Linux 4.18.10
[linux/fpc-iii.git] / fs / btrfs / free-space-cache.c
blobd5f80cb300bea03a2a417fd5cc03d55c960f8314
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "free-space-cache.h"
15 #include "transaction.h"
16 #include "disk-io.h"
17 #include "extent_io.h"
18 #include "inode-map.h"
19 #include "volumes.h"
21 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
22 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
24 struct btrfs_trim_range {
25 u64 start;
26 u64 bytes;
27 struct list_head list;
30 static int link_free_space(struct btrfs_free_space_ctl *ctl,
31 struct btrfs_free_space *info);
32 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
33 struct btrfs_free_space *info);
34 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
35 struct btrfs_trans_handle *trans,
36 struct btrfs_io_ctl *io_ctl,
37 struct btrfs_path *path);
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 struct btrfs_path *path,
41 u64 offset)
43 struct btrfs_fs_info *fs_info = root->fs_info;
44 struct btrfs_key key;
45 struct btrfs_key location;
46 struct btrfs_disk_key disk_key;
47 struct btrfs_free_space_header *header;
48 struct extent_buffer *leaf;
49 struct inode *inode = NULL;
50 int ret;
52 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
53 key.offset = offset;
54 key.type = 0;
56 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
57 if (ret < 0)
58 return ERR_PTR(ret);
59 if (ret > 0) {
60 btrfs_release_path(path);
61 return ERR_PTR(-ENOENT);
64 leaf = path->nodes[0];
65 header = btrfs_item_ptr(leaf, path->slots[0],
66 struct btrfs_free_space_header);
67 btrfs_free_space_key(leaf, header, &disk_key);
68 btrfs_disk_key_to_cpu(&location, &disk_key);
69 btrfs_release_path(path);
71 inode = btrfs_iget(fs_info->sb, &location, root, NULL);
72 if (IS_ERR(inode))
73 return inode;
74 if (is_bad_inode(inode)) {
75 iput(inode);
76 return ERR_PTR(-ENOENT);
79 mapping_set_gfp_mask(inode->i_mapping,
80 mapping_gfp_constraint(inode->i_mapping,
81 ~(__GFP_FS | __GFP_HIGHMEM)));
83 return inode;
86 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
87 struct btrfs_block_group_cache
88 *block_group, struct btrfs_path *path)
90 struct inode *inode = NULL;
91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
93 spin_lock(&block_group->lock);
94 if (block_group->inode)
95 inode = igrab(block_group->inode);
96 spin_unlock(&block_group->lock);
97 if (inode)
98 return inode;
100 inode = __lookup_free_space_inode(fs_info->tree_root, path,
101 block_group->key.objectid);
102 if (IS_ERR(inode))
103 return inode;
105 spin_lock(&block_group->lock);
106 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 btrfs_info(fs_info, "Old style space inode found, converting.");
108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 BTRFS_INODE_NODATACOW;
110 block_group->disk_cache_state = BTRFS_DC_CLEAR;
113 if (!block_group->iref) {
114 block_group->inode = igrab(inode);
115 block_group->iref = 1;
117 spin_unlock(&block_group->lock);
119 return inode;
122 static int __create_free_space_inode(struct btrfs_root *root,
123 struct btrfs_trans_handle *trans,
124 struct btrfs_path *path,
125 u64 ino, u64 offset)
127 struct btrfs_key key;
128 struct btrfs_disk_key disk_key;
129 struct btrfs_free_space_header *header;
130 struct btrfs_inode_item *inode_item;
131 struct extent_buffer *leaf;
132 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
133 int ret;
135 ret = btrfs_insert_empty_inode(trans, root, path, ino);
136 if (ret)
137 return ret;
139 /* We inline crc's for the free disk space cache */
140 if (ino != BTRFS_FREE_INO_OBJECTID)
141 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
143 leaf = path->nodes[0];
144 inode_item = btrfs_item_ptr(leaf, path->slots[0],
145 struct btrfs_inode_item);
146 btrfs_item_key(leaf, &disk_key, path->slots[0]);
147 memzero_extent_buffer(leaf, (unsigned long)inode_item,
148 sizeof(*inode_item));
149 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
150 btrfs_set_inode_size(leaf, inode_item, 0);
151 btrfs_set_inode_nbytes(leaf, inode_item, 0);
152 btrfs_set_inode_uid(leaf, inode_item, 0);
153 btrfs_set_inode_gid(leaf, inode_item, 0);
154 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
155 btrfs_set_inode_flags(leaf, inode_item, flags);
156 btrfs_set_inode_nlink(leaf, inode_item, 1);
157 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
158 btrfs_set_inode_block_group(leaf, inode_item, offset);
159 btrfs_mark_buffer_dirty(leaf);
160 btrfs_release_path(path);
162 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
163 key.offset = offset;
164 key.type = 0;
165 ret = btrfs_insert_empty_item(trans, root, path, &key,
166 sizeof(struct btrfs_free_space_header));
167 if (ret < 0) {
168 btrfs_release_path(path);
169 return ret;
172 leaf = path->nodes[0];
173 header = btrfs_item_ptr(leaf, path->slots[0],
174 struct btrfs_free_space_header);
175 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
176 btrfs_set_free_space_key(leaf, header, &disk_key);
177 btrfs_mark_buffer_dirty(leaf);
178 btrfs_release_path(path);
180 return 0;
183 int create_free_space_inode(struct btrfs_fs_info *fs_info,
184 struct btrfs_trans_handle *trans,
185 struct btrfs_block_group_cache *block_group,
186 struct btrfs_path *path)
188 int ret;
189 u64 ino;
191 ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
192 if (ret < 0)
193 return ret;
195 return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
196 block_group->key.objectid);
199 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
200 struct btrfs_block_rsv *rsv)
202 u64 needed_bytes;
203 int ret;
205 /* 1 for slack space, 1 for updating the inode */
206 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
207 btrfs_calc_trans_metadata_size(fs_info, 1);
209 spin_lock(&rsv->lock);
210 if (rsv->reserved < needed_bytes)
211 ret = -ENOSPC;
212 else
213 ret = 0;
214 spin_unlock(&rsv->lock);
215 return ret;
218 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
219 struct btrfs_block_group_cache *block_group,
220 struct inode *inode)
222 struct btrfs_root *root = BTRFS_I(inode)->root;
223 int ret = 0;
224 bool locked = false;
226 if (block_group) {
227 struct btrfs_path *path = btrfs_alloc_path();
229 if (!path) {
230 ret = -ENOMEM;
231 goto fail;
233 locked = true;
234 mutex_lock(&trans->transaction->cache_write_mutex);
235 if (!list_empty(&block_group->io_list)) {
236 list_del_init(&block_group->io_list);
238 btrfs_wait_cache_io(trans, block_group, path);
239 btrfs_put_block_group(block_group);
243 * now that we've truncated the cache away, its no longer
244 * setup or written
246 spin_lock(&block_group->lock);
247 block_group->disk_cache_state = BTRFS_DC_CLEAR;
248 spin_unlock(&block_group->lock);
249 btrfs_free_path(path);
252 btrfs_i_size_write(BTRFS_I(inode), 0);
253 truncate_pagecache(inode, 0);
256 * We skip the throttling logic for free space cache inodes, so we don't
257 * need to check for -EAGAIN.
259 ret = btrfs_truncate_inode_items(trans, root, inode,
260 0, BTRFS_EXTENT_DATA_KEY);
261 if (ret)
262 goto fail;
264 ret = btrfs_update_inode(trans, root, inode);
266 fail:
267 if (locked)
268 mutex_unlock(&trans->transaction->cache_write_mutex);
269 if (ret)
270 btrfs_abort_transaction(trans, ret);
272 return ret;
275 static void readahead_cache(struct inode *inode)
277 struct file_ra_state *ra;
278 unsigned long last_index;
280 ra = kzalloc(sizeof(*ra), GFP_NOFS);
281 if (!ra)
282 return;
284 file_ra_state_init(ra, inode->i_mapping);
285 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
287 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
289 kfree(ra);
292 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
293 int write)
295 int num_pages;
296 int check_crcs = 0;
298 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
300 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
301 check_crcs = 1;
303 /* Make sure we can fit our crcs into the first page */
304 if (write && check_crcs &&
305 (num_pages * sizeof(u32)) >= PAGE_SIZE)
306 return -ENOSPC;
308 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
310 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
311 if (!io_ctl->pages)
312 return -ENOMEM;
314 io_ctl->num_pages = num_pages;
315 io_ctl->fs_info = btrfs_sb(inode->i_sb);
316 io_ctl->check_crcs = check_crcs;
317 io_ctl->inode = inode;
319 return 0;
321 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
323 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
325 kfree(io_ctl->pages);
326 io_ctl->pages = NULL;
329 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
331 if (io_ctl->cur) {
332 io_ctl->cur = NULL;
333 io_ctl->orig = NULL;
337 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
339 ASSERT(io_ctl->index < io_ctl->num_pages);
340 io_ctl->page = io_ctl->pages[io_ctl->index++];
341 io_ctl->cur = page_address(io_ctl->page);
342 io_ctl->orig = io_ctl->cur;
343 io_ctl->size = PAGE_SIZE;
344 if (clear)
345 clear_page(io_ctl->cur);
348 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
350 int i;
352 io_ctl_unmap_page(io_ctl);
354 for (i = 0; i < io_ctl->num_pages; i++) {
355 if (io_ctl->pages[i]) {
356 ClearPageChecked(io_ctl->pages[i]);
357 unlock_page(io_ctl->pages[i]);
358 put_page(io_ctl->pages[i]);
363 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
364 int uptodate)
366 struct page *page;
367 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
368 int i;
370 for (i = 0; i < io_ctl->num_pages; i++) {
371 page = find_or_create_page(inode->i_mapping, i, mask);
372 if (!page) {
373 io_ctl_drop_pages(io_ctl);
374 return -ENOMEM;
376 io_ctl->pages[i] = page;
377 if (uptodate && !PageUptodate(page)) {
378 btrfs_readpage(NULL, page);
379 lock_page(page);
380 if (!PageUptodate(page)) {
381 btrfs_err(BTRFS_I(inode)->root->fs_info,
382 "error reading free space cache");
383 io_ctl_drop_pages(io_ctl);
384 return -EIO;
389 for (i = 0; i < io_ctl->num_pages; i++) {
390 clear_page_dirty_for_io(io_ctl->pages[i]);
391 set_page_extent_mapped(io_ctl->pages[i]);
394 return 0;
397 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
399 __le64 *val;
401 io_ctl_map_page(io_ctl, 1);
404 * Skip the csum areas. If we don't check crcs then we just have a
405 * 64bit chunk at the front of the first page.
407 if (io_ctl->check_crcs) {
408 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
409 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
410 } else {
411 io_ctl->cur += sizeof(u64);
412 io_ctl->size -= sizeof(u64) * 2;
415 val = io_ctl->cur;
416 *val = cpu_to_le64(generation);
417 io_ctl->cur += sizeof(u64);
420 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
422 __le64 *gen;
425 * Skip the crc area. If we don't check crcs then we just have a 64bit
426 * chunk at the front of the first page.
428 if (io_ctl->check_crcs) {
429 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
430 io_ctl->size -= sizeof(u64) +
431 (sizeof(u32) * io_ctl->num_pages);
432 } else {
433 io_ctl->cur += sizeof(u64);
434 io_ctl->size -= sizeof(u64) * 2;
437 gen = io_ctl->cur;
438 if (le64_to_cpu(*gen) != generation) {
439 btrfs_err_rl(io_ctl->fs_info,
440 "space cache generation (%llu) does not match inode (%llu)",
441 *gen, generation);
442 io_ctl_unmap_page(io_ctl);
443 return -EIO;
445 io_ctl->cur += sizeof(u64);
446 return 0;
449 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
451 u32 *tmp;
452 u32 crc = ~(u32)0;
453 unsigned offset = 0;
455 if (!io_ctl->check_crcs) {
456 io_ctl_unmap_page(io_ctl);
457 return;
460 if (index == 0)
461 offset = sizeof(u32) * io_ctl->num_pages;
463 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
464 PAGE_SIZE - offset);
465 btrfs_csum_final(crc, (u8 *)&crc);
466 io_ctl_unmap_page(io_ctl);
467 tmp = page_address(io_ctl->pages[0]);
468 tmp += index;
469 *tmp = crc;
472 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
474 u32 *tmp, val;
475 u32 crc = ~(u32)0;
476 unsigned offset = 0;
478 if (!io_ctl->check_crcs) {
479 io_ctl_map_page(io_ctl, 0);
480 return 0;
483 if (index == 0)
484 offset = sizeof(u32) * io_ctl->num_pages;
486 tmp = page_address(io_ctl->pages[0]);
487 tmp += index;
488 val = *tmp;
490 io_ctl_map_page(io_ctl, 0);
491 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
492 PAGE_SIZE - offset);
493 btrfs_csum_final(crc, (u8 *)&crc);
494 if (val != crc) {
495 btrfs_err_rl(io_ctl->fs_info,
496 "csum mismatch on free space cache");
497 io_ctl_unmap_page(io_ctl);
498 return -EIO;
501 return 0;
504 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
505 void *bitmap)
507 struct btrfs_free_space_entry *entry;
509 if (!io_ctl->cur)
510 return -ENOSPC;
512 entry = io_ctl->cur;
513 entry->offset = cpu_to_le64(offset);
514 entry->bytes = cpu_to_le64(bytes);
515 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
516 BTRFS_FREE_SPACE_EXTENT;
517 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
518 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
520 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
521 return 0;
523 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
525 /* No more pages to map */
526 if (io_ctl->index >= io_ctl->num_pages)
527 return 0;
529 /* map the next page */
530 io_ctl_map_page(io_ctl, 1);
531 return 0;
534 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
536 if (!io_ctl->cur)
537 return -ENOSPC;
540 * If we aren't at the start of the current page, unmap this one and
541 * map the next one if there is any left.
543 if (io_ctl->cur != io_ctl->orig) {
544 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
545 if (io_ctl->index >= io_ctl->num_pages)
546 return -ENOSPC;
547 io_ctl_map_page(io_ctl, 0);
550 memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
551 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
552 if (io_ctl->index < io_ctl->num_pages)
553 io_ctl_map_page(io_ctl, 0);
554 return 0;
557 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
560 * If we're not on the boundary we know we've modified the page and we
561 * need to crc the page.
563 if (io_ctl->cur != io_ctl->orig)
564 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
565 else
566 io_ctl_unmap_page(io_ctl);
568 while (io_ctl->index < io_ctl->num_pages) {
569 io_ctl_map_page(io_ctl, 1);
570 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
574 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
575 struct btrfs_free_space *entry, u8 *type)
577 struct btrfs_free_space_entry *e;
578 int ret;
580 if (!io_ctl->cur) {
581 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
582 if (ret)
583 return ret;
586 e = io_ctl->cur;
587 entry->offset = le64_to_cpu(e->offset);
588 entry->bytes = le64_to_cpu(e->bytes);
589 *type = e->type;
590 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
591 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
593 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
594 return 0;
596 io_ctl_unmap_page(io_ctl);
598 return 0;
601 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
602 struct btrfs_free_space *entry)
604 int ret;
606 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
607 if (ret)
608 return ret;
610 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
611 io_ctl_unmap_page(io_ctl);
613 return 0;
617 * Since we attach pinned extents after the fact we can have contiguous sections
618 * of free space that are split up in entries. This poses a problem with the
619 * tree logging stuff since it could have allocated across what appears to be 2
620 * entries since we would have merged the entries when adding the pinned extents
621 * back to the free space cache. So run through the space cache that we just
622 * loaded and merge contiguous entries. This will make the log replay stuff not
623 * blow up and it will make for nicer allocator behavior.
625 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
627 struct btrfs_free_space *e, *prev = NULL;
628 struct rb_node *n;
630 again:
631 spin_lock(&ctl->tree_lock);
632 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
633 e = rb_entry(n, struct btrfs_free_space, offset_index);
634 if (!prev)
635 goto next;
636 if (e->bitmap || prev->bitmap)
637 goto next;
638 if (prev->offset + prev->bytes == e->offset) {
639 unlink_free_space(ctl, prev);
640 unlink_free_space(ctl, e);
641 prev->bytes += e->bytes;
642 kmem_cache_free(btrfs_free_space_cachep, e);
643 link_free_space(ctl, prev);
644 prev = NULL;
645 spin_unlock(&ctl->tree_lock);
646 goto again;
648 next:
649 prev = e;
651 spin_unlock(&ctl->tree_lock);
654 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
655 struct btrfs_free_space_ctl *ctl,
656 struct btrfs_path *path, u64 offset)
658 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
659 struct btrfs_free_space_header *header;
660 struct extent_buffer *leaf;
661 struct btrfs_io_ctl io_ctl;
662 struct btrfs_key key;
663 struct btrfs_free_space *e, *n;
664 LIST_HEAD(bitmaps);
665 u64 num_entries;
666 u64 num_bitmaps;
667 u64 generation;
668 u8 type;
669 int ret = 0;
671 /* Nothing in the space cache, goodbye */
672 if (!i_size_read(inode))
673 return 0;
675 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
676 key.offset = offset;
677 key.type = 0;
679 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
680 if (ret < 0)
681 return 0;
682 else if (ret > 0) {
683 btrfs_release_path(path);
684 return 0;
687 ret = -1;
689 leaf = path->nodes[0];
690 header = btrfs_item_ptr(leaf, path->slots[0],
691 struct btrfs_free_space_header);
692 num_entries = btrfs_free_space_entries(leaf, header);
693 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
694 generation = btrfs_free_space_generation(leaf, header);
695 btrfs_release_path(path);
697 if (!BTRFS_I(inode)->generation) {
698 btrfs_info(fs_info,
699 "the free space cache file (%llu) is invalid, skip it",
700 offset);
701 return 0;
704 if (BTRFS_I(inode)->generation != generation) {
705 btrfs_err(fs_info,
706 "free space inode generation (%llu) did not match free space cache generation (%llu)",
707 BTRFS_I(inode)->generation, generation);
708 return 0;
711 if (!num_entries)
712 return 0;
714 ret = io_ctl_init(&io_ctl, inode, 0);
715 if (ret)
716 return ret;
718 readahead_cache(inode);
720 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
721 if (ret)
722 goto out;
724 ret = io_ctl_check_crc(&io_ctl, 0);
725 if (ret)
726 goto free_cache;
728 ret = io_ctl_check_generation(&io_ctl, generation);
729 if (ret)
730 goto free_cache;
732 while (num_entries) {
733 e = kmem_cache_zalloc(btrfs_free_space_cachep,
734 GFP_NOFS);
735 if (!e)
736 goto free_cache;
738 ret = io_ctl_read_entry(&io_ctl, e, &type);
739 if (ret) {
740 kmem_cache_free(btrfs_free_space_cachep, e);
741 goto free_cache;
744 if (!e->bytes) {
745 kmem_cache_free(btrfs_free_space_cachep, e);
746 goto free_cache;
749 if (type == BTRFS_FREE_SPACE_EXTENT) {
750 spin_lock(&ctl->tree_lock);
751 ret = link_free_space(ctl, e);
752 spin_unlock(&ctl->tree_lock);
753 if (ret) {
754 btrfs_err(fs_info,
755 "Duplicate entries in free space cache, dumping");
756 kmem_cache_free(btrfs_free_space_cachep, e);
757 goto free_cache;
759 } else {
760 ASSERT(num_bitmaps);
761 num_bitmaps--;
762 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
763 if (!e->bitmap) {
764 kmem_cache_free(
765 btrfs_free_space_cachep, e);
766 goto free_cache;
768 spin_lock(&ctl->tree_lock);
769 ret = link_free_space(ctl, e);
770 ctl->total_bitmaps++;
771 ctl->op->recalc_thresholds(ctl);
772 spin_unlock(&ctl->tree_lock);
773 if (ret) {
774 btrfs_err(fs_info,
775 "Duplicate entries in free space cache, dumping");
776 kmem_cache_free(btrfs_free_space_cachep, e);
777 goto free_cache;
779 list_add_tail(&e->list, &bitmaps);
782 num_entries--;
785 io_ctl_unmap_page(&io_ctl);
788 * We add the bitmaps at the end of the entries in order that
789 * the bitmap entries are added to the cache.
791 list_for_each_entry_safe(e, n, &bitmaps, list) {
792 list_del_init(&e->list);
793 ret = io_ctl_read_bitmap(&io_ctl, e);
794 if (ret)
795 goto free_cache;
798 io_ctl_drop_pages(&io_ctl);
799 merge_space_tree(ctl);
800 ret = 1;
801 out:
802 io_ctl_free(&io_ctl);
803 return ret;
804 free_cache:
805 io_ctl_drop_pages(&io_ctl);
806 __btrfs_remove_free_space_cache(ctl);
807 goto out;
810 int load_free_space_cache(struct btrfs_fs_info *fs_info,
811 struct btrfs_block_group_cache *block_group)
813 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
814 struct inode *inode;
815 struct btrfs_path *path;
816 int ret = 0;
817 bool matched;
818 u64 used = btrfs_block_group_used(&block_group->item);
821 * If this block group has been marked to be cleared for one reason or
822 * another then we can't trust the on disk cache, so just return.
824 spin_lock(&block_group->lock);
825 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
826 spin_unlock(&block_group->lock);
827 return 0;
829 spin_unlock(&block_group->lock);
831 path = btrfs_alloc_path();
832 if (!path)
833 return 0;
834 path->search_commit_root = 1;
835 path->skip_locking = 1;
837 inode = lookup_free_space_inode(fs_info, block_group, path);
838 if (IS_ERR(inode)) {
839 btrfs_free_path(path);
840 return 0;
843 /* We may have converted the inode and made the cache invalid. */
844 spin_lock(&block_group->lock);
845 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
846 spin_unlock(&block_group->lock);
847 btrfs_free_path(path);
848 goto out;
850 spin_unlock(&block_group->lock);
852 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
853 path, block_group->key.objectid);
854 btrfs_free_path(path);
855 if (ret <= 0)
856 goto out;
858 spin_lock(&ctl->tree_lock);
859 matched = (ctl->free_space == (block_group->key.offset - used -
860 block_group->bytes_super));
861 spin_unlock(&ctl->tree_lock);
863 if (!matched) {
864 __btrfs_remove_free_space_cache(ctl);
865 btrfs_warn(fs_info,
866 "block group %llu has wrong amount of free space",
867 block_group->key.objectid);
868 ret = -1;
870 out:
871 if (ret < 0) {
872 /* This cache is bogus, make sure it gets cleared */
873 spin_lock(&block_group->lock);
874 block_group->disk_cache_state = BTRFS_DC_CLEAR;
875 spin_unlock(&block_group->lock);
876 ret = 0;
878 btrfs_warn(fs_info,
879 "failed to load free space cache for block group %llu, rebuilding it now",
880 block_group->key.objectid);
883 iput(inode);
884 return ret;
887 static noinline_for_stack
888 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
889 struct btrfs_free_space_ctl *ctl,
890 struct btrfs_block_group_cache *block_group,
891 int *entries, int *bitmaps,
892 struct list_head *bitmap_list)
894 int ret;
895 struct btrfs_free_cluster *cluster = NULL;
896 struct btrfs_free_cluster *cluster_locked = NULL;
897 struct rb_node *node = rb_first(&ctl->free_space_offset);
898 struct btrfs_trim_range *trim_entry;
900 /* Get the cluster for this block_group if it exists */
901 if (block_group && !list_empty(&block_group->cluster_list)) {
902 cluster = list_entry(block_group->cluster_list.next,
903 struct btrfs_free_cluster,
904 block_group_list);
907 if (!node && cluster) {
908 cluster_locked = cluster;
909 spin_lock(&cluster_locked->lock);
910 node = rb_first(&cluster->root);
911 cluster = NULL;
914 /* Write out the extent entries */
915 while (node) {
916 struct btrfs_free_space *e;
918 e = rb_entry(node, struct btrfs_free_space, offset_index);
919 *entries += 1;
921 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
922 e->bitmap);
923 if (ret)
924 goto fail;
926 if (e->bitmap) {
927 list_add_tail(&e->list, bitmap_list);
928 *bitmaps += 1;
930 node = rb_next(node);
931 if (!node && cluster) {
932 node = rb_first(&cluster->root);
933 cluster_locked = cluster;
934 spin_lock(&cluster_locked->lock);
935 cluster = NULL;
938 if (cluster_locked) {
939 spin_unlock(&cluster_locked->lock);
940 cluster_locked = NULL;
944 * Make sure we don't miss any range that was removed from our rbtree
945 * because trimming is running. Otherwise after a umount+mount (or crash
946 * after committing the transaction) we would leak free space and get
947 * an inconsistent free space cache report from fsck.
949 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
950 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
951 trim_entry->bytes, NULL);
952 if (ret)
953 goto fail;
954 *entries += 1;
957 return 0;
958 fail:
959 if (cluster_locked)
960 spin_unlock(&cluster_locked->lock);
961 return -ENOSPC;
964 static noinline_for_stack int
965 update_cache_item(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct inode *inode,
968 struct btrfs_path *path, u64 offset,
969 int entries, int bitmaps)
971 struct btrfs_key key;
972 struct btrfs_free_space_header *header;
973 struct extent_buffer *leaf;
974 int ret;
976 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
977 key.offset = offset;
978 key.type = 0;
980 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
981 if (ret < 0) {
982 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
983 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
984 goto fail;
986 leaf = path->nodes[0];
987 if (ret > 0) {
988 struct btrfs_key found_key;
989 ASSERT(path->slots[0]);
990 path->slots[0]--;
991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
992 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
993 found_key.offset != offset) {
994 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
995 inode->i_size - 1,
996 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
997 NULL);
998 btrfs_release_path(path);
999 goto fail;
1003 BTRFS_I(inode)->generation = trans->transid;
1004 header = btrfs_item_ptr(leaf, path->slots[0],
1005 struct btrfs_free_space_header);
1006 btrfs_set_free_space_entries(leaf, header, entries);
1007 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1008 btrfs_set_free_space_generation(leaf, header, trans->transid);
1009 btrfs_mark_buffer_dirty(leaf);
1010 btrfs_release_path(path);
1012 return 0;
1014 fail:
1015 return -1;
1018 static noinline_for_stack int
1019 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1020 struct btrfs_block_group_cache *block_group,
1021 struct btrfs_io_ctl *io_ctl,
1022 int *entries)
1024 u64 start, extent_start, extent_end, len;
1025 struct extent_io_tree *unpin = NULL;
1026 int ret;
1028 if (!block_group)
1029 return 0;
1032 * We want to add any pinned extents to our free space cache
1033 * so we don't leak the space
1035 * We shouldn't have switched the pinned extents yet so this is the
1036 * right one
1038 unpin = fs_info->pinned_extents;
1040 start = block_group->key.objectid;
1042 while (start < block_group->key.objectid + block_group->key.offset) {
1043 ret = find_first_extent_bit(unpin, start,
1044 &extent_start, &extent_end,
1045 EXTENT_DIRTY, NULL);
1046 if (ret)
1047 return 0;
1049 /* This pinned extent is out of our range */
1050 if (extent_start >= block_group->key.objectid +
1051 block_group->key.offset)
1052 return 0;
1054 extent_start = max(extent_start, start);
1055 extent_end = min(block_group->key.objectid +
1056 block_group->key.offset, extent_end + 1);
1057 len = extent_end - extent_start;
1059 *entries += 1;
1060 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1061 if (ret)
1062 return -ENOSPC;
1064 start = extent_end;
1067 return 0;
1070 static noinline_for_stack int
1071 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1073 struct btrfs_free_space *entry, *next;
1074 int ret;
1076 /* Write out the bitmaps */
1077 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1078 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1079 if (ret)
1080 return -ENOSPC;
1081 list_del_init(&entry->list);
1084 return 0;
1087 static int flush_dirty_cache(struct inode *inode)
1089 int ret;
1091 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1092 if (ret)
1093 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1094 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1096 return ret;
1099 static void noinline_for_stack
1100 cleanup_bitmap_list(struct list_head *bitmap_list)
1102 struct btrfs_free_space *entry, *next;
1104 list_for_each_entry_safe(entry, next, bitmap_list, list)
1105 list_del_init(&entry->list);
1108 static void noinline_for_stack
1109 cleanup_write_cache_enospc(struct inode *inode,
1110 struct btrfs_io_ctl *io_ctl,
1111 struct extent_state **cached_state)
1113 io_ctl_drop_pages(io_ctl);
1114 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1115 i_size_read(inode) - 1, cached_state);
1118 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1119 struct btrfs_trans_handle *trans,
1120 struct btrfs_block_group_cache *block_group,
1121 struct btrfs_io_ctl *io_ctl,
1122 struct btrfs_path *path, u64 offset)
1124 int ret;
1125 struct inode *inode = io_ctl->inode;
1126 struct btrfs_fs_info *fs_info;
1128 if (!inode)
1129 return 0;
1131 fs_info = btrfs_sb(inode->i_sb);
1133 /* Flush the dirty pages in the cache file. */
1134 ret = flush_dirty_cache(inode);
1135 if (ret)
1136 goto out;
1138 /* Update the cache item to tell everyone this cache file is valid. */
1139 ret = update_cache_item(trans, root, inode, path, offset,
1140 io_ctl->entries, io_ctl->bitmaps);
1141 out:
1142 io_ctl_free(io_ctl);
1143 if (ret) {
1144 invalidate_inode_pages2(inode->i_mapping);
1145 BTRFS_I(inode)->generation = 0;
1146 if (block_group) {
1147 #ifdef DEBUG
1148 btrfs_err(fs_info,
1149 "failed to write free space cache for block group %llu",
1150 block_group->key.objectid);
1151 #endif
1154 btrfs_update_inode(trans, root, inode);
1156 if (block_group) {
1157 /* the dirty list is protected by the dirty_bgs_lock */
1158 spin_lock(&trans->transaction->dirty_bgs_lock);
1160 /* the disk_cache_state is protected by the block group lock */
1161 spin_lock(&block_group->lock);
1164 * only mark this as written if we didn't get put back on
1165 * the dirty list while waiting for IO. Otherwise our
1166 * cache state won't be right, and we won't get written again
1168 if (!ret && list_empty(&block_group->dirty_list))
1169 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1170 else if (ret)
1171 block_group->disk_cache_state = BTRFS_DC_ERROR;
1173 spin_unlock(&block_group->lock);
1174 spin_unlock(&trans->transaction->dirty_bgs_lock);
1175 io_ctl->inode = NULL;
1176 iput(inode);
1179 return ret;
1183 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1184 struct btrfs_trans_handle *trans,
1185 struct btrfs_io_ctl *io_ctl,
1186 struct btrfs_path *path)
1188 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1191 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1192 struct btrfs_block_group_cache *block_group,
1193 struct btrfs_path *path)
1195 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1196 block_group, &block_group->io_ctl,
1197 path, block_group->key.objectid);
1201 * __btrfs_write_out_cache - write out cached info to an inode
1202 * @root - the root the inode belongs to
1203 * @ctl - the free space cache we are going to write out
1204 * @block_group - the block_group for this cache if it belongs to a block_group
1205 * @trans - the trans handle
1207 * This function writes out a free space cache struct to disk for quick recovery
1208 * on mount. This will return 0 if it was successful in writing the cache out,
1209 * or an errno if it was not.
1211 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1212 struct btrfs_free_space_ctl *ctl,
1213 struct btrfs_block_group_cache *block_group,
1214 struct btrfs_io_ctl *io_ctl,
1215 struct btrfs_trans_handle *trans)
1217 struct btrfs_fs_info *fs_info = root->fs_info;
1218 struct extent_state *cached_state = NULL;
1219 LIST_HEAD(bitmap_list);
1220 int entries = 0;
1221 int bitmaps = 0;
1222 int ret;
1223 int must_iput = 0;
1225 if (!i_size_read(inode))
1226 return -EIO;
1228 WARN_ON(io_ctl->pages);
1229 ret = io_ctl_init(io_ctl, inode, 1);
1230 if (ret)
1231 return ret;
1233 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1234 down_write(&block_group->data_rwsem);
1235 spin_lock(&block_group->lock);
1236 if (block_group->delalloc_bytes) {
1237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1238 spin_unlock(&block_group->lock);
1239 up_write(&block_group->data_rwsem);
1240 BTRFS_I(inode)->generation = 0;
1241 ret = 0;
1242 must_iput = 1;
1243 goto out;
1245 spin_unlock(&block_group->lock);
1248 /* Lock all pages first so we can lock the extent safely. */
1249 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1250 if (ret)
1251 goto out_unlock;
1253 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1254 &cached_state);
1256 io_ctl_set_generation(io_ctl, trans->transid);
1258 mutex_lock(&ctl->cache_writeout_mutex);
1259 /* Write out the extent entries in the free space cache */
1260 spin_lock(&ctl->tree_lock);
1261 ret = write_cache_extent_entries(io_ctl, ctl,
1262 block_group, &entries, &bitmaps,
1263 &bitmap_list);
1264 if (ret)
1265 goto out_nospc_locked;
1268 * Some spaces that are freed in the current transaction are pinned,
1269 * they will be added into free space cache after the transaction is
1270 * committed, we shouldn't lose them.
1272 * If this changes while we are working we'll get added back to
1273 * the dirty list and redo it. No locking needed
1275 ret = write_pinned_extent_entries(fs_info, block_group,
1276 io_ctl, &entries);
1277 if (ret)
1278 goto out_nospc_locked;
1281 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1282 * locked while doing it because a concurrent trim can be manipulating
1283 * or freeing the bitmap.
1285 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1286 spin_unlock(&ctl->tree_lock);
1287 mutex_unlock(&ctl->cache_writeout_mutex);
1288 if (ret)
1289 goto out_nospc;
1291 /* Zero out the rest of the pages just to make sure */
1292 io_ctl_zero_remaining_pages(io_ctl);
1294 /* Everything is written out, now we dirty the pages in the file. */
1295 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1296 i_size_read(inode), &cached_state);
1297 if (ret)
1298 goto out_nospc;
1300 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1301 up_write(&block_group->data_rwsem);
1303 * Release the pages and unlock the extent, we will flush
1304 * them out later
1306 io_ctl_drop_pages(io_ctl);
1308 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1309 i_size_read(inode) - 1, &cached_state);
1312 * at this point the pages are under IO and we're happy,
1313 * The caller is responsible for waiting on them and updating the
1314 * the cache and the inode
1316 io_ctl->entries = entries;
1317 io_ctl->bitmaps = bitmaps;
1319 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1320 if (ret)
1321 goto out;
1323 return 0;
1325 out:
1326 io_ctl->inode = NULL;
1327 io_ctl_free(io_ctl);
1328 if (ret) {
1329 invalidate_inode_pages2(inode->i_mapping);
1330 BTRFS_I(inode)->generation = 0;
1332 btrfs_update_inode(trans, root, inode);
1333 if (must_iput)
1334 iput(inode);
1335 return ret;
1337 out_nospc_locked:
1338 cleanup_bitmap_list(&bitmap_list);
1339 spin_unlock(&ctl->tree_lock);
1340 mutex_unlock(&ctl->cache_writeout_mutex);
1342 out_nospc:
1343 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1345 out_unlock:
1346 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1347 up_write(&block_group->data_rwsem);
1349 goto out;
1352 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1353 struct btrfs_trans_handle *trans,
1354 struct btrfs_block_group_cache *block_group,
1355 struct btrfs_path *path)
1357 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1358 struct inode *inode;
1359 int ret = 0;
1361 spin_lock(&block_group->lock);
1362 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1363 spin_unlock(&block_group->lock);
1364 return 0;
1366 spin_unlock(&block_group->lock);
1368 inode = lookup_free_space_inode(fs_info, block_group, path);
1369 if (IS_ERR(inode))
1370 return 0;
1372 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1373 block_group, &block_group->io_ctl, trans);
1374 if (ret) {
1375 #ifdef DEBUG
1376 btrfs_err(fs_info,
1377 "failed to write free space cache for block group %llu",
1378 block_group->key.objectid);
1379 #endif
1380 spin_lock(&block_group->lock);
1381 block_group->disk_cache_state = BTRFS_DC_ERROR;
1382 spin_unlock(&block_group->lock);
1384 block_group->io_ctl.inode = NULL;
1385 iput(inode);
1389 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1390 * to wait for IO and put the inode
1393 return ret;
1396 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1397 u64 offset)
1399 ASSERT(offset >= bitmap_start);
1400 offset -= bitmap_start;
1401 return (unsigned long)(div_u64(offset, unit));
1404 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1406 return (unsigned long)(div_u64(bytes, unit));
1409 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1410 u64 offset)
1412 u64 bitmap_start;
1413 u64 bytes_per_bitmap;
1415 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1416 bitmap_start = offset - ctl->start;
1417 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1418 bitmap_start *= bytes_per_bitmap;
1419 bitmap_start += ctl->start;
1421 return bitmap_start;
1424 static int tree_insert_offset(struct rb_root *root, u64 offset,
1425 struct rb_node *node, int bitmap)
1427 struct rb_node **p = &root->rb_node;
1428 struct rb_node *parent = NULL;
1429 struct btrfs_free_space *info;
1431 while (*p) {
1432 parent = *p;
1433 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1435 if (offset < info->offset) {
1436 p = &(*p)->rb_left;
1437 } else if (offset > info->offset) {
1438 p = &(*p)->rb_right;
1439 } else {
1441 * we could have a bitmap entry and an extent entry
1442 * share the same offset. If this is the case, we want
1443 * the extent entry to always be found first if we do a
1444 * linear search through the tree, since we want to have
1445 * the quickest allocation time, and allocating from an
1446 * extent is faster than allocating from a bitmap. So
1447 * if we're inserting a bitmap and we find an entry at
1448 * this offset, we want to go right, or after this entry
1449 * logically. If we are inserting an extent and we've
1450 * found a bitmap, we want to go left, or before
1451 * logically.
1453 if (bitmap) {
1454 if (info->bitmap) {
1455 WARN_ON_ONCE(1);
1456 return -EEXIST;
1458 p = &(*p)->rb_right;
1459 } else {
1460 if (!info->bitmap) {
1461 WARN_ON_ONCE(1);
1462 return -EEXIST;
1464 p = &(*p)->rb_left;
1469 rb_link_node(node, parent, p);
1470 rb_insert_color(node, root);
1472 return 0;
1476 * searches the tree for the given offset.
1478 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1479 * want a section that has at least bytes size and comes at or after the given
1480 * offset.
1482 static struct btrfs_free_space *
1483 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1484 u64 offset, int bitmap_only, int fuzzy)
1486 struct rb_node *n = ctl->free_space_offset.rb_node;
1487 struct btrfs_free_space *entry, *prev = NULL;
1489 /* find entry that is closest to the 'offset' */
1490 while (1) {
1491 if (!n) {
1492 entry = NULL;
1493 break;
1496 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1497 prev = entry;
1499 if (offset < entry->offset)
1500 n = n->rb_left;
1501 else if (offset > entry->offset)
1502 n = n->rb_right;
1503 else
1504 break;
1507 if (bitmap_only) {
1508 if (!entry)
1509 return NULL;
1510 if (entry->bitmap)
1511 return entry;
1514 * bitmap entry and extent entry may share same offset,
1515 * in that case, bitmap entry comes after extent entry.
1517 n = rb_next(n);
1518 if (!n)
1519 return NULL;
1520 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1521 if (entry->offset != offset)
1522 return NULL;
1524 WARN_ON(!entry->bitmap);
1525 return entry;
1526 } else if (entry) {
1527 if (entry->bitmap) {
1529 * if previous extent entry covers the offset,
1530 * we should return it instead of the bitmap entry
1532 n = rb_prev(&entry->offset_index);
1533 if (n) {
1534 prev = rb_entry(n, struct btrfs_free_space,
1535 offset_index);
1536 if (!prev->bitmap &&
1537 prev->offset + prev->bytes > offset)
1538 entry = prev;
1541 return entry;
1544 if (!prev)
1545 return NULL;
1547 /* find last entry before the 'offset' */
1548 entry = prev;
1549 if (entry->offset > offset) {
1550 n = rb_prev(&entry->offset_index);
1551 if (n) {
1552 entry = rb_entry(n, struct btrfs_free_space,
1553 offset_index);
1554 ASSERT(entry->offset <= offset);
1555 } else {
1556 if (fuzzy)
1557 return entry;
1558 else
1559 return NULL;
1563 if (entry->bitmap) {
1564 n = rb_prev(&entry->offset_index);
1565 if (n) {
1566 prev = rb_entry(n, struct btrfs_free_space,
1567 offset_index);
1568 if (!prev->bitmap &&
1569 prev->offset + prev->bytes > offset)
1570 return prev;
1572 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1573 return entry;
1574 } else if (entry->offset + entry->bytes > offset)
1575 return entry;
1577 if (!fuzzy)
1578 return NULL;
1580 while (1) {
1581 if (entry->bitmap) {
1582 if (entry->offset + BITS_PER_BITMAP *
1583 ctl->unit > offset)
1584 break;
1585 } else {
1586 if (entry->offset + entry->bytes > offset)
1587 break;
1590 n = rb_next(&entry->offset_index);
1591 if (!n)
1592 return NULL;
1593 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1595 return entry;
1598 static inline void
1599 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1600 struct btrfs_free_space *info)
1602 rb_erase(&info->offset_index, &ctl->free_space_offset);
1603 ctl->free_extents--;
1606 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1607 struct btrfs_free_space *info)
1609 __unlink_free_space(ctl, info);
1610 ctl->free_space -= info->bytes;
1613 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1614 struct btrfs_free_space *info)
1616 int ret = 0;
1618 ASSERT(info->bytes || info->bitmap);
1619 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1620 &info->offset_index, (info->bitmap != NULL));
1621 if (ret)
1622 return ret;
1624 ctl->free_space += info->bytes;
1625 ctl->free_extents++;
1626 return ret;
1629 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1631 struct btrfs_block_group_cache *block_group = ctl->private;
1632 u64 max_bytes;
1633 u64 bitmap_bytes;
1634 u64 extent_bytes;
1635 u64 size = block_group->key.offset;
1636 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1637 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1639 max_bitmaps = max_t(u64, max_bitmaps, 1);
1641 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1644 * The goal is to keep the total amount of memory used per 1gb of space
1645 * at or below 32k, so we need to adjust how much memory we allow to be
1646 * used by extent based free space tracking
1648 if (size < SZ_1G)
1649 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1650 else
1651 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1654 * we want to account for 1 more bitmap than what we have so we can make
1655 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1656 * we add more bitmaps.
1658 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1660 if (bitmap_bytes >= max_bytes) {
1661 ctl->extents_thresh = 0;
1662 return;
1666 * we want the extent entry threshold to always be at most 1/2 the max
1667 * bytes we can have, or whatever is less than that.
1669 extent_bytes = max_bytes - bitmap_bytes;
1670 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1672 ctl->extents_thresh =
1673 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1676 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1677 struct btrfs_free_space *info,
1678 u64 offset, u64 bytes)
1680 unsigned long start, count;
1682 start = offset_to_bit(info->offset, ctl->unit, offset);
1683 count = bytes_to_bits(bytes, ctl->unit);
1684 ASSERT(start + count <= BITS_PER_BITMAP);
1686 bitmap_clear(info->bitmap, start, count);
1688 info->bytes -= bytes;
1691 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1692 struct btrfs_free_space *info, u64 offset,
1693 u64 bytes)
1695 __bitmap_clear_bits(ctl, info, offset, bytes);
1696 ctl->free_space -= bytes;
1699 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1700 struct btrfs_free_space *info, u64 offset,
1701 u64 bytes)
1703 unsigned long start, count;
1705 start = offset_to_bit(info->offset, ctl->unit, offset);
1706 count = bytes_to_bits(bytes, ctl->unit);
1707 ASSERT(start + count <= BITS_PER_BITMAP);
1709 bitmap_set(info->bitmap, start, count);
1711 info->bytes += bytes;
1712 ctl->free_space += bytes;
1716 * If we can not find suitable extent, we will use bytes to record
1717 * the size of the max extent.
1719 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1720 struct btrfs_free_space *bitmap_info, u64 *offset,
1721 u64 *bytes, bool for_alloc)
1723 unsigned long found_bits = 0;
1724 unsigned long max_bits = 0;
1725 unsigned long bits, i;
1726 unsigned long next_zero;
1727 unsigned long extent_bits;
1730 * Skip searching the bitmap if we don't have a contiguous section that
1731 * is large enough for this allocation.
1733 if (for_alloc &&
1734 bitmap_info->max_extent_size &&
1735 bitmap_info->max_extent_size < *bytes) {
1736 *bytes = bitmap_info->max_extent_size;
1737 return -1;
1740 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1741 max_t(u64, *offset, bitmap_info->offset));
1742 bits = bytes_to_bits(*bytes, ctl->unit);
1744 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1745 if (for_alloc && bits == 1) {
1746 found_bits = 1;
1747 break;
1749 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1750 BITS_PER_BITMAP, i);
1751 extent_bits = next_zero - i;
1752 if (extent_bits >= bits) {
1753 found_bits = extent_bits;
1754 break;
1755 } else if (extent_bits > max_bits) {
1756 max_bits = extent_bits;
1758 i = next_zero;
1761 if (found_bits) {
1762 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1763 *bytes = (u64)(found_bits) * ctl->unit;
1764 return 0;
1767 *bytes = (u64)(max_bits) * ctl->unit;
1768 bitmap_info->max_extent_size = *bytes;
1769 return -1;
1772 /* Cache the size of the max extent in bytes */
1773 static struct btrfs_free_space *
1774 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1775 unsigned long align, u64 *max_extent_size)
1777 struct btrfs_free_space *entry;
1778 struct rb_node *node;
1779 u64 tmp;
1780 u64 align_off;
1781 int ret;
1783 if (!ctl->free_space_offset.rb_node)
1784 goto out;
1786 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1787 if (!entry)
1788 goto out;
1790 for (node = &entry->offset_index; node; node = rb_next(node)) {
1791 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1792 if (entry->bytes < *bytes) {
1793 if (entry->bytes > *max_extent_size)
1794 *max_extent_size = entry->bytes;
1795 continue;
1798 /* make sure the space returned is big enough
1799 * to match our requested alignment
1801 if (*bytes >= align) {
1802 tmp = entry->offset - ctl->start + align - 1;
1803 tmp = div64_u64(tmp, align);
1804 tmp = tmp * align + ctl->start;
1805 align_off = tmp - entry->offset;
1806 } else {
1807 align_off = 0;
1808 tmp = entry->offset;
1811 if (entry->bytes < *bytes + align_off) {
1812 if (entry->bytes > *max_extent_size)
1813 *max_extent_size = entry->bytes;
1814 continue;
1817 if (entry->bitmap) {
1818 u64 size = *bytes;
1820 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1821 if (!ret) {
1822 *offset = tmp;
1823 *bytes = size;
1824 return entry;
1825 } else if (size > *max_extent_size) {
1826 *max_extent_size = size;
1828 continue;
1831 *offset = tmp;
1832 *bytes = entry->bytes - align_off;
1833 return entry;
1835 out:
1836 return NULL;
1839 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1840 struct btrfs_free_space *info, u64 offset)
1842 info->offset = offset_to_bitmap(ctl, offset);
1843 info->bytes = 0;
1844 INIT_LIST_HEAD(&info->list);
1845 link_free_space(ctl, info);
1846 ctl->total_bitmaps++;
1848 ctl->op->recalc_thresholds(ctl);
1851 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1852 struct btrfs_free_space *bitmap_info)
1854 unlink_free_space(ctl, bitmap_info);
1855 kfree(bitmap_info->bitmap);
1856 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1857 ctl->total_bitmaps--;
1858 ctl->op->recalc_thresholds(ctl);
1861 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1862 struct btrfs_free_space *bitmap_info,
1863 u64 *offset, u64 *bytes)
1865 u64 end;
1866 u64 search_start, search_bytes;
1867 int ret;
1869 again:
1870 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1873 * We need to search for bits in this bitmap. We could only cover some
1874 * of the extent in this bitmap thanks to how we add space, so we need
1875 * to search for as much as it as we can and clear that amount, and then
1876 * go searching for the next bit.
1878 search_start = *offset;
1879 search_bytes = ctl->unit;
1880 search_bytes = min(search_bytes, end - search_start + 1);
1881 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1882 false);
1883 if (ret < 0 || search_start != *offset)
1884 return -EINVAL;
1886 /* We may have found more bits than what we need */
1887 search_bytes = min(search_bytes, *bytes);
1889 /* Cannot clear past the end of the bitmap */
1890 search_bytes = min(search_bytes, end - search_start + 1);
1892 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1893 *offset += search_bytes;
1894 *bytes -= search_bytes;
1896 if (*bytes) {
1897 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1898 if (!bitmap_info->bytes)
1899 free_bitmap(ctl, bitmap_info);
1902 * no entry after this bitmap, but we still have bytes to
1903 * remove, so something has gone wrong.
1905 if (!next)
1906 return -EINVAL;
1908 bitmap_info = rb_entry(next, struct btrfs_free_space,
1909 offset_index);
1912 * if the next entry isn't a bitmap we need to return to let the
1913 * extent stuff do its work.
1915 if (!bitmap_info->bitmap)
1916 return -EAGAIN;
1919 * Ok the next item is a bitmap, but it may not actually hold
1920 * the information for the rest of this free space stuff, so
1921 * look for it, and if we don't find it return so we can try
1922 * everything over again.
1924 search_start = *offset;
1925 search_bytes = ctl->unit;
1926 ret = search_bitmap(ctl, bitmap_info, &search_start,
1927 &search_bytes, false);
1928 if (ret < 0 || search_start != *offset)
1929 return -EAGAIN;
1931 goto again;
1932 } else if (!bitmap_info->bytes)
1933 free_bitmap(ctl, bitmap_info);
1935 return 0;
1938 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1939 struct btrfs_free_space *info, u64 offset,
1940 u64 bytes)
1942 u64 bytes_to_set = 0;
1943 u64 end;
1945 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1947 bytes_to_set = min(end - offset, bytes);
1949 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1952 * We set some bytes, we have no idea what the max extent size is
1953 * anymore.
1955 info->max_extent_size = 0;
1957 return bytes_to_set;
1961 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1962 struct btrfs_free_space *info)
1964 struct btrfs_block_group_cache *block_group = ctl->private;
1965 struct btrfs_fs_info *fs_info = block_group->fs_info;
1966 bool forced = false;
1968 #ifdef CONFIG_BTRFS_DEBUG
1969 if (btrfs_should_fragment_free_space(block_group))
1970 forced = true;
1971 #endif
1974 * If we are below the extents threshold then we can add this as an
1975 * extent, and don't have to deal with the bitmap
1977 if (!forced && ctl->free_extents < ctl->extents_thresh) {
1979 * If this block group has some small extents we don't want to
1980 * use up all of our free slots in the cache with them, we want
1981 * to reserve them to larger extents, however if we have plenty
1982 * of cache left then go ahead an dadd them, no sense in adding
1983 * the overhead of a bitmap if we don't have to.
1985 if (info->bytes <= fs_info->sectorsize * 4) {
1986 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1987 return false;
1988 } else {
1989 return false;
1994 * The original block groups from mkfs can be really small, like 8
1995 * megabytes, so don't bother with a bitmap for those entries. However
1996 * some block groups can be smaller than what a bitmap would cover but
1997 * are still large enough that they could overflow the 32k memory limit,
1998 * so allow those block groups to still be allowed to have a bitmap
1999 * entry.
2001 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2002 return false;
2004 return true;
2007 static const struct btrfs_free_space_op free_space_op = {
2008 .recalc_thresholds = recalculate_thresholds,
2009 .use_bitmap = use_bitmap,
2012 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2013 struct btrfs_free_space *info)
2015 struct btrfs_free_space *bitmap_info;
2016 struct btrfs_block_group_cache *block_group = NULL;
2017 int added = 0;
2018 u64 bytes, offset, bytes_added;
2019 int ret;
2021 bytes = info->bytes;
2022 offset = info->offset;
2024 if (!ctl->op->use_bitmap(ctl, info))
2025 return 0;
2027 if (ctl->op == &free_space_op)
2028 block_group = ctl->private;
2029 again:
2031 * Since we link bitmaps right into the cluster we need to see if we
2032 * have a cluster here, and if so and it has our bitmap we need to add
2033 * the free space to that bitmap.
2035 if (block_group && !list_empty(&block_group->cluster_list)) {
2036 struct btrfs_free_cluster *cluster;
2037 struct rb_node *node;
2038 struct btrfs_free_space *entry;
2040 cluster = list_entry(block_group->cluster_list.next,
2041 struct btrfs_free_cluster,
2042 block_group_list);
2043 spin_lock(&cluster->lock);
2044 node = rb_first(&cluster->root);
2045 if (!node) {
2046 spin_unlock(&cluster->lock);
2047 goto no_cluster_bitmap;
2050 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2051 if (!entry->bitmap) {
2052 spin_unlock(&cluster->lock);
2053 goto no_cluster_bitmap;
2056 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2057 bytes_added = add_bytes_to_bitmap(ctl, entry,
2058 offset, bytes);
2059 bytes -= bytes_added;
2060 offset += bytes_added;
2062 spin_unlock(&cluster->lock);
2063 if (!bytes) {
2064 ret = 1;
2065 goto out;
2069 no_cluster_bitmap:
2070 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2071 1, 0);
2072 if (!bitmap_info) {
2073 ASSERT(added == 0);
2074 goto new_bitmap;
2077 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2078 bytes -= bytes_added;
2079 offset += bytes_added;
2080 added = 0;
2082 if (!bytes) {
2083 ret = 1;
2084 goto out;
2085 } else
2086 goto again;
2088 new_bitmap:
2089 if (info && info->bitmap) {
2090 add_new_bitmap(ctl, info, offset);
2091 added = 1;
2092 info = NULL;
2093 goto again;
2094 } else {
2095 spin_unlock(&ctl->tree_lock);
2097 /* no pre-allocated info, allocate a new one */
2098 if (!info) {
2099 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2100 GFP_NOFS);
2101 if (!info) {
2102 spin_lock(&ctl->tree_lock);
2103 ret = -ENOMEM;
2104 goto out;
2108 /* allocate the bitmap */
2109 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2110 spin_lock(&ctl->tree_lock);
2111 if (!info->bitmap) {
2112 ret = -ENOMEM;
2113 goto out;
2115 goto again;
2118 out:
2119 if (info) {
2120 if (info->bitmap)
2121 kfree(info->bitmap);
2122 kmem_cache_free(btrfs_free_space_cachep, info);
2125 return ret;
2128 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2129 struct btrfs_free_space *info, bool update_stat)
2131 struct btrfs_free_space *left_info;
2132 struct btrfs_free_space *right_info;
2133 bool merged = false;
2134 u64 offset = info->offset;
2135 u64 bytes = info->bytes;
2138 * first we want to see if there is free space adjacent to the range we
2139 * are adding, if there is remove that struct and add a new one to
2140 * cover the entire range
2142 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2143 if (right_info && rb_prev(&right_info->offset_index))
2144 left_info = rb_entry(rb_prev(&right_info->offset_index),
2145 struct btrfs_free_space, offset_index);
2146 else
2147 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2149 if (right_info && !right_info->bitmap) {
2150 if (update_stat)
2151 unlink_free_space(ctl, right_info);
2152 else
2153 __unlink_free_space(ctl, right_info);
2154 info->bytes += right_info->bytes;
2155 kmem_cache_free(btrfs_free_space_cachep, right_info);
2156 merged = true;
2159 if (left_info && !left_info->bitmap &&
2160 left_info->offset + left_info->bytes == offset) {
2161 if (update_stat)
2162 unlink_free_space(ctl, left_info);
2163 else
2164 __unlink_free_space(ctl, left_info);
2165 info->offset = left_info->offset;
2166 info->bytes += left_info->bytes;
2167 kmem_cache_free(btrfs_free_space_cachep, left_info);
2168 merged = true;
2171 return merged;
2174 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2175 struct btrfs_free_space *info,
2176 bool update_stat)
2178 struct btrfs_free_space *bitmap;
2179 unsigned long i;
2180 unsigned long j;
2181 const u64 end = info->offset + info->bytes;
2182 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2183 u64 bytes;
2185 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2186 if (!bitmap)
2187 return false;
2189 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2190 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2191 if (j == i)
2192 return false;
2193 bytes = (j - i) * ctl->unit;
2194 info->bytes += bytes;
2196 if (update_stat)
2197 bitmap_clear_bits(ctl, bitmap, end, bytes);
2198 else
2199 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2201 if (!bitmap->bytes)
2202 free_bitmap(ctl, bitmap);
2204 return true;
2207 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2208 struct btrfs_free_space *info,
2209 bool update_stat)
2211 struct btrfs_free_space *bitmap;
2212 u64 bitmap_offset;
2213 unsigned long i;
2214 unsigned long j;
2215 unsigned long prev_j;
2216 u64 bytes;
2218 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2219 /* If we're on a boundary, try the previous logical bitmap. */
2220 if (bitmap_offset == info->offset) {
2221 if (info->offset == 0)
2222 return false;
2223 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2226 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2227 if (!bitmap)
2228 return false;
2230 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2231 j = 0;
2232 prev_j = (unsigned long)-1;
2233 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2234 if (j > i)
2235 break;
2236 prev_j = j;
2238 if (prev_j == i)
2239 return false;
2241 if (prev_j == (unsigned long)-1)
2242 bytes = (i + 1) * ctl->unit;
2243 else
2244 bytes = (i - prev_j) * ctl->unit;
2246 info->offset -= bytes;
2247 info->bytes += bytes;
2249 if (update_stat)
2250 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2251 else
2252 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2254 if (!bitmap->bytes)
2255 free_bitmap(ctl, bitmap);
2257 return true;
2261 * We prefer always to allocate from extent entries, both for clustered and
2262 * non-clustered allocation requests. So when attempting to add a new extent
2263 * entry, try to see if there's adjacent free space in bitmap entries, and if
2264 * there is, migrate that space from the bitmaps to the extent.
2265 * Like this we get better chances of satisfying space allocation requests
2266 * because we attempt to satisfy them based on a single cache entry, and never
2267 * on 2 or more entries - even if the entries represent a contiguous free space
2268 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2269 * ends).
2271 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2272 struct btrfs_free_space *info,
2273 bool update_stat)
2276 * Only work with disconnected entries, as we can change their offset,
2277 * and must be extent entries.
2279 ASSERT(!info->bitmap);
2280 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2282 if (ctl->total_bitmaps > 0) {
2283 bool stole_end;
2284 bool stole_front = false;
2286 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2287 if (ctl->total_bitmaps > 0)
2288 stole_front = steal_from_bitmap_to_front(ctl, info,
2289 update_stat);
2291 if (stole_end || stole_front)
2292 try_merge_free_space(ctl, info, update_stat);
2296 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2297 struct btrfs_free_space_ctl *ctl,
2298 u64 offset, u64 bytes)
2300 struct btrfs_free_space *info;
2301 int ret = 0;
2303 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2304 if (!info)
2305 return -ENOMEM;
2307 info->offset = offset;
2308 info->bytes = bytes;
2309 RB_CLEAR_NODE(&info->offset_index);
2311 spin_lock(&ctl->tree_lock);
2313 if (try_merge_free_space(ctl, info, true))
2314 goto link;
2317 * There was no extent directly to the left or right of this new
2318 * extent then we know we're going to have to allocate a new extent, so
2319 * before we do that see if we need to drop this into a bitmap
2321 ret = insert_into_bitmap(ctl, info);
2322 if (ret < 0) {
2323 goto out;
2324 } else if (ret) {
2325 ret = 0;
2326 goto out;
2328 link:
2330 * Only steal free space from adjacent bitmaps if we're sure we're not
2331 * going to add the new free space to existing bitmap entries - because
2332 * that would mean unnecessary work that would be reverted. Therefore
2333 * attempt to steal space from bitmaps if we're adding an extent entry.
2335 steal_from_bitmap(ctl, info, true);
2337 ret = link_free_space(ctl, info);
2338 if (ret)
2339 kmem_cache_free(btrfs_free_space_cachep, info);
2340 out:
2341 spin_unlock(&ctl->tree_lock);
2343 if (ret) {
2344 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2345 ASSERT(ret != -EEXIST);
2348 return ret;
2351 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2352 u64 offset, u64 bytes)
2354 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2355 struct btrfs_free_space *info;
2356 int ret;
2357 bool re_search = false;
2359 spin_lock(&ctl->tree_lock);
2361 again:
2362 ret = 0;
2363 if (!bytes)
2364 goto out_lock;
2366 info = tree_search_offset(ctl, offset, 0, 0);
2367 if (!info) {
2369 * oops didn't find an extent that matched the space we wanted
2370 * to remove, look for a bitmap instead
2372 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2373 1, 0);
2374 if (!info) {
2376 * If we found a partial bit of our free space in a
2377 * bitmap but then couldn't find the other part this may
2378 * be a problem, so WARN about it.
2380 WARN_ON(re_search);
2381 goto out_lock;
2385 re_search = false;
2386 if (!info->bitmap) {
2387 unlink_free_space(ctl, info);
2388 if (offset == info->offset) {
2389 u64 to_free = min(bytes, info->bytes);
2391 info->bytes -= to_free;
2392 info->offset += to_free;
2393 if (info->bytes) {
2394 ret = link_free_space(ctl, info);
2395 WARN_ON(ret);
2396 } else {
2397 kmem_cache_free(btrfs_free_space_cachep, info);
2400 offset += to_free;
2401 bytes -= to_free;
2402 goto again;
2403 } else {
2404 u64 old_end = info->bytes + info->offset;
2406 info->bytes = offset - info->offset;
2407 ret = link_free_space(ctl, info);
2408 WARN_ON(ret);
2409 if (ret)
2410 goto out_lock;
2412 /* Not enough bytes in this entry to satisfy us */
2413 if (old_end < offset + bytes) {
2414 bytes -= old_end - offset;
2415 offset = old_end;
2416 goto again;
2417 } else if (old_end == offset + bytes) {
2418 /* all done */
2419 goto out_lock;
2421 spin_unlock(&ctl->tree_lock);
2423 ret = btrfs_add_free_space(block_group, offset + bytes,
2424 old_end - (offset + bytes));
2425 WARN_ON(ret);
2426 goto out;
2430 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2431 if (ret == -EAGAIN) {
2432 re_search = true;
2433 goto again;
2435 out_lock:
2436 spin_unlock(&ctl->tree_lock);
2437 out:
2438 return ret;
2441 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2442 u64 bytes)
2444 struct btrfs_fs_info *fs_info = block_group->fs_info;
2445 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2446 struct btrfs_free_space *info;
2447 struct rb_node *n;
2448 int count = 0;
2450 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2451 info = rb_entry(n, struct btrfs_free_space, offset_index);
2452 if (info->bytes >= bytes && !block_group->ro)
2453 count++;
2454 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2455 info->offset, info->bytes,
2456 (info->bitmap) ? "yes" : "no");
2458 btrfs_info(fs_info, "block group has cluster?: %s",
2459 list_empty(&block_group->cluster_list) ? "no" : "yes");
2460 btrfs_info(fs_info,
2461 "%d blocks of free space at or bigger than bytes is", count);
2464 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2466 struct btrfs_fs_info *fs_info = block_group->fs_info;
2467 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2469 spin_lock_init(&ctl->tree_lock);
2470 ctl->unit = fs_info->sectorsize;
2471 ctl->start = block_group->key.objectid;
2472 ctl->private = block_group;
2473 ctl->op = &free_space_op;
2474 INIT_LIST_HEAD(&ctl->trimming_ranges);
2475 mutex_init(&ctl->cache_writeout_mutex);
2478 * we only want to have 32k of ram per block group for keeping
2479 * track of free space, and if we pass 1/2 of that we want to
2480 * start converting things over to using bitmaps
2482 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2486 * for a given cluster, put all of its extents back into the free
2487 * space cache. If the block group passed doesn't match the block group
2488 * pointed to by the cluster, someone else raced in and freed the
2489 * cluster already. In that case, we just return without changing anything
2491 static int
2492 __btrfs_return_cluster_to_free_space(
2493 struct btrfs_block_group_cache *block_group,
2494 struct btrfs_free_cluster *cluster)
2496 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2497 struct btrfs_free_space *entry;
2498 struct rb_node *node;
2500 spin_lock(&cluster->lock);
2501 if (cluster->block_group != block_group)
2502 goto out;
2504 cluster->block_group = NULL;
2505 cluster->window_start = 0;
2506 list_del_init(&cluster->block_group_list);
2508 node = rb_first(&cluster->root);
2509 while (node) {
2510 bool bitmap;
2512 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2513 node = rb_next(&entry->offset_index);
2514 rb_erase(&entry->offset_index, &cluster->root);
2515 RB_CLEAR_NODE(&entry->offset_index);
2517 bitmap = (entry->bitmap != NULL);
2518 if (!bitmap) {
2519 try_merge_free_space(ctl, entry, false);
2520 steal_from_bitmap(ctl, entry, false);
2522 tree_insert_offset(&ctl->free_space_offset,
2523 entry->offset, &entry->offset_index, bitmap);
2525 cluster->root = RB_ROOT;
2527 out:
2528 spin_unlock(&cluster->lock);
2529 btrfs_put_block_group(block_group);
2530 return 0;
2533 static void __btrfs_remove_free_space_cache_locked(
2534 struct btrfs_free_space_ctl *ctl)
2536 struct btrfs_free_space *info;
2537 struct rb_node *node;
2539 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2540 info = rb_entry(node, struct btrfs_free_space, offset_index);
2541 if (!info->bitmap) {
2542 unlink_free_space(ctl, info);
2543 kmem_cache_free(btrfs_free_space_cachep, info);
2544 } else {
2545 free_bitmap(ctl, info);
2548 cond_resched_lock(&ctl->tree_lock);
2552 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2554 spin_lock(&ctl->tree_lock);
2555 __btrfs_remove_free_space_cache_locked(ctl);
2556 spin_unlock(&ctl->tree_lock);
2559 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2561 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2562 struct btrfs_free_cluster *cluster;
2563 struct list_head *head;
2565 spin_lock(&ctl->tree_lock);
2566 while ((head = block_group->cluster_list.next) !=
2567 &block_group->cluster_list) {
2568 cluster = list_entry(head, struct btrfs_free_cluster,
2569 block_group_list);
2571 WARN_ON(cluster->block_group != block_group);
2572 __btrfs_return_cluster_to_free_space(block_group, cluster);
2574 cond_resched_lock(&ctl->tree_lock);
2576 __btrfs_remove_free_space_cache_locked(ctl);
2577 spin_unlock(&ctl->tree_lock);
2581 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2582 u64 offset, u64 bytes, u64 empty_size,
2583 u64 *max_extent_size)
2585 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2586 struct btrfs_free_space *entry = NULL;
2587 u64 bytes_search = bytes + empty_size;
2588 u64 ret = 0;
2589 u64 align_gap = 0;
2590 u64 align_gap_len = 0;
2592 spin_lock(&ctl->tree_lock);
2593 entry = find_free_space(ctl, &offset, &bytes_search,
2594 block_group->full_stripe_len, max_extent_size);
2595 if (!entry)
2596 goto out;
2598 ret = offset;
2599 if (entry->bitmap) {
2600 bitmap_clear_bits(ctl, entry, offset, bytes);
2601 if (!entry->bytes)
2602 free_bitmap(ctl, entry);
2603 } else {
2604 unlink_free_space(ctl, entry);
2605 align_gap_len = offset - entry->offset;
2606 align_gap = entry->offset;
2608 entry->offset = offset + bytes;
2609 WARN_ON(entry->bytes < bytes + align_gap_len);
2611 entry->bytes -= bytes + align_gap_len;
2612 if (!entry->bytes)
2613 kmem_cache_free(btrfs_free_space_cachep, entry);
2614 else
2615 link_free_space(ctl, entry);
2617 out:
2618 spin_unlock(&ctl->tree_lock);
2620 if (align_gap_len)
2621 __btrfs_add_free_space(block_group->fs_info, ctl,
2622 align_gap, align_gap_len);
2623 return ret;
2627 * given a cluster, put all of its extents back into the free space
2628 * cache. If a block group is passed, this function will only free
2629 * a cluster that belongs to the passed block group.
2631 * Otherwise, it'll get a reference on the block group pointed to by the
2632 * cluster and remove the cluster from it.
2634 int btrfs_return_cluster_to_free_space(
2635 struct btrfs_block_group_cache *block_group,
2636 struct btrfs_free_cluster *cluster)
2638 struct btrfs_free_space_ctl *ctl;
2639 int ret;
2641 /* first, get a safe pointer to the block group */
2642 spin_lock(&cluster->lock);
2643 if (!block_group) {
2644 block_group = cluster->block_group;
2645 if (!block_group) {
2646 spin_unlock(&cluster->lock);
2647 return 0;
2649 } else if (cluster->block_group != block_group) {
2650 /* someone else has already freed it don't redo their work */
2651 spin_unlock(&cluster->lock);
2652 return 0;
2654 atomic_inc(&block_group->count);
2655 spin_unlock(&cluster->lock);
2657 ctl = block_group->free_space_ctl;
2659 /* now return any extents the cluster had on it */
2660 spin_lock(&ctl->tree_lock);
2661 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2662 spin_unlock(&ctl->tree_lock);
2664 /* finally drop our ref */
2665 btrfs_put_block_group(block_group);
2666 return ret;
2669 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2670 struct btrfs_free_cluster *cluster,
2671 struct btrfs_free_space *entry,
2672 u64 bytes, u64 min_start,
2673 u64 *max_extent_size)
2675 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2676 int err;
2677 u64 search_start = cluster->window_start;
2678 u64 search_bytes = bytes;
2679 u64 ret = 0;
2681 search_start = min_start;
2682 search_bytes = bytes;
2684 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2685 if (err) {
2686 if (search_bytes > *max_extent_size)
2687 *max_extent_size = search_bytes;
2688 return 0;
2691 ret = search_start;
2692 __bitmap_clear_bits(ctl, entry, ret, bytes);
2694 return ret;
2698 * given a cluster, try to allocate 'bytes' from it, returns 0
2699 * if it couldn't find anything suitably large, or a logical disk offset
2700 * if things worked out
2702 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2703 struct btrfs_free_cluster *cluster, u64 bytes,
2704 u64 min_start, u64 *max_extent_size)
2706 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2707 struct btrfs_free_space *entry = NULL;
2708 struct rb_node *node;
2709 u64 ret = 0;
2711 spin_lock(&cluster->lock);
2712 if (bytes > cluster->max_size)
2713 goto out;
2715 if (cluster->block_group != block_group)
2716 goto out;
2718 node = rb_first(&cluster->root);
2719 if (!node)
2720 goto out;
2722 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2723 while (1) {
2724 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2725 *max_extent_size = entry->bytes;
2727 if (entry->bytes < bytes ||
2728 (!entry->bitmap && entry->offset < min_start)) {
2729 node = rb_next(&entry->offset_index);
2730 if (!node)
2731 break;
2732 entry = rb_entry(node, struct btrfs_free_space,
2733 offset_index);
2734 continue;
2737 if (entry->bitmap) {
2738 ret = btrfs_alloc_from_bitmap(block_group,
2739 cluster, entry, bytes,
2740 cluster->window_start,
2741 max_extent_size);
2742 if (ret == 0) {
2743 node = rb_next(&entry->offset_index);
2744 if (!node)
2745 break;
2746 entry = rb_entry(node, struct btrfs_free_space,
2747 offset_index);
2748 continue;
2750 cluster->window_start += bytes;
2751 } else {
2752 ret = entry->offset;
2754 entry->offset += bytes;
2755 entry->bytes -= bytes;
2758 if (entry->bytes == 0)
2759 rb_erase(&entry->offset_index, &cluster->root);
2760 break;
2762 out:
2763 spin_unlock(&cluster->lock);
2765 if (!ret)
2766 return 0;
2768 spin_lock(&ctl->tree_lock);
2770 ctl->free_space -= bytes;
2771 if (entry->bytes == 0) {
2772 ctl->free_extents--;
2773 if (entry->bitmap) {
2774 kfree(entry->bitmap);
2775 ctl->total_bitmaps--;
2776 ctl->op->recalc_thresholds(ctl);
2778 kmem_cache_free(btrfs_free_space_cachep, entry);
2781 spin_unlock(&ctl->tree_lock);
2783 return ret;
2786 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2787 struct btrfs_free_space *entry,
2788 struct btrfs_free_cluster *cluster,
2789 u64 offset, u64 bytes,
2790 u64 cont1_bytes, u64 min_bytes)
2792 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2793 unsigned long next_zero;
2794 unsigned long i;
2795 unsigned long want_bits;
2796 unsigned long min_bits;
2797 unsigned long found_bits;
2798 unsigned long max_bits = 0;
2799 unsigned long start = 0;
2800 unsigned long total_found = 0;
2801 int ret;
2803 i = offset_to_bit(entry->offset, ctl->unit,
2804 max_t(u64, offset, entry->offset));
2805 want_bits = bytes_to_bits(bytes, ctl->unit);
2806 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2809 * Don't bother looking for a cluster in this bitmap if it's heavily
2810 * fragmented.
2812 if (entry->max_extent_size &&
2813 entry->max_extent_size < cont1_bytes)
2814 return -ENOSPC;
2815 again:
2816 found_bits = 0;
2817 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2818 next_zero = find_next_zero_bit(entry->bitmap,
2819 BITS_PER_BITMAP, i);
2820 if (next_zero - i >= min_bits) {
2821 found_bits = next_zero - i;
2822 if (found_bits > max_bits)
2823 max_bits = found_bits;
2824 break;
2826 if (next_zero - i > max_bits)
2827 max_bits = next_zero - i;
2828 i = next_zero;
2831 if (!found_bits) {
2832 entry->max_extent_size = (u64)max_bits * ctl->unit;
2833 return -ENOSPC;
2836 if (!total_found) {
2837 start = i;
2838 cluster->max_size = 0;
2841 total_found += found_bits;
2843 if (cluster->max_size < found_bits * ctl->unit)
2844 cluster->max_size = found_bits * ctl->unit;
2846 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2847 i = next_zero + 1;
2848 goto again;
2851 cluster->window_start = start * ctl->unit + entry->offset;
2852 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2853 ret = tree_insert_offset(&cluster->root, entry->offset,
2854 &entry->offset_index, 1);
2855 ASSERT(!ret); /* -EEXIST; Logic error */
2857 trace_btrfs_setup_cluster(block_group, cluster,
2858 total_found * ctl->unit, 1);
2859 return 0;
2863 * This searches the block group for just extents to fill the cluster with.
2864 * Try to find a cluster with at least bytes total bytes, at least one
2865 * extent of cont1_bytes, and other clusters of at least min_bytes.
2867 static noinline int
2868 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2869 struct btrfs_free_cluster *cluster,
2870 struct list_head *bitmaps, u64 offset, u64 bytes,
2871 u64 cont1_bytes, u64 min_bytes)
2873 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2874 struct btrfs_free_space *first = NULL;
2875 struct btrfs_free_space *entry = NULL;
2876 struct btrfs_free_space *last;
2877 struct rb_node *node;
2878 u64 window_free;
2879 u64 max_extent;
2880 u64 total_size = 0;
2882 entry = tree_search_offset(ctl, offset, 0, 1);
2883 if (!entry)
2884 return -ENOSPC;
2887 * We don't want bitmaps, so just move along until we find a normal
2888 * extent entry.
2890 while (entry->bitmap || entry->bytes < min_bytes) {
2891 if (entry->bitmap && list_empty(&entry->list))
2892 list_add_tail(&entry->list, bitmaps);
2893 node = rb_next(&entry->offset_index);
2894 if (!node)
2895 return -ENOSPC;
2896 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2899 window_free = entry->bytes;
2900 max_extent = entry->bytes;
2901 first = entry;
2902 last = entry;
2904 for (node = rb_next(&entry->offset_index); node;
2905 node = rb_next(&entry->offset_index)) {
2906 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2908 if (entry->bitmap) {
2909 if (list_empty(&entry->list))
2910 list_add_tail(&entry->list, bitmaps);
2911 continue;
2914 if (entry->bytes < min_bytes)
2915 continue;
2917 last = entry;
2918 window_free += entry->bytes;
2919 if (entry->bytes > max_extent)
2920 max_extent = entry->bytes;
2923 if (window_free < bytes || max_extent < cont1_bytes)
2924 return -ENOSPC;
2926 cluster->window_start = first->offset;
2928 node = &first->offset_index;
2931 * now we've found our entries, pull them out of the free space
2932 * cache and put them into the cluster rbtree
2934 do {
2935 int ret;
2937 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2938 node = rb_next(&entry->offset_index);
2939 if (entry->bitmap || entry->bytes < min_bytes)
2940 continue;
2942 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2943 ret = tree_insert_offset(&cluster->root, entry->offset,
2944 &entry->offset_index, 0);
2945 total_size += entry->bytes;
2946 ASSERT(!ret); /* -EEXIST; Logic error */
2947 } while (node && entry != last);
2949 cluster->max_size = max_extent;
2950 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2951 return 0;
2955 * This specifically looks for bitmaps that may work in the cluster, we assume
2956 * that we have already failed to find extents that will work.
2958 static noinline int
2959 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2960 struct btrfs_free_cluster *cluster,
2961 struct list_head *bitmaps, u64 offset, u64 bytes,
2962 u64 cont1_bytes, u64 min_bytes)
2964 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2965 struct btrfs_free_space *entry = NULL;
2966 int ret = -ENOSPC;
2967 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2969 if (ctl->total_bitmaps == 0)
2970 return -ENOSPC;
2973 * The bitmap that covers offset won't be in the list unless offset
2974 * is just its start offset.
2976 if (!list_empty(bitmaps))
2977 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2979 if (!entry || entry->offset != bitmap_offset) {
2980 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2981 if (entry && list_empty(&entry->list))
2982 list_add(&entry->list, bitmaps);
2985 list_for_each_entry(entry, bitmaps, list) {
2986 if (entry->bytes < bytes)
2987 continue;
2988 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2989 bytes, cont1_bytes, min_bytes);
2990 if (!ret)
2991 return 0;
2995 * The bitmaps list has all the bitmaps that record free space
2996 * starting after offset, so no more search is required.
2998 return -ENOSPC;
3002 * here we try to find a cluster of blocks in a block group. The goal
3003 * is to find at least bytes+empty_size.
3004 * We might not find them all in one contiguous area.
3006 * returns zero and sets up cluster if things worked out, otherwise
3007 * it returns -enospc
3009 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3010 struct btrfs_block_group_cache *block_group,
3011 struct btrfs_free_cluster *cluster,
3012 u64 offset, u64 bytes, u64 empty_size)
3014 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3015 struct btrfs_free_space *entry, *tmp;
3016 LIST_HEAD(bitmaps);
3017 u64 min_bytes;
3018 u64 cont1_bytes;
3019 int ret;
3022 * Choose the minimum extent size we'll require for this
3023 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3024 * For metadata, allow allocates with smaller extents. For
3025 * data, keep it dense.
3027 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3028 cont1_bytes = min_bytes = bytes + empty_size;
3029 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3030 cont1_bytes = bytes;
3031 min_bytes = fs_info->sectorsize;
3032 } else {
3033 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3034 min_bytes = fs_info->sectorsize;
3037 spin_lock(&ctl->tree_lock);
3040 * If we know we don't have enough space to make a cluster don't even
3041 * bother doing all the work to try and find one.
3043 if (ctl->free_space < bytes) {
3044 spin_unlock(&ctl->tree_lock);
3045 return -ENOSPC;
3048 spin_lock(&cluster->lock);
3050 /* someone already found a cluster, hooray */
3051 if (cluster->block_group) {
3052 ret = 0;
3053 goto out;
3056 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3057 min_bytes);
3059 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3060 bytes + empty_size,
3061 cont1_bytes, min_bytes);
3062 if (ret)
3063 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3064 offset, bytes + empty_size,
3065 cont1_bytes, min_bytes);
3067 /* Clear our temporary list */
3068 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3069 list_del_init(&entry->list);
3071 if (!ret) {
3072 atomic_inc(&block_group->count);
3073 list_add_tail(&cluster->block_group_list,
3074 &block_group->cluster_list);
3075 cluster->block_group = block_group;
3076 } else {
3077 trace_btrfs_failed_cluster_setup(block_group);
3079 out:
3080 spin_unlock(&cluster->lock);
3081 spin_unlock(&ctl->tree_lock);
3083 return ret;
3087 * simple code to zero out a cluster
3089 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3091 spin_lock_init(&cluster->lock);
3092 spin_lock_init(&cluster->refill_lock);
3093 cluster->root = RB_ROOT;
3094 cluster->max_size = 0;
3095 cluster->fragmented = false;
3096 INIT_LIST_HEAD(&cluster->block_group_list);
3097 cluster->block_group = NULL;
3100 static int do_trimming(struct btrfs_block_group_cache *block_group,
3101 u64 *total_trimmed, u64 start, u64 bytes,
3102 u64 reserved_start, u64 reserved_bytes,
3103 struct btrfs_trim_range *trim_entry)
3105 struct btrfs_space_info *space_info = block_group->space_info;
3106 struct btrfs_fs_info *fs_info = block_group->fs_info;
3107 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3108 int ret;
3109 int update = 0;
3110 u64 trimmed = 0;
3112 spin_lock(&space_info->lock);
3113 spin_lock(&block_group->lock);
3114 if (!block_group->ro) {
3115 block_group->reserved += reserved_bytes;
3116 space_info->bytes_reserved += reserved_bytes;
3117 update = 1;
3119 spin_unlock(&block_group->lock);
3120 spin_unlock(&space_info->lock);
3122 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3123 if (!ret)
3124 *total_trimmed += trimmed;
3126 mutex_lock(&ctl->cache_writeout_mutex);
3127 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3128 list_del(&trim_entry->list);
3129 mutex_unlock(&ctl->cache_writeout_mutex);
3131 if (update) {
3132 spin_lock(&space_info->lock);
3133 spin_lock(&block_group->lock);
3134 if (block_group->ro)
3135 space_info->bytes_readonly += reserved_bytes;
3136 block_group->reserved -= reserved_bytes;
3137 space_info->bytes_reserved -= reserved_bytes;
3138 spin_unlock(&space_info->lock);
3139 spin_unlock(&block_group->lock);
3142 return ret;
3145 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3146 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3148 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3149 struct btrfs_free_space *entry;
3150 struct rb_node *node;
3151 int ret = 0;
3152 u64 extent_start;
3153 u64 extent_bytes;
3154 u64 bytes;
3156 while (start < end) {
3157 struct btrfs_trim_range trim_entry;
3159 mutex_lock(&ctl->cache_writeout_mutex);
3160 spin_lock(&ctl->tree_lock);
3162 if (ctl->free_space < minlen) {
3163 spin_unlock(&ctl->tree_lock);
3164 mutex_unlock(&ctl->cache_writeout_mutex);
3165 break;
3168 entry = tree_search_offset(ctl, start, 0, 1);
3169 if (!entry) {
3170 spin_unlock(&ctl->tree_lock);
3171 mutex_unlock(&ctl->cache_writeout_mutex);
3172 break;
3175 /* skip bitmaps */
3176 while (entry->bitmap) {
3177 node = rb_next(&entry->offset_index);
3178 if (!node) {
3179 spin_unlock(&ctl->tree_lock);
3180 mutex_unlock(&ctl->cache_writeout_mutex);
3181 goto out;
3183 entry = rb_entry(node, struct btrfs_free_space,
3184 offset_index);
3187 if (entry->offset >= end) {
3188 spin_unlock(&ctl->tree_lock);
3189 mutex_unlock(&ctl->cache_writeout_mutex);
3190 break;
3193 extent_start = entry->offset;
3194 extent_bytes = entry->bytes;
3195 start = max(start, extent_start);
3196 bytes = min(extent_start + extent_bytes, end) - start;
3197 if (bytes < minlen) {
3198 spin_unlock(&ctl->tree_lock);
3199 mutex_unlock(&ctl->cache_writeout_mutex);
3200 goto next;
3203 unlink_free_space(ctl, entry);
3204 kmem_cache_free(btrfs_free_space_cachep, entry);
3206 spin_unlock(&ctl->tree_lock);
3207 trim_entry.start = extent_start;
3208 trim_entry.bytes = extent_bytes;
3209 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3210 mutex_unlock(&ctl->cache_writeout_mutex);
3212 ret = do_trimming(block_group, total_trimmed, start, bytes,
3213 extent_start, extent_bytes, &trim_entry);
3214 if (ret)
3215 break;
3216 next:
3217 start += bytes;
3219 if (fatal_signal_pending(current)) {
3220 ret = -ERESTARTSYS;
3221 break;
3224 cond_resched();
3226 out:
3227 return ret;
3230 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3231 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3233 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3234 struct btrfs_free_space *entry;
3235 int ret = 0;
3236 int ret2;
3237 u64 bytes;
3238 u64 offset = offset_to_bitmap(ctl, start);
3240 while (offset < end) {
3241 bool next_bitmap = false;
3242 struct btrfs_trim_range trim_entry;
3244 mutex_lock(&ctl->cache_writeout_mutex);
3245 spin_lock(&ctl->tree_lock);
3247 if (ctl->free_space < minlen) {
3248 spin_unlock(&ctl->tree_lock);
3249 mutex_unlock(&ctl->cache_writeout_mutex);
3250 break;
3253 entry = tree_search_offset(ctl, offset, 1, 0);
3254 if (!entry) {
3255 spin_unlock(&ctl->tree_lock);
3256 mutex_unlock(&ctl->cache_writeout_mutex);
3257 next_bitmap = true;
3258 goto next;
3261 bytes = minlen;
3262 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3263 if (ret2 || start >= end) {
3264 spin_unlock(&ctl->tree_lock);
3265 mutex_unlock(&ctl->cache_writeout_mutex);
3266 next_bitmap = true;
3267 goto next;
3270 bytes = min(bytes, end - start);
3271 if (bytes < minlen) {
3272 spin_unlock(&ctl->tree_lock);
3273 mutex_unlock(&ctl->cache_writeout_mutex);
3274 goto next;
3277 bitmap_clear_bits(ctl, entry, start, bytes);
3278 if (entry->bytes == 0)
3279 free_bitmap(ctl, entry);
3281 spin_unlock(&ctl->tree_lock);
3282 trim_entry.start = start;
3283 trim_entry.bytes = bytes;
3284 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3285 mutex_unlock(&ctl->cache_writeout_mutex);
3287 ret = do_trimming(block_group, total_trimmed, start, bytes,
3288 start, bytes, &trim_entry);
3289 if (ret)
3290 break;
3291 next:
3292 if (next_bitmap) {
3293 offset += BITS_PER_BITMAP * ctl->unit;
3294 } else {
3295 start += bytes;
3296 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3297 offset += BITS_PER_BITMAP * ctl->unit;
3300 if (fatal_signal_pending(current)) {
3301 ret = -ERESTARTSYS;
3302 break;
3305 cond_resched();
3308 return ret;
3311 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3313 atomic_inc(&cache->trimming);
3316 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3318 struct btrfs_fs_info *fs_info = block_group->fs_info;
3319 struct extent_map_tree *em_tree;
3320 struct extent_map *em;
3321 bool cleanup;
3323 spin_lock(&block_group->lock);
3324 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3325 block_group->removed);
3326 spin_unlock(&block_group->lock);
3328 if (cleanup) {
3329 mutex_lock(&fs_info->chunk_mutex);
3330 em_tree = &fs_info->mapping_tree.map_tree;
3331 write_lock(&em_tree->lock);
3332 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3334 BUG_ON(!em); /* logic error, can't happen */
3336 * remove_extent_mapping() will delete us from the pinned_chunks
3337 * list, which is protected by the chunk mutex.
3339 remove_extent_mapping(em_tree, em);
3340 write_unlock(&em_tree->lock);
3341 mutex_unlock(&fs_info->chunk_mutex);
3343 /* once for us and once for the tree */
3344 free_extent_map(em);
3345 free_extent_map(em);
3348 * We've left one free space entry and other tasks trimming
3349 * this block group have left 1 entry each one. Free them.
3351 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3355 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3356 u64 *trimmed, u64 start, u64 end, u64 minlen)
3358 int ret;
3360 *trimmed = 0;
3362 spin_lock(&block_group->lock);
3363 if (block_group->removed) {
3364 spin_unlock(&block_group->lock);
3365 return 0;
3367 btrfs_get_block_group_trimming(block_group);
3368 spin_unlock(&block_group->lock);
3370 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3371 if (ret)
3372 goto out;
3374 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3375 out:
3376 btrfs_put_block_group_trimming(block_group);
3377 return ret;
3381 * Find the left-most item in the cache tree, and then return the
3382 * smallest inode number in the item.
3384 * Note: the returned inode number may not be the smallest one in
3385 * the tree, if the left-most item is a bitmap.
3387 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3389 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3390 struct btrfs_free_space *entry = NULL;
3391 u64 ino = 0;
3393 spin_lock(&ctl->tree_lock);
3395 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3396 goto out;
3398 entry = rb_entry(rb_first(&ctl->free_space_offset),
3399 struct btrfs_free_space, offset_index);
3401 if (!entry->bitmap) {
3402 ino = entry->offset;
3404 unlink_free_space(ctl, entry);
3405 entry->offset++;
3406 entry->bytes--;
3407 if (!entry->bytes)
3408 kmem_cache_free(btrfs_free_space_cachep, entry);
3409 else
3410 link_free_space(ctl, entry);
3411 } else {
3412 u64 offset = 0;
3413 u64 count = 1;
3414 int ret;
3416 ret = search_bitmap(ctl, entry, &offset, &count, true);
3417 /* Logic error; Should be empty if it can't find anything */
3418 ASSERT(!ret);
3420 ino = offset;
3421 bitmap_clear_bits(ctl, entry, offset, 1);
3422 if (entry->bytes == 0)
3423 free_bitmap(ctl, entry);
3425 out:
3426 spin_unlock(&ctl->tree_lock);
3428 return ino;
3431 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3432 struct btrfs_path *path)
3434 struct inode *inode = NULL;
3436 spin_lock(&root->ino_cache_lock);
3437 if (root->ino_cache_inode)
3438 inode = igrab(root->ino_cache_inode);
3439 spin_unlock(&root->ino_cache_lock);
3440 if (inode)
3441 return inode;
3443 inode = __lookup_free_space_inode(root, path, 0);
3444 if (IS_ERR(inode))
3445 return inode;
3447 spin_lock(&root->ino_cache_lock);
3448 if (!btrfs_fs_closing(root->fs_info))
3449 root->ino_cache_inode = igrab(inode);
3450 spin_unlock(&root->ino_cache_lock);
3452 return inode;
3455 int create_free_ino_inode(struct btrfs_root *root,
3456 struct btrfs_trans_handle *trans,
3457 struct btrfs_path *path)
3459 return __create_free_space_inode(root, trans, path,
3460 BTRFS_FREE_INO_OBJECTID, 0);
3463 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3465 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3466 struct btrfs_path *path;
3467 struct inode *inode;
3468 int ret = 0;
3469 u64 root_gen = btrfs_root_generation(&root->root_item);
3471 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3472 return 0;
3475 * If we're unmounting then just return, since this does a search on the
3476 * normal root and not the commit root and we could deadlock.
3478 if (btrfs_fs_closing(fs_info))
3479 return 0;
3481 path = btrfs_alloc_path();
3482 if (!path)
3483 return 0;
3485 inode = lookup_free_ino_inode(root, path);
3486 if (IS_ERR(inode))
3487 goto out;
3489 if (root_gen != BTRFS_I(inode)->generation)
3490 goto out_put;
3492 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3494 if (ret < 0)
3495 btrfs_err(fs_info,
3496 "failed to load free ino cache for root %llu",
3497 root->root_key.objectid);
3498 out_put:
3499 iput(inode);
3500 out:
3501 btrfs_free_path(path);
3502 return ret;
3505 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3506 struct btrfs_trans_handle *trans,
3507 struct btrfs_path *path,
3508 struct inode *inode)
3510 struct btrfs_fs_info *fs_info = root->fs_info;
3511 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3512 int ret;
3513 struct btrfs_io_ctl io_ctl;
3514 bool release_metadata = true;
3516 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3517 return 0;
3519 memset(&io_ctl, 0, sizeof(io_ctl));
3520 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3521 if (!ret) {
3523 * At this point writepages() didn't error out, so our metadata
3524 * reservation is released when the writeback finishes, at
3525 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3526 * with or without an error.
3528 release_metadata = false;
3529 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3532 if (ret) {
3533 if (release_metadata)
3534 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3535 inode->i_size, true);
3536 #ifdef DEBUG
3537 btrfs_err(fs_info,
3538 "failed to write free ino cache for root %llu",
3539 root->root_key.objectid);
3540 #endif
3543 return ret;
3546 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3548 * Use this if you need to make a bitmap or extent entry specifically, it
3549 * doesn't do any of the merging that add_free_space does, this acts a lot like
3550 * how the free space cache loading stuff works, so you can get really weird
3551 * configurations.
3553 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3554 u64 offset, u64 bytes, bool bitmap)
3556 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3557 struct btrfs_free_space *info = NULL, *bitmap_info;
3558 void *map = NULL;
3559 u64 bytes_added;
3560 int ret;
3562 again:
3563 if (!info) {
3564 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3565 if (!info)
3566 return -ENOMEM;
3569 if (!bitmap) {
3570 spin_lock(&ctl->tree_lock);
3571 info->offset = offset;
3572 info->bytes = bytes;
3573 info->max_extent_size = 0;
3574 ret = link_free_space(ctl, info);
3575 spin_unlock(&ctl->tree_lock);
3576 if (ret)
3577 kmem_cache_free(btrfs_free_space_cachep, info);
3578 return ret;
3581 if (!map) {
3582 map = kzalloc(PAGE_SIZE, GFP_NOFS);
3583 if (!map) {
3584 kmem_cache_free(btrfs_free_space_cachep, info);
3585 return -ENOMEM;
3589 spin_lock(&ctl->tree_lock);
3590 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3591 1, 0);
3592 if (!bitmap_info) {
3593 info->bitmap = map;
3594 map = NULL;
3595 add_new_bitmap(ctl, info, offset);
3596 bitmap_info = info;
3597 info = NULL;
3600 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3602 bytes -= bytes_added;
3603 offset += bytes_added;
3604 spin_unlock(&ctl->tree_lock);
3606 if (bytes)
3607 goto again;
3609 if (info)
3610 kmem_cache_free(btrfs_free_space_cachep, info);
3611 if (map)
3612 kfree(map);
3613 return 0;
3617 * Checks to see if the given range is in the free space cache. This is really
3618 * just used to check the absence of space, so if there is free space in the
3619 * range at all we will return 1.
3621 int test_check_exists(struct btrfs_block_group_cache *cache,
3622 u64 offset, u64 bytes)
3624 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3625 struct btrfs_free_space *info;
3626 int ret = 0;
3628 spin_lock(&ctl->tree_lock);
3629 info = tree_search_offset(ctl, offset, 0, 0);
3630 if (!info) {
3631 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3632 1, 0);
3633 if (!info)
3634 goto out;
3637 have_info:
3638 if (info->bitmap) {
3639 u64 bit_off, bit_bytes;
3640 struct rb_node *n;
3641 struct btrfs_free_space *tmp;
3643 bit_off = offset;
3644 bit_bytes = ctl->unit;
3645 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3646 if (!ret) {
3647 if (bit_off == offset) {
3648 ret = 1;
3649 goto out;
3650 } else if (bit_off > offset &&
3651 offset + bytes > bit_off) {
3652 ret = 1;
3653 goto out;
3657 n = rb_prev(&info->offset_index);
3658 while (n) {
3659 tmp = rb_entry(n, struct btrfs_free_space,
3660 offset_index);
3661 if (tmp->offset + tmp->bytes < offset)
3662 break;
3663 if (offset + bytes < tmp->offset) {
3664 n = rb_prev(&tmp->offset_index);
3665 continue;
3667 info = tmp;
3668 goto have_info;
3671 n = rb_next(&info->offset_index);
3672 while (n) {
3673 tmp = rb_entry(n, struct btrfs_free_space,
3674 offset_index);
3675 if (offset + bytes < tmp->offset)
3676 break;
3677 if (tmp->offset + tmp->bytes < offset) {
3678 n = rb_next(&tmp->offset_index);
3679 continue;
3681 info = tmp;
3682 goto have_info;
3685 ret = 0;
3686 goto out;
3689 if (info->offset == offset) {
3690 ret = 1;
3691 goto out;
3694 if (offset > info->offset && offset < info->offset + info->bytes)
3695 ret = 1;
3696 out:
3697 spin_unlock(&ctl->tree_lock);
3698 return ret;
3700 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */