Linux 4.18.10
[linux/fpc-iii.git] / fs / btrfs / file.c
blob51e77d72068af0ba3f9ffdfd624409c00d51978e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/time.h>
10 #include <linux/init.h>
11 #include <linux/string.h>
12 #include <linux/backing-dev.h>
13 #include <linux/mpage.h>
14 #include <linux/falloc.h>
15 #include <linux/swap.h>
16 #include <linux/writeback.h>
17 #include <linux/compat.h>
18 #include <linux/slab.h>
19 #include <linux/btrfs.h>
20 #include <linux/uio.h>
21 #include <linux/iversion.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "print-tree.h"
27 #include "tree-log.h"
28 #include "locking.h"
29 #include "volumes.h"
30 #include "qgroup.h"
31 #include "compression.h"
33 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 * when auto defrag is enabled we
36 * queue up these defrag structs to remember which
37 * inodes need defragging passes
39 struct inode_defrag {
40 struct rb_node rb_node;
41 /* objectid */
42 u64 ino;
44 * transid where the defrag was added, we search for
45 * extents newer than this
47 u64 transid;
49 /* root objectid */
50 u64 root;
52 /* last offset we were able to defrag */
53 u64 last_offset;
55 /* if we've wrapped around back to zero once already */
56 int cycled;
59 static int __compare_inode_defrag(struct inode_defrag *defrag1,
60 struct inode_defrag *defrag2)
62 if (defrag1->root > defrag2->root)
63 return 1;
64 else if (defrag1->root < defrag2->root)
65 return -1;
66 else if (defrag1->ino > defrag2->ino)
67 return 1;
68 else if (defrag1->ino < defrag2->ino)
69 return -1;
70 else
71 return 0;
74 /* pop a record for an inode into the defrag tree. The lock
75 * must be held already
77 * If you're inserting a record for an older transid than an
78 * existing record, the transid already in the tree is lowered
80 * If an existing record is found the defrag item you
81 * pass in is freed
83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
84 struct inode_defrag *defrag)
86 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
87 struct inode_defrag *entry;
88 struct rb_node **p;
89 struct rb_node *parent = NULL;
90 int ret;
92 p = &fs_info->defrag_inodes.rb_node;
93 while (*p) {
94 parent = *p;
95 entry = rb_entry(parent, struct inode_defrag, rb_node);
97 ret = __compare_inode_defrag(defrag, entry);
98 if (ret < 0)
99 p = &parent->rb_left;
100 else if (ret > 0)
101 p = &parent->rb_right;
102 else {
103 /* if we're reinserting an entry for
104 * an old defrag run, make sure to
105 * lower the transid of our existing record
107 if (defrag->transid < entry->transid)
108 entry->transid = defrag->transid;
109 if (defrag->last_offset > entry->last_offset)
110 entry->last_offset = defrag->last_offset;
111 return -EEXIST;
114 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
115 rb_link_node(&defrag->rb_node, parent, p);
116 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
117 return 0;
120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
123 return 0;
125 if (btrfs_fs_closing(fs_info))
126 return 0;
128 return 1;
132 * insert a defrag record for this inode if auto defrag is
133 * enabled
135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
136 struct btrfs_inode *inode)
138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
139 struct btrfs_root *root = inode->root;
140 struct inode_defrag *defrag;
141 u64 transid;
142 int ret;
144 if (!__need_auto_defrag(fs_info))
145 return 0;
147 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
148 return 0;
150 if (trans)
151 transid = trans->transid;
152 else
153 transid = inode->root->last_trans;
155 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
156 if (!defrag)
157 return -ENOMEM;
159 defrag->ino = btrfs_ino(inode);
160 defrag->transid = transid;
161 defrag->root = root->root_key.objectid;
163 spin_lock(&fs_info->defrag_inodes_lock);
164 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166 * If we set IN_DEFRAG flag and evict the inode from memory,
167 * and then re-read this inode, this new inode doesn't have
168 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 ret = __btrfs_add_inode_defrag(inode, defrag);
171 if (ret)
172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173 } else {
174 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176 spin_unlock(&fs_info->defrag_inodes_lock);
177 return 0;
181 * Requeue the defrag object. If there is a defrag object that points to
182 * the same inode in the tree, we will merge them together (by
183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
186 struct inode_defrag *defrag)
188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
189 int ret;
191 if (!__need_auto_defrag(fs_info))
192 goto out;
195 * Here we don't check the IN_DEFRAG flag, because we need merge
196 * them together.
198 spin_lock(&fs_info->defrag_inodes_lock);
199 ret = __btrfs_add_inode_defrag(inode, defrag);
200 spin_unlock(&fs_info->defrag_inodes_lock);
201 if (ret)
202 goto out;
203 return;
204 out:
205 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
209 * pick the defragable inode that we want, if it doesn't exist, we will get
210 * the next one.
212 static struct inode_defrag *
213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 struct inode_defrag *entry = NULL;
216 struct inode_defrag tmp;
217 struct rb_node *p;
218 struct rb_node *parent = NULL;
219 int ret;
221 tmp.ino = ino;
222 tmp.root = root;
224 spin_lock(&fs_info->defrag_inodes_lock);
225 p = fs_info->defrag_inodes.rb_node;
226 while (p) {
227 parent = p;
228 entry = rb_entry(parent, struct inode_defrag, rb_node);
230 ret = __compare_inode_defrag(&tmp, entry);
231 if (ret < 0)
232 p = parent->rb_left;
233 else if (ret > 0)
234 p = parent->rb_right;
235 else
236 goto out;
239 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
240 parent = rb_next(parent);
241 if (parent)
242 entry = rb_entry(parent, struct inode_defrag, rb_node);
243 else
244 entry = NULL;
246 out:
247 if (entry)
248 rb_erase(parent, &fs_info->defrag_inodes);
249 spin_unlock(&fs_info->defrag_inodes_lock);
250 return entry;
253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 struct inode_defrag *defrag;
256 struct rb_node *node;
258 spin_lock(&fs_info->defrag_inodes_lock);
259 node = rb_first(&fs_info->defrag_inodes);
260 while (node) {
261 rb_erase(node, &fs_info->defrag_inodes);
262 defrag = rb_entry(node, struct inode_defrag, rb_node);
263 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265 cond_resched_lock(&fs_info->defrag_inodes_lock);
267 node = rb_first(&fs_info->defrag_inodes);
269 spin_unlock(&fs_info->defrag_inodes_lock);
272 #define BTRFS_DEFRAG_BATCH 1024
274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
275 struct inode_defrag *defrag)
277 struct btrfs_root *inode_root;
278 struct inode *inode;
279 struct btrfs_key key;
280 struct btrfs_ioctl_defrag_range_args range;
281 int num_defrag;
282 int index;
283 int ret;
285 /* get the inode */
286 key.objectid = defrag->root;
287 key.type = BTRFS_ROOT_ITEM_KEY;
288 key.offset = (u64)-1;
290 index = srcu_read_lock(&fs_info->subvol_srcu);
292 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
293 if (IS_ERR(inode_root)) {
294 ret = PTR_ERR(inode_root);
295 goto cleanup;
298 key.objectid = defrag->ino;
299 key.type = BTRFS_INODE_ITEM_KEY;
300 key.offset = 0;
301 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
302 if (IS_ERR(inode)) {
303 ret = PTR_ERR(inode);
304 goto cleanup;
306 srcu_read_unlock(&fs_info->subvol_srcu, index);
308 /* do a chunk of defrag */
309 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
310 memset(&range, 0, sizeof(range));
311 range.len = (u64)-1;
312 range.start = defrag->last_offset;
314 sb_start_write(fs_info->sb);
315 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
316 BTRFS_DEFRAG_BATCH);
317 sb_end_write(fs_info->sb);
319 * if we filled the whole defrag batch, there
320 * must be more work to do. Queue this defrag
321 * again
323 if (num_defrag == BTRFS_DEFRAG_BATCH) {
324 defrag->last_offset = range.start;
325 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
326 } else if (defrag->last_offset && !defrag->cycled) {
328 * we didn't fill our defrag batch, but
329 * we didn't start at zero. Make sure we loop
330 * around to the start of the file.
332 defrag->last_offset = 0;
333 defrag->cycled = 1;
334 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
335 } else {
336 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
339 iput(inode);
340 return 0;
341 cleanup:
342 srcu_read_unlock(&fs_info->subvol_srcu, index);
343 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
344 return ret;
348 * run through the list of inodes in the FS that need
349 * defragging
351 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
353 struct inode_defrag *defrag;
354 u64 first_ino = 0;
355 u64 root_objectid = 0;
357 atomic_inc(&fs_info->defrag_running);
358 while (1) {
359 /* Pause the auto defragger. */
360 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
361 &fs_info->fs_state))
362 break;
364 if (!__need_auto_defrag(fs_info))
365 break;
367 /* find an inode to defrag */
368 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
369 first_ino);
370 if (!defrag) {
371 if (root_objectid || first_ino) {
372 root_objectid = 0;
373 first_ino = 0;
374 continue;
375 } else {
376 break;
380 first_ino = defrag->ino + 1;
381 root_objectid = defrag->root;
383 __btrfs_run_defrag_inode(fs_info, defrag);
385 atomic_dec(&fs_info->defrag_running);
388 * during unmount, we use the transaction_wait queue to
389 * wait for the defragger to stop
391 wake_up(&fs_info->transaction_wait);
392 return 0;
395 /* simple helper to fault in pages and copy. This should go away
396 * and be replaced with calls into generic code.
398 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
399 struct page **prepared_pages,
400 struct iov_iter *i)
402 size_t copied = 0;
403 size_t total_copied = 0;
404 int pg = 0;
405 int offset = pos & (PAGE_SIZE - 1);
407 while (write_bytes > 0) {
408 size_t count = min_t(size_t,
409 PAGE_SIZE - offset, write_bytes);
410 struct page *page = prepared_pages[pg];
412 * Copy data from userspace to the current page
414 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
416 /* Flush processor's dcache for this page */
417 flush_dcache_page(page);
420 * if we get a partial write, we can end up with
421 * partially up to date pages. These add
422 * a lot of complexity, so make sure they don't
423 * happen by forcing this copy to be retried.
425 * The rest of the btrfs_file_write code will fall
426 * back to page at a time copies after we return 0.
428 if (!PageUptodate(page) && copied < count)
429 copied = 0;
431 iov_iter_advance(i, copied);
432 write_bytes -= copied;
433 total_copied += copied;
435 /* Return to btrfs_file_write_iter to fault page */
436 if (unlikely(copied == 0))
437 break;
439 if (copied < PAGE_SIZE - offset) {
440 offset += copied;
441 } else {
442 pg++;
443 offset = 0;
446 return total_copied;
450 * unlocks pages after btrfs_file_write is done with them
452 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
454 size_t i;
455 for (i = 0; i < num_pages; i++) {
456 /* page checked is some magic around finding pages that
457 * have been modified without going through btrfs_set_page_dirty
458 * clear it here. There should be no need to mark the pages
459 * accessed as prepare_pages should have marked them accessed
460 * in prepare_pages via find_or_create_page()
462 ClearPageChecked(pages[i]);
463 unlock_page(pages[i]);
464 put_page(pages[i]);
468 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
469 const u64 start,
470 const u64 len,
471 struct extent_state **cached_state)
473 u64 search_start = start;
474 const u64 end = start + len - 1;
476 while (search_start < end) {
477 const u64 search_len = end - search_start + 1;
478 struct extent_map *em;
479 u64 em_len;
480 int ret = 0;
482 em = btrfs_get_extent(inode, NULL, 0, search_start,
483 search_len, 0);
484 if (IS_ERR(em))
485 return PTR_ERR(em);
487 if (em->block_start != EXTENT_MAP_HOLE)
488 goto next;
490 em_len = em->len;
491 if (em->start < search_start)
492 em_len -= search_start - em->start;
493 if (em_len > search_len)
494 em_len = search_len;
496 ret = set_extent_bit(&inode->io_tree, search_start,
497 search_start + em_len - 1,
498 EXTENT_DELALLOC_NEW,
499 NULL, cached_state, GFP_NOFS);
500 next:
501 search_start = extent_map_end(em);
502 free_extent_map(em);
503 if (ret)
504 return ret;
506 return 0;
510 * after copy_from_user, pages need to be dirtied and we need to make
511 * sure holes are created between the current EOF and the start of
512 * any next extents (if required).
514 * this also makes the decision about creating an inline extent vs
515 * doing real data extents, marking pages dirty and delalloc as required.
517 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
518 size_t num_pages, loff_t pos, size_t write_bytes,
519 struct extent_state **cached)
521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
522 int err = 0;
523 int i;
524 u64 num_bytes;
525 u64 start_pos;
526 u64 end_of_last_block;
527 u64 end_pos = pos + write_bytes;
528 loff_t isize = i_size_read(inode);
529 unsigned int extra_bits = 0;
531 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
532 num_bytes = round_up(write_bytes + pos - start_pos,
533 fs_info->sectorsize);
535 end_of_last_block = start_pos + num_bytes - 1;
537 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
538 if (start_pos >= isize &&
539 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
541 * There can't be any extents following eof in this case
542 * so just set the delalloc new bit for the range
543 * directly.
545 extra_bits |= EXTENT_DELALLOC_NEW;
546 } else {
547 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
548 start_pos,
549 num_bytes, cached);
550 if (err)
551 return err;
555 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
556 extra_bits, cached, 0);
557 if (err)
558 return err;
560 for (i = 0; i < num_pages; i++) {
561 struct page *p = pages[i];
562 SetPageUptodate(p);
563 ClearPageChecked(p);
564 set_page_dirty(p);
568 * we've only changed i_size in ram, and we haven't updated
569 * the disk i_size. There is no need to log the inode
570 * at this time.
572 if (end_pos > isize)
573 i_size_write(inode, end_pos);
574 return 0;
578 * this drops all the extents in the cache that intersect the range
579 * [start, end]. Existing extents are split as required.
581 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
582 int skip_pinned)
584 struct extent_map *em;
585 struct extent_map *split = NULL;
586 struct extent_map *split2 = NULL;
587 struct extent_map_tree *em_tree = &inode->extent_tree;
588 u64 len = end - start + 1;
589 u64 gen;
590 int ret;
591 int testend = 1;
592 unsigned long flags;
593 int compressed = 0;
594 bool modified;
596 WARN_ON(end < start);
597 if (end == (u64)-1) {
598 len = (u64)-1;
599 testend = 0;
601 while (1) {
602 int no_splits = 0;
604 modified = false;
605 if (!split)
606 split = alloc_extent_map();
607 if (!split2)
608 split2 = alloc_extent_map();
609 if (!split || !split2)
610 no_splits = 1;
612 write_lock(&em_tree->lock);
613 em = lookup_extent_mapping(em_tree, start, len);
614 if (!em) {
615 write_unlock(&em_tree->lock);
616 break;
618 flags = em->flags;
619 gen = em->generation;
620 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
621 if (testend && em->start + em->len >= start + len) {
622 free_extent_map(em);
623 write_unlock(&em_tree->lock);
624 break;
626 start = em->start + em->len;
627 if (testend)
628 len = start + len - (em->start + em->len);
629 free_extent_map(em);
630 write_unlock(&em_tree->lock);
631 continue;
633 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
634 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
635 clear_bit(EXTENT_FLAG_LOGGING, &flags);
636 modified = !list_empty(&em->list);
637 if (no_splits)
638 goto next;
640 if (em->start < start) {
641 split->start = em->start;
642 split->len = start - em->start;
644 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
645 split->orig_start = em->orig_start;
646 split->block_start = em->block_start;
648 if (compressed)
649 split->block_len = em->block_len;
650 else
651 split->block_len = split->len;
652 split->orig_block_len = max(split->block_len,
653 em->orig_block_len);
654 split->ram_bytes = em->ram_bytes;
655 } else {
656 split->orig_start = split->start;
657 split->block_len = 0;
658 split->block_start = em->block_start;
659 split->orig_block_len = 0;
660 split->ram_bytes = split->len;
663 split->generation = gen;
664 split->bdev = em->bdev;
665 split->flags = flags;
666 split->compress_type = em->compress_type;
667 replace_extent_mapping(em_tree, em, split, modified);
668 free_extent_map(split);
669 split = split2;
670 split2 = NULL;
672 if (testend && em->start + em->len > start + len) {
673 u64 diff = start + len - em->start;
675 split->start = start + len;
676 split->len = em->start + em->len - (start + len);
677 split->bdev = em->bdev;
678 split->flags = flags;
679 split->compress_type = em->compress_type;
680 split->generation = gen;
682 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
683 split->orig_block_len = max(em->block_len,
684 em->orig_block_len);
686 split->ram_bytes = em->ram_bytes;
687 if (compressed) {
688 split->block_len = em->block_len;
689 split->block_start = em->block_start;
690 split->orig_start = em->orig_start;
691 } else {
692 split->block_len = split->len;
693 split->block_start = em->block_start
694 + diff;
695 split->orig_start = em->orig_start;
697 } else {
698 split->ram_bytes = split->len;
699 split->orig_start = split->start;
700 split->block_len = 0;
701 split->block_start = em->block_start;
702 split->orig_block_len = 0;
705 if (extent_map_in_tree(em)) {
706 replace_extent_mapping(em_tree, em, split,
707 modified);
708 } else {
709 ret = add_extent_mapping(em_tree, split,
710 modified);
711 ASSERT(ret == 0); /* Logic error */
713 free_extent_map(split);
714 split = NULL;
716 next:
717 if (extent_map_in_tree(em))
718 remove_extent_mapping(em_tree, em);
719 write_unlock(&em_tree->lock);
721 /* once for us */
722 free_extent_map(em);
723 /* once for the tree*/
724 free_extent_map(em);
726 if (split)
727 free_extent_map(split);
728 if (split2)
729 free_extent_map(split2);
733 * this is very complex, but the basic idea is to drop all extents
734 * in the range start - end. hint_block is filled in with a block number
735 * that would be a good hint to the block allocator for this file.
737 * If an extent intersects the range but is not entirely inside the range
738 * it is either truncated or split. Anything entirely inside the range
739 * is deleted from the tree.
741 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
742 struct btrfs_root *root, struct inode *inode,
743 struct btrfs_path *path, u64 start, u64 end,
744 u64 *drop_end, int drop_cache,
745 int replace_extent,
746 u32 extent_item_size,
747 int *key_inserted)
749 struct btrfs_fs_info *fs_info = root->fs_info;
750 struct extent_buffer *leaf;
751 struct btrfs_file_extent_item *fi;
752 struct btrfs_key key;
753 struct btrfs_key new_key;
754 u64 ino = btrfs_ino(BTRFS_I(inode));
755 u64 search_start = start;
756 u64 disk_bytenr = 0;
757 u64 num_bytes = 0;
758 u64 extent_offset = 0;
759 u64 extent_end = 0;
760 u64 last_end = start;
761 int del_nr = 0;
762 int del_slot = 0;
763 int extent_type;
764 int recow;
765 int ret;
766 int modify_tree = -1;
767 int update_refs;
768 int found = 0;
769 int leafs_visited = 0;
771 if (drop_cache)
772 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
774 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
775 modify_tree = 0;
777 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
778 root == fs_info->tree_root);
779 while (1) {
780 recow = 0;
781 ret = btrfs_lookup_file_extent(trans, root, path, ino,
782 search_start, modify_tree);
783 if (ret < 0)
784 break;
785 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
786 leaf = path->nodes[0];
787 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
788 if (key.objectid == ino &&
789 key.type == BTRFS_EXTENT_DATA_KEY)
790 path->slots[0]--;
792 ret = 0;
793 leafs_visited++;
794 next_slot:
795 leaf = path->nodes[0];
796 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
797 BUG_ON(del_nr > 0);
798 ret = btrfs_next_leaf(root, path);
799 if (ret < 0)
800 break;
801 if (ret > 0) {
802 ret = 0;
803 break;
805 leafs_visited++;
806 leaf = path->nodes[0];
807 recow = 1;
810 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
812 if (key.objectid > ino)
813 break;
814 if (WARN_ON_ONCE(key.objectid < ino) ||
815 key.type < BTRFS_EXTENT_DATA_KEY) {
816 ASSERT(del_nr == 0);
817 path->slots[0]++;
818 goto next_slot;
820 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
821 break;
823 fi = btrfs_item_ptr(leaf, path->slots[0],
824 struct btrfs_file_extent_item);
825 extent_type = btrfs_file_extent_type(leaf, fi);
827 if (extent_type == BTRFS_FILE_EXTENT_REG ||
828 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
829 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
830 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
831 extent_offset = btrfs_file_extent_offset(leaf, fi);
832 extent_end = key.offset +
833 btrfs_file_extent_num_bytes(leaf, fi);
834 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835 extent_end = key.offset +
836 btrfs_file_extent_inline_len(leaf,
837 path->slots[0], fi);
838 } else {
839 /* can't happen */
840 BUG();
844 * Don't skip extent items representing 0 byte lengths. They
845 * used to be created (bug) if while punching holes we hit
846 * -ENOSPC condition. So if we find one here, just ensure we
847 * delete it, otherwise we would insert a new file extent item
848 * with the same key (offset) as that 0 bytes length file
849 * extent item in the call to setup_items_for_insert() later
850 * in this function.
852 if (extent_end == key.offset && extent_end >= search_start) {
853 last_end = extent_end;
854 goto delete_extent_item;
857 if (extent_end <= search_start) {
858 path->slots[0]++;
859 goto next_slot;
862 found = 1;
863 search_start = max(key.offset, start);
864 if (recow || !modify_tree) {
865 modify_tree = -1;
866 btrfs_release_path(path);
867 continue;
871 * | - range to drop - |
872 * | -------- extent -------- |
874 if (start > key.offset && end < extent_end) {
875 BUG_ON(del_nr > 0);
876 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
877 ret = -EOPNOTSUPP;
878 break;
881 memcpy(&new_key, &key, sizeof(new_key));
882 new_key.offset = start;
883 ret = btrfs_duplicate_item(trans, root, path,
884 &new_key);
885 if (ret == -EAGAIN) {
886 btrfs_release_path(path);
887 continue;
889 if (ret < 0)
890 break;
892 leaf = path->nodes[0];
893 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
894 struct btrfs_file_extent_item);
895 btrfs_set_file_extent_num_bytes(leaf, fi,
896 start - key.offset);
898 fi = btrfs_item_ptr(leaf, path->slots[0],
899 struct btrfs_file_extent_item);
901 extent_offset += start - key.offset;
902 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
903 btrfs_set_file_extent_num_bytes(leaf, fi,
904 extent_end - start);
905 btrfs_mark_buffer_dirty(leaf);
907 if (update_refs && disk_bytenr > 0) {
908 ret = btrfs_inc_extent_ref(trans, root,
909 disk_bytenr, num_bytes, 0,
910 root->root_key.objectid,
911 new_key.objectid,
912 start - extent_offset);
913 BUG_ON(ret); /* -ENOMEM */
915 key.offset = start;
918 * From here on out we will have actually dropped something, so
919 * last_end can be updated.
921 last_end = extent_end;
924 * | ---- range to drop ----- |
925 * | -------- extent -------- |
927 if (start <= key.offset && end < extent_end) {
928 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
929 ret = -EOPNOTSUPP;
930 break;
933 memcpy(&new_key, &key, sizeof(new_key));
934 new_key.offset = end;
935 btrfs_set_item_key_safe(fs_info, path, &new_key);
937 extent_offset += end - key.offset;
938 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
939 btrfs_set_file_extent_num_bytes(leaf, fi,
940 extent_end - end);
941 btrfs_mark_buffer_dirty(leaf);
942 if (update_refs && disk_bytenr > 0)
943 inode_sub_bytes(inode, end - key.offset);
944 break;
947 search_start = extent_end;
949 * | ---- range to drop ----- |
950 * | -------- extent -------- |
952 if (start > key.offset && end >= extent_end) {
953 BUG_ON(del_nr > 0);
954 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
955 ret = -EOPNOTSUPP;
956 break;
959 btrfs_set_file_extent_num_bytes(leaf, fi,
960 start - key.offset);
961 btrfs_mark_buffer_dirty(leaf);
962 if (update_refs && disk_bytenr > 0)
963 inode_sub_bytes(inode, extent_end - start);
964 if (end == extent_end)
965 break;
967 path->slots[0]++;
968 goto next_slot;
972 * | ---- range to drop ----- |
973 * | ------ extent ------ |
975 if (start <= key.offset && end >= extent_end) {
976 delete_extent_item:
977 if (del_nr == 0) {
978 del_slot = path->slots[0];
979 del_nr = 1;
980 } else {
981 BUG_ON(del_slot + del_nr != path->slots[0]);
982 del_nr++;
985 if (update_refs &&
986 extent_type == BTRFS_FILE_EXTENT_INLINE) {
987 inode_sub_bytes(inode,
988 extent_end - key.offset);
989 extent_end = ALIGN(extent_end,
990 fs_info->sectorsize);
991 } else if (update_refs && disk_bytenr > 0) {
992 ret = btrfs_free_extent(trans, root,
993 disk_bytenr, num_bytes, 0,
994 root->root_key.objectid,
995 key.objectid, key.offset -
996 extent_offset);
997 BUG_ON(ret); /* -ENOMEM */
998 inode_sub_bytes(inode,
999 extent_end - key.offset);
1002 if (end == extent_end)
1003 break;
1005 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1006 path->slots[0]++;
1007 goto next_slot;
1010 ret = btrfs_del_items(trans, root, path, del_slot,
1011 del_nr);
1012 if (ret) {
1013 btrfs_abort_transaction(trans, ret);
1014 break;
1017 del_nr = 0;
1018 del_slot = 0;
1020 btrfs_release_path(path);
1021 continue;
1024 BUG_ON(1);
1027 if (!ret && del_nr > 0) {
1029 * Set path->slots[0] to first slot, so that after the delete
1030 * if items are move off from our leaf to its immediate left or
1031 * right neighbor leafs, we end up with a correct and adjusted
1032 * path->slots[0] for our insertion (if replace_extent != 0).
1034 path->slots[0] = del_slot;
1035 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1036 if (ret)
1037 btrfs_abort_transaction(trans, ret);
1040 leaf = path->nodes[0];
1042 * If btrfs_del_items() was called, it might have deleted a leaf, in
1043 * which case it unlocked our path, so check path->locks[0] matches a
1044 * write lock.
1046 if (!ret && replace_extent && leafs_visited == 1 &&
1047 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1048 path->locks[0] == BTRFS_WRITE_LOCK) &&
1049 btrfs_leaf_free_space(fs_info, leaf) >=
1050 sizeof(struct btrfs_item) + extent_item_size) {
1052 key.objectid = ino;
1053 key.type = BTRFS_EXTENT_DATA_KEY;
1054 key.offset = start;
1055 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1056 struct btrfs_key slot_key;
1058 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1059 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1060 path->slots[0]++;
1062 setup_items_for_insert(root, path, &key,
1063 &extent_item_size,
1064 extent_item_size,
1065 sizeof(struct btrfs_item) +
1066 extent_item_size, 1);
1067 *key_inserted = 1;
1070 if (!replace_extent || !(*key_inserted))
1071 btrfs_release_path(path);
1072 if (drop_end)
1073 *drop_end = found ? min(end, last_end) : end;
1074 return ret;
1077 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1078 struct btrfs_root *root, struct inode *inode, u64 start,
1079 u64 end, int drop_cache)
1081 struct btrfs_path *path;
1082 int ret;
1084 path = btrfs_alloc_path();
1085 if (!path)
1086 return -ENOMEM;
1087 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1088 drop_cache, 0, 0, NULL);
1089 btrfs_free_path(path);
1090 return ret;
1093 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1094 u64 objectid, u64 bytenr, u64 orig_offset,
1095 u64 *start, u64 *end)
1097 struct btrfs_file_extent_item *fi;
1098 struct btrfs_key key;
1099 u64 extent_end;
1101 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1102 return 0;
1104 btrfs_item_key_to_cpu(leaf, &key, slot);
1105 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1106 return 0;
1108 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1109 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1110 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1111 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1112 btrfs_file_extent_compression(leaf, fi) ||
1113 btrfs_file_extent_encryption(leaf, fi) ||
1114 btrfs_file_extent_other_encoding(leaf, fi))
1115 return 0;
1117 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1118 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1119 return 0;
1121 *start = key.offset;
1122 *end = extent_end;
1123 return 1;
1127 * Mark extent in the range start - end as written.
1129 * This changes extent type from 'pre-allocated' to 'regular'. If only
1130 * part of extent is marked as written, the extent will be split into
1131 * two or three.
1133 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1134 struct btrfs_inode *inode, u64 start, u64 end)
1136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1137 struct btrfs_root *root = inode->root;
1138 struct extent_buffer *leaf;
1139 struct btrfs_path *path;
1140 struct btrfs_file_extent_item *fi;
1141 struct btrfs_key key;
1142 struct btrfs_key new_key;
1143 u64 bytenr;
1144 u64 num_bytes;
1145 u64 extent_end;
1146 u64 orig_offset;
1147 u64 other_start;
1148 u64 other_end;
1149 u64 split;
1150 int del_nr = 0;
1151 int del_slot = 0;
1152 int recow;
1153 int ret;
1154 u64 ino = btrfs_ino(inode);
1156 path = btrfs_alloc_path();
1157 if (!path)
1158 return -ENOMEM;
1159 again:
1160 recow = 0;
1161 split = start;
1162 key.objectid = ino;
1163 key.type = BTRFS_EXTENT_DATA_KEY;
1164 key.offset = split;
1166 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1167 if (ret < 0)
1168 goto out;
1169 if (ret > 0 && path->slots[0] > 0)
1170 path->slots[0]--;
1172 leaf = path->nodes[0];
1173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 if (key.objectid != ino ||
1175 key.type != BTRFS_EXTENT_DATA_KEY) {
1176 ret = -EINVAL;
1177 btrfs_abort_transaction(trans, ret);
1178 goto out;
1180 fi = btrfs_item_ptr(leaf, path->slots[0],
1181 struct btrfs_file_extent_item);
1182 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1183 ret = -EINVAL;
1184 btrfs_abort_transaction(trans, ret);
1185 goto out;
1187 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1188 if (key.offset > start || extent_end < end) {
1189 ret = -EINVAL;
1190 btrfs_abort_transaction(trans, ret);
1191 goto out;
1194 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1195 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1196 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1197 memcpy(&new_key, &key, sizeof(new_key));
1199 if (start == key.offset && end < extent_end) {
1200 other_start = 0;
1201 other_end = start;
1202 if (extent_mergeable(leaf, path->slots[0] - 1,
1203 ino, bytenr, orig_offset,
1204 &other_start, &other_end)) {
1205 new_key.offset = end;
1206 btrfs_set_item_key_safe(fs_info, path, &new_key);
1207 fi = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_file_extent_item);
1209 btrfs_set_file_extent_generation(leaf, fi,
1210 trans->transid);
1211 btrfs_set_file_extent_num_bytes(leaf, fi,
1212 extent_end - end);
1213 btrfs_set_file_extent_offset(leaf, fi,
1214 end - orig_offset);
1215 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1216 struct btrfs_file_extent_item);
1217 btrfs_set_file_extent_generation(leaf, fi,
1218 trans->transid);
1219 btrfs_set_file_extent_num_bytes(leaf, fi,
1220 end - other_start);
1221 btrfs_mark_buffer_dirty(leaf);
1222 goto out;
1226 if (start > key.offset && end == extent_end) {
1227 other_start = end;
1228 other_end = 0;
1229 if (extent_mergeable(leaf, path->slots[0] + 1,
1230 ino, bytenr, orig_offset,
1231 &other_start, &other_end)) {
1232 fi = btrfs_item_ptr(leaf, path->slots[0],
1233 struct btrfs_file_extent_item);
1234 btrfs_set_file_extent_num_bytes(leaf, fi,
1235 start - key.offset);
1236 btrfs_set_file_extent_generation(leaf, fi,
1237 trans->transid);
1238 path->slots[0]++;
1239 new_key.offset = start;
1240 btrfs_set_item_key_safe(fs_info, path, &new_key);
1242 fi = btrfs_item_ptr(leaf, path->slots[0],
1243 struct btrfs_file_extent_item);
1244 btrfs_set_file_extent_generation(leaf, fi,
1245 trans->transid);
1246 btrfs_set_file_extent_num_bytes(leaf, fi,
1247 other_end - start);
1248 btrfs_set_file_extent_offset(leaf, fi,
1249 start - orig_offset);
1250 btrfs_mark_buffer_dirty(leaf);
1251 goto out;
1255 while (start > key.offset || end < extent_end) {
1256 if (key.offset == start)
1257 split = end;
1259 new_key.offset = split;
1260 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1261 if (ret == -EAGAIN) {
1262 btrfs_release_path(path);
1263 goto again;
1265 if (ret < 0) {
1266 btrfs_abort_transaction(trans, ret);
1267 goto out;
1270 leaf = path->nodes[0];
1271 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1272 struct btrfs_file_extent_item);
1273 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1274 btrfs_set_file_extent_num_bytes(leaf, fi,
1275 split - key.offset);
1277 fi = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_file_extent_item);
1280 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1281 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1282 btrfs_set_file_extent_num_bytes(leaf, fi,
1283 extent_end - split);
1284 btrfs_mark_buffer_dirty(leaf);
1286 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1287 0, root->root_key.objectid,
1288 ino, orig_offset);
1289 if (ret) {
1290 btrfs_abort_transaction(trans, ret);
1291 goto out;
1294 if (split == start) {
1295 key.offset = start;
1296 } else {
1297 if (start != key.offset) {
1298 ret = -EINVAL;
1299 btrfs_abort_transaction(trans, ret);
1300 goto out;
1302 path->slots[0]--;
1303 extent_end = end;
1305 recow = 1;
1308 other_start = end;
1309 other_end = 0;
1310 if (extent_mergeable(leaf, path->slots[0] + 1,
1311 ino, bytenr, orig_offset,
1312 &other_start, &other_end)) {
1313 if (recow) {
1314 btrfs_release_path(path);
1315 goto again;
1317 extent_end = other_end;
1318 del_slot = path->slots[0] + 1;
1319 del_nr++;
1320 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1321 0, root->root_key.objectid,
1322 ino, orig_offset);
1323 if (ret) {
1324 btrfs_abort_transaction(trans, ret);
1325 goto out;
1328 other_start = 0;
1329 other_end = start;
1330 if (extent_mergeable(leaf, path->slots[0] - 1,
1331 ino, bytenr, orig_offset,
1332 &other_start, &other_end)) {
1333 if (recow) {
1334 btrfs_release_path(path);
1335 goto again;
1337 key.offset = other_start;
1338 del_slot = path->slots[0];
1339 del_nr++;
1340 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1341 0, root->root_key.objectid,
1342 ino, orig_offset);
1343 if (ret) {
1344 btrfs_abort_transaction(trans, ret);
1345 goto out;
1348 if (del_nr == 0) {
1349 fi = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_file_extent_item);
1351 btrfs_set_file_extent_type(leaf, fi,
1352 BTRFS_FILE_EXTENT_REG);
1353 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354 btrfs_mark_buffer_dirty(leaf);
1355 } else {
1356 fi = btrfs_item_ptr(leaf, del_slot - 1,
1357 struct btrfs_file_extent_item);
1358 btrfs_set_file_extent_type(leaf, fi,
1359 BTRFS_FILE_EXTENT_REG);
1360 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361 btrfs_set_file_extent_num_bytes(leaf, fi,
1362 extent_end - key.offset);
1363 btrfs_mark_buffer_dirty(leaf);
1365 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366 if (ret < 0) {
1367 btrfs_abort_transaction(trans, ret);
1368 goto out;
1371 out:
1372 btrfs_free_path(path);
1373 return 0;
1377 * on error we return an unlocked page and the error value
1378 * on success we return a locked page and 0
1380 static int prepare_uptodate_page(struct inode *inode,
1381 struct page *page, u64 pos,
1382 bool force_uptodate)
1384 int ret = 0;
1386 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387 !PageUptodate(page)) {
1388 ret = btrfs_readpage(NULL, page);
1389 if (ret)
1390 return ret;
1391 lock_page(page);
1392 if (!PageUptodate(page)) {
1393 unlock_page(page);
1394 return -EIO;
1396 if (page->mapping != inode->i_mapping) {
1397 unlock_page(page);
1398 return -EAGAIN;
1401 return 0;
1405 * this just gets pages into the page cache and locks them down.
1407 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408 size_t num_pages, loff_t pos,
1409 size_t write_bytes, bool force_uptodate)
1411 int i;
1412 unsigned long index = pos >> PAGE_SHIFT;
1413 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414 int err = 0;
1415 int faili;
1417 for (i = 0; i < num_pages; i++) {
1418 again:
1419 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420 mask | __GFP_WRITE);
1421 if (!pages[i]) {
1422 faili = i - 1;
1423 err = -ENOMEM;
1424 goto fail;
1427 if (i == 0)
1428 err = prepare_uptodate_page(inode, pages[i], pos,
1429 force_uptodate);
1430 if (!err && i == num_pages - 1)
1431 err = prepare_uptodate_page(inode, pages[i],
1432 pos + write_bytes, false);
1433 if (err) {
1434 put_page(pages[i]);
1435 if (err == -EAGAIN) {
1436 err = 0;
1437 goto again;
1439 faili = i - 1;
1440 goto fail;
1442 wait_on_page_writeback(pages[i]);
1445 return 0;
1446 fail:
1447 while (faili >= 0) {
1448 unlock_page(pages[faili]);
1449 put_page(pages[faili]);
1450 faili--;
1452 return err;
1457 * This function locks the extent and properly waits for data=ordered extents
1458 * to finish before allowing the pages to be modified if need.
1460 * The return value:
1461 * 1 - the extent is locked
1462 * 0 - the extent is not locked, and everything is OK
1463 * -EAGAIN - need re-prepare the pages
1464 * the other < 0 number - Something wrong happens
1466 static noinline int
1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468 size_t num_pages, loff_t pos,
1469 size_t write_bytes,
1470 u64 *lockstart, u64 *lockend,
1471 struct extent_state **cached_state)
1473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1474 u64 start_pos;
1475 u64 last_pos;
1476 int i;
1477 int ret = 0;
1479 start_pos = round_down(pos, fs_info->sectorsize);
1480 last_pos = start_pos
1481 + round_up(pos + write_bytes - start_pos,
1482 fs_info->sectorsize) - 1;
1484 if (start_pos < inode->vfs_inode.i_size) {
1485 struct btrfs_ordered_extent *ordered;
1487 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488 cached_state);
1489 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490 last_pos - start_pos + 1);
1491 if (ordered &&
1492 ordered->file_offset + ordered->len > start_pos &&
1493 ordered->file_offset <= last_pos) {
1494 unlock_extent_cached(&inode->io_tree, start_pos,
1495 last_pos, cached_state);
1496 for (i = 0; i < num_pages; i++) {
1497 unlock_page(pages[i]);
1498 put_page(pages[i]);
1500 btrfs_start_ordered_extent(&inode->vfs_inode,
1501 ordered, 1);
1502 btrfs_put_ordered_extent(ordered);
1503 return -EAGAIN;
1505 if (ordered)
1506 btrfs_put_ordered_extent(ordered);
1507 clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1508 EXTENT_DIRTY | EXTENT_DELALLOC |
1509 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1510 0, 0, cached_state);
1511 *lockstart = start_pos;
1512 *lockend = last_pos;
1513 ret = 1;
1516 for (i = 0; i < num_pages; i++) {
1517 if (clear_page_dirty_for_io(pages[i]))
1518 account_page_redirty(pages[i]);
1519 set_page_extent_mapped(pages[i]);
1520 WARN_ON(!PageLocked(pages[i]));
1523 return ret;
1526 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1527 size_t *write_bytes)
1529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1530 struct btrfs_root *root = inode->root;
1531 struct btrfs_ordered_extent *ordered;
1532 u64 lockstart, lockend;
1533 u64 num_bytes;
1534 int ret;
1536 ret = btrfs_start_write_no_snapshotting(root);
1537 if (!ret)
1538 return -ENOSPC;
1540 lockstart = round_down(pos, fs_info->sectorsize);
1541 lockend = round_up(pos + *write_bytes,
1542 fs_info->sectorsize) - 1;
1544 while (1) {
1545 lock_extent(&inode->io_tree, lockstart, lockend);
1546 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1547 lockend - lockstart + 1);
1548 if (!ordered) {
1549 break;
1551 unlock_extent(&inode->io_tree, lockstart, lockend);
1552 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1553 btrfs_put_ordered_extent(ordered);
1556 num_bytes = lockend - lockstart + 1;
1557 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1558 NULL, NULL, NULL);
1559 if (ret <= 0) {
1560 ret = 0;
1561 btrfs_end_write_no_snapshotting(root);
1562 } else {
1563 *write_bytes = min_t(size_t, *write_bytes ,
1564 num_bytes - pos + lockstart);
1567 unlock_extent(&inode->io_tree, lockstart, lockend);
1569 return ret;
1572 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1573 struct iov_iter *i,
1574 loff_t pos)
1576 struct inode *inode = file_inode(file);
1577 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1578 struct btrfs_root *root = BTRFS_I(inode)->root;
1579 struct page **pages = NULL;
1580 struct extent_state *cached_state = NULL;
1581 struct extent_changeset *data_reserved = NULL;
1582 u64 release_bytes = 0;
1583 u64 lockstart;
1584 u64 lockend;
1585 size_t num_written = 0;
1586 int nrptrs;
1587 int ret = 0;
1588 bool only_release_metadata = false;
1589 bool force_page_uptodate = false;
1591 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1592 PAGE_SIZE / (sizeof(struct page *)));
1593 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1594 nrptrs = max(nrptrs, 8);
1595 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1596 if (!pages)
1597 return -ENOMEM;
1599 while (iov_iter_count(i) > 0) {
1600 size_t offset = pos & (PAGE_SIZE - 1);
1601 size_t sector_offset;
1602 size_t write_bytes = min(iov_iter_count(i),
1603 nrptrs * (size_t)PAGE_SIZE -
1604 offset);
1605 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1606 PAGE_SIZE);
1607 size_t reserve_bytes;
1608 size_t dirty_pages;
1609 size_t copied;
1610 size_t dirty_sectors;
1611 size_t num_sectors;
1612 int extents_locked;
1614 WARN_ON(num_pages > nrptrs);
1617 * Fault pages before locking them in prepare_pages
1618 * to avoid recursive lock
1620 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1621 ret = -EFAULT;
1622 break;
1625 sector_offset = pos & (fs_info->sectorsize - 1);
1626 reserve_bytes = round_up(write_bytes + sector_offset,
1627 fs_info->sectorsize);
1629 extent_changeset_release(data_reserved);
1630 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1631 write_bytes);
1632 if (ret < 0) {
1633 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1634 BTRFS_INODE_PREALLOC)) &&
1635 check_can_nocow(BTRFS_I(inode), pos,
1636 &write_bytes) > 0) {
1638 * For nodata cow case, no need to reserve
1639 * data space.
1641 only_release_metadata = true;
1643 * our prealloc extent may be smaller than
1644 * write_bytes, so scale down.
1646 num_pages = DIV_ROUND_UP(write_bytes + offset,
1647 PAGE_SIZE);
1648 reserve_bytes = round_up(write_bytes +
1649 sector_offset,
1650 fs_info->sectorsize);
1651 } else {
1652 break;
1656 WARN_ON(reserve_bytes == 0);
1657 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1658 reserve_bytes);
1659 if (ret) {
1660 if (!only_release_metadata)
1661 btrfs_free_reserved_data_space(inode,
1662 data_reserved, pos,
1663 write_bytes);
1664 else
1665 btrfs_end_write_no_snapshotting(root);
1666 break;
1669 release_bytes = reserve_bytes;
1670 again:
1672 * This is going to setup the pages array with the number of
1673 * pages we want, so we don't really need to worry about the
1674 * contents of pages from loop to loop
1676 ret = prepare_pages(inode, pages, num_pages,
1677 pos, write_bytes,
1678 force_page_uptodate);
1679 if (ret) {
1680 btrfs_delalloc_release_extents(BTRFS_I(inode),
1681 reserve_bytes, true);
1682 break;
1685 extents_locked = lock_and_cleanup_extent_if_need(
1686 BTRFS_I(inode), pages,
1687 num_pages, pos, write_bytes, &lockstart,
1688 &lockend, &cached_state);
1689 if (extents_locked < 0) {
1690 if (extents_locked == -EAGAIN)
1691 goto again;
1692 btrfs_delalloc_release_extents(BTRFS_I(inode),
1693 reserve_bytes, true);
1694 ret = extents_locked;
1695 break;
1698 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1700 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1701 dirty_sectors = round_up(copied + sector_offset,
1702 fs_info->sectorsize);
1703 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1706 * if we have trouble faulting in the pages, fall
1707 * back to one page at a time
1709 if (copied < write_bytes)
1710 nrptrs = 1;
1712 if (copied == 0) {
1713 force_page_uptodate = true;
1714 dirty_sectors = 0;
1715 dirty_pages = 0;
1716 } else {
1717 force_page_uptodate = false;
1718 dirty_pages = DIV_ROUND_UP(copied + offset,
1719 PAGE_SIZE);
1722 if (num_sectors > dirty_sectors) {
1723 /* release everything except the sectors we dirtied */
1724 release_bytes -= dirty_sectors <<
1725 fs_info->sb->s_blocksize_bits;
1726 if (only_release_metadata) {
1727 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1728 release_bytes, true);
1729 } else {
1730 u64 __pos;
1732 __pos = round_down(pos,
1733 fs_info->sectorsize) +
1734 (dirty_pages << PAGE_SHIFT);
1735 btrfs_delalloc_release_space(inode,
1736 data_reserved, __pos,
1737 release_bytes, true);
1741 release_bytes = round_up(copied + sector_offset,
1742 fs_info->sectorsize);
1744 if (copied > 0)
1745 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1746 pos, copied, &cached_state);
1747 if (extents_locked)
1748 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1749 lockstart, lockend, &cached_state);
1750 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1751 true);
1752 if (ret) {
1753 btrfs_drop_pages(pages, num_pages);
1754 break;
1757 release_bytes = 0;
1758 if (only_release_metadata)
1759 btrfs_end_write_no_snapshotting(root);
1761 if (only_release_metadata && copied > 0) {
1762 lockstart = round_down(pos,
1763 fs_info->sectorsize);
1764 lockend = round_up(pos + copied,
1765 fs_info->sectorsize) - 1;
1767 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1768 lockend, EXTENT_NORESERVE, NULL,
1769 NULL, GFP_NOFS);
1770 only_release_metadata = false;
1773 btrfs_drop_pages(pages, num_pages);
1775 cond_resched();
1777 balance_dirty_pages_ratelimited(inode->i_mapping);
1778 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1779 btrfs_btree_balance_dirty(fs_info);
1781 pos += copied;
1782 num_written += copied;
1785 kfree(pages);
1787 if (release_bytes) {
1788 if (only_release_metadata) {
1789 btrfs_end_write_no_snapshotting(root);
1790 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1791 release_bytes, true);
1792 } else {
1793 btrfs_delalloc_release_space(inode, data_reserved,
1794 round_down(pos, fs_info->sectorsize),
1795 release_bytes, true);
1799 extent_changeset_free(data_reserved);
1800 return num_written ? num_written : ret;
1803 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1805 struct file *file = iocb->ki_filp;
1806 struct inode *inode = file_inode(file);
1807 loff_t pos = iocb->ki_pos;
1808 ssize_t written;
1809 ssize_t written_buffered;
1810 loff_t endbyte;
1811 int err;
1813 written = generic_file_direct_write(iocb, from);
1815 if (written < 0 || !iov_iter_count(from))
1816 return written;
1818 pos += written;
1819 written_buffered = __btrfs_buffered_write(file, from, pos);
1820 if (written_buffered < 0) {
1821 err = written_buffered;
1822 goto out;
1825 * Ensure all data is persisted. We want the next direct IO read to be
1826 * able to read what was just written.
1828 endbyte = pos + written_buffered - 1;
1829 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1830 if (err)
1831 goto out;
1832 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1833 if (err)
1834 goto out;
1835 written += written_buffered;
1836 iocb->ki_pos = pos + written_buffered;
1837 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1838 endbyte >> PAGE_SHIFT);
1839 out:
1840 return written ? written : err;
1843 static void update_time_for_write(struct inode *inode)
1845 struct timespec64 now;
1847 if (IS_NOCMTIME(inode))
1848 return;
1850 now = current_time(inode);
1851 if (!timespec64_equal(&inode->i_mtime, &now))
1852 inode->i_mtime = now;
1854 if (!timespec64_equal(&inode->i_ctime, &now))
1855 inode->i_ctime = now;
1857 if (IS_I_VERSION(inode))
1858 inode_inc_iversion(inode);
1861 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1862 struct iov_iter *from)
1864 struct file *file = iocb->ki_filp;
1865 struct inode *inode = file_inode(file);
1866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1868 u64 start_pos;
1869 u64 end_pos;
1870 ssize_t num_written = 0;
1871 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1872 ssize_t err;
1873 loff_t pos;
1874 size_t count = iov_iter_count(from);
1875 loff_t oldsize;
1876 int clean_page = 0;
1878 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1879 (iocb->ki_flags & IOCB_NOWAIT))
1880 return -EOPNOTSUPP;
1882 if (!inode_trylock(inode)) {
1883 if (iocb->ki_flags & IOCB_NOWAIT)
1884 return -EAGAIN;
1885 inode_lock(inode);
1888 err = generic_write_checks(iocb, from);
1889 if (err <= 0) {
1890 inode_unlock(inode);
1891 return err;
1894 pos = iocb->ki_pos;
1895 if (iocb->ki_flags & IOCB_NOWAIT) {
1897 * We will allocate space in case nodatacow is not set,
1898 * so bail
1900 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1901 BTRFS_INODE_PREALLOC)) ||
1902 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1903 inode_unlock(inode);
1904 return -EAGAIN;
1908 current->backing_dev_info = inode_to_bdi(inode);
1909 err = file_remove_privs(file);
1910 if (err) {
1911 inode_unlock(inode);
1912 goto out;
1916 * If BTRFS flips readonly due to some impossible error
1917 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1918 * although we have opened a file as writable, we have
1919 * to stop this write operation to ensure FS consistency.
1921 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1922 inode_unlock(inode);
1923 err = -EROFS;
1924 goto out;
1928 * We reserve space for updating the inode when we reserve space for the
1929 * extent we are going to write, so we will enospc out there. We don't
1930 * need to start yet another transaction to update the inode as we will
1931 * update the inode when we finish writing whatever data we write.
1933 update_time_for_write(inode);
1935 start_pos = round_down(pos, fs_info->sectorsize);
1936 oldsize = i_size_read(inode);
1937 if (start_pos > oldsize) {
1938 /* Expand hole size to cover write data, preventing empty gap */
1939 end_pos = round_up(pos + count,
1940 fs_info->sectorsize);
1941 err = btrfs_cont_expand(inode, oldsize, end_pos);
1942 if (err) {
1943 inode_unlock(inode);
1944 goto out;
1946 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1947 clean_page = 1;
1950 if (sync)
1951 atomic_inc(&BTRFS_I(inode)->sync_writers);
1953 if (iocb->ki_flags & IOCB_DIRECT) {
1954 num_written = __btrfs_direct_write(iocb, from);
1955 } else {
1956 num_written = __btrfs_buffered_write(file, from, pos);
1957 if (num_written > 0)
1958 iocb->ki_pos = pos + num_written;
1959 if (clean_page)
1960 pagecache_isize_extended(inode, oldsize,
1961 i_size_read(inode));
1964 inode_unlock(inode);
1967 * We also have to set last_sub_trans to the current log transid,
1968 * otherwise subsequent syncs to a file that's been synced in this
1969 * transaction will appear to have already occurred.
1971 spin_lock(&BTRFS_I(inode)->lock);
1972 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1973 spin_unlock(&BTRFS_I(inode)->lock);
1974 if (num_written > 0)
1975 num_written = generic_write_sync(iocb, num_written);
1977 if (sync)
1978 atomic_dec(&BTRFS_I(inode)->sync_writers);
1979 out:
1980 current->backing_dev_info = NULL;
1981 return num_written ? num_written : err;
1984 int btrfs_release_file(struct inode *inode, struct file *filp)
1986 struct btrfs_file_private *private = filp->private_data;
1988 if (private && private->filldir_buf)
1989 kfree(private->filldir_buf);
1990 kfree(private);
1991 filp->private_data = NULL;
1994 * ordered_data_close is set by settattr when we are about to truncate
1995 * a file from a non-zero size to a zero size. This tries to
1996 * flush down new bytes that may have been written if the
1997 * application were using truncate to replace a file in place.
1999 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2000 &BTRFS_I(inode)->runtime_flags))
2001 filemap_flush(inode->i_mapping);
2002 return 0;
2005 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2007 int ret;
2008 struct blk_plug plug;
2011 * This is only called in fsync, which would do synchronous writes, so
2012 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2013 * multiple disks using raid profile, a large IO can be split to
2014 * several segments of stripe length (currently 64K).
2016 blk_start_plug(&plug);
2017 atomic_inc(&BTRFS_I(inode)->sync_writers);
2018 ret = btrfs_fdatawrite_range(inode, start, end);
2019 atomic_dec(&BTRFS_I(inode)->sync_writers);
2020 blk_finish_plug(&plug);
2022 return ret;
2026 * fsync call for both files and directories. This logs the inode into
2027 * the tree log instead of forcing full commits whenever possible.
2029 * It needs to call filemap_fdatawait so that all ordered extent updates are
2030 * in the metadata btree are up to date for copying to the log.
2032 * It drops the inode mutex before doing the tree log commit. This is an
2033 * important optimization for directories because holding the mutex prevents
2034 * new operations on the dir while we write to disk.
2036 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2038 struct dentry *dentry = file_dentry(file);
2039 struct inode *inode = d_inode(dentry);
2040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2041 struct btrfs_root *root = BTRFS_I(inode)->root;
2042 struct btrfs_trans_handle *trans;
2043 struct btrfs_log_ctx ctx;
2044 int ret = 0, err;
2045 bool full_sync = false;
2046 u64 len;
2049 * The range length can be represented by u64, we have to do the typecasts
2050 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2052 len = (u64)end - (u64)start + 1;
2053 trace_btrfs_sync_file(file, datasync);
2055 btrfs_init_log_ctx(&ctx, inode);
2058 * We write the dirty pages in the range and wait until they complete
2059 * out of the ->i_mutex. If so, we can flush the dirty pages by
2060 * multi-task, and make the performance up. See
2061 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2063 ret = start_ordered_ops(inode, start, end);
2064 if (ret)
2065 goto out;
2067 inode_lock(inode);
2068 atomic_inc(&root->log_batch);
2069 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2070 &BTRFS_I(inode)->runtime_flags);
2072 * We might have have had more pages made dirty after calling
2073 * start_ordered_ops and before acquiring the inode's i_mutex.
2075 if (full_sync) {
2077 * For a full sync, we need to make sure any ordered operations
2078 * start and finish before we start logging the inode, so that
2079 * all extents are persisted and the respective file extent
2080 * items are in the fs/subvol btree.
2082 ret = btrfs_wait_ordered_range(inode, start, len);
2083 } else {
2085 * Start any new ordered operations before starting to log the
2086 * inode. We will wait for them to finish in btrfs_sync_log().
2088 * Right before acquiring the inode's mutex, we might have new
2089 * writes dirtying pages, which won't immediately start the
2090 * respective ordered operations - that is done through the
2091 * fill_delalloc callbacks invoked from the writepage and
2092 * writepages address space operations. So make sure we start
2093 * all ordered operations before starting to log our inode. Not
2094 * doing this means that while logging the inode, writeback
2095 * could start and invoke writepage/writepages, which would call
2096 * the fill_delalloc callbacks (cow_file_range,
2097 * submit_compressed_extents). These callbacks add first an
2098 * extent map to the modified list of extents and then create
2099 * the respective ordered operation, which means in
2100 * tree-log.c:btrfs_log_inode() we might capture all existing
2101 * ordered operations (with btrfs_get_logged_extents()) before
2102 * the fill_delalloc callback adds its ordered operation, and by
2103 * the time we visit the modified list of extent maps (with
2104 * btrfs_log_changed_extents()), we see and process the extent
2105 * map they created. We then use the extent map to construct a
2106 * file extent item for logging without waiting for the
2107 * respective ordered operation to finish - this file extent
2108 * item points to a disk location that might not have yet been
2109 * written to, containing random data - so after a crash a log
2110 * replay will make our inode have file extent items that point
2111 * to disk locations containing invalid data, as we returned
2112 * success to userspace without waiting for the respective
2113 * ordered operation to finish, because it wasn't captured by
2114 * btrfs_get_logged_extents().
2116 ret = start_ordered_ops(inode, start, end);
2118 if (ret) {
2119 inode_unlock(inode);
2120 goto out;
2122 atomic_inc(&root->log_batch);
2125 * If the last transaction that changed this file was before the current
2126 * transaction and we have the full sync flag set in our inode, we can
2127 * bail out now without any syncing.
2129 * Note that we can't bail out if the full sync flag isn't set. This is
2130 * because when the full sync flag is set we start all ordered extents
2131 * and wait for them to fully complete - when they complete they update
2132 * the inode's last_trans field through:
2134 * btrfs_finish_ordered_io() ->
2135 * btrfs_update_inode_fallback() ->
2136 * btrfs_update_inode() ->
2137 * btrfs_set_inode_last_trans()
2139 * So we are sure that last_trans is up to date and can do this check to
2140 * bail out safely. For the fast path, when the full sync flag is not
2141 * set in our inode, we can not do it because we start only our ordered
2142 * extents and don't wait for them to complete (that is when
2143 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2144 * value might be less than or equals to fs_info->last_trans_committed,
2145 * and setting a speculative last_trans for an inode when a buffered
2146 * write is made (such as fs_info->generation + 1 for example) would not
2147 * be reliable since after setting the value and before fsync is called
2148 * any number of transactions can start and commit (transaction kthread
2149 * commits the current transaction periodically), and a transaction
2150 * commit does not start nor waits for ordered extents to complete.
2152 smp_mb();
2153 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2154 (full_sync && BTRFS_I(inode)->last_trans <=
2155 fs_info->last_trans_committed) ||
2156 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2157 BTRFS_I(inode)->last_trans
2158 <= fs_info->last_trans_committed)) {
2160 * We've had everything committed since the last time we were
2161 * modified so clear this flag in case it was set for whatever
2162 * reason, it's no longer relevant.
2164 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165 &BTRFS_I(inode)->runtime_flags);
2167 * An ordered extent might have started before and completed
2168 * already with io errors, in which case the inode was not
2169 * updated and we end up here. So check the inode's mapping
2170 * for any errors that might have happened since we last
2171 * checked called fsync.
2173 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2174 inode_unlock(inode);
2175 goto out;
2179 * We use start here because we will need to wait on the IO to complete
2180 * in btrfs_sync_log, which could require joining a transaction (for
2181 * example checking cross references in the nocow path). If we use join
2182 * here we could get into a situation where we're waiting on IO to
2183 * happen that is blocked on a transaction trying to commit. With start
2184 * we inc the extwriter counter, so we wait for all extwriters to exit
2185 * before we start blocking join'ers. This comment is to keep somebody
2186 * from thinking they are super smart and changing this to
2187 * btrfs_join_transaction *cough*Josef*cough*.
2189 trans = btrfs_start_transaction(root, 0);
2190 if (IS_ERR(trans)) {
2191 ret = PTR_ERR(trans);
2192 inode_unlock(inode);
2193 goto out;
2195 trans->sync = true;
2197 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2198 if (ret < 0) {
2199 /* Fallthrough and commit/free transaction. */
2200 ret = 1;
2203 /* we've logged all the items and now have a consistent
2204 * version of the file in the log. It is possible that
2205 * someone will come in and modify the file, but that's
2206 * fine because the log is consistent on disk, and we
2207 * have references to all of the file's extents
2209 * It is possible that someone will come in and log the
2210 * file again, but that will end up using the synchronization
2211 * inside btrfs_sync_log to keep things safe.
2213 inode_unlock(inode);
2216 * If any of the ordered extents had an error, just return it to user
2217 * space, so that the application knows some writes didn't succeed and
2218 * can take proper action (retry for e.g.). Blindly committing the
2219 * transaction in this case, would fool userspace that everything was
2220 * successful. And we also want to make sure our log doesn't contain
2221 * file extent items pointing to extents that weren't fully written to -
2222 * just like in the non fast fsync path, where we check for the ordered
2223 * operation's error flag before writing to the log tree and return -EIO
2224 * if any of them had this flag set (btrfs_wait_ordered_range) -
2225 * therefore we need to check for errors in the ordered operations,
2226 * which are indicated by ctx.io_err.
2228 if (ctx.io_err) {
2229 btrfs_end_transaction(trans);
2230 ret = ctx.io_err;
2231 goto out;
2234 if (ret != BTRFS_NO_LOG_SYNC) {
2235 if (!ret) {
2236 ret = btrfs_sync_log(trans, root, &ctx);
2237 if (!ret) {
2238 ret = btrfs_end_transaction(trans);
2239 goto out;
2242 if (!full_sync) {
2243 ret = btrfs_wait_ordered_range(inode, start, len);
2244 if (ret) {
2245 btrfs_end_transaction(trans);
2246 goto out;
2249 ret = btrfs_commit_transaction(trans);
2250 } else {
2251 ret = btrfs_end_transaction(trans);
2253 out:
2254 ASSERT(list_empty(&ctx.list));
2255 err = file_check_and_advance_wb_err(file);
2256 if (!ret)
2257 ret = err;
2258 return ret > 0 ? -EIO : ret;
2261 static const struct vm_operations_struct btrfs_file_vm_ops = {
2262 .fault = filemap_fault,
2263 .map_pages = filemap_map_pages,
2264 .page_mkwrite = btrfs_page_mkwrite,
2267 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2269 struct address_space *mapping = filp->f_mapping;
2271 if (!mapping->a_ops->readpage)
2272 return -ENOEXEC;
2274 file_accessed(filp);
2275 vma->vm_ops = &btrfs_file_vm_ops;
2277 return 0;
2280 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2281 int slot, u64 start, u64 end)
2283 struct btrfs_file_extent_item *fi;
2284 struct btrfs_key key;
2286 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2287 return 0;
2289 btrfs_item_key_to_cpu(leaf, &key, slot);
2290 if (key.objectid != btrfs_ino(inode) ||
2291 key.type != BTRFS_EXTENT_DATA_KEY)
2292 return 0;
2294 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2296 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2297 return 0;
2299 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2300 return 0;
2302 if (key.offset == end)
2303 return 1;
2304 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2305 return 1;
2306 return 0;
2309 static int fill_holes(struct btrfs_trans_handle *trans,
2310 struct btrfs_inode *inode,
2311 struct btrfs_path *path, u64 offset, u64 end)
2313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2314 struct btrfs_root *root = inode->root;
2315 struct extent_buffer *leaf;
2316 struct btrfs_file_extent_item *fi;
2317 struct extent_map *hole_em;
2318 struct extent_map_tree *em_tree = &inode->extent_tree;
2319 struct btrfs_key key;
2320 int ret;
2322 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2323 goto out;
2325 key.objectid = btrfs_ino(inode);
2326 key.type = BTRFS_EXTENT_DATA_KEY;
2327 key.offset = offset;
2329 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2330 if (ret <= 0) {
2332 * We should have dropped this offset, so if we find it then
2333 * something has gone horribly wrong.
2335 if (ret == 0)
2336 ret = -EINVAL;
2337 return ret;
2340 leaf = path->nodes[0];
2341 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2342 u64 num_bytes;
2344 path->slots[0]--;
2345 fi = btrfs_item_ptr(leaf, path->slots[0],
2346 struct btrfs_file_extent_item);
2347 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2348 end - offset;
2349 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2350 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2351 btrfs_set_file_extent_offset(leaf, fi, 0);
2352 btrfs_mark_buffer_dirty(leaf);
2353 goto out;
2356 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2357 u64 num_bytes;
2359 key.offset = offset;
2360 btrfs_set_item_key_safe(fs_info, path, &key);
2361 fi = btrfs_item_ptr(leaf, path->slots[0],
2362 struct btrfs_file_extent_item);
2363 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2364 offset;
2365 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2366 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2367 btrfs_set_file_extent_offset(leaf, fi, 0);
2368 btrfs_mark_buffer_dirty(leaf);
2369 goto out;
2371 btrfs_release_path(path);
2373 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2374 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2375 if (ret)
2376 return ret;
2378 out:
2379 btrfs_release_path(path);
2381 hole_em = alloc_extent_map();
2382 if (!hole_em) {
2383 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2384 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2385 } else {
2386 hole_em->start = offset;
2387 hole_em->len = end - offset;
2388 hole_em->ram_bytes = hole_em->len;
2389 hole_em->orig_start = offset;
2391 hole_em->block_start = EXTENT_MAP_HOLE;
2392 hole_em->block_len = 0;
2393 hole_em->orig_block_len = 0;
2394 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2395 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2396 hole_em->generation = trans->transid;
2398 do {
2399 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2400 write_lock(&em_tree->lock);
2401 ret = add_extent_mapping(em_tree, hole_em, 1);
2402 write_unlock(&em_tree->lock);
2403 } while (ret == -EEXIST);
2404 free_extent_map(hole_em);
2405 if (ret)
2406 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2407 &inode->runtime_flags);
2410 return 0;
2414 * Find a hole extent on given inode and change start/len to the end of hole
2415 * extent.(hole/vacuum extent whose em->start <= start &&
2416 * em->start + em->len > start)
2417 * When a hole extent is found, return 1 and modify start/len.
2419 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2422 struct extent_map *em;
2423 int ret = 0;
2425 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2426 round_down(*start, fs_info->sectorsize),
2427 round_up(*len, fs_info->sectorsize), 0);
2428 if (IS_ERR(em))
2429 return PTR_ERR(em);
2431 /* Hole or vacuum extent(only exists in no-hole mode) */
2432 if (em->block_start == EXTENT_MAP_HOLE) {
2433 ret = 1;
2434 *len = em->start + em->len > *start + *len ?
2435 0 : *start + *len - em->start - em->len;
2436 *start = em->start + em->len;
2438 free_extent_map(em);
2439 return ret;
2442 static int btrfs_punch_hole_lock_range(struct inode *inode,
2443 const u64 lockstart,
2444 const u64 lockend,
2445 struct extent_state **cached_state)
2447 while (1) {
2448 struct btrfs_ordered_extent *ordered;
2449 int ret;
2451 truncate_pagecache_range(inode, lockstart, lockend);
2453 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2454 cached_state);
2455 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2458 * We need to make sure we have no ordered extents in this range
2459 * and nobody raced in and read a page in this range, if we did
2460 * we need to try again.
2462 if ((!ordered ||
2463 (ordered->file_offset + ordered->len <= lockstart ||
2464 ordered->file_offset > lockend)) &&
2465 !filemap_range_has_page(inode->i_mapping,
2466 lockstart, lockend)) {
2467 if (ordered)
2468 btrfs_put_ordered_extent(ordered);
2469 break;
2471 if (ordered)
2472 btrfs_put_ordered_extent(ordered);
2473 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2474 lockend, cached_state);
2475 ret = btrfs_wait_ordered_range(inode, lockstart,
2476 lockend - lockstart + 1);
2477 if (ret)
2478 return ret;
2480 return 0;
2483 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2486 struct btrfs_root *root = BTRFS_I(inode)->root;
2487 struct extent_state *cached_state = NULL;
2488 struct btrfs_path *path;
2489 struct btrfs_block_rsv *rsv;
2490 struct btrfs_trans_handle *trans;
2491 u64 lockstart;
2492 u64 lockend;
2493 u64 tail_start;
2494 u64 tail_len;
2495 u64 orig_start = offset;
2496 u64 cur_offset;
2497 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2498 u64 drop_end;
2499 int ret = 0;
2500 int err = 0;
2501 unsigned int rsv_count;
2502 bool same_block;
2503 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2504 u64 ino_size;
2505 bool truncated_block = false;
2506 bool updated_inode = false;
2508 ret = btrfs_wait_ordered_range(inode, offset, len);
2509 if (ret)
2510 return ret;
2512 inode_lock(inode);
2513 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2514 ret = find_first_non_hole(inode, &offset, &len);
2515 if (ret < 0)
2516 goto out_only_mutex;
2517 if (ret && !len) {
2518 /* Already in a large hole */
2519 ret = 0;
2520 goto out_only_mutex;
2523 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2524 lockend = round_down(offset + len,
2525 btrfs_inode_sectorsize(inode)) - 1;
2526 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2527 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2529 * We needn't truncate any block which is beyond the end of the file
2530 * because we are sure there is no data there.
2533 * Only do this if we are in the same block and we aren't doing the
2534 * entire block.
2536 if (same_block && len < fs_info->sectorsize) {
2537 if (offset < ino_size) {
2538 truncated_block = true;
2539 ret = btrfs_truncate_block(inode, offset, len, 0);
2540 } else {
2541 ret = 0;
2543 goto out_only_mutex;
2546 /* zero back part of the first block */
2547 if (offset < ino_size) {
2548 truncated_block = true;
2549 ret = btrfs_truncate_block(inode, offset, 0, 0);
2550 if (ret) {
2551 inode_unlock(inode);
2552 return ret;
2556 /* Check the aligned pages after the first unaligned page,
2557 * if offset != orig_start, which means the first unaligned page
2558 * including several following pages are already in holes,
2559 * the extra check can be skipped */
2560 if (offset == orig_start) {
2561 /* after truncate page, check hole again */
2562 len = offset + len - lockstart;
2563 offset = lockstart;
2564 ret = find_first_non_hole(inode, &offset, &len);
2565 if (ret < 0)
2566 goto out_only_mutex;
2567 if (ret && !len) {
2568 ret = 0;
2569 goto out_only_mutex;
2571 lockstart = offset;
2574 /* Check the tail unaligned part is in a hole */
2575 tail_start = lockend + 1;
2576 tail_len = offset + len - tail_start;
2577 if (tail_len) {
2578 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2579 if (unlikely(ret < 0))
2580 goto out_only_mutex;
2581 if (!ret) {
2582 /* zero the front end of the last page */
2583 if (tail_start + tail_len < ino_size) {
2584 truncated_block = true;
2585 ret = btrfs_truncate_block(inode,
2586 tail_start + tail_len,
2587 0, 1);
2588 if (ret)
2589 goto out_only_mutex;
2594 if (lockend < lockstart) {
2595 ret = 0;
2596 goto out_only_mutex;
2599 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2600 &cached_state);
2601 if (ret) {
2602 inode_unlock(inode);
2603 goto out_only_mutex;
2606 path = btrfs_alloc_path();
2607 if (!path) {
2608 ret = -ENOMEM;
2609 goto out;
2612 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2613 if (!rsv) {
2614 ret = -ENOMEM;
2615 goto out_free;
2617 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2618 rsv->failfast = 1;
2621 * 1 - update the inode
2622 * 1 - removing the extents in the range
2623 * 1 - adding the hole extent if no_holes isn't set
2625 rsv_count = no_holes ? 2 : 3;
2626 trans = btrfs_start_transaction(root, rsv_count);
2627 if (IS_ERR(trans)) {
2628 err = PTR_ERR(trans);
2629 goto out_free;
2632 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2633 min_size, 0);
2634 BUG_ON(ret);
2635 trans->block_rsv = rsv;
2637 cur_offset = lockstart;
2638 len = lockend - cur_offset;
2639 while (cur_offset < lockend) {
2640 ret = __btrfs_drop_extents(trans, root, inode, path,
2641 cur_offset, lockend + 1,
2642 &drop_end, 1, 0, 0, NULL);
2643 if (ret != -ENOSPC)
2644 break;
2646 trans->block_rsv = &fs_info->trans_block_rsv;
2648 if (cur_offset < drop_end && cur_offset < ino_size) {
2649 ret = fill_holes(trans, BTRFS_I(inode), path,
2650 cur_offset, drop_end);
2651 if (ret) {
2653 * If we failed then we didn't insert our hole
2654 * entries for the area we dropped, so now the
2655 * fs is corrupted, so we must abort the
2656 * transaction.
2658 btrfs_abort_transaction(trans, ret);
2659 err = ret;
2660 break;
2664 cur_offset = drop_end;
2666 ret = btrfs_update_inode(trans, root, inode);
2667 if (ret) {
2668 err = ret;
2669 break;
2672 btrfs_end_transaction(trans);
2673 btrfs_btree_balance_dirty(fs_info);
2675 trans = btrfs_start_transaction(root, rsv_count);
2676 if (IS_ERR(trans)) {
2677 ret = PTR_ERR(trans);
2678 trans = NULL;
2679 break;
2682 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2683 rsv, min_size, 0);
2684 BUG_ON(ret); /* shouldn't happen */
2685 trans->block_rsv = rsv;
2687 ret = find_first_non_hole(inode, &cur_offset, &len);
2688 if (unlikely(ret < 0))
2689 break;
2690 if (ret && !len) {
2691 ret = 0;
2692 break;
2696 if (ret) {
2697 err = ret;
2698 goto out_trans;
2701 trans->block_rsv = &fs_info->trans_block_rsv;
2703 * If we are using the NO_HOLES feature we might have had already an
2704 * hole that overlaps a part of the region [lockstart, lockend] and
2705 * ends at (or beyond) lockend. Since we have no file extent items to
2706 * represent holes, drop_end can be less than lockend and so we must
2707 * make sure we have an extent map representing the existing hole (the
2708 * call to __btrfs_drop_extents() might have dropped the existing extent
2709 * map representing the existing hole), otherwise the fast fsync path
2710 * will not record the existence of the hole region
2711 * [existing_hole_start, lockend].
2713 if (drop_end <= lockend)
2714 drop_end = lockend + 1;
2716 * Don't insert file hole extent item if it's for a range beyond eof
2717 * (because it's useless) or if it represents a 0 bytes range (when
2718 * cur_offset == drop_end).
2720 if (cur_offset < ino_size && cur_offset < drop_end) {
2721 ret = fill_holes(trans, BTRFS_I(inode), path,
2722 cur_offset, drop_end);
2723 if (ret) {
2724 /* Same comment as above. */
2725 btrfs_abort_transaction(trans, ret);
2726 err = ret;
2727 goto out_trans;
2731 out_trans:
2732 if (!trans)
2733 goto out_free;
2735 inode_inc_iversion(inode);
2736 inode->i_mtime = inode->i_ctime = current_time(inode);
2738 trans->block_rsv = &fs_info->trans_block_rsv;
2739 ret = btrfs_update_inode(trans, root, inode);
2740 updated_inode = true;
2741 btrfs_end_transaction(trans);
2742 btrfs_btree_balance_dirty(fs_info);
2743 out_free:
2744 btrfs_free_path(path);
2745 btrfs_free_block_rsv(fs_info, rsv);
2746 out:
2747 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2748 &cached_state);
2749 out_only_mutex:
2750 if (!updated_inode && truncated_block && !ret && !err) {
2752 * If we only end up zeroing part of a page, we still need to
2753 * update the inode item, so that all the time fields are
2754 * updated as well as the necessary btrfs inode in memory fields
2755 * for detecting, at fsync time, if the inode isn't yet in the
2756 * log tree or it's there but not up to date.
2758 trans = btrfs_start_transaction(root, 1);
2759 if (IS_ERR(trans)) {
2760 err = PTR_ERR(trans);
2761 } else {
2762 err = btrfs_update_inode(trans, root, inode);
2763 ret = btrfs_end_transaction(trans);
2766 inode_unlock(inode);
2767 if (ret && !err)
2768 err = ret;
2769 return err;
2772 /* Helper structure to record which range is already reserved */
2773 struct falloc_range {
2774 struct list_head list;
2775 u64 start;
2776 u64 len;
2780 * Helper function to add falloc range
2782 * Caller should have locked the larger range of extent containing
2783 * [start, len)
2785 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2787 struct falloc_range *prev = NULL;
2788 struct falloc_range *range = NULL;
2790 if (list_empty(head))
2791 goto insert;
2794 * As fallocate iterate by bytenr order, we only need to check
2795 * the last range.
2797 prev = list_entry(head->prev, struct falloc_range, list);
2798 if (prev->start + prev->len == start) {
2799 prev->len += len;
2800 return 0;
2802 insert:
2803 range = kmalloc(sizeof(*range), GFP_KERNEL);
2804 if (!range)
2805 return -ENOMEM;
2806 range->start = start;
2807 range->len = len;
2808 list_add_tail(&range->list, head);
2809 return 0;
2812 static int btrfs_fallocate_update_isize(struct inode *inode,
2813 const u64 end,
2814 const int mode)
2816 struct btrfs_trans_handle *trans;
2817 struct btrfs_root *root = BTRFS_I(inode)->root;
2818 int ret;
2819 int ret2;
2821 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2822 return 0;
2824 trans = btrfs_start_transaction(root, 1);
2825 if (IS_ERR(trans))
2826 return PTR_ERR(trans);
2828 inode->i_ctime = current_time(inode);
2829 i_size_write(inode, end);
2830 btrfs_ordered_update_i_size(inode, end, NULL);
2831 ret = btrfs_update_inode(trans, root, inode);
2832 ret2 = btrfs_end_transaction(trans);
2834 return ret ? ret : ret2;
2837 enum {
2838 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2839 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2840 RANGE_BOUNDARY_HOLE = 2,
2843 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2844 u64 offset)
2846 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2847 struct extent_map *em;
2848 int ret;
2850 offset = round_down(offset, sectorsize);
2851 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2852 if (IS_ERR(em))
2853 return PTR_ERR(em);
2855 if (em->block_start == EXTENT_MAP_HOLE)
2856 ret = RANGE_BOUNDARY_HOLE;
2857 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2858 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2859 else
2860 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2862 free_extent_map(em);
2863 return ret;
2866 static int btrfs_zero_range(struct inode *inode,
2867 loff_t offset,
2868 loff_t len,
2869 const int mode)
2871 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2872 struct extent_map *em;
2873 struct extent_changeset *data_reserved = NULL;
2874 int ret;
2875 u64 alloc_hint = 0;
2876 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2877 u64 alloc_start = round_down(offset, sectorsize);
2878 u64 alloc_end = round_up(offset + len, sectorsize);
2879 u64 bytes_to_reserve = 0;
2880 bool space_reserved = false;
2882 inode_dio_wait(inode);
2884 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2885 alloc_start, alloc_end - alloc_start, 0);
2886 if (IS_ERR(em)) {
2887 ret = PTR_ERR(em);
2888 goto out;
2892 * Avoid hole punching and extent allocation for some cases. More cases
2893 * could be considered, but these are unlikely common and we keep things
2894 * as simple as possible for now. Also, intentionally, if the target
2895 * range contains one or more prealloc extents together with regular
2896 * extents and holes, we drop all the existing extents and allocate a
2897 * new prealloc extent, so that we get a larger contiguous disk extent.
2899 if (em->start <= alloc_start &&
2900 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2901 const u64 em_end = em->start + em->len;
2903 if (em_end >= offset + len) {
2905 * The whole range is already a prealloc extent,
2906 * do nothing except updating the inode's i_size if
2907 * needed.
2909 free_extent_map(em);
2910 ret = btrfs_fallocate_update_isize(inode, offset + len,
2911 mode);
2912 goto out;
2915 * Part of the range is already a prealloc extent, so operate
2916 * only on the remaining part of the range.
2918 alloc_start = em_end;
2919 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2920 len = offset + len - alloc_start;
2921 offset = alloc_start;
2922 alloc_hint = em->block_start + em->len;
2924 free_extent_map(em);
2926 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2927 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2928 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2929 alloc_start, sectorsize, 0);
2930 if (IS_ERR(em)) {
2931 ret = PTR_ERR(em);
2932 goto out;
2935 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2936 free_extent_map(em);
2937 ret = btrfs_fallocate_update_isize(inode, offset + len,
2938 mode);
2939 goto out;
2941 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2942 free_extent_map(em);
2943 ret = btrfs_truncate_block(inode, offset, len, 0);
2944 if (!ret)
2945 ret = btrfs_fallocate_update_isize(inode,
2946 offset + len,
2947 mode);
2948 return ret;
2950 free_extent_map(em);
2951 alloc_start = round_down(offset, sectorsize);
2952 alloc_end = alloc_start + sectorsize;
2953 goto reserve_space;
2956 alloc_start = round_up(offset, sectorsize);
2957 alloc_end = round_down(offset + len, sectorsize);
2960 * For unaligned ranges, check the pages at the boundaries, they might
2961 * map to an extent, in which case we need to partially zero them, or
2962 * they might map to a hole, in which case we need our allocation range
2963 * to cover them.
2965 if (!IS_ALIGNED(offset, sectorsize)) {
2966 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2967 if (ret < 0)
2968 goto out;
2969 if (ret == RANGE_BOUNDARY_HOLE) {
2970 alloc_start = round_down(offset, sectorsize);
2971 ret = 0;
2972 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2973 ret = btrfs_truncate_block(inode, offset, 0, 0);
2974 if (ret)
2975 goto out;
2976 } else {
2977 ret = 0;
2981 if (!IS_ALIGNED(offset + len, sectorsize)) {
2982 ret = btrfs_zero_range_check_range_boundary(inode,
2983 offset + len);
2984 if (ret < 0)
2985 goto out;
2986 if (ret == RANGE_BOUNDARY_HOLE) {
2987 alloc_end = round_up(offset + len, sectorsize);
2988 ret = 0;
2989 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2990 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2991 if (ret)
2992 goto out;
2993 } else {
2994 ret = 0;
2998 reserve_space:
2999 if (alloc_start < alloc_end) {
3000 struct extent_state *cached_state = NULL;
3001 const u64 lockstart = alloc_start;
3002 const u64 lockend = alloc_end - 1;
3004 bytes_to_reserve = alloc_end - alloc_start;
3005 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3006 bytes_to_reserve);
3007 if (ret < 0)
3008 goto out;
3009 space_reserved = true;
3010 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3011 alloc_start, bytes_to_reserve);
3012 if (ret)
3013 goto out;
3014 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3015 &cached_state);
3016 if (ret)
3017 goto out;
3018 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3019 alloc_end - alloc_start,
3020 i_blocksize(inode),
3021 offset + len, &alloc_hint);
3022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3023 lockend, &cached_state);
3024 /* btrfs_prealloc_file_range releases reserved space on error */
3025 if (ret) {
3026 space_reserved = false;
3027 goto out;
3030 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3031 out:
3032 if (ret && space_reserved)
3033 btrfs_free_reserved_data_space(inode, data_reserved,
3034 alloc_start, bytes_to_reserve);
3035 extent_changeset_free(data_reserved);
3037 return ret;
3040 static long btrfs_fallocate(struct file *file, int mode,
3041 loff_t offset, loff_t len)
3043 struct inode *inode = file_inode(file);
3044 struct extent_state *cached_state = NULL;
3045 struct extent_changeset *data_reserved = NULL;
3046 struct falloc_range *range;
3047 struct falloc_range *tmp;
3048 struct list_head reserve_list;
3049 u64 cur_offset;
3050 u64 last_byte;
3051 u64 alloc_start;
3052 u64 alloc_end;
3053 u64 alloc_hint = 0;
3054 u64 locked_end;
3055 u64 actual_end = 0;
3056 struct extent_map *em;
3057 int blocksize = btrfs_inode_sectorsize(inode);
3058 int ret;
3060 alloc_start = round_down(offset, blocksize);
3061 alloc_end = round_up(offset + len, blocksize);
3062 cur_offset = alloc_start;
3064 /* Make sure we aren't being give some crap mode */
3065 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3066 FALLOC_FL_ZERO_RANGE))
3067 return -EOPNOTSUPP;
3069 if (mode & FALLOC_FL_PUNCH_HOLE)
3070 return btrfs_punch_hole(inode, offset, len);
3073 * Only trigger disk allocation, don't trigger qgroup reserve
3075 * For qgroup space, it will be checked later.
3077 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3078 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3079 alloc_end - alloc_start);
3080 if (ret < 0)
3081 return ret;
3084 inode_lock(inode);
3086 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3087 ret = inode_newsize_ok(inode, offset + len);
3088 if (ret)
3089 goto out;
3093 * TODO: Move these two operations after we have checked
3094 * accurate reserved space, or fallocate can still fail but
3095 * with page truncated or size expanded.
3097 * But that's a minor problem and won't do much harm BTW.
3099 if (alloc_start > inode->i_size) {
3100 ret = btrfs_cont_expand(inode, i_size_read(inode),
3101 alloc_start);
3102 if (ret)
3103 goto out;
3104 } else if (offset + len > inode->i_size) {
3106 * If we are fallocating from the end of the file onward we
3107 * need to zero out the end of the block if i_size lands in the
3108 * middle of a block.
3110 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3111 if (ret)
3112 goto out;
3116 * wait for ordered IO before we have any locks. We'll loop again
3117 * below with the locks held.
3119 ret = btrfs_wait_ordered_range(inode, alloc_start,
3120 alloc_end - alloc_start);
3121 if (ret)
3122 goto out;
3124 if (mode & FALLOC_FL_ZERO_RANGE) {
3125 ret = btrfs_zero_range(inode, offset, len, mode);
3126 inode_unlock(inode);
3127 return ret;
3130 locked_end = alloc_end - 1;
3131 while (1) {
3132 struct btrfs_ordered_extent *ordered;
3134 /* the extent lock is ordered inside the running
3135 * transaction
3137 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3138 locked_end, &cached_state);
3139 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3141 if (ordered &&
3142 ordered->file_offset + ordered->len > alloc_start &&
3143 ordered->file_offset < alloc_end) {
3144 btrfs_put_ordered_extent(ordered);
3145 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3146 alloc_start, locked_end,
3147 &cached_state);
3149 * we can't wait on the range with the transaction
3150 * running or with the extent lock held
3152 ret = btrfs_wait_ordered_range(inode, alloc_start,
3153 alloc_end - alloc_start);
3154 if (ret)
3155 goto out;
3156 } else {
3157 if (ordered)
3158 btrfs_put_ordered_extent(ordered);
3159 break;
3163 /* First, check if we exceed the qgroup limit */
3164 INIT_LIST_HEAD(&reserve_list);
3165 while (cur_offset < alloc_end) {
3166 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3167 alloc_end - cur_offset, 0);
3168 if (IS_ERR(em)) {
3169 ret = PTR_ERR(em);
3170 break;
3172 last_byte = min(extent_map_end(em), alloc_end);
3173 actual_end = min_t(u64, extent_map_end(em), offset + len);
3174 last_byte = ALIGN(last_byte, blocksize);
3175 if (em->block_start == EXTENT_MAP_HOLE ||
3176 (cur_offset >= inode->i_size &&
3177 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3178 ret = add_falloc_range(&reserve_list, cur_offset,
3179 last_byte - cur_offset);
3180 if (ret < 0) {
3181 free_extent_map(em);
3182 break;
3184 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3185 cur_offset, last_byte - cur_offset);
3186 if (ret < 0) {
3187 free_extent_map(em);
3188 break;
3190 } else {
3192 * Do not need to reserve unwritten extent for this
3193 * range, free reserved data space first, otherwise
3194 * it'll result in false ENOSPC error.
3196 btrfs_free_reserved_data_space(inode, data_reserved,
3197 cur_offset, last_byte - cur_offset);
3199 free_extent_map(em);
3200 cur_offset = last_byte;
3204 * If ret is still 0, means we're OK to fallocate.
3205 * Or just cleanup the list and exit.
3207 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3208 if (!ret)
3209 ret = btrfs_prealloc_file_range(inode, mode,
3210 range->start,
3211 range->len, i_blocksize(inode),
3212 offset + len, &alloc_hint);
3213 else
3214 btrfs_free_reserved_data_space(inode,
3215 data_reserved, range->start,
3216 range->len);
3217 list_del(&range->list);
3218 kfree(range);
3220 if (ret < 0)
3221 goto out_unlock;
3224 * We didn't need to allocate any more space, but we still extended the
3225 * size of the file so we need to update i_size and the inode item.
3227 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3228 out_unlock:
3229 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3230 &cached_state);
3231 out:
3232 inode_unlock(inode);
3233 /* Let go of our reservation. */
3234 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3235 btrfs_free_reserved_data_space(inode, data_reserved,
3236 alloc_start, alloc_end - cur_offset);
3237 extent_changeset_free(data_reserved);
3238 return ret;
3241 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3244 struct extent_map *em = NULL;
3245 struct extent_state *cached_state = NULL;
3246 u64 lockstart;
3247 u64 lockend;
3248 u64 start;
3249 u64 len;
3250 int ret = 0;
3252 if (inode->i_size == 0)
3253 return -ENXIO;
3256 * *offset can be negative, in this case we start finding DATA/HOLE from
3257 * the very start of the file.
3259 start = max_t(loff_t, 0, *offset);
3261 lockstart = round_down(start, fs_info->sectorsize);
3262 lockend = round_up(i_size_read(inode),
3263 fs_info->sectorsize);
3264 if (lockend <= lockstart)
3265 lockend = lockstart + fs_info->sectorsize;
3266 lockend--;
3267 len = lockend - lockstart + 1;
3269 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3270 &cached_state);
3272 while (start < inode->i_size) {
3273 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3274 start, len, 0);
3275 if (IS_ERR(em)) {
3276 ret = PTR_ERR(em);
3277 em = NULL;
3278 break;
3281 if (whence == SEEK_HOLE &&
3282 (em->block_start == EXTENT_MAP_HOLE ||
3283 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3284 break;
3285 else if (whence == SEEK_DATA &&
3286 (em->block_start != EXTENT_MAP_HOLE &&
3287 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3288 break;
3290 start = em->start + em->len;
3291 free_extent_map(em);
3292 em = NULL;
3293 cond_resched();
3295 free_extent_map(em);
3296 if (!ret) {
3297 if (whence == SEEK_DATA && start >= inode->i_size)
3298 ret = -ENXIO;
3299 else
3300 *offset = min_t(loff_t, start, inode->i_size);
3302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3303 &cached_state);
3304 return ret;
3307 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3309 struct inode *inode = file->f_mapping->host;
3310 int ret;
3312 inode_lock(inode);
3313 switch (whence) {
3314 case SEEK_END:
3315 case SEEK_CUR:
3316 offset = generic_file_llseek(file, offset, whence);
3317 goto out;
3318 case SEEK_DATA:
3319 case SEEK_HOLE:
3320 if (offset >= i_size_read(inode)) {
3321 inode_unlock(inode);
3322 return -ENXIO;
3325 ret = find_desired_extent(inode, &offset, whence);
3326 if (ret) {
3327 inode_unlock(inode);
3328 return ret;
3332 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3333 out:
3334 inode_unlock(inode);
3335 return offset;
3338 static int btrfs_file_open(struct inode *inode, struct file *filp)
3340 filp->f_mode |= FMODE_NOWAIT;
3341 return generic_file_open(inode, filp);
3344 const struct file_operations btrfs_file_operations = {
3345 .llseek = btrfs_file_llseek,
3346 .read_iter = generic_file_read_iter,
3347 .splice_read = generic_file_splice_read,
3348 .write_iter = btrfs_file_write_iter,
3349 .mmap = btrfs_file_mmap,
3350 .open = btrfs_file_open,
3351 .release = btrfs_release_file,
3352 .fsync = btrfs_sync_file,
3353 .fallocate = btrfs_fallocate,
3354 .unlocked_ioctl = btrfs_ioctl,
3355 #ifdef CONFIG_COMPAT
3356 .compat_ioctl = btrfs_compat_ioctl,
3357 #endif
3358 .clone_file_range = btrfs_clone_file_range,
3359 .dedupe_file_range = btrfs_dedupe_file_range,
3362 void __cold btrfs_auto_defrag_exit(void)
3364 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3367 int __init btrfs_auto_defrag_init(void)
3369 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3370 sizeof(struct inode_defrag), 0,
3371 SLAB_MEM_SPREAD,
3372 NULL);
3373 if (!btrfs_inode_defrag_cachep)
3374 return -ENOMEM;
3376 return 0;
3379 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3381 int ret;
3384 * So with compression we will find and lock a dirty page and clear the
3385 * first one as dirty, setup an async extent, and immediately return
3386 * with the entire range locked but with nobody actually marked with
3387 * writeback. So we can't just filemap_write_and_wait_range() and
3388 * expect it to work since it will just kick off a thread to do the
3389 * actual work. So we need to call filemap_fdatawrite_range _again_
3390 * since it will wait on the page lock, which won't be unlocked until
3391 * after the pages have been marked as writeback and so we're good to go
3392 * from there. We have to do this otherwise we'll miss the ordered
3393 * extents and that results in badness. Please Josef, do not think you
3394 * know better and pull this out at some point in the future, it is
3395 * right and you are wrong.
3397 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3398 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3399 &BTRFS_I(inode)->runtime_flags))
3400 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3402 return ret;