
= end
+ 1,
4090 while (start
<= end
) {
4091 page
= find_get_page(mapping
, start
>> PAGE_SHIFT
);
4092 if (clear_page_dirty_for_io(page
))
4093 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4095 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
4096 tree
->ops
->writepage_end_io_hook(page
, start
,
4097 start
+ PAGE_SIZE
- 1,
4105 flush_write_bio(&epd
);
4109 int extent_writepages(struct address_space
*mapping
,
4110 struct writeback_control
*wbc
)
4113 struct extent_page_data epd
= {
4115 .tree
= &BTRFS_I(mapping
->host
)->io_tree
,
4117 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4120 ret
= extent_write_cache_pages(mapping
, wbc
, &epd
);
4121 flush_write_bio(&epd
);
4125 int extent_readpages(struct address_space
*mapping
, struct list_head
*pages
,
4128 struct bio
*bio
= NULL
;
4130 unsigned long bio_flags
= 0;
4131 struct page
*pagepool
[16];
4133 struct extent_map
*em_cached
= NULL
;
4134 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4136 u64 prev_em_start
= (u64
)-1;
4138 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
4139 page
= list_entry(pages
->prev
, struct page
, lru
);
4141 prefetchw(&page
->flags
);
4142 list_del(&page
->lru
);
4143 if (add_to_page_cache_lru(page
, mapping
,
4145 readahead_gfp_mask(mapping
))) {
4150 pagepool
[nr
++] = page
;
4151 if (nr
< ARRAY_SIZE(pagepool
))
4153 __extent_readpages(tree
, pagepool
, nr
, &em_cached
, &bio
,
4154 &bio_flags
, &prev_em_start
);
4158 __extent_readpages(tree
, pagepool
, nr
, &em_cached
, &bio
,
4159 &bio_flags
, &prev_em_start
);
4162 free_extent_map(em_cached
);
4164 BUG_ON(!list_empty(pages
));
4166 return submit_one_bio(bio
, 0, bio_flags
);
4171 * basic invalidatepage code, this waits on any locked or writeback
4172 * ranges corresponding to the page, and then deletes any extent state
4173 * records from the tree
4175 int extent_invalidatepage(struct extent_io_tree
*tree
,
4176 struct page
*page
, unsigned long offset
)
4178 struct extent_state
*cached_state
= NULL
;
4179 u64 start
= page_offset(page
);
4180 u64 end
= start
+ PAGE_SIZE
- 1;
4181 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4183 start
+= ALIGN(offset
, blocksize
);
4187 lock_extent_bits(tree
, start
, end
, &cached_state
);
4188 wait_on_page_writeback(page
);
4189 clear_extent_bit(tree
, start
, end
,
4190 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4191 EXTENT_DO_ACCOUNTING
,
4192 1, 1, &cached_state
);
4197 * a helper for releasepage, this tests for areas of the page that
4198 * are locked or under IO and drops the related state bits if it is safe
4201 static int try_release_extent_state(struct extent_io_tree
*tree
,
4202 struct page
*page
, gfp_t mask
)
4204 u64 start
= page_offset(page
);
4205 u64 end
= start
+ PAGE_SIZE
- 1;
4208 if (test_range_bit(tree
, start
, end
,
4209 EXTENT_IOBITS
, 0, NULL
))
4213 * at this point we can safely clear everything except the
4214 * locked bit and the nodatasum bit
4216 ret
= __clear_extent_bit(tree
, start
, end
,
4217 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4218 0, 0, NULL
, mask
, NULL
);
4220 /* if clear_extent_bit failed for enomem reasons,
4221 * we can't allow the release to continue.
4232 * a helper for releasepage. As long as there are no locked extents
4233 * in the range corresponding to the page, both state records and extent
4234 * map records are removed
4236 int try_release_extent_mapping(struct page
*page
, gfp_t mask
)
4238 struct extent_map
*em
;
4239 u64 start
= page_offset(page
);
4240 u64 end
= start
+ PAGE_SIZE
- 1;
4241 struct btrfs_inode
*btrfs_inode
= BTRFS_I(page
->mapping
->host
);
4242 struct extent_io_tree
*tree
= &btrfs_inode
->io_tree
;
4243 struct extent_map_tree
*map
= &btrfs_inode
->extent_tree
;
4245 if (gfpflags_allow_blocking(mask
) &&
4246 page
->mapping
->host
->i_size
> SZ_16M
) {
4248 while (start
<= end
) {
4249 len
= end
- start
+ 1;
4250 write_lock(&map
->lock
);
4251 em
= lookup_extent_mapping(map
, start
, len
);
4253 write_unlock(&map
->lock
);
4256 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4257 em
->start
!= start
) {
4258 write_unlock(&map
->lock
);
4259 free_extent_map(em
);
4262 if (!test_range_bit(tree
, em
->start
,
4263 extent_map_end(em
) - 1,
4264 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
4266 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4267 &btrfs_inode
->runtime_flags
);
4268 remove_extent_mapping(map
, em
);
4269 /* once for the rb tree */
4270 free_extent_map(em
);
4272 start
= extent_map_end(em
);
4273 write_unlock(&map
->lock
);
4276 free_extent_map(em
);
4279 return try_release_extent_state(tree
, page
, mask
);
4283 * helper function for fiemap, which doesn't want to see any holes.
4284 * This maps until we find something past 'last'
4286 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4287 u64 offset
, u64 last
)
4289 u64 sectorsize
= btrfs_inode_sectorsize(inode
);
4290 struct extent_map
*em
;
4297 len
= last
- offset
;
4300 len
= ALIGN(len
, sectorsize
);
4301 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), NULL
, 0, offset
,
4303 if (IS_ERR_OR_NULL(em
))
4306 /* if this isn't a hole return it */
4307 if (em
->block_start
!= EXTENT_MAP_HOLE
)
4310 /* this is a hole, advance to the next extent */
4311 offset
= extent_map_end(em
);
4312 free_extent_map(em
);
4320 * To cache previous fiemap extent
4322 * Will be used for merging fiemap extent
4324 struct fiemap_cache
{
4333 * Helper to submit fiemap extent.
4335 * Will try to merge current fiemap extent specified by @offset, @phys,
4336 * @len and @flags with cached one.
4337 * And only when we fails to merge, cached one will be submitted as
4340 * Return value is the same as fiemap_fill_next_extent().
4342 static int emit_fiemap_extent(struct fiemap_extent_info
*fieinfo
,
4343 struct fiemap_cache
*cache
,
4344 u64 offset
, u64 phys
, u64 len
, u32 flags
)
4352 * Sanity check, extent_fiemap() should have ensured that new
4353 * fiemap extent won't overlap with cahced one.
4356 * NOTE: Physical address can overlap, due to compression
4358 if (cache
->offset
+ cache
->len
> offset
) {
4364 * Only merges fiemap extents if
4365 * 1) Their logical addresses are continuous
4367 * 2) Their physical addresses are continuous
4368 * So truly compressed (physical size smaller than logical size)
4369 * extents won't get merged with each other
4371 * 3) Share same flags except FIEMAP_EXTENT_LAST
4372 * So regular extent won't get merged with prealloc extent
4374 if (cache
->offset
+ cache
->len
== offset
&&
4375 cache
->phys
+ cache
->len
== phys
&&
4376 (cache
->flags
& ~FIEMAP_EXTENT_LAST
) ==
4377 (flags
& ~FIEMAP_EXTENT_LAST
)) {
4379 cache
->flags
|= flags
;
4380 goto try_submit_last
;
4383 /* Not mergeable, need to submit cached one */
4384 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4385 cache
->len
, cache
->flags
);
4386 cache
->cached
= false;
4390 cache
->cached
= true;
4391 cache
->offset
= offset
;
4394 cache
->flags
= flags
;
4396 if (cache
->flags
& FIEMAP_EXTENT_LAST
) {
4397 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
,
4398 cache
->phys
, cache
->len
, cache
->flags
);
4399 cache
->cached
= false;
4405 * Emit last fiemap cache
4407 * The last fiemap cache may still be cached in the following case:
4409 * |<- Fiemap range ->|
4410 * |<------------ First extent ----------->|
4412 * In this case, the first extent range will be cached but not emitted.
4413 * So we must emit it before ending extent_fiemap().
4415 static int emit_last_fiemap_cache(struct btrfs_fs_info
*fs_info
,
4416 struct fiemap_extent_info
*fieinfo
,
4417 struct fiemap_cache
*cache
)
4424 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4425 cache
->len
, cache
->flags
);
4426 cache
->cached
= false;
4432 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4433 __u64 start
, __u64 len
)
4437 u64 max
= start
+ len
;
4441 u64 last_for_get_extent
= 0;
4443 u64 isize
= i_size_read(inode
);
4444 struct btrfs_key found_key
;
4445 struct extent_map
*em
= NULL
;
4446 struct extent_state
*cached_state
= NULL
;
4447 struct btrfs_path
*path
;
4448 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4449 struct fiemap_cache cache
= { 0 };
4458 path
= btrfs_alloc_path();
4461 path
->leave_spinning
= 1;
4463 start
= round_down(start
, btrfs_inode_sectorsize(inode
));
4464 len
= round_up(max
, btrfs_inode_sectorsize(inode
)) - start
;
4467 * lookup the last file extent. We're not using i_size here
4468 * because there might be preallocation past i_size
4470 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
4471 btrfs_ino(BTRFS_I(inode
)), -1, 0);
4473 btrfs_free_path(path
);
4482 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4483 found_type
= found_key
.type
;
4485 /* No extents, but there might be delalloc bits */
4486 if (found_key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
4487 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4488 /* have to trust i_size as the end */
4490 last_for_get_extent
= isize
;
4493 * remember the start of the last extent. There are a
4494 * bunch of different factors that go into the length of the
4495 * extent, so its much less complex to remember where it started
4497 last
= found_key
.offset
;
4498 last_for_get_extent
= last
+ 1;
4500 btrfs_release_path(path
);
4503 * we might have some extents allocated but more delalloc past those
4504 * extents. so, we trust isize unless the start of the last extent is
4509 last_for_get_extent
= isize
;
4512 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4515 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
);
4524 u64 offset_in_extent
= 0;
4526 /* break if the extent we found is outside the range */
4527 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4531 * get_extent may return an extent that starts before our
4532 * requested range. We have to make sure the ranges
4533 * we return to fiemap always move forward and don't
4534 * overlap, so adjust the offsets here
4536 em_start
= max(em
->start
, off
);
4539 * record the offset from the start of the extent
4540 * for adjusting the disk offset below. Only do this if the
4541 * extent isn't compressed since our in ram offset may be past
4542 * what we have actually allocated on disk.
4544 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4545 offset_in_extent
= em_start
- em
->start
;
4546 em_end
= extent_map_end(em
);
4547 em_len
= em_end
- em_start
;
4549 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
)
4550 disko
= em
->block_start
+ offset_in_extent
;
4555 * bump off for our next call to get_extent
4557 off
= extent_map_end(em
);
4561 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4563 flags
|= FIEMAP_EXTENT_LAST
;
4564 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4565 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4566 FIEMAP_EXTENT_NOT_ALIGNED
);
4567 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4568 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4569 FIEMAP_EXTENT_UNKNOWN
);
4570 } else if (fieinfo
->fi_extents_max
) {
4571 u64 bytenr
= em
->block_start
-
4572 (em
->start
- em
->orig_start
);
4575 * As btrfs supports shared space, this information
4576 * can be exported to userspace tools via
4577 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4578 * then we're just getting a count and we can skip the
4581 ret
= btrfs_check_shared(root
,
4582 btrfs_ino(BTRFS_I(inode
)),
4587 flags
|= FIEMAP_EXTENT_SHARED
;
4590 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4591 flags
|= FIEMAP_EXTENT_ENCODED
;
4592 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4593 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4595 free_extent_map(em
);
4597 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4598 (last
== (u64
)-1 && isize
<= em_end
)) {
4599 flags
|= FIEMAP_EXTENT_LAST
;
4603 /* now scan forward to see if this is really the last extent. */
4604 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
);
4610 flags
|= FIEMAP_EXTENT_LAST
;
4613 ret
= emit_fiemap_extent(fieinfo
, &cache
, em_start
, disko
,
4623 ret
= emit_last_fiemap_cache(root
->fs_info
, fieinfo
, &cache
);
4624 free_extent_map(em
);
4626 btrfs_free_path(path
);
4627 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4632 static void __free_extent_buffer(struct extent_buffer
*eb
)
4634 btrfs_leak_debug_del(&eb
->leak_list
);
4635 kmem_cache_free(extent_buffer_cache
, eb
);
4638 int extent_buffer_under_io(struct extent_buffer
*eb
)
4640 return (atomic_read(&eb
->io_pages
) ||
4641 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4642 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4646 * Helper for releasing extent buffer page.
4648 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
)
4650 unsigned long index
;
4652 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4654 BUG_ON(extent_buffer_under_io(eb
));
4656 index
= num_extent_pages(eb
->start
, eb
->len
);
4662 page
= eb
->pages
[index
];
4666 spin_lock(&page
->mapping
->private_lock
);
4668 * We do this since we'll remove the pages after we've
4669 * removed the eb from the radix tree, so we could race
4670 * and have this page now attached to the new eb. So
4671 * only clear page_private if it's still connected to
4674 if (PagePrivate(page
) &&
4675 page
->private == (unsigned long)eb
) {
4676 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4677 BUG_ON(PageDirty(page
));
4678 BUG_ON(PageWriteback(page
));
4680 * We need to make sure we haven't be attached
4683 ClearPagePrivate(page
);
4684 set_page_private(page
, 0);
4685 /* One for the page private */
4690 spin_unlock(&page
->mapping
->private_lock
);
4692 /* One for when we allocated the page */
4694 } while (index
!= 0);
4698 * Helper for releasing the extent buffer.
4700 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4702 btrfs_release_extent_buffer_page(eb
);
4703 __free_extent_buffer(eb
);
4706 static struct extent_buffer
*
4707 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4710 struct extent_buffer
*eb
= NULL
;
4712 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
4715 eb
->fs_info
= fs_info
;
4717 rwlock_init(&eb
->lock
);
4718 atomic_set(&eb
->write_locks
, 0);
4719 atomic_set(&eb
->read_locks
, 0);
4720 atomic_set(&eb
->blocking_readers
, 0);
4721 atomic_set(&eb
->blocking_writers
, 0);
4722 atomic_set(&eb
->spinning_readers
, 0);
4723 atomic_set(&eb
->spinning_writers
, 0);
4724 eb
->lock_nested
= 0;
4725 init_waitqueue_head(&eb
->write_lock_wq
);
4726 init_waitqueue_head(&eb
->read_lock_wq
);
4728 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4730 spin_lock_init(&eb
->refs_lock
);
4731 atomic_set(&eb
->refs
, 1);
4732 atomic_set(&eb
->io_pages
, 0);
4735 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4738 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4739 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4744 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4748 struct extent_buffer
*new;
4749 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4751 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
4755 for (i
= 0; i
< num_pages
; i
++) {
4756 p
= alloc_page(GFP_NOFS
);
4758 btrfs_release_extent_buffer(new);
4761 attach_extent_buffer_page(new, p
);
4762 WARN_ON(PageDirty(p
));
4765 copy_page(page_address(p
), page_address(src
->pages
[i
]));
4768 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4769 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4774 struct extent_buffer
*__alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4775 u64 start
, unsigned long len
)
4777 struct extent_buffer
*eb
;
4778 unsigned long num_pages
;
4781 num_pages
= num_extent_pages(start
, len
);
4783 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4787 for (i
= 0; i
< num_pages
; i
++) {
4788 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4792 set_extent_buffer_uptodate(eb
);
4793 btrfs_set_header_nritems(eb
, 0);
4794 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4799 __free_page(eb
->pages
[i
- 1]);
4800 __free_extent_buffer(eb
);
4804 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4807 return __alloc_dummy_extent_buffer(fs_info
, start
, fs_info
->nodesize
);
4810 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4813 /* the ref bit is tricky. We have to make sure it is set
4814 * if we have the buffer dirty. Otherwise the
4815 * code to free a buffer can end up dropping a dirty
4818 * Once the ref bit is set, it won't go away while the
4819 * buffer is dirty or in writeback, and it also won't
4820 * go away while we have the reference count on the
4823 * We can't just set the ref bit without bumping the
4824 * ref on the eb because free_extent_buffer might
4825 * see the ref bit and try to clear it. If this happens
4826 * free_extent_buffer might end up dropping our original
4827 * ref by mistake and freeing the page before we are able
4828 * to add one more ref.
4830 * So bump the ref count first, then set the bit. If someone
4831 * beat us to it, drop the ref we added.
4833 refs
= atomic_read(&eb
->refs
);
4834 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4837 spin_lock(&eb
->refs_lock
);
4838 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4839 atomic_inc(&eb
->refs
);
4840 spin_unlock(&eb
->refs_lock
);
4843 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
4844 struct page
*accessed
)
4846 unsigned long num_pages
, i
;
4848 check_buffer_tree_ref(eb
);
4850 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4851 for (i
= 0; i
< num_pages
; i
++) {
4852 struct page
*p
= eb
->pages
[i
];
4855 mark_page_accessed(p
);
4859 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4862 struct extent_buffer
*eb
;
4865 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4866 start
>> PAGE_SHIFT
);
4867 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4870 * Lock our eb's refs_lock to avoid races with
4871 * free_extent_buffer. When we get our eb it might be flagged
4872 * with EXTENT_BUFFER_STALE and another task running
4873 * free_extent_buffer might have seen that flag set,
4874 * eb->refs == 2, that the buffer isn't under IO (dirty and
4875 * writeback flags not set) and it's still in the tree (flag
4876 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4877 * of decrementing the extent buffer's reference count twice.
4878 * So here we could race and increment the eb's reference count,
4879 * clear its stale flag, mark it as dirty and drop our reference
4880 * before the other task finishes executing free_extent_buffer,
4881 * which would later result in an attempt to free an extent
4882 * buffer that is dirty.
4884 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
4885 spin_lock(&eb
->refs_lock
);
4886 spin_unlock(&eb
->refs_lock
);
4888 mark_extent_buffer_accessed(eb
, NULL
);
4896 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4897 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
4900 struct extent_buffer
*eb
, *exists
= NULL
;
4903 eb
= find_extent_buffer(fs_info
, start
);
4906 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
4909 eb
->fs_info
= fs_info
;
4911 ret
= radix_tree_preload(GFP_NOFS
);
4914 spin_lock(&fs_info
->buffer_lock
);
4915 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4916 start
>> PAGE_SHIFT
, eb
);
4917 spin_unlock(&fs_info
->buffer_lock
);
4918 radix_tree_preload_end();
4919 if (ret
== -EEXIST
) {
4920 exists
= find_extent_buffer(fs_info
, start
);
4926 check_buffer_tree_ref(eb
);
4927 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4930 * We will free dummy extent buffer's if they come into
4931 * free_extent_buffer with a ref count of 2, but if we are using this we
4932 * want the buffers to stay in memory until we're done with them, so
4933 * bump the ref count again.
4935 atomic_inc(&eb
->refs
);
4938 btrfs_release_extent_buffer(eb
);
4943 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
4946 unsigned long len
= fs_info
->nodesize
;
4947 unsigned long num_pages
= num_extent_pages(start
, len
);
4949 unsigned long index
= start
>> PAGE_SHIFT
;
4950 struct extent_buffer
*eb
;
4951 struct extent_buffer
*exists
= NULL
;
4953 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
4957 if (!IS_ALIGNED(start
, fs_info
->sectorsize
)) {
4958 btrfs_err(fs_info
, "bad tree block start %llu", start
);
4959 return ERR_PTR(-EINVAL
);
4962 eb
= find_extent_buffer(fs_info
, start
);
4966 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4968 return ERR_PTR(-ENOMEM
);
4970 for (i
= 0; i
< num_pages
; i
++, index
++) {
4971 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
4973 exists
= ERR_PTR(-ENOMEM
);
4977 spin_lock(&mapping
->private_lock
);
4978 if (PagePrivate(p
)) {
4980 * We could have already allocated an eb for this page
4981 * and attached one so lets see if we can get a ref on
4982 * the existing eb, and if we can we know it's good and
4983 * we can just return that one, else we know we can just
4984 * overwrite page->private.
4986 exists
= (struct extent_buffer
*)p
->private;
4987 if (atomic_inc_not_zero(&exists
->refs
)) {
4988 spin_unlock(&mapping
->private_lock
);
4991 mark_extent_buffer_accessed(exists
, p
);
4997 * Do this so attach doesn't complain and we need to
4998 * drop the ref the old guy had.
5000 ClearPagePrivate(p
);
5001 WARN_ON(PageDirty(p
));
5004 attach_extent_buffer_page(eb
, p
);
5005 spin_unlock(&mapping
->private_lock
);
5006 WARN_ON(PageDirty(p
));
5008 if (!PageUptodate(p
))
5012 * see below about how we avoid a nasty race with release page
5013 * and why we unlock later
5017 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5019 ret
= radix_tree_preload(GFP_NOFS
);
5021 exists
= ERR_PTR(ret
);
5025 spin_lock(&fs_info
->buffer_lock
);
5026 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5027 start
>> PAGE_SHIFT
, eb
);
5028 spin_unlock(&fs_info
->buffer_lock
);
5029 radix_tree_preload_end();
5030 if (ret
== -EEXIST
) {
5031 exists
= find_extent_buffer(fs_info
, start
);
5037 /* add one reference for the tree */
5038 check_buffer_tree_ref(eb
);
5039 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5042 * there is a race where release page may have
5043 * tried to find this extent buffer in the radix
5044 * but failed. It will tell the VM it is safe to
5045 * reclaim the, and it will clear the page private bit.
5046 * We must make sure to set the page private bit properly
5047 * after the extent buffer is in the radix tree so
5048 * it doesn't get lost
5050 SetPageChecked(eb
->pages
[0]);
5051 for (i
= 1; i
< num_pages
; i
++) {
5053 ClearPageChecked(p
);
5056 unlock_page(eb
->pages
[0]);
5060 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5061 for (i
= 0; i
< num_pages
; i
++) {
5063 unlock_page(eb
->pages
[i
]);
5066 btrfs_release_extent_buffer(eb
);
5070 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5072 struct extent_buffer
*eb
=
5073 container_of(head
, struct extent_buffer
, rcu_head
);
5075 __free_extent_buffer(eb
);
5078 /* Expects to have eb->eb_lock already held */
5079 static int release_extent_buffer(struct extent_buffer
*eb
)
5081 WARN_ON(atomic_read(&eb
->refs
) == 0);
5082 if (atomic_dec_and_test(&eb
->refs
)) {
5083 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5084 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5086 spin_unlock(&eb
->refs_lock
);
5088 spin_lock(&fs_info
->buffer_lock
);
5089 radix_tree_delete(&fs_info
->buffer_radix
,
5090 eb
->start
>> PAGE_SHIFT
);
5091 spin_unlock(&fs_info
->buffer_lock
);
5093 spin_unlock(&eb
->refs_lock
);
5096 /* Should be safe to release our pages at this point */
5097 btrfs_release_extent_buffer_page(eb
);
5098 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5099 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))) {
5100 __free_extent_buffer(eb
);
5104 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5107 spin_unlock(&eb
->refs_lock
);
5112 void free_extent_buffer(struct extent_buffer
*eb
)
5120 refs
= atomic_read(&eb
->refs
);
5123 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5128 spin_lock(&eb
->refs_lock
);
5129 if (atomic_read(&eb
->refs
) == 2 &&
5130 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
5131 atomic_dec(&eb
->refs
);
5133 if (atomic_read(&eb
->refs
) == 2 &&
5134 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5135 !extent_buffer_under_io(eb
) &&
5136 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5137 atomic_dec(&eb
->refs
);
5140 * I know this is terrible, but it's temporary until we stop tracking
5141 * the uptodate bits and such for the extent buffers.
5143 release_extent_buffer(eb
);
5146 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5151 spin_lock(&eb
->refs_lock
);
5152 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5154 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5155 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5156 atomic_dec(&eb
->refs
);
5157 release_extent_buffer(eb
);
5160 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5163 unsigned long num_pages
;
5166 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5168 for (i
= 0; i
< num_pages
; i
++) {
5169 page
= eb
->pages
[i
];
5170 if (!PageDirty(page
))
5174 WARN_ON(!PagePrivate(page
));
5176 clear_page_dirty_for_io(page
);
5177 xa_lock_irq(&page
->mapping
->i_pages
);
5178 if (!PageDirty(page
)) {
5179 radix_tree_tag_clear(&page
->mapping
->i_pages
,
5181 PAGECACHE_TAG_DIRTY
);
5183 xa_unlock_irq(&page
->mapping
->i_pages
);
5184 ClearPageError(page
);
5187 WARN_ON(atomic_read(&eb
->refs
) == 0);
5190 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
5193 unsigned long num_pages
;
5196 check_buffer_tree_ref(eb
);
5198 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5200 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5201 WARN_ON(atomic_read(&eb
->refs
) == 0);
5202 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5204 for (i
= 0; i
< num_pages
; i
++)
5205 set_page_dirty(eb
->pages
[i
]);
5209 void clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5213 unsigned long num_pages
;
5215 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5216 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5217 for (i
= 0; i
< num_pages
; i
++) {
5218 page
= eb
->pages
[i
];
5220 ClearPageUptodate(page
);
5224 void set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5228 unsigned long num_pages
;
5230 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5231 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5232 for (i
= 0; i
< num_pages
; i
++) {
5233 page
= eb
->pages
[i
];
5234 SetPageUptodate(page
);
5238 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
5239 struct extent_buffer
*eb
, int wait
, int mirror_num
)
5245 int locked_pages
= 0;
5246 int all_uptodate
= 1;
5247 unsigned long num_pages
;
5248 unsigned long num_reads
= 0;
5249 struct bio
*bio
= NULL
;
5250 unsigned long bio_flags
= 0;
5252 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5255 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5256 for (i
= 0; i
< num_pages
; i
++) {
5257 page
= eb
->pages
[i
];
5258 if (wait
== WAIT_NONE
) {
5259 if (!trylock_page(page
))
5267 * We need to firstly lock all pages to make sure that
5268 * the uptodate bit of our pages won't be affected by
5269 * clear_extent_buffer_uptodate().
5271 for (i
= 0; i
< num_pages
; i
++) {
5272 page
= eb
->pages
[i
];
5273 if (!PageUptodate(page
)) {
5280 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5284 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5285 eb
->read_mirror
= 0;
5286 atomic_set(&eb
->io_pages
, num_reads
);
5287 for (i
= 0; i
< num_pages
; i
++) {
5288 page
= eb
->pages
[i
];
5290 if (!PageUptodate(page
)) {
5292 atomic_dec(&eb
->io_pages
);
5297 ClearPageError(page
);
5298 err
= __extent_read_full_page(tree
, page
,
5299 btree_get_extent
, &bio
,
5300 mirror_num
, &bio_flags
,
5305 * We use &bio in above __extent_read_full_page,
5306 * so we ensure that if it returns error, the
5307 * current page fails to add itself to bio and
5308 * it's been unlocked.
5310 * We must dec io_pages by ourselves.
5312 atomic_dec(&eb
->io_pages
);
5320 err
= submit_one_bio(bio
, mirror_num
, bio_flags
);
5325 if (ret
|| wait
!= WAIT_COMPLETE
)
5328 for (i
= 0; i
< num_pages
; i
++) {
5329 page
= eb
->pages
[i
];
5330 wait_on_page_locked(page
);
5331 if (!PageUptodate(page
))
5338 while (locked_pages
> 0) {
5340 page
= eb
->pages
[locked_pages
];
5346 void read_extent_buffer(const struct extent_buffer
*eb
, void *dstv
,
5347 unsigned long start
, unsigned long len
)
5353 char *dst
= (char *)dstv
;
5354 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5355 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5357 if (start
+ len
> eb
->len
) {
5358 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5359 eb
->start
, eb
->len
, start
, len
);
5360 memset(dst
, 0, len
);
5364 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5367 page
= eb
->pages
[i
];
5369 cur
= min(len
, (PAGE_SIZE
- offset
));
5370 kaddr
= page_address(page
);
5371 memcpy(dst
, kaddr
+ offset
, cur
);
5380 int read_extent_buffer_to_user(const struct extent_buffer
*eb
,
5382 unsigned long start
, unsigned long len
)
5388 char __user
*dst
= (char __user
*)dstv
;
5389 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5390 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5393 WARN_ON(start
> eb
->len
);
5394 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5396 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5399 page
= eb
->pages
[i
];
5401 cur
= min(len
, (PAGE_SIZE
- offset
));
5402 kaddr
= page_address(page
);
5403 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5418 * return 0 if the item is found within a page.
5419 * return 1 if the item spans two pages.
5420 * return -EINVAL otherwise.
5422 int map_private_extent_buffer(const struct extent_buffer
*eb
,
5423 unsigned long start
, unsigned long min_len
,
5424 char **map
, unsigned long *map_start
,
5425 unsigned long *map_len
)
5427 size_t offset
= start
& (PAGE_SIZE
- 1);
5430 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5431 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5432 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5435 if (start
+ min_len
> eb
->len
) {
5436 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5437 eb
->start
, eb
->len
, start
, min_len
);
5445 offset
= start_offset
;
5449 *map_start
= ((u64
)i
<< PAGE_SHIFT
) - start_offset
;
5453 kaddr
= page_address(p
);
5454 *map
= kaddr
+ offset
;
5455 *map_len
= PAGE_SIZE
- offset
;
5459 int memcmp_extent_buffer(const struct extent_buffer
*eb
, const void *ptrv
,
5460 unsigned long start
, unsigned long len
)
5466 char *ptr
= (char *)ptrv
;
5467 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5468 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5471 WARN_ON(start
> eb
->len
);
5472 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5474 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5477 page
= eb
->pages
[i
];
5479 cur
= min(len
, (PAGE_SIZE
- offset
));
5481 kaddr
= page_address(page
);
5482 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5494 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer
*eb
,
5499 WARN_ON(!PageUptodate(eb
->pages
[0]));
5500 kaddr
= page_address(eb
->pages
[0]);
5501 memcpy(kaddr
+ offsetof(struct btrfs_header
, chunk_tree_uuid
), srcv
,
5505 void write_extent_buffer_fsid(struct extent_buffer
*eb
, const void *srcv
)
5509 WARN_ON(!PageUptodate(eb
->pages
[0]));
5510 kaddr
= page_address(eb
->pages
[0]);
5511 memcpy(kaddr
+ offsetof(struct btrfs_header
, fsid
), srcv
,
5515 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5516 unsigned long start
, unsigned long len
)
5522 char *src
= (char *)srcv
;
5523 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5524 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5526 WARN_ON(start
> eb
->len
);
5527 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5529 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5532 page
= eb
->pages
[i
];
5533 WARN_ON(!PageUptodate(page
));
5535 cur
= min(len
, PAGE_SIZE
- offset
);
5536 kaddr
= page_address(page
);
5537 memcpy(kaddr
+ offset
, src
, cur
);
5546 void memzero_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5553 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5554 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5556 WARN_ON(start
> eb
->len
);
5557 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5559 offset
= (start_offset
+ start
) & (PAGE_SIZE
- 1);
5562 page
= eb
->pages
[i
];
5563 WARN_ON(!PageUptodate(page
));
5565 cur
= min(len
, PAGE_SIZE
- offset
);
5566 kaddr
= page_address(page
);
5567 memset(kaddr
+ offset
, 0, cur
);
5575 void copy_extent_buffer_full(struct extent_buffer
*dst
,
5576 struct extent_buffer
*src
)
5581 ASSERT(dst
->len
== src
->len
);
5583 num_pages
= num_extent_pages(dst
->start
, dst
->len
);
5584 for (i
= 0; i
< num_pages
; i
++)
5585 copy_page(page_address(dst
->pages
[i
]),
5586 page_address(src
->pages
[i
]));
5589 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5590 unsigned long dst_offset
, unsigned long src_offset
,
5593 u64 dst_len
= dst
->len
;
5598 size_t start_offset
= dst
->start
& ((u64
)PAGE_SIZE
- 1);
5599 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5601 WARN_ON(src
->len
!= dst_len
);
5603 offset
= (start_offset
+ dst_offset
) &
5607 page
= dst
->pages
[i
];
5608 WARN_ON(!PageUptodate(page
));
5610 cur
= min(len
, (unsigned long)(PAGE_SIZE
- offset
));
5612 kaddr
= page_address(page
);
5613 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5623 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5625 * @eb: the extent buffer
5626 * @start: offset of the bitmap item in the extent buffer
5628 * @page_index: return index of the page in the extent buffer that contains the
5630 * @page_offset: return offset into the page given by page_index
5632 * This helper hides the ugliness of finding the byte in an extent buffer which
5633 * contains a given bit.
5635 static inline void eb_bitmap_offset(struct extent_buffer
*eb
,
5636 unsigned long start
, unsigned long nr
,
5637 unsigned long *page_index
,
5638 size_t *page_offset
)
5640 size_t start_offset
= eb
->start
& ((u64
)PAGE_SIZE
- 1);
5641 size_t byte_offset
= BIT_BYTE(nr
);
5645 * The byte we want is the offset of the extent buffer + the offset of
5646 * the bitmap item in the extent buffer + the offset of the byte in the
5649 offset
= start_offset
+ start
+ byte_offset
;
5651 *page_index
= offset
>> PAGE_SHIFT
;
5652 *page_offset
= offset
& (PAGE_SIZE
- 1);
5656 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5657 * @eb: the extent buffer
5658 * @start: offset of the bitmap item in the extent buffer
5659 * @nr: bit number to test
5661 int extent_buffer_test_bit(struct extent_buffer
*eb
, unsigned long start
,
5669 eb_bitmap_offset(eb
, start
, nr
, &i
, &offset
);
5670 page
= eb
->pages
[i
];
5671 WARN_ON(!PageUptodate(page
));
5672 kaddr
= page_address(page
);
5673 return 1U & (kaddr
[offset
] >> (nr
& (BITS_PER_BYTE
- 1)));
5677 * extent_buffer_bitmap_set - set an area of a bitmap
5678 * @eb: the extent buffer
5679 * @start: offset of the bitmap item in the extent buffer
5680 * @pos: bit number of the first bit
5681 * @len: number of bits to set
5683 void extent_buffer_bitmap_set(struct extent_buffer
*eb
, unsigned long start
,
5684 unsigned long pos
, unsigned long len
)
5690 const unsigned int size
= pos
+ len
;
5691 int bits_to_set
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5692 u8 mask_to_set
= BITMAP_FIRST_BYTE_MASK(pos
);
5694 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5695 page
= eb
->pages
[i
];
5696 WARN_ON(!PageUptodate(page
));
5697 kaddr
= page_address(page
);
5699 while (len
>= bits_to_set
) {
5700 kaddr
[offset
] |= mask_to_set
;
5702 bits_to_set
= BITS_PER_BYTE
;
5704 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5706 page
= eb
->pages
[++i
];
5707 WARN_ON(!PageUptodate(page
));
5708 kaddr
= page_address(page
);
5712 mask_to_set
&= BITMAP_LAST_BYTE_MASK(size
);
5713 kaddr
[offset
] |= mask_to_set
;
5719 * extent_buffer_bitmap_clear - clear an area of a bitmap
5720 * @eb: the extent buffer
5721 * @start: offset of the bitmap item in the extent buffer
5722 * @pos: bit number of the first bit
5723 * @len: number of bits to clear
5725 void extent_buffer_bitmap_clear(struct extent_buffer
*eb
, unsigned long start
,
5726 unsigned long pos
, unsigned long len
)
5732 const unsigned int size
= pos
+ len
;
5733 int bits_to_clear
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5734 u8 mask_to_clear
= BITMAP_FIRST_BYTE_MASK(pos
);
5736 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5737 page
= eb
->pages
[i
];
5738 WARN_ON(!PageUptodate(page
));
5739 kaddr
= page_address(page
);
5741 while (len
>= bits_to_clear
) {
5742 kaddr
[offset
] &= ~mask_to_clear
;
5743 len
-= bits_to_clear
;
5744 bits_to_clear
= BITS_PER_BYTE
;
5746 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5748 page
= eb
->pages
[++i
];
5749 WARN_ON(!PageUptodate(page
));
5750 kaddr
= page_address(page
);
5754 mask_to_clear
&= BITMAP_LAST_BYTE_MASK(size
);
5755 kaddr
[offset
] &= ~mask_to_clear
;
5759 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5761 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5762 return distance
< len
;
5765 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5766 unsigned long dst_off
, unsigned long src_off
,
5769 char *dst_kaddr
= page_address(dst_page
);
5771 int must_memmove
= 0;
5773 if (dst_page
!= src_page
) {
5774 src_kaddr
= page_address(src_page
);
5776 src_kaddr
= dst_kaddr
;
5777 if (areas_overlap(src_off
, dst_off
, len
))
5782 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5784 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5787 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5788 unsigned long src_offset
, unsigned long len
)
5790 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5792 size_t dst_off_in_page
;
5793 size_t src_off_in_page
;
5794 size_t start_offset
= dst
->start
& ((u64
)PAGE_SIZE
- 1);
5795 unsigned long dst_i
;
5796 unsigned long src_i
;
5798 if (src_offset
+ len
> dst
->len
) {
5800 "memmove bogus src_offset %lu move len %lu dst len %lu",
5801 src_offset
, len
, dst
->len
);
5804 if (dst_offset
+ len
> dst
->len
) {
5806 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5807 dst_offset
, len
, dst
->len
);
5812 dst_off_in_page
= (start_offset
+ dst_offset
) &
5814 src_off_in_page
= (start_offset
+ src_offset
) &
5817 dst_i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5818 src_i
= (start_offset
+ src_offset
) >> PAGE_SHIFT
;
5820 cur
= min(len
, (unsigned long)(PAGE_SIZE
-
5822 cur
= min_t(unsigned long, cur
,
5823 (unsigned long)(PAGE_SIZE
- dst_off_in_page
));
5825 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5826 dst_off_in_page
, src_off_in_page
, cur
);
5834 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5835 unsigned long src_offset
, unsigned long len
)
5837 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5839 size_t dst_off_in_page
;
5840 size_t src_off_in_page
;
5841 unsigned long dst_end
= dst_offset
+ len
- 1;
5842 unsigned long src_end
= src_offset
+ len
- 1;
5843 size_t start_offset
= dst
->start
& ((u64
)PAGE_SIZE
- 1);
5844 unsigned long dst_i
;
5845 unsigned long src_i
;
5847 if (src_offset
+ len
> dst
->len
) {
5849 "memmove bogus src_offset %lu move len %lu len %lu",
5850 src_offset
, len
, dst
->len
);
5853 if (dst_offset
+ len
> dst
->len
) {
5855 "memmove bogus dst_offset %lu move len %lu len %lu",
5856 dst_offset
, len
, dst
->len
);
5859 if (dst_offset
< src_offset
) {
5860 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5864 dst_i
= (start_offset
+ dst_end
) >> PAGE_SHIFT
;
5865 src_i
= (start_offset
+ src_end
) >> PAGE_SHIFT
;
5867 dst_off_in_page
= (start_offset
+ dst_end
) &
5869 src_off_in_page
= (start_offset
+ src_end
) &
5872 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5873 cur
= min(cur
, dst_off_in_page
+ 1);
5874 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5875 dst_off_in_page
- cur
+ 1,
5876 src_off_in_page
- cur
+ 1, cur
);
5884 int try_release_extent_buffer(struct page
*page
)
5886 struct extent_buffer
*eb
;
5889 * We need to make sure nobody is attaching this page to an eb right
5892 spin_lock(&page
->mapping
->private_lock
);
5893 if (!PagePrivate(page
)) {
5894 spin_unlock(&page
->mapping
->private_lock
);
5898 eb
= (struct extent_buffer
*)page
->private;
5902 * This is a little awful but should be ok, we need to make sure that
5903 * the eb doesn't disappear out from under us while we're looking at
5906 spin_lock(&eb
->refs_lock
);
5907 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5908 spin_unlock(&eb
->refs_lock
);
5909 spin_unlock(&page
->mapping
->private_lock
);
5912 spin_unlock(&page
->mapping
->private_lock
);
5915 * If tree ref isn't set then we know the ref on this eb is a real ref,
5916 * so just return, this page will likely be freed soon anyway.
5918 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5919 spin_unlock(&eb
->refs_lock
);
5923 return release_extent_buffer(eb
);