1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/xattr.h>
23 #include <linux/posix_acl.h>
24 #include <linux/falloc.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/mount.h>
28 #include <linux/btrfs.h>
29 #include <linux/blkdev.h>
30 #include <linux/posix_acl_xattr.h>
31 #include <linux/uio.h>
32 #include <linux/magic.h>
33 #include <linux/iversion.h>
34 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
44 #include "compression.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
53 struct btrfs_iget_args
{
54 struct btrfs_key
*location
;
55 struct btrfs_root
*root
;
58 struct btrfs_dio_data
{
60 u64 unsubmitted_oe_range_start
;
61 u64 unsubmitted_oe_range_end
;
65 static const struct inode_operations btrfs_dir_inode_operations
;
66 static const struct inode_operations btrfs_symlink_inode_operations
;
67 static const struct inode_operations btrfs_dir_ro_inode_operations
;
68 static const struct inode_operations btrfs_special_inode_operations
;
69 static const struct inode_operations btrfs_file_inode_operations
;
70 static const struct address_space_operations btrfs_aops
;
71 static const struct address_space_operations btrfs_symlink_aops
;
72 static const struct file_operations btrfs_dir_file_operations
;
73 static const struct extent_io_ops btrfs_extent_io_ops
;
75 static struct kmem_cache
*btrfs_inode_cachep
;
76 struct kmem_cache
*btrfs_trans_handle_cachep
;
77 struct kmem_cache
*btrfs_path_cachep
;
78 struct kmem_cache
*btrfs_free_space_cachep
;
81 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
82 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
83 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
84 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
85 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
86 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
87 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
88 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
91 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
92 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
94 static noinline
int cow_file_range(struct inode
*inode
,
95 struct page
*locked_page
,
96 u64 start
, u64 end
, u64 delalloc_end
,
97 int *page_started
, unsigned long *nr_written
,
98 int unlock
, struct btrfs_dedupe_hash
*hash
);
99 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
100 u64 orig_start
, u64 block_start
,
101 u64 block_len
, u64 orig_block_len
,
102 u64 ram_bytes
, int compress_type
,
105 static void __endio_write_update_ordered(struct inode
*inode
,
106 const u64 offset
, const u64 bytes
,
107 const bool uptodate
);
110 * Cleanup all submitted ordered extents in specified range to handle errors
111 * from the fill_dellaloc() callback.
113 * NOTE: caller must ensure that when an error happens, it can not call
114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116 * to be released, which we want to happen only when finishing the ordered
117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118 * fill_delalloc() callback already does proper cleanup for the first page of
119 * the range, that is, it invokes the callback writepage_end_io_hook() for the
120 * range of the first page.
122 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
126 unsigned long index
= offset
>> PAGE_SHIFT
;
127 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
130 while (index
<= end_index
) {
131 page
= find_get_page(inode
->i_mapping
, index
);
135 ClearPagePrivate2(page
);
138 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
139 bytes
- PAGE_SIZE
, false);
142 static int btrfs_dirty_inode(struct inode
*inode
);
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode
*inode
)
147 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
151 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
152 struct inode
*inode
, struct inode
*dir
,
153 const struct qstr
*qstr
)
157 err
= btrfs_init_acl(trans
, inode
, dir
);
159 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
168 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
169 struct btrfs_path
*path
, int extent_inserted
,
170 struct btrfs_root
*root
, struct inode
*inode
,
171 u64 start
, size_t size
, size_t compressed_size
,
173 struct page
**compressed_pages
)
175 struct extent_buffer
*leaf
;
176 struct page
*page
= NULL
;
179 struct btrfs_file_extent_item
*ei
;
181 size_t cur_size
= size
;
182 unsigned long offset
;
184 if (compressed_size
&& compressed_pages
)
185 cur_size
= compressed_size
;
187 inode_add_bytes(inode
, size
);
189 if (!extent_inserted
) {
190 struct btrfs_key key
;
193 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
195 key
.type
= BTRFS_EXTENT_DATA_KEY
;
197 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
198 path
->leave_spinning
= 1;
199 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
204 leaf
= path
->nodes
[0];
205 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
206 struct btrfs_file_extent_item
);
207 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
208 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
209 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
210 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
211 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
212 ptr
= btrfs_file_extent_inline_start(ei
);
214 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
217 while (compressed_size
> 0) {
218 cpage
= compressed_pages
[i
];
219 cur_size
= min_t(unsigned long, compressed_size
,
222 kaddr
= kmap_atomic(cpage
);
223 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
224 kunmap_atomic(kaddr
);
228 compressed_size
-= cur_size
;
230 btrfs_set_file_extent_compression(leaf
, ei
,
233 page
= find_get_page(inode
->i_mapping
,
234 start
>> PAGE_SHIFT
);
235 btrfs_set_file_extent_compression(leaf
, ei
, 0);
236 kaddr
= kmap_atomic(page
);
237 offset
= start
& (PAGE_SIZE
- 1);
238 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
239 kunmap_atomic(kaddr
);
242 btrfs_mark_buffer_dirty(leaf
);
243 btrfs_release_path(path
);
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
254 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
255 ret
= btrfs_update_inode(trans
, root
, inode
);
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
267 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
268 u64 end
, size_t compressed_size
,
270 struct page
**compressed_pages
)
272 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
274 struct btrfs_trans_handle
*trans
;
275 u64 isize
= i_size_read(inode
);
276 u64 actual_end
= min(end
+ 1, isize
);
277 u64 inline_len
= actual_end
- start
;
278 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
279 u64 data_len
= inline_len
;
281 struct btrfs_path
*path
;
282 int extent_inserted
= 0;
283 u32 extent_item_size
;
286 data_len
= compressed_size
;
289 actual_end
> fs_info
->sectorsize
||
290 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
292 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
294 data_len
> fs_info
->max_inline
) {
298 path
= btrfs_alloc_path();
302 trans
= btrfs_join_transaction(root
);
304 btrfs_free_path(path
);
305 return PTR_ERR(trans
);
307 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
309 if (compressed_size
&& compressed_pages
)
310 extent_item_size
= btrfs_file_extent_calc_inline_size(
313 extent_item_size
= btrfs_file_extent_calc_inline_size(
316 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
317 start
, aligned_end
, NULL
,
318 1, 1, extent_item_size
, &extent_inserted
);
320 btrfs_abort_transaction(trans
, ret
);
324 if (isize
> actual_end
)
325 inline_len
= min_t(u64
, isize
, actual_end
);
326 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
328 inline_len
, compressed_size
,
329 compress_type
, compressed_pages
);
330 if (ret
&& ret
!= -ENOSPC
) {
331 btrfs_abort_transaction(trans
, ret
);
333 } else if (ret
== -ENOSPC
) {
338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
339 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
342 * Don't forget to free the reserved space, as for inlined extent
343 * it won't count as data extent, free them directly here.
344 * And at reserve time, it's always aligned to page size, so
345 * just free one page here.
347 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
348 btrfs_free_path(path
);
349 btrfs_end_transaction(trans
);
353 struct async_extent
{
358 unsigned long nr_pages
;
360 struct list_head list
;
365 struct btrfs_root
*root
;
366 struct page
*locked_page
;
369 unsigned int write_flags
;
370 struct list_head extents
;
371 struct btrfs_work work
;
374 static noinline
int add_async_extent(struct async_cow
*cow
,
375 u64 start
, u64 ram_size
,
378 unsigned long nr_pages
,
381 struct async_extent
*async_extent
;
383 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
384 BUG_ON(!async_extent
); /* -ENOMEM */
385 async_extent
->start
= start
;
386 async_extent
->ram_size
= ram_size
;
387 async_extent
->compressed_size
= compressed_size
;
388 async_extent
->pages
= pages
;
389 async_extent
->nr_pages
= nr_pages
;
390 async_extent
->compress_type
= compress_type
;
391 list_add_tail(&async_extent
->list
, &cow
->extents
);
395 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
397 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
400 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
403 if (BTRFS_I(inode
)->defrag_compress
)
405 /* bad compression ratios */
406 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
408 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
409 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
410 BTRFS_I(inode
)->prop_compress
)
411 return btrfs_compress_heuristic(inode
, start
, end
);
415 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
416 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes
< small_write
&&
420 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
421 btrfs_add_inode_defrag(NULL
, inode
);
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
438 * are written in the same order that the flusher thread sent them
441 static noinline
void compress_file_range(struct inode
*inode
,
442 struct page
*locked_page
,
444 struct async_cow
*async_cow
,
447 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
448 u64 blocksize
= fs_info
->sectorsize
;
450 u64 isize
= i_size_read(inode
);
452 struct page
**pages
= NULL
;
453 unsigned long nr_pages
;
454 unsigned long total_compressed
= 0;
455 unsigned long total_in
= 0;
458 int compress_type
= fs_info
->compress_type
;
461 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
464 actual_end
= min_t(u64
, isize
, end
+ 1);
467 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
469 nr_pages
= min_t(unsigned long, nr_pages
,
470 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
473 * we don't want to send crud past the end of i_size through
474 * compression, that's just a waste of CPU time. So, if the
475 * end of the file is before the start of our current
476 * requested range of bytes, we bail out to the uncompressed
477 * cleanup code that can deal with all of this.
479 * It isn't really the fastest way to fix things, but this is a
480 * very uncommon corner.
482 if (actual_end
<= start
)
483 goto cleanup_and_bail_uncompressed
;
485 total_compressed
= actual_end
- start
;
488 * skip compression for a small file range(<=blocksize) that
489 * isn't an inline extent, since it doesn't save disk space at all.
491 if (total_compressed
<= blocksize
&&
492 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
493 goto cleanup_and_bail_uncompressed
;
495 total_compressed
= min_t(unsigned long, total_compressed
,
496 BTRFS_MAX_UNCOMPRESSED
);
501 * we do compression for mount -o compress and when the
502 * inode has not been flagged as nocompress. This flag can
503 * change at any time if we discover bad compression ratios.
505 if (inode_need_compress(inode
, start
, end
)) {
507 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
509 /* just bail out to the uncompressed code */
513 if (BTRFS_I(inode
)->defrag_compress
)
514 compress_type
= BTRFS_I(inode
)->defrag_compress
;
515 else if (BTRFS_I(inode
)->prop_compress
)
516 compress_type
= BTRFS_I(inode
)->prop_compress
;
519 * we need to call clear_page_dirty_for_io on each
520 * page in the range. Otherwise applications with the file
521 * mmap'd can wander in and change the page contents while
522 * we are compressing them.
524 * If the compression fails for any reason, we set the pages
525 * dirty again later on.
527 * Note that the remaining part is redirtied, the start pointer
528 * has moved, the end is the original one.
531 extent_range_clear_dirty_for_io(inode
, start
, end
);
535 /* Compression level is applied here and only here */
536 ret
= btrfs_compress_pages(
537 compress_type
| (fs_info
->compress_level
<< 4),
538 inode
->i_mapping
, start
,
545 unsigned long offset
= total_compressed
&
547 struct page
*page
= pages
[nr_pages
- 1];
550 /* zero the tail end of the last page, we might be
551 * sending it down to disk
554 kaddr
= kmap_atomic(page
);
555 memset(kaddr
+ offset
, 0,
557 kunmap_atomic(kaddr
);
564 /* lets try to make an inline extent */
565 if (ret
|| total_in
< actual_end
) {
566 /* we didn't compress the entire range, try
567 * to make an uncompressed inline extent.
569 ret
= cow_file_range_inline(inode
, start
, end
, 0,
570 BTRFS_COMPRESS_NONE
, NULL
);
572 /* try making a compressed inline extent */
573 ret
= cow_file_range_inline(inode
, start
, end
,
575 compress_type
, pages
);
578 unsigned long clear_flags
= EXTENT_DELALLOC
|
579 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
580 EXTENT_DO_ACCOUNTING
;
581 unsigned long page_error_op
;
583 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
586 * inline extent creation worked or returned error,
587 * we don't need to create any more async work items.
588 * Unlock and free up our temp pages.
590 * We use DO_ACCOUNTING here because we need the
591 * delalloc_release_metadata to be done _after_ we drop
592 * our outstanding extent for clearing delalloc for this
595 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
608 * we aren't doing an inline extent round the compressed size
609 * up to a block size boundary so the allocator does sane
612 total_compressed
= ALIGN(total_compressed
, blocksize
);
615 * one last check to make sure the compression is really a
616 * win, compare the page count read with the blocks on disk,
617 * compression must free at least one sector size
619 total_in
= ALIGN(total_in
, PAGE_SIZE
);
620 if (total_compressed
+ blocksize
<= total_in
) {
624 * The async work queues will take care of doing actual
625 * allocation on disk for these compressed pages, and
626 * will submit them to the elevator.
628 add_async_extent(async_cow
, start
, total_in
,
629 total_compressed
, pages
, nr_pages
,
632 if (start
+ total_in
< end
) {
643 * the compression code ran but failed to make things smaller,
644 * free any pages it allocated and our page pointer array
646 for (i
= 0; i
< nr_pages
; i
++) {
647 WARN_ON(pages
[i
]->mapping
);
652 total_compressed
= 0;
655 /* flag the file so we don't compress in the future */
656 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
657 !(BTRFS_I(inode
)->prop_compress
)) {
658 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
661 cleanup_and_bail_uncompressed
:
663 * No compression, but we still need to write the pages in the file
664 * we've been given so far. redirty the locked page if it corresponds
665 * to our extent and set things up for the async work queue to run
666 * cow_file_range to do the normal delalloc dance.
668 if (page_offset(locked_page
) >= start
&&
669 page_offset(locked_page
) <= end
)
670 __set_page_dirty_nobuffers(locked_page
);
671 /* unlocked later on in the async handlers */
674 extent_range_redirty_for_io(inode
, start
, end
);
675 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
676 BTRFS_COMPRESS_NONE
);
682 for (i
= 0; i
< nr_pages
; i
++) {
683 WARN_ON(pages
[i
]->mapping
);
689 static void free_async_extent_pages(struct async_extent
*async_extent
)
693 if (!async_extent
->pages
)
696 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
697 WARN_ON(async_extent
->pages
[i
]->mapping
);
698 put_page(async_extent
->pages
[i
]);
700 kfree(async_extent
->pages
);
701 async_extent
->nr_pages
= 0;
702 async_extent
->pages
= NULL
;
706 * phase two of compressed writeback. This is the ordered portion
707 * of the code, which only gets called in the order the work was
708 * queued. We walk all the async extents created by compress_file_range
709 * and send them down to the disk.
711 static noinline
void submit_compressed_extents(struct inode
*inode
,
712 struct async_cow
*async_cow
)
714 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
715 struct async_extent
*async_extent
;
717 struct btrfs_key ins
;
718 struct extent_map
*em
;
719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
720 struct extent_io_tree
*io_tree
;
724 while (!list_empty(&async_cow
->extents
)) {
725 async_extent
= list_entry(async_cow
->extents
.next
,
726 struct async_extent
, list
);
727 list_del(&async_extent
->list
);
729 io_tree
= &BTRFS_I(inode
)->io_tree
;
732 /* did the compression code fall back to uncompressed IO? */
733 if (!async_extent
->pages
) {
734 int page_started
= 0;
735 unsigned long nr_written
= 0;
737 lock_extent(io_tree
, async_extent
->start
,
738 async_extent
->start
+
739 async_extent
->ram_size
- 1);
741 /* allocate blocks */
742 ret
= cow_file_range(inode
, async_cow
->locked_page
,
744 async_extent
->start
+
745 async_extent
->ram_size
- 1,
746 async_extent
->start
+
747 async_extent
->ram_size
- 1,
748 &page_started
, &nr_written
, 0,
754 * if page_started, cow_file_range inserted an
755 * inline extent and took care of all the unlocking
756 * and IO for us. Otherwise, we need to submit
757 * all those pages down to the drive.
759 if (!page_started
&& !ret
)
760 extent_write_locked_range(inode
,
762 async_extent
->start
+
763 async_extent
->ram_size
- 1,
766 unlock_page(async_cow
->locked_page
);
772 lock_extent(io_tree
, async_extent
->start
,
773 async_extent
->start
+ async_extent
->ram_size
- 1);
775 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
776 async_extent
->compressed_size
,
777 async_extent
->compressed_size
,
778 0, alloc_hint
, &ins
, 1, 1);
780 free_async_extent_pages(async_extent
);
782 if (ret
== -ENOSPC
) {
783 unlock_extent(io_tree
, async_extent
->start
,
784 async_extent
->start
+
785 async_extent
->ram_size
- 1);
788 * we need to redirty the pages if we decide to
789 * fallback to uncompressed IO, otherwise we
790 * will not submit these pages down to lower
793 extent_range_redirty_for_io(inode
,
795 async_extent
->start
+
796 async_extent
->ram_size
- 1);
803 * here we're doing allocation and writeback of the
806 em
= create_io_em(inode
, async_extent
->start
,
807 async_extent
->ram_size
, /* len */
808 async_extent
->start
, /* orig_start */
809 ins
.objectid
, /* block_start */
810 ins
.offset
, /* block_len */
811 ins
.offset
, /* orig_block_len */
812 async_extent
->ram_size
, /* ram_bytes */
813 async_extent
->compress_type
,
814 BTRFS_ORDERED_COMPRESSED
);
816 /* ret value is not necessary due to void function */
817 goto out_free_reserve
;
820 ret
= btrfs_add_ordered_extent_compress(inode
,
823 async_extent
->ram_size
,
825 BTRFS_ORDERED_COMPRESSED
,
826 async_extent
->compress_type
);
828 btrfs_drop_extent_cache(BTRFS_I(inode
),
830 async_extent
->start
+
831 async_extent
->ram_size
- 1, 0);
832 goto out_free_reserve
;
834 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
837 * clear dirty, set writeback and unlock the pages.
839 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
840 async_extent
->start
+
841 async_extent
->ram_size
- 1,
842 async_extent
->start
+
843 async_extent
->ram_size
- 1,
844 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
845 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
847 if (btrfs_submit_compressed_write(inode
,
849 async_extent
->ram_size
,
851 ins
.offset
, async_extent
->pages
,
852 async_extent
->nr_pages
,
853 async_cow
->write_flags
)) {
854 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
855 struct page
*p
= async_extent
->pages
[0];
856 const u64 start
= async_extent
->start
;
857 const u64 end
= start
+ async_extent
->ram_size
- 1;
859 p
->mapping
= inode
->i_mapping
;
860 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
863 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
867 free_async_extent_pages(async_extent
);
869 alloc_hint
= ins
.objectid
+ ins
.offset
;
875 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
876 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
878 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
879 async_extent
->start
+
880 async_extent
->ram_size
- 1,
881 async_extent
->start
+
882 async_extent
->ram_size
- 1,
883 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
884 EXTENT_DELALLOC_NEW
|
885 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
886 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
887 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
889 free_async_extent_pages(async_extent
);
894 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
897 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
898 struct extent_map
*em
;
901 read_lock(&em_tree
->lock
);
902 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
905 * if block start isn't an actual block number then find the
906 * first block in this inode and use that as a hint. If that
907 * block is also bogus then just don't worry about it.
909 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
911 em
= search_extent_mapping(em_tree
, 0, 0);
912 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
913 alloc_hint
= em
->block_start
;
917 alloc_hint
= em
->block_start
;
921 read_unlock(&em_tree
->lock
);
927 * when extent_io.c finds a delayed allocation range in the file,
928 * the call backs end up in this code. The basic idea is to
929 * allocate extents on disk for the range, and create ordered data structs
930 * in ram to track those extents.
932 * locked_page is the page that writepage had locked already. We use
933 * it to make sure we don't do extra locks or unlocks.
935 * *page_started is set to one if we unlock locked_page and do everything
936 * required to start IO on it. It may be clean and already done with
939 static noinline
int cow_file_range(struct inode
*inode
,
940 struct page
*locked_page
,
941 u64 start
, u64 end
, u64 delalloc_end
,
942 int *page_started
, unsigned long *nr_written
,
943 int unlock
, struct btrfs_dedupe_hash
*hash
)
945 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
949 unsigned long ram_size
;
950 u64 cur_alloc_size
= 0;
951 u64 blocksize
= fs_info
->sectorsize
;
952 struct btrfs_key ins
;
953 struct extent_map
*em
;
955 unsigned long page_ops
;
956 bool extent_reserved
= false;
959 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
965 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
966 num_bytes
= max(blocksize
, num_bytes
);
967 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
969 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
972 /* lets try to make an inline extent */
973 ret
= cow_file_range_inline(inode
, start
, end
, 0,
974 BTRFS_COMPRESS_NONE
, NULL
);
977 * We use DO_ACCOUNTING here because we need the
978 * delalloc_release_metadata to be run _after_ we drop
979 * our outstanding extent for clearing delalloc for this
982 extent_clear_unlock_delalloc(inode
, start
, end
,
984 EXTENT_LOCKED
| EXTENT_DELALLOC
|
985 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
986 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
987 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
989 *nr_written
= *nr_written
+
990 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
993 } else if (ret
< 0) {
998 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
999 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1000 start
+ num_bytes
- 1, 0);
1002 while (num_bytes
> 0) {
1003 cur_alloc_size
= num_bytes
;
1004 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1005 fs_info
->sectorsize
, 0, alloc_hint
,
1009 cur_alloc_size
= ins
.offset
;
1010 extent_reserved
= true;
1012 ram_size
= ins
.offset
;
1013 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1014 start
, /* orig_start */
1015 ins
.objectid
, /* block_start */
1016 ins
.offset
, /* block_len */
1017 ins
.offset
, /* orig_block_len */
1018 ram_size
, /* ram_bytes */
1019 BTRFS_COMPRESS_NONE
, /* compress_type */
1020 BTRFS_ORDERED_REGULAR
/* type */);
1025 free_extent_map(em
);
1027 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1028 ram_size
, cur_alloc_size
, 0);
1030 goto out_drop_extent_cache
;
1032 if (root
->root_key
.objectid
==
1033 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1034 ret
= btrfs_reloc_clone_csums(inode
, start
,
1037 * Only drop cache here, and process as normal.
1039 * We must not allow extent_clear_unlock_delalloc()
1040 * at out_unlock label to free meta of this ordered
1041 * extent, as its meta should be freed by
1042 * btrfs_finish_ordered_io().
1044 * So we must continue until @start is increased to
1045 * skip current ordered extent.
1048 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1049 start
+ ram_size
- 1, 0);
1052 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1054 /* we're not doing compressed IO, don't unlock the first
1055 * page (which the caller expects to stay locked), don't
1056 * clear any dirty bits and don't set any writeback bits
1058 * Do set the Private2 bit so we know this page was properly
1059 * setup for writepage
1061 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1062 page_ops
|= PAGE_SET_PRIVATE2
;
1064 extent_clear_unlock_delalloc(inode
, start
,
1065 start
+ ram_size
- 1,
1066 delalloc_end
, locked_page
,
1067 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1069 if (num_bytes
< cur_alloc_size
)
1072 num_bytes
-= cur_alloc_size
;
1073 alloc_hint
= ins
.objectid
+ ins
.offset
;
1074 start
+= cur_alloc_size
;
1075 extent_reserved
= false;
1078 * btrfs_reloc_clone_csums() error, since start is increased
1079 * extent_clear_unlock_delalloc() at out_unlock label won't
1080 * free metadata of current ordered extent, we're OK to exit.
1088 out_drop_extent_cache
:
1089 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1091 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1092 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1094 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1095 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1096 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1099 * If we reserved an extent for our delalloc range (or a subrange) and
1100 * failed to create the respective ordered extent, then it means that
1101 * when we reserved the extent we decremented the extent's size from
1102 * the data space_info's bytes_may_use counter and incremented the
1103 * space_info's bytes_reserved counter by the same amount. We must make
1104 * sure extent_clear_unlock_delalloc() does not try to decrement again
1105 * the data space_info's bytes_may_use counter, therefore we do not pass
1106 * it the flag EXTENT_CLEAR_DATA_RESV.
1108 if (extent_reserved
) {
1109 extent_clear_unlock_delalloc(inode
, start
,
1110 start
+ cur_alloc_size
,
1111 start
+ cur_alloc_size
,
1115 start
+= cur_alloc_size
;
1119 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1121 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1127 * work queue call back to started compression on a file and pages
1129 static noinline
void async_cow_start(struct btrfs_work
*work
)
1131 struct async_cow
*async_cow
;
1133 async_cow
= container_of(work
, struct async_cow
, work
);
1135 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1136 async_cow
->start
, async_cow
->end
, async_cow
,
1138 if (num_added
== 0) {
1139 btrfs_add_delayed_iput(async_cow
->inode
);
1140 async_cow
->inode
= NULL
;
1145 * work queue call back to submit previously compressed pages
1147 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1149 struct btrfs_fs_info
*fs_info
;
1150 struct async_cow
*async_cow
;
1151 struct btrfs_root
*root
;
1152 unsigned long nr_pages
;
1154 async_cow
= container_of(work
, struct async_cow
, work
);
1156 root
= async_cow
->root
;
1157 fs_info
= root
->fs_info
;
1158 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1161 /* atomic_sub_return implies a barrier */
1162 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1164 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1166 if (async_cow
->inode
)
1167 submit_compressed_extents(async_cow
->inode
, async_cow
);
1170 static noinline
void async_cow_free(struct btrfs_work
*work
)
1172 struct async_cow
*async_cow
;
1173 async_cow
= container_of(work
, struct async_cow
, work
);
1174 if (async_cow
->inode
)
1175 btrfs_add_delayed_iput(async_cow
->inode
);
1179 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1180 u64 start
, u64 end
, int *page_started
,
1181 unsigned long *nr_written
,
1182 unsigned int write_flags
)
1184 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1185 struct async_cow
*async_cow
;
1186 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1187 unsigned long nr_pages
;
1190 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1192 while (start
< end
) {
1193 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1194 BUG_ON(!async_cow
); /* -ENOMEM */
1195 async_cow
->inode
= igrab(inode
);
1196 async_cow
->root
= root
;
1197 async_cow
->locked_page
= locked_page
;
1198 async_cow
->start
= start
;
1199 async_cow
->write_flags
= write_flags
;
1201 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1202 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1205 cur_end
= min(end
, start
+ SZ_512K
- 1);
1207 async_cow
->end
= cur_end
;
1208 INIT_LIST_HEAD(&async_cow
->extents
);
1210 btrfs_init_work(&async_cow
->work
,
1211 btrfs_delalloc_helper
,
1212 async_cow_start
, async_cow_submit
,
1215 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1217 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1219 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1221 *nr_written
+= nr_pages
;
1222 start
= cur_end
+ 1;
1228 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1229 u64 bytenr
, u64 num_bytes
)
1232 struct btrfs_ordered_sum
*sums
;
1235 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1236 bytenr
+ num_bytes
- 1, &list
, 0);
1237 if (ret
== 0 && list_empty(&list
))
1240 while (!list_empty(&list
)) {
1241 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1242 list_del(&sums
->list
);
1251 * when nowcow writeback call back. This checks for snapshots or COW copies
1252 * of the extents that exist in the file, and COWs the file as required.
1254 * If no cow copies or snapshots exist, we write directly to the existing
1257 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1258 struct page
*locked_page
,
1259 u64 start
, u64 end
, int *page_started
, int force
,
1260 unsigned long *nr_written
)
1262 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1263 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1264 struct extent_buffer
*leaf
;
1265 struct btrfs_path
*path
;
1266 struct btrfs_file_extent_item
*fi
;
1267 struct btrfs_key found_key
;
1268 struct extent_map
*em
;
1283 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1285 path
= btrfs_alloc_path();
1287 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1289 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1290 EXTENT_DO_ACCOUNTING
|
1291 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1293 PAGE_SET_WRITEBACK
|
1294 PAGE_END_WRITEBACK
);
1298 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1300 cow_start
= (u64
)-1;
1303 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1307 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1308 leaf
= path
->nodes
[0];
1309 btrfs_item_key_to_cpu(leaf
, &found_key
,
1310 path
->slots
[0] - 1);
1311 if (found_key
.objectid
== ino
&&
1312 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1317 leaf
= path
->nodes
[0];
1318 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1319 ret
= btrfs_next_leaf(root
, path
);
1321 if (cow_start
!= (u64
)-1)
1322 cur_offset
= cow_start
;
1327 leaf
= path
->nodes
[0];
1333 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1335 if (found_key
.objectid
> ino
)
1337 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1338 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1342 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1343 found_key
.offset
> end
)
1346 if (found_key
.offset
> cur_offset
) {
1347 extent_end
= found_key
.offset
;
1352 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1353 struct btrfs_file_extent_item
);
1354 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1356 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1357 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1358 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1359 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1360 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1361 extent_end
= found_key
.offset
+
1362 btrfs_file_extent_num_bytes(leaf
, fi
);
1364 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1365 if (extent_end
<= start
) {
1369 if (disk_bytenr
== 0)
1371 if (btrfs_file_extent_compression(leaf
, fi
) ||
1372 btrfs_file_extent_encryption(leaf
, fi
) ||
1373 btrfs_file_extent_other_encoding(leaf
, fi
))
1376 * Do the same check as in btrfs_cross_ref_exist but
1377 * without the unnecessary search.
1379 if (btrfs_file_extent_generation(leaf
, fi
) <=
1380 btrfs_root_last_snapshot(&root
->root_item
))
1382 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1384 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1386 ret
= btrfs_cross_ref_exist(root
, ino
,
1388 extent_offset
, disk_bytenr
);
1391 * ret could be -EIO if the above fails to read
1395 if (cow_start
!= (u64
)-1)
1396 cur_offset
= cow_start
;
1400 WARN_ON_ONCE(nolock
);
1403 disk_bytenr
+= extent_offset
;
1404 disk_bytenr
+= cur_offset
- found_key
.offset
;
1405 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1407 * if there are pending snapshots for this root,
1408 * we fall into common COW way.
1411 err
= btrfs_start_write_no_snapshotting(root
);
1416 * force cow if csum exists in the range.
1417 * this ensure that csum for a given extent are
1418 * either valid or do not exist.
1420 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1424 btrfs_end_write_no_snapshotting(root
);
1427 * ret could be -EIO if the above fails to read
1431 if (cow_start
!= (u64
)-1)
1432 cur_offset
= cow_start
;
1435 WARN_ON_ONCE(nolock
);
1438 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
)) {
1440 btrfs_end_write_no_snapshotting(root
);
1444 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1445 extent_end
= found_key
.offset
+
1446 btrfs_file_extent_inline_len(leaf
,
1447 path
->slots
[0], fi
);
1448 extent_end
= ALIGN(extent_end
,
1449 fs_info
->sectorsize
);
1454 if (extent_end
<= start
) {
1456 if (!nolock
&& nocow
)
1457 btrfs_end_write_no_snapshotting(root
);
1459 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1463 if (cow_start
== (u64
)-1)
1464 cow_start
= cur_offset
;
1465 cur_offset
= extent_end
;
1466 if (cur_offset
> end
)
1472 btrfs_release_path(path
);
1473 if (cow_start
!= (u64
)-1) {
1474 ret
= cow_file_range(inode
, locked_page
,
1475 cow_start
, found_key
.offset
- 1,
1476 end
, page_started
, nr_written
, 1,
1479 if (!nolock
&& nocow
)
1480 btrfs_end_write_no_snapshotting(root
);
1482 btrfs_dec_nocow_writers(fs_info
,
1486 cow_start
= (u64
)-1;
1489 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1490 u64 orig_start
= found_key
.offset
- extent_offset
;
1492 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1494 disk_bytenr
, /* block_start */
1495 num_bytes
, /* block_len */
1496 disk_num_bytes
, /* orig_block_len */
1497 ram_bytes
, BTRFS_COMPRESS_NONE
,
1498 BTRFS_ORDERED_PREALLOC
);
1500 if (!nolock
&& nocow
)
1501 btrfs_end_write_no_snapshotting(root
);
1503 btrfs_dec_nocow_writers(fs_info
,
1508 free_extent_map(em
);
1511 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1512 type
= BTRFS_ORDERED_PREALLOC
;
1514 type
= BTRFS_ORDERED_NOCOW
;
1517 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1518 num_bytes
, num_bytes
, type
);
1520 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1521 BUG_ON(ret
); /* -ENOMEM */
1523 if (root
->root_key
.objectid
==
1524 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1526 * Error handled later, as we must prevent
1527 * extent_clear_unlock_delalloc() in error handler
1528 * from freeing metadata of created ordered extent.
1530 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1533 extent_clear_unlock_delalloc(inode
, cur_offset
,
1534 cur_offset
+ num_bytes
- 1, end
,
1535 locked_page
, EXTENT_LOCKED
|
1537 EXTENT_CLEAR_DATA_RESV
,
1538 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1540 if (!nolock
&& nocow
)
1541 btrfs_end_write_no_snapshotting(root
);
1542 cur_offset
= extent_end
;
1545 * btrfs_reloc_clone_csums() error, now we're OK to call error
1546 * handler, as metadata for created ordered extent will only
1547 * be freed by btrfs_finish_ordered_io().
1551 if (cur_offset
> end
)
1554 btrfs_release_path(path
);
1556 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1557 cow_start
= cur_offset
;
1561 if (cow_start
!= (u64
)-1) {
1562 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1563 page_started
, nr_written
, 1, NULL
);
1569 if (ret
&& cur_offset
< end
)
1570 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1571 locked_page
, EXTENT_LOCKED
|
1572 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1573 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1575 PAGE_SET_WRITEBACK
|
1576 PAGE_END_WRITEBACK
);
1577 btrfs_free_path(path
);
1581 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1584 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1585 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1589 * @defrag_bytes is a hint value, no spinlock held here,
1590 * if is not zero, it means the file is defragging.
1591 * Force cow if given extent needs to be defragged.
1593 if (BTRFS_I(inode
)->defrag_bytes
&&
1594 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1595 EXTENT_DEFRAG
, 0, NULL
))
1602 * extent_io.c call back to do delayed allocation processing
1604 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1605 u64 start
, u64 end
, int *page_started
,
1606 unsigned long *nr_written
,
1607 struct writeback_control
*wbc
)
1609 struct inode
*inode
= private_data
;
1611 int force_cow
= need_force_cow(inode
, start
, end
);
1612 unsigned int write_flags
= wbc_to_write_flags(wbc
);
1614 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1615 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1616 page_started
, 1, nr_written
);
1617 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1618 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1619 page_started
, 0, nr_written
);
1620 } else if (!inode_need_compress(inode
, start
, end
)) {
1621 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1622 page_started
, nr_written
, 1, NULL
);
1624 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1625 &BTRFS_I(inode
)->runtime_flags
);
1626 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1627 page_started
, nr_written
,
1631 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1635 static void btrfs_split_extent_hook(void *private_data
,
1636 struct extent_state
*orig
, u64 split
)
1638 struct inode
*inode
= private_data
;
1641 /* not delalloc, ignore it */
1642 if (!(orig
->state
& EXTENT_DELALLOC
))
1645 size
= orig
->end
- orig
->start
+ 1;
1646 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1651 * See the explanation in btrfs_merge_extent_hook, the same
1652 * applies here, just in reverse.
1654 new_size
= orig
->end
- split
+ 1;
1655 num_extents
= count_max_extents(new_size
);
1656 new_size
= split
- orig
->start
;
1657 num_extents
+= count_max_extents(new_size
);
1658 if (count_max_extents(size
) >= num_extents
)
1662 spin_lock(&BTRFS_I(inode
)->lock
);
1663 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1664 spin_unlock(&BTRFS_I(inode
)->lock
);
1668 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1669 * extents so we can keep track of new extents that are just merged onto old
1670 * extents, such as when we are doing sequential writes, so we can properly
1671 * account for the metadata space we'll need.
1673 static void btrfs_merge_extent_hook(void *private_data
,
1674 struct extent_state
*new,
1675 struct extent_state
*other
)
1677 struct inode
*inode
= private_data
;
1678 u64 new_size
, old_size
;
1681 /* not delalloc, ignore it */
1682 if (!(other
->state
& EXTENT_DELALLOC
))
1685 if (new->start
> other
->start
)
1686 new_size
= new->end
- other
->start
+ 1;
1688 new_size
= other
->end
- new->start
+ 1;
1690 /* we're not bigger than the max, unreserve the space and go */
1691 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1692 spin_lock(&BTRFS_I(inode
)->lock
);
1693 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1694 spin_unlock(&BTRFS_I(inode
)->lock
);
1699 * We have to add up either side to figure out how many extents were
1700 * accounted for before we merged into one big extent. If the number of
1701 * extents we accounted for is <= the amount we need for the new range
1702 * then we can return, otherwise drop. Think of it like this
1706 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1707 * need 2 outstanding extents, on one side we have 1 and the other side
1708 * we have 1 so they are == and we can return. But in this case
1710 * [MAX_SIZE+4k][MAX_SIZE+4k]
1712 * Each range on their own accounts for 2 extents, but merged together
1713 * they are only 3 extents worth of accounting, so we need to drop in
1716 old_size
= other
->end
- other
->start
+ 1;
1717 num_extents
= count_max_extents(old_size
);
1718 old_size
= new->end
- new->start
+ 1;
1719 num_extents
+= count_max_extents(old_size
);
1720 if (count_max_extents(new_size
) >= num_extents
)
1723 spin_lock(&BTRFS_I(inode
)->lock
);
1724 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1725 spin_unlock(&BTRFS_I(inode
)->lock
);
1728 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1729 struct inode
*inode
)
1731 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1733 spin_lock(&root
->delalloc_lock
);
1734 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1735 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1736 &root
->delalloc_inodes
);
1737 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1738 &BTRFS_I(inode
)->runtime_flags
);
1739 root
->nr_delalloc_inodes
++;
1740 if (root
->nr_delalloc_inodes
== 1) {
1741 spin_lock(&fs_info
->delalloc_root_lock
);
1742 BUG_ON(!list_empty(&root
->delalloc_root
));
1743 list_add_tail(&root
->delalloc_root
,
1744 &fs_info
->delalloc_roots
);
1745 spin_unlock(&fs_info
->delalloc_root_lock
);
1748 spin_unlock(&root
->delalloc_lock
);
1752 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1753 struct btrfs_inode
*inode
)
1755 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1757 if (!list_empty(&inode
->delalloc_inodes
)) {
1758 list_del_init(&inode
->delalloc_inodes
);
1759 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1760 &inode
->runtime_flags
);
1761 root
->nr_delalloc_inodes
--;
1762 if (!root
->nr_delalloc_inodes
) {
1763 ASSERT(list_empty(&root
->delalloc_inodes
));
1764 spin_lock(&fs_info
->delalloc_root_lock
);
1765 BUG_ON(list_empty(&root
->delalloc_root
));
1766 list_del_init(&root
->delalloc_root
);
1767 spin_unlock(&fs_info
->delalloc_root_lock
);
1772 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1773 struct btrfs_inode
*inode
)
1775 spin_lock(&root
->delalloc_lock
);
1776 __btrfs_del_delalloc_inode(root
, inode
);
1777 spin_unlock(&root
->delalloc_lock
);
1781 * extent_io.c set_bit_hook, used to track delayed allocation
1782 * bytes in this file, and to maintain the list of inodes that
1783 * have pending delalloc work to be done.
1785 static void btrfs_set_bit_hook(void *private_data
,
1786 struct extent_state
*state
, unsigned *bits
)
1788 struct inode
*inode
= private_data
;
1790 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1792 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1795 * set_bit and clear bit hooks normally require _irqsave/restore
1796 * but in this case, we are only testing for the DELALLOC
1797 * bit, which is only set or cleared with irqs on
1799 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1800 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1801 u64 len
= state
->end
+ 1 - state
->start
;
1802 u32 num_extents
= count_max_extents(len
);
1803 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1805 spin_lock(&BTRFS_I(inode
)->lock
);
1806 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1807 spin_unlock(&BTRFS_I(inode
)->lock
);
1809 /* For sanity tests */
1810 if (btrfs_is_testing(fs_info
))
1813 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1814 fs_info
->delalloc_batch
);
1815 spin_lock(&BTRFS_I(inode
)->lock
);
1816 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1817 if (*bits
& EXTENT_DEFRAG
)
1818 BTRFS_I(inode
)->defrag_bytes
+= len
;
1819 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1820 &BTRFS_I(inode
)->runtime_flags
))
1821 btrfs_add_delalloc_inodes(root
, inode
);
1822 spin_unlock(&BTRFS_I(inode
)->lock
);
1825 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1826 (*bits
& EXTENT_DELALLOC_NEW
)) {
1827 spin_lock(&BTRFS_I(inode
)->lock
);
1828 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1830 spin_unlock(&BTRFS_I(inode
)->lock
);
1835 * extent_io.c clear_bit_hook, see set_bit_hook for why
1837 static void btrfs_clear_bit_hook(void *private_data
,
1838 struct extent_state
*state
,
1841 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1842 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1843 u64 len
= state
->end
+ 1 - state
->start
;
1844 u32 num_extents
= count_max_extents(len
);
1846 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1847 spin_lock(&inode
->lock
);
1848 inode
->defrag_bytes
-= len
;
1849 spin_unlock(&inode
->lock
);
1853 * set_bit and clear bit hooks normally require _irqsave/restore
1854 * but in this case, we are only testing for the DELALLOC
1855 * bit, which is only set or cleared with irqs on
1857 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1858 struct btrfs_root
*root
= inode
->root
;
1859 bool do_list
= !btrfs_is_free_space_inode(inode
);
1861 spin_lock(&inode
->lock
);
1862 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1863 spin_unlock(&inode
->lock
);
1866 * We don't reserve metadata space for space cache inodes so we
1867 * don't need to call dellalloc_release_metadata if there is an
1870 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1871 root
!= fs_info
->tree_root
)
1872 btrfs_delalloc_release_metadata(inode
, len
, false);
1874 /* For sanity tests. */
1875 if (btrfs_is_testing(fs_info
))
1878 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1879 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1880 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1881 btrfs_free_reserved_data_space_noquota(
1885 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1886 fs_info
->delalloc_batch
);
1887 spin_lock(&inode
->lock
);
1888 inode
->delalloc_bytes
-= len
;
1889 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1890 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1891 &inode
->runtime_flags
))
1892 btrfs_del_delalloc_inode(root
, inode
);
1893 spin_unlock(&inode
->lock
);
1896 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1897 (*bits
& EXTENT_DELALLOC_NEW
)) {
1898 spin_lock(&inode
->lock
);
1899 ASSERT(inode
->new_delalloc_bytes
>= len
);
1900 inode
->new_delalloc_bytes
-= len
;
1901 spin_unlock(&inode
->lock
);
1906 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1907 * we don't create bios that span stripes or chunks
1909 * return 1 if page cannot be merged to bio
1910 * return 0 if page can be merged to bio
1911 * return error otherwise
1913 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1914 size_t size
, struct bio
*bio
,
1915 unsigned long bio_flags
)
1917 struct inode
*inode
= page
->mapping
->host
;
1918 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1919 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1924 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1927 length
= bio
->bi_iter
.bi_size
;
1928 map_length
= length
;
1929 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1933 if (map_length
< length
+ size
)
1939 * in order to insert checksums into the metadata in large chunks,
1940 * we wait until bio submission time. All the pages in the bio are
1941 * checksummed and sums are attached onto the ordered extent record.
1943 * At IO completion time the cums attached on the ordered extent record
1944 * are inserted into the btree
1946 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1949 struct inode
*inode
= private_data
;
1950 blk_status_t ret
= 0;
1952 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1953 BUG_ON(ret
); /* -ENOMEM */
1958 * in order to insert checksums into the metadata in large chunks,
1959 * we wait until bio submission time. All the pages in the bio are
1960 * checksummed and sums are attached onto the ordered extent record.
1962 * At IO completion time the cums attached on the ordered extent record
1963 * are inserted into the btree
1965 static blk_status_t
btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1968 struct inode
*inode
= private_data
;
1969 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1972 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1974 bio
->bi_status
= ret
;
1981 * extent_io.c submission hook. This does the right thing for csum calculation
1982 * on write, or reading the csums from the tree before a read.
1984 * Rules about async/sync submit,
1985 * a) read: sync submit
1987 * b) write without checksum: sync submit
1989 * c) write with checksum:
1990 * c-1) if bio is issued by fsync: sync submit
1991 * (sync_writers != 0)
1993 * c-2) if root is reloc root: sync submit
1994 * (only in case of buffered IO)
1996 * c-3) otherwise: async submit
1998 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1999 int mirror_num
, unsigned long bio_flags
,
2002 struct inode
*inode
= private_data
;
2003 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2004 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2005 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
2006 blk_status_t ret
= 0;
2008 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
2010 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
2012 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2013 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
2015 if (bio_op(bio
) != REQ_OP_WRITE
) {
2016 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
2020 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
2021 ret
= btrfs_submit_compressed_read(inode
, bio
,
2025 } else if (!skip_sum
) {
2026 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
2031 } else if (async
&& !skip_sum
) {
2032 /* csum items have already been cloned */
2033 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2035 /* we're doing a write, do the async checksumming */
2036 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2038 btrfs_submit_bio_start
,
2039 btrfs_submit_bio_done
);
2041 } else if (!skip_sum
) {
2042 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2048 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
2052 bio
->bi_status
= ret
;
2059 * given a list of ordered sums record them in the inode. This happens
2060 * at IO completion time based on sums calculated at bio submission time.
2062 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2063 struct inode
*inode
, struct list_head
*list
)
2065 struct btrfs_ordered_sum
*sum
;
2068 list_for_each_entry(sum
, list
, list
) {
2069 trans
->adding_csums
= true;
2070 ret
= btrfs_csum_file_blocks(trans
,
2071 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2072 trans
->adding_csums
= false;
2079 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2080 unsigned int extra_bits
,
2081 struct extent_state
**cached_state
, int dedupe
)
2083 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2084 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2085 extra_bits
, cached_state
);
2088 /* see btrfs_writepage_start_hook for details on why this is required */
2089 struct btrfs_writepage_fixup
{
2091 struct btrfs_work work
;
2094 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2096 struct btrfs_writepage_fixup
*fixup
;
2097 struct btrfs_ordered_extent
*ordered
;
2098 struct extent_state
*cached_state
= NULL
;
2099 struct extent_changeset
*data_reserved
= NULL
;
2101 struct inode
*inode
;
2106 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2110 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2111 ClearPageChecked(page
);
2115 inode
= page
->mapping
->host
;
2116 page_start
= page_offset(page
);
2117 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2119 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2122 /* already ordered? We're done */
2123 if (PagePrivate2(page
))
2126 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2129 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2130 page_end
, &cached_state
);
2132 btrfs_start_ordered_extent(inode
, ordered
, 1);
2133 btrfs_put_ordered_extent(ordered
);
2137 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2140 mapping_set_error(page
->mapping
, ret
);
2141 end_extent_writepage(page
, ret
, page_start
, page_end
);
2142 ClearPageChecked(page
);
2146 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2149 mapping_set_error(page
->mapping
, ret
);
2150 end_extent_writepage(page
, ret
, page_start
, page_end
);
2151 ClearPageChecked(page
);
2155 ClearPageChecked(page
);
2156 set_page_dirty(page
);
2157 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, false);
2159 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2165 extent_changeset_free(data_reserved
);
2169 * There are a few paths in the higher layers of the kernel that directly
2170 * set the page dirty bit without asking the filesystem if it is a
2171 * good idea. This causes problems because we want to make sure COW
2172 * properly happens and the data=ordered rules are followed.
2174 * In our case any range that doesn't have the ORDERED bit set
2175 * hasn't been properly setup for IO. We kick off an async process
2176 * to fix it up. The async helper will wait for ordered extents, set
2177 * the delalloc bit and make it safe to write the page.
2179 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2181 struct inode
*inode
= page
->mapping
->host
;
2182 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2183 struct btrfs_writepage_fixup
*fixup
;
2185 /* this page is properly in the ordered list */
2186 if (TestClearPagePrivate2(page
))
2189 if (PageChecked(page
))
2192 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2196 SetPageChecked(page
);
2198 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2199 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2201 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2205 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2206 struct inode
*inode
, u64 file_pos
,
2207 u64 disk_bytenr
, u64 disk_num_bytes
,
2208 u64 num_bytes
, u64 ram_bytes
,
2209 u8 compression
, u8 encryption
,
2210 u16 other_encoding
, int extent_type
)
2212 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2213 struct btrfs_file_extent_item
*fi
;
2214 struct btrfs_path
*path
;
2215 struct extent_buffer
*leaf
;
2216 struct btrfs_key ins
;
2218 int extent_inserted
= 0;
2221 path
= btrfs_alloc_path();
2226 * we may be replacing one extent in the tree with another.
2227 * The new extent is pinned in the extent map, and we don't want
2228 * to drop it from the cache until it is completely in the btree.
2230 * So, tell btrfs_drop_extents to leave this extent in the cache.
2231 * the caller is expected to unpin it and allow it to be merged
2234 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2235 file_pos
+ num_bytes
, NULL
, 0,
2236 1, sizeof(*fi
), &extent_inserted
);
2240 if (!extent_inserted
) {
2241 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2242 ins
.offset
= file_pos
;
2243 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2245 path
->leave_spinning
= 1;
2246 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2251 leaf
= path
->nodes
[0];
2252 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2253 struct btrfs_file_extent_item
);
2254 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2255 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2256 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2257 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2258 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2259 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2260 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2261 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2262 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2263 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2265 btrfs_mark_buffer_dirty(leaf
);
2266 btrfs_release_path(path
);
2268 inode_add_bytes(inode
, num_bytes
);
2270 ins
.objectid
= disk_bytenr
;
2271 ins
.offset
= disk_num_bytes
;
2272 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2275 * Release the reserved range from inode dirty range map, as it is
2276 * already moved into delayed_ref_head
2278 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2282 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2283 btrfs_ino(BTRFS_I(inode
)),
2284 file_pos
, qg_released
, &ins
);
2286 btrfs_free_path(path
);
2291 /* snapshot-aware defrag */
2292 struct sa_defrag_extent_backref
{
2293 struct rb_node node
;
2294 struct old_sa_defrag_extent
*old
;
2303 struct old_sa_defrag_extent
{
2304 struct list_head list
;
2305 struct new_sa_defrag_extent
*new;
2314 struct new_sa_defrag_extent
{
2315 struct rb_root root
;
2316 struct list_head head
;
2317 struct btrfs_path
*path
;
2318 struct inode
*inode
;
2326 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2327 struct sa_defrag_extent_backref
*b2
)
2329 if (b1
->root_id
< b2
->root_id
)
2331 else if (b1
->root_id
> b2
->root_id
)
2334 if (b1
->inum
< b2
->inum
)
2336 else if (b1
->inum
> b2
->inum
)
2339 if (b1
->file_pos
< b2
->file_pos
)
2341 else if (b1
->file_pos
> b2
->file_pos
)
2345 * [------------------------------] ===> (a range of space)
2346 * |<--->| |<---->| =============> (fs/file tree A)
2347 * |<---------------------------->| ===> (fs/file tree B)
2349 * A range of space can refer to two file extents in one tree while
2350 * refer to only one file extent in another tree.
2352 * So we may process a disk offset more than one time(two extents in A)
2353 * and locate at the same extent(one extent in B), then insert two same
2354 * backrefs(both refer to the extent in B).
2359 static void backref_insert(struct rb_root
*root
,
2360 struct sa_defrag_extent_backref
*backref
)
2362 struct rb_node
**p
= &root
->rb_node
;
2363 struct rb_node
*parent
= NULL
;
2364 struct sa_defrag_extent_backref
*entry
;
2369 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2371 ret
= backref_comp(backref
, entry
);
2375 p
= &(*p
)->rb_right
;
2378 rb_link_node(&backref
->node
, parent
, p
);
2379 rb_insert_color(&backref
->node
, root
);
2383 * Note the backref might has changed, and in this case we just return 0.
2385 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2388 struct btrfs_file_extent_item
*extent
;
2389 struct old_sa_defrag_extent
*old
= ctx
;
2390 struct new_sa_defrag_extent
*new = old
->new;
2391 struct btrfs_path
*path
= new->path
;
2392 struct btrfs_key key
;
2393 struct btrfs_root
*root
;
2394 struct sa_defrag_extent_backref
*backref
;
2395 struct extent_buffer
*leaf
;
2396 struct inode
*inode
= new->inode
;
2397 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2403 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2404 inum
== btrfs_ino(BTRFS_I(inode
)))
2407 key
.objectid
= root_id
;
2408 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2409 key
.offset
= (u64
)-1;
2411 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2413 if (PTR_ERR(root
) == -ENOENT
)
2416 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2417 inum
, offset
, root_id
);
2418 return PTR_ERR(root
);
2421 key
.objectid
= inum
;
2422 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2423 if (offset
> (u64
)-1 << 32)
2426 key
.offset
= offset
;
2428 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2429 if (WARN_ON(ret
< 0))
2436 leaf
= path
->nodes
[0];
2437 slot
= path
->slots
[0];
2439 if (slot
>= btrfs_header_nritems(leaf
)) {
2440 ret
= btrfs_next_leaf(root
, path
);
2443 } else if (ret
> 0) {
2452 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2454 if (key
.objectid
> inum
)
2457 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2460 extent
= btrfs_item_ptr(leaf
, slot
,
2461 struct btrfs_file_extent_item
);
2463 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2467 * 'offset' refers to the exact key.offset,
2468 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2469 * (key.offset - extent_offset).
2471 if (key
.offset
!= offset
)
2474 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2475 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2477 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2478 old
->len
|| extent_offset
+ num_bytes
<=
2479 old
->extent_offset
+ old
->offset
)
2484 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2490 backref
->root_id
= root_id
;
2491 backref
->inum
= inum
;
2492 backref
->file_pos
= offset
;
2493 backref
->num_bytes
= num_bytes
;
2494 backref
->extent_offset
= extent_offset
;
2495 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2497 backref_insert(&new->root
, backref
);
2500 btrfs_release_path(path
);
2505 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2506 struct new_sa_defrag_extent
*new)
2508 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2509 struct old_sa_defrag_extent
*old
, *tmp
;
2514 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2515 ret
= iterate_inodes_from_logical(old
->bytenr
+
2516 old
->extent_offset
, fs_info
,
2517 path
, record_one_backref
,
2519 if (ret
< 0 && ret
!= -ENOENT
)
2522 /* no backref to be processed for this extent */
2524 list_del(&old
->list
);
2529 if (list_empty(&new->head
))
2535 static int relink_is_mergable(struct extent_buffer
*leaf
,
2536 struct btrfs_file_extent_item
*fi
,
2537 struct new_sa_defrag_extent
*new)
2539 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2542 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2545 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2548 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2549 btrfs_file_extent_other_encoding(leaf
, fi
))
2556 * Note the backref might has changed, and in this case we just return 0.
2558 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2559 struct sa_defrag_extent_backref
*prev
,
2560 struct sa_defrag_extent_backref
*backref
)
2562 struct btrfs_file_extent_item
*extent
;
2563 struct btrfs_file_extent_item
*item
;
2564 struct btrfs_ordered_extent
*ordered
;
2565 struct btrfs_trans_handle
*trans
;
2566 struct btrfs_root
*root
;
2567 struct btrfs_key key
;
2568 struct extent_buffer
*leaf
;
2569 struct old_sa_defrag_extent
*old
= backref
->old
;
2570 struct new_sa_defrag_extent
*new = old
->new;
2571 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2572 struct inode
*inode
;
2573 struct extent_state
*cached
= NULL
;
2582 if (prev
&& prev
->root_id
== backref
->root_id
&&
2583 prev
->inum
== backref
->inum
&&
2584 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2587 /* step 1: get root */
2588 key
.objectid
= backref
->root_id
;
2589 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2590 key
.offset
= (u64
)-1;
2592 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2594 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2596 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2597 if (PTR_ERR(root
) == -ENOENT
)
2599 return PTR_ERR(root
);
2602 if (btrfs_root_readonly(root
)) {
2603 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2607 /* step 2: get inode */
2608 key
.objectid
= backref
->inum
;
2609 key
.type
= BTRFS_INODE_ITEM_KEY
;
2612 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2613 if (IS_ERR(inode
)) {
2614 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2618 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2620 /* step 3: relink backref */
2621 lock_start
= backref
->file_pos
;
2622 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2623 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2626 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2628 btrfs_put_ordered_extent(ordered
);
2632 trans
= btrfs_join_transaction(root
);
2633 if (IS_ERR(trans
)) {
2634 ret
= PTR_ERR(trans
);
2638 key
.objectid
= backref
->inum
;
2639 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2640 key
.offset
= backref
->file_pos
;
2642 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2645 } else if (ret
> 0) {
2650 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2651 struct btrfs_file_extent_item
);
2653 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2654 backref
->generation
)
2657 btrfs_release_path(path
);
2659 start
= backref
->file_pos
;
2660 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2661 start
+= old
->extent_offset
+ old
->offset
-
2662 backref
->extent_offset
;
2664 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2665 old
->extent_offset
+ old
->offset
+ old
->len
);
2666 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2668 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2673 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2674 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2677 path
->leave_spinning
= 1;
2679 struct btrfs_file_extent_item
*fi
;
2681 struct btrfs_key found_key
;
2683 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2688 leaf
= path
->nodes
[0];
2689 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2691 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2692 struct btrfs_file_extent_item
);
2693 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2695 if (extent_len
+ found_key
.offset
== start
&&
2696 relink_is_mergable(leaf
, fi
, new)) {
2697 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2699 btrfs_mark_buffer_dirty(leaf
);
2700 inode_add_bytes(inode
, len
);
2706 btrfs_release_path(path
);
2711 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2714 btrfs_abort_transaction(trans
, ret
);
2718 leaf
= path
->nodes
[0];
2719 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2720 struct btrfs_file_extent_item
);
2721 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2722 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2723 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2724 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2725 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2726 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2727 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2728 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2729 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2730 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2732 btrfs_mark_buffer_dirty(leaf
);
2733 inode_add_bytes(inode
, len
);
2734 btrfs_release_path(path
);
2736 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2738 backref
->root_id
, backref
->inum
,
2739 new->file_pos
); /* start - extent_offset */
2741 btrfs_abort_transaction(trans
, ret
);
2747 btrfs_release_path(path
);
2748 path
->leave_spinning
= 0;
2749 btrfs_end_transaction(trans
);
2751 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2757 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2759 struct old_sa_defrag_extent
*old
, *tmp
;
2764 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2770 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2772 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2773 struct btrfs_path
*path
;
2774 struct sa_defrag_extent_backref
*backref
;
2775 struct sa_defrag_extent_backref
*prev
= NULL
;
2776 struct inode
*inode
;
2777 struct rb_node
*node
;
2782 path
= btrfs_alloc_path();
2786 if (!record_extent_backrefs(path
, new)) {
2787 btrfs_free_path(path
);
2790 btrfs_release_path(path
);
2793 node
= rb_first(&new->root
);
2796 rb_erase(node
, &new->root
);
2798 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2800 ret
= relink_extent_backref(path
, prev
, backref
);
2813 btrfs_free_path(path
);
2815 free_sa_defrag_extent(new);
2817 atomic_dec(&fs_info
->defrag_running
);
2818 wake_up(&fs_info
->transaction_wait
);
2821 static struct new_sa_defrag_extent
*
2822 record_old_file_extents(struct inode
*inode
,
2823 struct btrfs_ordered_extent
*ordered
)
2825 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2826 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2827 struct btrfs_path
*path
;
2828 struct btrfs_key key
;
2829 struct old_sa_defrag_extent
*old
;
2830 struct new_sa_defrag_extent
*new;
2833 new = kmalloc(sizeof(*new), GFP_NOFS
);
2838 new->file_pos
= ordered
->file_offset
;
2839 new->len
= ordered
->len
;
2840 new->bytenr
= ordered
->start
;
2841 new->disk_len
= ordered
->disk_len
;
2842 new->compress_type
= ordered
->compress_type
;
2843 new->root
= RB_ROOT
;
2844 INIT_LIST_HEAD(&new->head
);
2846 path
= btrfs_alloc_path();
2850 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2851 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2852 key
.offset
= new->file_pos
;
2854 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2857 if (ret
> 0 && path
->slots
[0] > 0)
2860 /* find out all the old extents for the file range */
2862 struct btrfs_file_extent_item
*extent
;
2863 struct extent_buffer
*l
;
2872 slot
= path
->slots
[0];
2874 if (slot
>= btrfs_header_nritems(l
)) {
2875 ret
= btrfs_next_leaf(root
, path
);
2883 btrfs_item_key_to_cpu(l
, &key
, slot
);
2885 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2887 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2889 if (key
.offset
>= new->file_pos
+ new->len
)
2892 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2894 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2895 if (key
.offset
+ num_bytes
< new->file_pos
)
2898 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2902 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2904 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2908 offset
= max(new->file_pos
, key
.offset
);
2909 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2911 old
->bytenr
= disk_bytenr
;
2912 old
->extent_offset
= extent_offset
;
2913 old
->offset
= offset
- key
.offset
;
2914 old
->len
= end
- offset
;
2917 list_add_tail(&old
->list
, &new->head
);
2923 btrfs_free_path(path
);
2924 atomic_inc(&fs_info
->defrag_running
);
2929 btrfs_free_path(path
);
2931 free_sa_defrag_extent(new);
2935 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2938 struct btrfs_block_group_cache
*cache
;
2940 cache
= btrfs_lookup_block_group(fs_info
, start
);
2943 spin_lock(&cache
->lock
);
2944 cache
->delalloc_bytes
-= len
;
2945 spin_unlock(&cache
->lock
);
2947 btrfs_put_block_group(cache
);
2950 /* as ordered data IO finishes, this gets called so we can finish
2951 * an ordered extent if the range of bytes in the file it covers are
2954 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2956 struct inode
*inode
= ordered_extent
->inode
;
2957 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2958 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2959 struct btrfs_trans_handle
*trans
= NULL
;
2960 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2961 struct extent_state
*cached_state
= NULL
;
2962 struct new_sa_defrag_extent
*new = NULL
;
2963 int compress_type
= 0;
2965 u64 logical_len
= ordered_extent
->len
;
2967 bool truncated
= false;
2968 bool range_locked
= false;
2969 bool clear_new_delalloc_bytes
= false;
2971 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2972 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2973 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2974 clear_new_delalloc_bytes
= true;
2976 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2978 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2983 btrfs_free_io_failure_record(BTRFS_I(inode
),
2984 ordered_extent
->file_offset
,
2985 ordered_extent
->file_offset
+
2986 ordered_extent
->len
- 1);
2988 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2990 logical_len
= ordered_extent
->truncated_len
;
2991 /* Truncated the entire extent, don't bother adding */
2996 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2997 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
3000 * For mwrite(mmap + memset to write) case, we still reserve
3001 * space for NOCOW range.
3002 * As NOCOW won't cause a new delayed ref, just free the space
3004 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3005 ordered_extent
->len
);
3006 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3008 trans
= btrfs_join_transaction_nolock(root
);
3010 trans
= btrfs_join_transaction(root
);
3011 if (IS_ERR(trans
)) {
3012 ret
= PTR_ERR(trans
);
3016 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3017 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3018 if (ret
) /* -ENOMEM or corruption */
3019 btrfs_abort_transaction(trans
, ret
);
3023 range_locked
= true;
3024 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
3025 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3028 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
3029 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3030 EXTENT_DEFRAG
, 0, cached_state
);
3032 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
3033 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
3034 /* the inode is shared */
3035 new = record_old_file_extents(inode
, ordered_extent
);
3037 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
3038 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3039 EXTENT_DEFRAG
, 0, 0, &cached_state
);
3043 trans
= btrfs_join_transaction_nolock(root
);
3045 trans
= btrfs_join_transaction(root
);
3046 if (IS_ERR(trans
)) {
3047 ret
= PTR_ERR(trans
);
3052 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3054 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3055 compress_type
= ordered_extent
->compress_type
;
3056 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3057 BUG_ON(compress_type
);
3058 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3059 ordered_extent
->len
);
3060 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3061 ordered_extent
->file_offset
,
3062 ordered_extent
->file_offset
+
3065 BUG_ON(root
== fs_info
->tree_root
);
3066 ret
= insert_reserved_file_extent(trans
, inode
,
3067 ordered_extent
->file_offset
,
3068 ordered_extent
->start
,
3069 ordered_extent
->disk_len
,
3070 logical_len
, logical_len
,
3071 compress_type
, 0, 0,
3072 BTRFS_FILE_EXTENT_REG
);
3074 btrfs_release_delalloc_bytes(fs_info
,
3075 ordered_extent
->start
,
3076 ordered_extent
->disk_len
);
3078 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3079 ordered_extent
->file_offset
, ordered_extent
->len
,
3082 btrfs_abort_transaction(trans
, ret
);
3086 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3088 btrfs_abort_transaction(trans
, ret
);
3092 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3093 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3094 if (ret
) { /* -ENOMEM or corruption */
3095 btrfs_abort_transaction(trans
, ret
);
3100 if (range_locked
|| clear_new_delalloc_bytes
) {
3101 unsigned int clear_bits
= 0;
3104 clear_bits
|= EXTENT_LOCKED
;
3105 if (clear_new_delalloc_bytes
)
3106 clear_bits
|= EXTENT_DELALLOC_NEW
;
3107 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3108 ordered_extent
->file_offset
,
3109 ordered_extent
->file_offset
+
3110 ordered_extent
->len
- 1,
3112 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3117 btrfs_end_transaction(trans
);
3119 if (ret
|| truncated
) {
3123 start
= ordered_extent
->file_offset
+ logical_len
;
3125 start
= ordered_extent
->file_offset
;
3126 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3127 clear_extent_uptodate(io_tree
, start
, end
, NULL
);
3129 /* Drop the cache for the part of the extent we didn't write. */
3130 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3133 * If the ordered extent had an IOERR or something else went
3134 * wrong we need to return the space for this ordered extent
3135 * back to the allocator. We only free the extent in the
3136 * truncated case if we didn't write out the extent at all.
3138 if ((ret
|| !logical_len
) &&
3139 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3140 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3141 btrfs_free_reserved_extent(fs_info
,
3142 ordered_extent
->start
,
3143 ordered_extent
->disk_len
, 1);
3148 * This needs to be done to make sure anybody waiting knows we are done
3149 * updating everything for this ordered extent.
3151 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3153 /* for snapshot-aware defrag */
3156 free_sa_defrag_extent(new);
3157 atomic_dec(&fs_info
->defrag_running
);
3159 relink_file_extents(new);
3164 btrfs_put_ordered_extent(ordered_extent
);
3165 /* once for the tree */
3166 btrfs_put_ordered_extent(ordered_extent
);
3168 /* Try to release some metadata so we don't get an OOM but don't wait */
3169 btrfs_btree_balance_dirty_nodelay(fs_info
);
3174 static void finish_ordered_fn(struct btrfs_work
*work
)
3176 struct btrfs_ordered_extent
*ordered_extent
;
3177 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3178 btrfs_finish_ordered_io(ordered_extent
);
3181 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3182 struct extent_state
*state
, int uptodate
)
3184 struct inode
*inode
= page
->mapping
->host
;
3185 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3186 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3187 struct btrfs_workqueue
*wq
;
3188 btrfs_work_func_t func
;
3190 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3192 ClearPagePrivate2(page
);
3193 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3194 end
- start
+ 1, uptodate
))
3197 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3198 wq
= fs_info
->endio_freespace_worker
;
3199 func
= btrfs_freespace_write_helper
;
3201 wq
= fs_info
->endio_write_workers
;
3202 func
= btrfs_endio_write_helper
;
3205 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3207 btrfs_queue_work(wq
, &ordered_extent
->work
);
3210 static int __readpage_endio_check(struct inode
*inode
,
3211 struct btrfs_io_bio
*io_bio
,
3212 int icsum
, struct page
*page
,
3213 int pgoff
, u64 start
, size_t len
)
3219 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3221 kaddr
= kmap_atomic(page
);
3222 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3223 btrfs_csum_final(csum
, (u8
*)&csum
);
3224 if (csum
!= csum_expected
)
3227 kunmap_atomic(kaddr
);
3230 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3231 io_bio
->mirror_num
);
3232 memset(kaddr
+ pgoff
, 1, len
);
3233 flush_dcache_page(page
);
3234 kunmap_atomic(kaddr
);
3239 * when reads are done, we need to check csums to verify the data is correct
3240 * if there's a match, we allow the bio to finish. If not, the code in
3241 * extent_io.c will try to find good copies for us.
3243 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3244 u64 phy_offset
, struct page
*page
,
3245 u64 start
, u64 end
, int mirror
)
3247 size_t offset
= start
- page_offset(page
);
3248 struct inode
*inode
= page
->mapping
->host
;
3249 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3250 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3252 if (PageChecked(page
)) {
3253 ClearPageChecked(page
);
3257 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3260 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3261 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3262 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3266 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3267 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3268 start
, (size_t)(end
- start
+ 1));
3272 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3274 * @inode: The inode we want to perform iput on
3276 * This function uses the generic vfs_inode::i_count to track whether we should
3277 * just decrement it (in case it's > 1) or if this is the last iput then link
3278 * the inode to the delayed iput machinery. Delayed iputs are processed at
3279 * transaction commit time/superblock commit/cleaner kthread.
3281 void btrfs_add_delayed_iput(struct inode
*inode
)
3283 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3284 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3286 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3289 spin_lock(&fs_info
->delayed_iput_lock
);
3290 ASSERT(list_empty(&binode
->delayed_iput
));
3291 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3292 spin_unlock(&fs_info
->delayed_iput_lock
);
3295 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3298 spin_lock(&fs_info
->delayed_iput_lock
);
3299 while (!list_empty(&fs_info
->delayed_iputs
)) {
3300 struct btrfs_inode
*inode
;
3302 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3303 struct btrfs_inode
, delayed_iput
);
3304 list_del_init(&inode
->delayed_iput
);
3305 spin_unlock(&fs_info
->delayed_iput_lock
);
3306 iput(&inode
->vfs_inode
);
3307 spin_lock(&fs_info
->delayed_iput_lock
);
3309 spin_unlock(&fs_info
->delayed_iput_lock
);
3313 * This creates an orphan entry for the given inode in case something goes wrong
3314 * in the middle of an unlink.
3316 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3317 struct btrfs_inode
*inode
)
3321 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3322 if (ret
&& ret
!= -EEXIST
) {
3323 btrfs_abort_transaction(trans
, ret
);
3331 * We have done the delete so we can go ahead and remove the orphan item for
3332 * this particular inode.
3334 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3335 struct btrfs_inode
*inode
)
3337 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3341 * this cleans up any orphans that may be left on the list from the last use
3344 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3346 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3347 struct btrfs_path
*path
;
3348 struct extent_buffer
*leaf
;
3349 struct btrfs_key key
, found_key
;
3350 struct btrfs_trans_handle
*trans
;
3351 struct inode
*inode
;
3352 u64 last_objectid
= 0;
3353 int ret
= 0, nr_unlink
= 0;
3355 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3358 path
= btrfs_alloc_path();
3363 path
->reada
= READA_BACK
;
3365 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3366 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3367 key
.offset
= (u64
)-1;
3370 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3375 * if ret == 0 means we found what we were searching for, which
3376 * is weird, but possible, so only screw with path if we didn't
3377 * find the key and see if we have stuff that matches
3381 if (path
->slots
[0] == 0)
3386 /* pull out the item */
3387 leaf
= path
->nodes
[0];
3388 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3390 /* make sure the item matches what we want */
3391 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3393 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3396 /* release the path since we're done with it */
3397 btrfs_release_path(path
);
3400 * this is where we are basically btrfs_lookup, without the
3401 * crossing root thing. we store the inode number in the
3402 * offset of the orphan item.
3405 if (found_key
.offset
== last_objectid
) {
3407 "Error removing orphan entry, stopping orphan cleanup");
3412 last_objectid
= found_key
.offset
;
3414 found_key
.objectid
= found_key
.offset
;
3415 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3416 found_key
.offset
= 0;
3417 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3418 ret
= PTR_ERR_OR_ZERO(inode
);
3419 if (ret
&& ret
!= -ENOENT
)
3422 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3423 struct btrfs_root
*dead_root
;
3424 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3425 int is_dead_root
= 0;
3428 * this is an orphan in the tree root. Currently these
3429 * could come from 2 sources:
3430 * a) a snapshot deletion in progress
3431 * b) a free space cache inode
3432 * We need to distinguish those two, as the snapshot
3433 * orphan must not get deleted.
3434 * find_dead_roots already ran before us, so if this
3435 * is a snapshot deletion, we should find the root
3436 * in the dead_roots list
3438 spin_lock(&fs_info
->trans_lock
);
3439 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3441 if (dead_root
->root_key
.objectid
==
3442 found_key
.objectid
) {
3447 spin_unlock(&fs_info
->trans_lock
);
3449 /* prevent this orphan from being found again */
3450 key
.offset
= found_key
.objectid
- 1;
3457 * If we have an inode with links, there are a couple of
3458 * possibilities. Old kernels (before v3.12) used to create an
3459 * orphan item for truncate indicating that there were possibly
3460 * extent items past i_size that needed to be deleted. In v3.12,
3461 * truncate was changed to update i_size in sync with the extent
3462 * items, but the (useless) orphan item was still created. Since
3463 * v4.18, we don't create the orphan item for truncate at all.
3465 * So, this item could mean that we need to do a truncate, but
3466 * only if this filesystem was last used on a pre-v3.12 kernel
3467 * and was not cleanly unmounted. The odds of that are quite
3468 * slim, and it's a pain to do the truncate now, so just delete
3471 * It's also possible that this orphan item was supposed to be
3472 * deleted but wasn't. The inode number may have been reused,
3473 * but either way, we can delete the orphan item.
3475 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3478 trans
= btrfs_start_transaction(root
, 1);
3479 if (IS_ERR(trans
)) {
3480 ret
= PTR_ERR(trans
);
3483 btrfs_debug(fs_info
, "auto deleting %Lu",
3484 found_key
.objectid
);
3485 ret
= btrfs_del_orphan_item(trans
, root
,
3486 found_key
.objectid
);
3487 btrfs_end_transaction(trans
);
3495 /* this will do delete_inode and everything for us */
3500 /* release the path since we're done with it */
3501 btrfs_release_path(path
);
3503 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3505 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3506 trans
= btrfs_join_transaction(root
);
3508 btrfs_end_transaction(trans
);
3512 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3516 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3517 btrfs_free_path(path
);
3522 * very simple check to peek ahead in the leaf looking for xattrs. If we
3523 * don't find any xattrs, we know there can't be any acls.
3525 * slot is the slot the inode is in, objectid is the objectid of the inode
3527 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3528 int slot
, u64 objectid
,
3529 int *first_xattr_slot
)
3531 u32 nritems
= btrfs_header_nritems(leaf
);
3532 struct btrfs_key found_key
;
3533 static u64 xattr_access
= 0;
3534 static u64 xattr_default
= 0;
3537 if (!xattr_access
) {
3538 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3539 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3540 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3541 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3545 *first_xattr_slot
= -1;
3546 while (slot
< nritems
) {
3547 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3549 /* we found a different objectid, there must not be acls */
3550 if (found_key
.objectid
!= objectid
)
3553 /* we found an xattr, assume we've got an acl */
3554 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3555 if (*first_xattr_slot
== -1)
3556 *first_xattr_slot
= slot
;
3557 if (found_key
.offset
== xattr_access
||
3558 found_key
.offset
== xattr_default
)
3563 * we found a key greater than an xattr key, there can't
3564 * be any acls later on
3566 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3573 * it goes inode, inode backrefs, xattrs, extents,
3574 * so if there are a ton of hard links to an inode there can
3575 * be a lot of backrefs. Don't waste time searching too hard,
3576 * this is just an optimization
3581 /* we hit the end of the leaf before we found an xattr or
3582 * something larger than an xattr. We have to assume the inode
3585 if (*first_xattr_slot
== -1)
3586 *first_xattr_slot
= slot
;
3591 * read an inode from the btree into the in-memory inode
3593 static int btrfs_read_locked_inode(struct inode
*inode
)
3595 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3596 struct btrfs_path
*path
;
3597 struct extent_buffer
*leaf
;
3598 struct btrfs_inode_item
*inode_item
;
3599 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3600 struct btrfs_key location
;
3605 bool filled
= false;
3606 int first_xattr_slot
;
3608 ret
= btrfs_fill_inode(inode
, &rdev
);
3612 path
= btrfs_alloc_path();
3618 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3620 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3627 leaf
= path
->nodes
[0];
3632 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3633 struct btrfs_inode_item
);
3634 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3635 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3636 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3637 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3638 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3640 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3641 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3643 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3644 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3646 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3647 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3649 BTRFS_I(inode
)->i_otime
.tv_sec
=
3650 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3651 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3652 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3654 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3655 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3656 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3658 inode_set_iversion_queried(inode
,
3659 btrfs_inode_sequence(leaf
, inode_item
));
3660 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3662 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3664 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3665 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3669 * If we were modified in the current generation and evicted from memory
3670 * and then re-read we need to do a full sync since we don't have any
3671 * idea about which extents were modified before we were evicted from
3674 * This is required for both inode re-read from disk and delayed inode
3675 * in delayed_nodes_tree.
3677 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3678 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3679 &BTRFS_I(inode
)->runtime_flags
);
3682 * We don't persist the id of the transaction where an unlink operation
3683 * against the inode was last made. So here we assume the inode might
3684 * have been evicted, and therefore the exact value of last_unlink_trans
3685 * lost, and set it to last_trans to avoid metadata inconsistencies
3686 * between the inode and its parent if the inode is fsync'ed and the log
3687 * replayed. For example, in the scenario:
3690 * ln mydir/foo mydir/bar
3693 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3694 * xfs_io -c fsync mydir/foo
3696 * mount fs, triggers fsync log replay
3698 * We must make sure that when we fsync our inode foo we also log its
3699 * parent inode, otherwise after log replay the parent still has the
3700 * dentry with the "bar" name but our inode foo has a link count of 1
3701 * and doesn't have an inode ref with the name "bar" anymore.
3703 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3704 * but it guarantees correctness at the expense of occasional full
3705 * transaction commits on fsync if our inode is a directory, or if our
3706 * inode is not a directory, logging its parent unnecessarily.
3708 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3711 if (inode
->i_nlink
!= 1 ||
3712 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3715 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3716 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3719 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3720 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3721 struct btrfs_inode_ref
*ref
;
3723 ref
= (struct btrfs_inode_ref
*)ptr
;
3724 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3725 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3726 struct btrfs_inode_extref
*extref
;
3728 extref
= (struct btrfs_inode_extref
*)ptr
;
3729 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3734 * try to precache a NULL acl entry for files that don't have
3735 * any xattrs or acls
3737 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3738 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3739 if (first_xattr_slot
!= -1) {
3740 path
->slots
[0] = first_xattr_slot
;
3741 ret
= btrfs_load_inode_props(inode
, path
);
3744 "error loading props for ino %llu (root %llu): %d",
3745 btrfs_ino(BTRFS_I(inode
)),
3746 root
->root_key
.objectid
, ret
);
3748 btrfs_free_path(path
);
3751 cache_no_acl(inode
);
3753 switch (inode
->i_mode
& S_IFMT
) {
3755 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3756 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3757 inode
->i_fop
= &btrfs_file_operations
;
3758 inode
->i_op
= &btrfs_file_inode_operations
;
3761 inode
->i_fop
= &btrfs_dir_file_operations
;
3762 inode
->i_op
= &btrfs_dir_inode_operations
;
3765 inode
->i_op
= &btrfs_symlink_inode_operations
;
3766 inode_nohighmem(inode
);
3767 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3770 inode
->i_op
= &btrfs_special_inode_operations
;
3771 init_special_inode(inode
, inode
->i_mode
, rdev
);
3775 btrfs_sync_inode_flags_to_i_flags(inode
);
3779 btrfs_free_path(path
);
3780 make_bad_inode(inode
);
3785 * given a leaf and an inode, copy the inode fields into the leaf
3787 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3788 struct extent_buffer
*leaf
,
3789 struct btrfs_inode_item
*item
,
3790 struct inode
*inode
)
3792 struct btrfs_map_token token
;
3794 btrfs_init_map_token(&token
);
3796 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3797 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3798 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3800 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3801 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3803 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3804 inode
->i_atime
.tv_sec
, &token
);
3805 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3806 inode
->i_atime
.tv_nsec
, &token
);
3808 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3809 inode
->i_mtime
.tv_sec
, &token
);
3810 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3811 inode
->i_mtime
.tv_nsec
, &token
);
3813 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3814 inode
->i_ctime
.tv_sec
, &token
);
3815 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3816 inode
->i_ctime
.tv_nsec
, &token
);
3818 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3819 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3820 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3821 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3823 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3825 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3827 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3829 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3830 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3831 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3832 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3836 * copy everything in the in-memory inode into the btree.
3838 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3839 struct btrfs_root
*root
, struct inode
*inode
)
3841 struct btrfs_inode_item
*inode_item
;
3842 struct btrfs_path
*path
;
3843 struct extent_buffer
*leaf
;
3846 path
= btrfs_alloc_path();
3850 path
->leave_spinning
= 1;
3851 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3859 leaf
= path
->nodes
[0];
3860 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3861 struct btrfs_inode_item
);
3863 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3864 btrfs_mark_buffer_dirty(leaf
);
3865 btrfs_set_inode_last_trans(trans
, inode
);
3868 btrfs_free_path(path
);
3873 * copy everything in the in-memory inode into the btree.
3875 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3876 struct btrfs_root
*root
, struct inode
*inode
)
3878 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3882 * If the inode is a free space inode, we can deadlock during commit
3883 * if we put it into the delayed code.
3885 * The data relocation inode should also be directly updated
3888 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
3889 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3890 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3891 btrfs_update_root_times(trans
, root
);
3893 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3895 btrfs_set_inode_last_trans(trans
, inode
);
3899 return btrfs_update_inode_item(trans
, root
, inode
);
3902 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3903 struct btrfs_root
*root
,
3904 struct inode
*inode
)
3908 ret
= btrfs_update_inode(trans
, root
, inode
);
3910 return btrfs_update_inode_item(trans
, root
, inode
);
3915 * unlink helper that gets used here in inode.c and in the tree logging
3916 * recovery code. It remove a link in a directory with a given name, and
3917 * also drops the back refs in the inode to the directory
3919 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3920 struct btrfs_root
*root
,
3921 struct btrfs_inode
*dir
,
3922 struct btrfs_inode
*inode
,
3923 const char *name
, int name_len
)
3925 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3926 struct btrfs_path
*path
;
3928 struct extent_buffer
*leaf
;
3929 struct btrfs_dir_item
*di
;
3930 struct btrfs_key key
;
3932 u64 ino
= btrfs_ino(inode
);
3933 u64 dir_ino
= btrfs_ino(dir
);
3935 path
= btrfs_alloc_path();
3941 path
->leave_spinning
= 1;
3942 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3943 name
, name_len
, -1);
3952 leaf
= path
->nodes
[0];
3953 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3954 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3957 btrfs_release_path(path
);
3960 * If we don't have dir index, we have to get it by looking up
3961 * the inode ref, since we get the inode ref, remove it directly,
3962 * it is unnecessary to do delayed deletion.
3964 * But if we have dir index, needn't search inode ref to get it.
3965 * Since the inode ref is close to the inode item, it is better
3966 * that we delay to delete it, and just do this deletion when
3967 * we update the inode item.
3969 if (inode
->dir_index
) {
3970 ret
= btrfs_delayed_delete_inode_ref(inode
);
3972 index
= inode
->dir_index
;
3977 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3981 "failed to delete reference to %.*s, inode %llu parent %llu",
3982 name_len
, name
, ino
, dir_ino
);
3983 btrfs_abort_transaction(trans
, ret
);
3987 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
3989 btrfs_abort_transaction(trans
, ret
);
3993 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
3995 if (ret
!= 0 && ret
!= -ENOENT
) {
3996 btrfs_abort_transaction(trans
, ret
);
4000 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
4005 btrfs_abort_transaction(trans
, ret
);
4007 btrfs_free_path(path
);
4011 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
4012 inode_inc_iversion(&inode
->vfs_inode
);
4013 inode_inc_iversion(&dir
->vfs_inode
);
4014 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
4015 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
4016 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
4021 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4022 struct btrfs_root
*root
,
4023 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
4024 const char *name
, int name_len
)
4027 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4029 drop_nlink(&inode
->vfs_inode
);
4030 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4036 * helper to start transaction for unlink and rmdir.
4038 * unlink and rmdir are special in btrfs, they do not always free space, so
4039 * if we cannot make our reservations the normal way try and see if there is
4040 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4041 * allow the unlink to occur.
4043 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4045 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4048 * 1 for the possible orphan item
4049 * 1 for the dir item
4050 * 1 for the dir index
4051 * 1 for the inode ref
4054 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4057 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4059 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4060 struct btrfs_trans_handle
*trans
;
4061 struct inode
*inode
= d_inode(dentry
);
4064 trans
= __unlink_start_trans(dir
);
4066 return PTR_ERR(trans
);
4068 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4071 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4072 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4073 dentry
->d_name
.len
);
4077 if (inode
->i_nlink
== 0) {
4078 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4084 btrfs_end_transaction(trans
);
4085 btrfs_btree_balance_dirty(root
->fs_info
);
4089 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4090 struct btrfs_root
*root
,
4091 struct inode
*dir
, u64 objectid
,
4092 const char *name
, int name_len
)
4094 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4095 struct btrfs_path
*path
;
4096 struct extent_buffer
*leaf
;
4097 struct btrfs_dir_item
*di
;
4098 struct btrfs_key key
;
4101 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4103 path
= btrfs_alloc_path();
4107 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4108 name
, name_len
, -1);
4109 if (IS_ERR_OR_NULL(di
)) {
4117 leaf
= path
->nodes
[0];
4118 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4119 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4120 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4122 btrfs_abort_transaction(trans
, ret
);
4125 btrfs_release_path(path
);
4127 ret
= btrfs_del_root_ref(trans
, fs_info
, objectid
,
4128 root
->root_key
.objectid
, dir_ino
,
4129 &index
, name
, name_len
);
4131 if (ret
!= -ENOENT
) {
4132 btrfs_abort_transaction(trans
, ret
);
4135 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4137 if (IS_ERR_OR_NULL(di
)) {
4142 btrfs_abort_transaction(trans
, ret
);
4146 leaf
= path
->nodes
[0];
4147 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4148 btrfs_release_path(path
);
4151 btrfs_release_path(path
);
4153 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, BTRFS_I(dir
), index
);
4155 btrfs_abort_transaction(trans
, ret
);
4159 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4160 inode_inc_iversion(dir
);
4161 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4162 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4164 btrfs_abort_transaction(trans
, ret
);
4166 btrfs_free_path(path
);
4171 * Helper to check if the subvolume references other subvolumes or if it's
4174 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
4176 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4177 struct btrfs_path
*path
;
4178 struct btrfs_dir_item
*di
;
4179 struct btrfs_key key
;
4183 path
= btrfs_alloc_path();
4187 /* Make sure this root isn't set as the default subvol */
4188 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4189 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
4190 dir_id
, "default", 7, 0);
4191 if (di
&& !IS_ERR(di
)) {
4192 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
4193 if (key
.objectid
== root
->root_key
.objectid
) {
4196 "deleting default subvolume %llu is not allowed",
4200 btrfs_release_path(path
);
4203 key
.objectid
= root
->root_key
.objectid
;
4204 key
.type
= BTRFS_ROOT_REF_KEY
;
4205 key
.offset
= (u64
)-1;
4207 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4213 if (path
->slots
[0] > 0) {
4215 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
4216 if (key
.objectid
== root
->root_key
.objectid
&&
4217 key
.type
== BTRFS_ROOT_REF_KEY
)
4221 btrfs_free_path(path
);
4225 /* Delete all dentries for inodes belonging to the root */
4226 static void btrfs_prune_dentries(struct btrfs_root
*root
)
4228 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4229 struct rb_node
*node
;
4230 struct rb_node
*prev
;
4231 struct btrfs_inode
*entry
;
4232 struct inode
*inode
;
4235 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
4236 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4238 spin_lock(&root
->inode_lock
);
4240 node
= root
->inode_tree
.rb_node
;
4244 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4246 if (objectid
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
4247 node
= node
->rb_left
;
4248 else if (objectid
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
4249 node
= node
->rb_right
;
4255 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4256 if (objectid
<= btrfs_ino(BTRFS_I(&entry
->vfs_inode
))) {
4260 prev
= rb_next(prev
);
4264 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4265 objectid
= btrfs_ino(BTRFS_I(&entry
->vfs_inode
)) + 1;
4266 inode
= igrab(&entry
->vfs_inode
);
4268 spin_unlock(&root
->inode_lock
);
4269 if (atomic_read(&inode
->i_count
) > 1)
4270 d_prune_aliases(inode
);
4272 * btrfs_drop_inode will have it removed from the inode
4273 * cache when its usage count hits zero.
4277 spin_lock(&root
->inode_lock
);
4281 if (cond_resched_lock(&root
->inode_lock
))
4284 node
= rb_next(node
);
4286 spin_unlock(&root
->inode_lock
);
4289 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
4291 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
4292 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4293 struct inode
*inode
= d_inode(dentry
);
4294 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
4295 struct btrfs_trans_handle
*trans
;
4296 struct btrfs_block_rsv block_rsv
;
4302 * Don't allow to delete a subvolume with send in progress. This is
4303 * inside the inode lock so the error handling that has to drop the bit
4304 * again is not run concurrently.
4306 spin_lock(&dest
->root_item_lock
);
4307 root_flags
= btrfs_root_flags(&dest
->root_item
);
4308 if (dest
->send_in_progress
== 0) {
4309 btrfs_set_root_flags(&dest
->root_item
,
4310 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
4311 spin_unlock(&dest
->root_item_lock
);
4313 spin_unlock(&dest
->root_item_lock
);
4315 "attempt to delete subvolume %llu during send",
4316 dest
->root_key
.objectid
);
4320 down_write(&fs_info
->subvol_sem
);
4322 err
= may_destroy_subvol(dest
);
4326 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
4328 * One for dir inode,
4329 * two for dir entries,
4330 * two for root ref/backref.
4332 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
4336 trans
= btrfs_start_transaction(root
, 0);
4337 if (IS_ERR(trans
)) {
4338 err
= PTR_ERR(trans
);
4341 trans
->block_rsv
= &block_rsv
;
4342 trans
->bytes_reserved
= block_rsv
.size
;
4344 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
4346 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
4347 dest
->root_key
.objectid
,
4348 dentry
->d_name
.name
,
4349 dentry
->d_name
.len
);
4352 btrfs_abort_transaction(trans
, ret
);
4356 btrfs_record_root_in_trans(trans
, dest
);
4358 memset(&dest
->root_item
.drop_progress
, 0,
4359 sizeof(dest
->root_item
.drop_progress
));
4360 dest
->root_item
.drop_level
= 0;
4361 btrfs_set_root_refs(&dest
->root_item
, 0);
4363 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
4364 ret
= btrfs_insert_orphan_item(trans
,
4366 dest
->root_key
.objectid
);
4368 btrfs_abort_transaction(trans
, ret
);
4374 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
4375 BTRFS_UUID_KEY_SUBVOL
,
4376 dest
->root_key
.objectid
);
4377 if (ret
&& ret
!= -ENOENT
) {
4378 btrfs_abort_transaction(trans
, ret
);
4382 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
4383 ret
= btrfs_uuid_tree_remove(trans
,
4384 dest
->root_item
.received_uuid
,
4385 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4386 dest
->root_key
.objectid
);
4387 if (ret
&& ret
!= -ENOENT
) {
4388 btrfs_abort_transaction(trans
, ret
);
4395 trans
->block_rsv
= NULL
;
4396 trans
->bytes_reserved
= 0;
4397 ret
= btrfs_end_transaction(trans
);
4400 inode
->i_flags
|= S_DEAD
;
4402 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
4404 up_write(&fs_info
->subvol_sem
);
4406 spin_lock(&dest
->root_item_lock
);
4407 root_flags
= btrfs_root_flags(&dest
->root_item
);
4408 btrfs_set_root_flags(&dest
->root_item
,
4409 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
4410 spin_unlock(&dest
->root_item_lock
);
4412 d_invalidate(dentry
);
4413 btrfs_prune_dentries(dest
);
4414 ASSERT(dest
->send_in_progress
== 0);
4417 if (dest
->ino_cache_inode
) {
4418 iput(dest
->ino_cache_inode
);
4419 dest
->ino_cache_inode
= NULL
;
4426 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4428 struct inode
*inode
= d_inode(dentry
);
4430 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4431 struct btrfs_trans_handle
*trans
;
4432 u64 last_unlink_trans
;
4434 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4436 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4437 return btrfs_delete_subvolume(dir
, dentry
);
4439 trans
= __unlink_start_trans(dir
);
4441 return PTR_ERR(trans
);
4443 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4444 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4445 BTRFS_I(inode
)->location
.objectid
,
4446 dentry
->d_name
.name
,
4447 dentry
->d_name
.len
);
4451 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4455 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4457 /* now the directory is empty */
4458 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4459 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4460 dentry
->d_name
.len
);
4462 btrfs_i_size_write(BTRFS_I(inode
), 0);
4464 * Propagate the last_unlink_trans value of the deleted dir to
4465 * its parent directory. This is to prevent an unrecoverable
4466 * log tree in the case we do something like this:
4468 * 2) create snapshot under dir foo
4469 * 3) delete the snapshot
4472 * 6) fsync foo or some file inside foo
4474 if (last_unlink_trans
>= trans
->transid
)
4475 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4478 btrfs_end_transaction(trans
);
4479 btrfs_btree_balance_dirty(root
->fs_info
);
4484 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4485 struct btrfs_root
*root
,
4488 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4492 * This is only used to apply pressure to the enospc system, we don't
4493 * intend to use this reservation at all.
4495 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4496 bytes_deleted
*= fs_info
->nodesize
;
4497 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4498 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4500 trace_btrfs_space_reservation(fs_info
, "transaction",
4503 trans
->bytes_reserved
+= bytes_deleted
;
4510 * Return this if we need to call truncate_block for the last bit of the
4513 #define NEED_TRUNCATE_BLOCK 1
4516 * this can truncate away extent items, csum items and directory items.
4517 * It starts at a high offset and removes keys until it can't find
4518 * any higher than new_size
4520 * csum items that cross the new i_size are truncated to the new size
4523 * min_type is the minimum key type to truncate down to. If set to 0, this
4524 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4526 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4527 struct btrfs_root
*root
,
4528 struct inode
*inode
,
4529 u64 new_size
, u32 min_type
)
4531 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4532 struct btrfs_path
*path
;
4533 struct extent_buffer
*leaf
;
4534 struct btrfs_file_extent_item
*fi
;
4535 struct btrfs_key key
;
4536 struct btrfs_key found_key
;
4537 u64 extent_start
= 0;
4538 u64 extent_num_bytes
= 0;
4539 u64 extent_offset
= 0;
4541 u64 last_size
= new_size
;
4542 u32 found_type
= (u8
)-1;
4545 int pending_del_nr
= 0;
4546 int pending_del_slot
= 0;
4547 int extent_type
= -1;
4549 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4550 u64 bytes_deleted
= 0;
4551 bool be_nice
= false;
4552 bool should_throttle
= false;
4553 bool should_end
= false;
4555 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4558 * for non-free space inodes and ref cows, we want to back off from
4561 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4562 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4565 path
= btrfs_alloc_path();
4568 path
->reada
= READA_BACK
;
4571 * We want to drop from the next block forward in case this new size is
4572 * not block aligned since we will be keeping the last block of the
4573 * extent just the way it is.
4575 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4576 root
== fs_info
->tree_root
)
4577 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4578 fs_info
->sectorsize
),
4582 * This function is also used to drop the items in the log tree before
4583 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4584 * it is used to drop the loged items. So we shouldn't kill the delayed
4587 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4588 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4591 key
.offset
= (u64
)-1;
4596 * with a 16K leaf size and 128MB extents, you can actually queue
4597 * up a huge file in a single leaf. Most of the time that
4598 * bytes_deleted is > 0, it will be huge by the time we get here
4600 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4601 btrfs_should_end_transaction(trans
)) {
4606 path
->leave_spinning
= 1;
4607 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4613 /* there are no items in the tree for us to truncate, we're
4616 if (path
->slots
[0] == 0)
4623 leaf
= path
->nodes
[0];
4624 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4625 found_type
= found_key
.type
;
4627 if (found_key
.objectid
!= ino
)
4630 if (found_type
< min_type
)
4633 item_end
= found_key
.offset
;
4634 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4635 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4636 struct btrfs_file_extent_item
);
4637 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4638 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4640 btrfs_file_extent_num_bytes(leaf
, fi
);
4642 trace_btrfs_truncate_show_fi_regular(
4643 BTRFS_I(inode
), leaf
, fi
,
4645 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4646 item_end
+= btrfs_file_extent_inline_len(leaf
,
4647 path
->slots
[0], fi
);
4649 trace_btrfs_truncate_show_fi_inline(
4650 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4655 if (found_type
> min_type
) {
4658 if (item_end
< new_size
)
4660 if (found_key
.offset
>= new_size
)
4666 /* FIXME, shrink the extent if the ref count is only 1 */
4667 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4670 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4672 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4674 u64 orig_num_bytes
=
4675 btrfs_file_extent_num_bytes(leaf
, fi
);
4676 extent_num_bytes
= ALIGN(new_size
-
4678 fs_info
->sectorsize
);
4679 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4681 num_dec
= (orig_num_bytes
-
4683 if (test_bit(BTRFS_ROOT_REF_COWS
,
4686 inode_sub_bytes(inode
, num_dec
);
4687 btrfs_mark_buffer_dirty(leaf
);
4690 btrfs_file_extent_disk_num_bytes(leaf
,
4692 extent_offset
= found_key
.offset
-
4693 btrfs_file_extent_offset(leaf
, fi
);
4695 /* FIXME blocksize != 4096 */
4696 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4697 if (extent_start
!= 0) {
4699 if (test_bit(BTRFS_ROOT_REF_COWS
,
4701 inode_sub_bytes(inode
, num_dec
);
4704 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4706 * we can't truncate inline items that have had
4710 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4711 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4712 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4713 u32 size
= (u32
)(new_size
- found_key
.offset
);
4715 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4716 size
= btrfs_file_extent_calc_inline_size(size
);
4717 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4718 } else if (!del_item
) {
4720 * We have to bail so the last_size is set to
4721 * just before this extent.
4723 ret
= NEED_TRUNCATE_BLOCK
;
4727 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4728 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4732 last_size
= found_key
.offset
;
4734 last_size
= new_size
;
4736 if (!pending_del_nr
) {
4737 /* no pending yet, add ourselves */
4738 pending_del_slot
= path
->slots
[0];
4740 } else if (pending_del_nr
&&
4741 path
->slots
[0] + 1 == pending_del_slot
) {
4742 /* hop on the pending chunk */
4744 pending_del_slot
= path
->slots
[0];
4751 should_throttle
= false;
4754 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4755 root
== fs_info
->tree_root
)) {
4756 btrfs_set_path_blocking(path
);
4757 bytes_deleted
+= extent_num_bytes
;
4758 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4759 extent_num_bytes
, 0,
4760 btrfs_header_owner(leaf
),
4761 ino
, extent_offset
);
4763 btrfs_abort_transaction(trans
, ret
);
4766 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4767 btrfs_async_run_delayed_refs(fs_info
,
4768 trans
->delayed_ref_updates
* 2,
4771 if (truncate_space_check(trans
, root
,
4772 extent_num_bytes
)) {
4775 if (btrfs_should_throttle_delayed_refs(trans
,
4777 should_throttle
= true;
4781 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4784 if (path
->slots
[0] == 0 ||
4785 path
->slots
[0] != pending_del_slot
||
4786 should_throttle
|| should_end
) {
4787 if (pending_del_nr
) {
4788 ret
= btrfs_del_items(trans
, root
, path
,
4792 btrfs_abort_transaction(trans
, ret
);
4797 btrfs_release_path(path
);
4798 if (should_throttle
) {
4799 unsigned long updates
= trans
->delayed_ref_updates
;
4801 trans
->delayed_ref_updates
= 0;
4802 ret
= btrfs_run_delayed_refs(trans
,
4809 * if we failed to refill our space rsv, bail out
4810 * and let the transaction restart
4822 if (ret
>= 0 && pending_del_nr
) {
4825 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4828 btrfs_abort_transaction(trans
, err
);
4832 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4833 ASSERT(last_size
>= new_size
);
4834 if (!ret
&& last_size
> new_size
)
4835 last_size
= new_size
;
4836 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4839 btrfs_free_path(path
);
4841 if (be_nice
&& bytes_deleted
> SZ_32M
&& (ret
>= 0 || ret
== -EAGAIN
)) {
4842 unsigned long updates
= trans
->delayed_ref_updates
;
4846 trans
->delayed_ref_updates
= 0;
4847 err
= btrfs_run_delayed_refs(trans
, updates
* 2);
4856 * btrfs_truncate_block - read, zero a chunk and write a block
4857 * @inode - inode that we're zeroing
4858 * @from - the offset to start zeroing
4859 * @len - the length to zero, 0 to zero the entire range respective to the
4861 * @front - zero up to the offset instead of from the offset on
4863 * This will find the block for the "from" offset and cow the block and zero the
4864 * part we want to zero. This is used with truncate and hole punching.
4866 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4869 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4870 struct address_space
*mapping
= inode
->i_mapping
;
4871 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4872 struct btrfs_ordered_extent
*ordered
;
4873 struct extent_state
*cached_state
= NULL
;
4874 struct extent_changeset
*data_reserved
= NULL
;
4876 u32 blocksize
= fs_info
->sectorsize
;
4877 pgoff_t index
= from
>> PAGE_SHIFT
;
4878 unsigned offset
= from
& (blocksize
- 1);
4880 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4885 if (IS_ALIGNED(offset
, blocksize
) &&
4886 (!len
|| IS_ALIGNED(len
, blocksize
)))
4889 block_start
= round_down(from
, blocksize
);
4890 block_end
= block_start
+ blocksize
- 1;
4892 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4893 block_start
, blocksize
);
4898 page
= find_or_create_page(mapping
, index
, mask
);
4900 btrfs_delalloc_release_space(inode
, data_reserved
,
4901 block_start
, blocksize
, true);
4902 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, true);
4907 if (!PageUptodate(page
)) {
4908 ret
= btrfs_readpage(NULL
, page
);
4910 if (page
->mapping
!= mapping
) {
4915 if (!PageUptodate(page
)) {
4920 wait_on_page_writeback(page
);
4922 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4923 set_page_extent_mapped(page
);
4925 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4927 unlock_extent_cached(io_tree
, block_start
, block_end
,
4931 btrfs_start_ordered_extent(inode
, ordered
, 1);
4932 btrfs_put_ordered_extent(ordered
);
4936 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4937 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4938 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4939 0, 0, &cached_state
);
4941 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4944 unlock_extent_cached(io_tree
, block_start
, block_end
,
4949 if (offset
!= blocksize
) {
4951 len
= blocksize
- offset
;
4954 memset(kaddr
+ (block_start
- page_offset(page
)),
4957 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4959 flush_dcache_page(page
);
4962 ClearPageChecked(page
);
4963 set_page_dirty(page
);
4964 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4968 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4970 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, (ret
!= 0));
4974 extent_changeset_free(data_reserved
);
4978 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4979 u64 offset
, u64 len
)
4981 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4982 struct btrfs_trans_handle
*trans
;
4986 * Still need to make sure the inode looks like it's been updated so
4987 * that any holes get logged if we fsync.
4989 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4990 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4991 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4992 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4997 * 1 - for the one we're dropping
4998 * 1 - for the one we're adding
4999 * 1 - for updating the inode.
5001 trans
= btrfs_start_transaction(root
, 3);
5003 return PTR_ERR(trans
);
5005 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
5007 btrfs_abort_transaction(trans
, ret
);
5008 btrfs_end_transaction(trans
);
5012 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
5013 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
5015 btrfs_abort_transaction(trans
, ret
);
5017 btrfs_update_inode(trans
, root
, inode
);
5018 btrfs_end_transaction(trans
);
5023 * This function puts in dummy file extents for the area we're creating a hole
5024 * for. So if we are truncating this file to a larger size we need to insert
5025 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5026 * the range between oldsize and size
5028 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
5030 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5031 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5032 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5033 struct extent_map
*em
= NULL
;
5034 struct extent_state
*cached_state
= NULL
;
5035 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5036 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
5037 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
5044 * If our size started in the middle of a block we need to zero out the
5045 * rest of the block before we expand the i_size, otherwise we could
5046 * expose stale data.
5048 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
5052 if (size
<= hole_start
)
5056 struct btrfs_ordered_extent
*ordered
;
5058 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
5060 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
5061 block_end
- hole_start
);
5064 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
5066 btrfs_start_ordered_extent(inode
, ordered
, 1);
5067 btrfs_put_ordered_extent(ordered
);
5070 cur_offset
= hole_start
;
5072 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
5073 block_end
- cur_offset
, 0);
5079 last_byte
= min(extent_map_end(em
), block_end
);
5080 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
5081 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
5082 struct extent_map
*hole_em
;
5083 hole_size
= last_byte
- cur_offset
;
5085 err
= maybe_insert_hole(root
, inode
, cur_offset
,
5089 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
5090 cur_offset
+ hole_size
- 1, 0);
5091 hole_em
= alloc_extent_map();
5093 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5094 &BTRFS_I(inode
)->runtime_flags
);
5097 hole_em
->start
= cur_offset
;
5098 hole_em
->len
= hole_size
;
5099 hole_em
->orig_start
= cur_offset
;
5101 hole_em
->block_start
= EXTENT_MAP_HOLE
;
5102 hole_em
->block_len
= 0;
5103 hole_em
->orig_block_len
= 0;
5104 hole_em
->ram_bytes
= hole_size
;
5105 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
5106 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
5107 hole_em
->generation
= fs_info
->generation
;
5110 write_lock(&em_tree
->lock
);
5111 err
= add_extent_mapping(em_tree
, hole_em
, 1);
5112 write_unlock(&em_tree
->lock
);
5115 btrfs_drop_extent_cache(BTRFS_I(inode
),
5120 free_extent_map(hole_em
);
5123 free_extent_map(em
);
5125 cur_offset
= last_byte
;
5126 if (cur_offset
>= block_end
)
5129 free_extent_map(em
);
5130 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
5134 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5136 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5137 struct btrfs_trans_handle
*trans
;
5138 loff_t oldsize
= i_size_read(inode
);
5139 loff_t newsize
= attr
->ia_size
;
5140 int mask
= attr
->ia_valid
;
5144 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5145 * special case where we need to update the times despite not having
5146 * these flags set. For all other operations the VFS set these flags
5147 * explicitly if it wants a timestamp update.
5149 if (newsize
!= oldsize
) {
5150 inode_inc_iversion(inode
);
5151 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5152 inode
->i_ctime
= inode
->i_mtime
=
5153 current_time(inode
);
5156 if (newsize
> oldsize
) {
5158 * Don't do an expanding truncate while snapshotting is ongoing.
5159 * This is to ensure the snapshot captures a fully consistent
5160 * state of this file - if the snapshot captures this expanding
5161 * truncation, it must capture all writes that happened before
5164 btrfs_wait_for_snapshot_creation(root
);
5165 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5167 btrfs_end_write_no_snapshotting(root
);
5171 trans
= btrfs_start_transaction(root
, 1);
5172 if (IS_ERR(trans
)) {
5173 btrfs_end_write_no_snapshotting(root
);
5174 return PTR_ERR(trans
);
5177 i_size_write(inode
, newsize
);
5178 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5179 pagecache_isize_extended(inode
, oldsize
, newsize
);
5180 ret
= btrfs_update_inode(trans
, root
, inode
);
5181 btrfs_end_write_no_snapshotting(root
);
5182 btrfs_end_transaction(trans
);
5186 * We're truncating a file that used to have good data down to
5187 * zero. Make sure it gets into the ordered flush list so that
5188 * any new writes get down to disk quickly.
5191 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5192 &BTRFS_I(inode
)->runtime_flags
);
5194 truncate_setsize(inode
, newsize
);
5196 /* Disable nonlocked read DIO to avoid the end less truncate */
5197 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5198 inode_dio_wait(inode
);
5199 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5201 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
5202 if (ret
&& inode
->i_nlink
) {
5206 * Truncate failed, so fix up the in-memory size. We
5207 * adjusted disk_i_size down as we removed extents, so
5208 * wait for disk_i_size to be stable and then update the
5209 * in-memory size to match.
5211 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5214 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5221 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5223 struct inode
*inode
= d_inode(dentry
);
5224 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5227 if (btrfs_root_readonly(root
))
5230 err
= setattr_prepare(dentry
, attr
);
5234 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5235 err
= btrfs_setsize(inode
, attr
);
5240 if (attr
->ia_valid
) {
5241 setattr_copy(inode
, attr
);
5242 inode_inc_iversion(inode
);
5243 err
= btrfs_dirty_inode(inode
);
5245 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5246 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5253 * While truncating the inode pages during eviction, we get the VFS calling
5254 * btrfs_invalidatepage() against each page of the inode. This is slow because
5255 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5256 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5257 * extent_state structures over and over, wasting lots of time.
5259 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5260 * those expensive operations on a per page basis and do only the ordered io
5261 * finishing, while we release here the extent_map and extent_state structures,
5262 * without the excessive merging and splitting.
5264 static void evict_inode_truncate_pages(struct inode
*inode
)
5266 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5267 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5268 struct rb_node
*node
;
5270 ASSERT(inode
->i_state
& I_FREEING
);
5271 truncate_inode_pages_final(&inode
->i_data
);
5273 write_lock(&map_tree
->lock
);
5274 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5275 struct extent_map
*em
;
5277 node
= rb_first(&map_tree
->map
);
5278 em
= rb_entry(node
, struct extent_map
, rb_node
);
5279 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5280 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5281 remove_extent_mapping(map_tree
, em
);
5282 free_extent_map(em
);
5283 if (need_resched()) {
5284 write_unlock(&map_tree
->lock
);
5286 write_lock(&map_tree
->lock
);
5289 write_unlock(&map_tree
->lock
);
5292 * Keep looping until we have no more ranges in the io tree.
5293 * We can have ongoing bios started by readpages (called from readahead)
5294 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5295 * still in progress (unlocked the pages in the bio but did not yet
5296 * unlocked the ranges in the io tree). Therefore this means some
5297 * ranges can still be locked and eviction started because before
5298 * submitting those bios, which are executed by a separate task (work
5299 * queue kthread), inode references (inode->i_count) were not taken
5300 * (which would be dropped in the end io callback of each bio).
5301 * Therefore here we effectively end up waiting for those bios and
5302 * anyone else holding locked ranges without having bumped the inode's
5303 * reference count - if we don't do it, when they access the inode's
5304 * io_tree to unlock a range it may be too late, leading to an
5305 * use-after-free issue.
5307 spin_lock(&io_tree
->lock
);
5308 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5309 struct extent_state
*state
;
5310 struct extent_state
*cached_state
= NULL
;
5314 node
= rb_first(&io_tree
->state
);
5315 state
= rb_entry(node
, struct extent_state
, rb_node
);
5316 start
= state
->start
;
5318 spin_unlock(&io_tree
->lock
);
5320 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5323 * If still has DELALLOC flag, the extent didn't reach disk,
5324 * and its reserved space won't be freed by delayed_ref.
5325 * So we need to free its reserved space here.
5326 * (Refer to comment in btrfs_invalidatepage, case 2)
5328 * Note, end is the bytenr of last byte, so we need + 1 here.
5330 if (state
->state
& EXTENT_DELALLOC
)
5331 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5333 clear_extent_bit(io_tree
, start
, end
,
5334 EXTENT_LOCKED
| EXTENT_DIRTY
|
5335 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5336 EXTENT_DEFRAG
, 1, 1, &cached_state
);
5339 spin_lock(&io_tree
->lock
);
5341 spin_unlock(&io_tree
->lock
);
5344 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
5345 struct btrfs_block_rsv
*rsv
,
5348 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5349 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5353 struct btrfs_trans_handle
*trans
;
5356 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5357 BTRFS_RESERVE_FLUSH_LIMIT
);
5359 if (ret
&& ++failures
> 2) {
5361 "could not allocate space for a delete; will truncate on mount");
5362 return ERR_PTR(-ENOSPC
);
5365 trans
= btrfs_join_transaction(root
);
5366 if (IS_ERR(trans
) || !ret
)
5370 * Try to steal from the global reserve if there is space for
5373 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
) &&
5374 !btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
, 0))
5377 /* If not, commit and try again. */
5378 ret
= btrfs_commit_transaction(trans
);
5380 return ERR_PTR(ret
);
5384 void btrfs_evict_inode(struct inode
*inode
)
5386 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5387 struct btrfs_trans_handle
*trans
;
5388 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5389 struct btrfs_block_rsv
*rsv
;
5393 trace_btrfs_inode_evict(inode
);
5400 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5402 evict_inode_truncate_pages(inode
);
5404 if (inode
->i_nlink
&&
5405 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5406 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5407 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5410 if (is_bad_inode(inode
))
5412 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5413 if (!special_file(inode
->i_mode
))
5414 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5416 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5418 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
5421 if (inode
->i_nlink
> 0) {
5422 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5423 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5427 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5431 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5434 rsv
->size
= min_size
;
5437 btrfs_i_size_write(BTRFS_I(inode
), 0);
5440 trans
= evict_refill_and_join(root
, rsv
, min_size
);
5444 trans
->block_rsv
= rsv
;
5446 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5447 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5448 btrfs_end_transaction(trans
);
5449 btrfs_btree_balance_dirty(fs_info
);
5450 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5457 * Errors here aren't a big deal, it just means we leave orphan items in
5458 * the tree. They will be cleaned up on the next mount. If the inode
5459 * number gets reused, cleanup deletes the orphan item without doing
5460 * anything, and unlink reuses the existing orphan item.
5462 * If it turns out that we are dropping too many of these, we might want
5463 * to add a mechanism for retrying these after a commit.
5465 trans
= evict_refill_and_join(root
, rsv
, min_size
);
5466 if (!IS_ERR(trans
)) {
5467 trans
->block_rsv
= rsv
;
5468 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5469 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5470 btrfs_end_transaction(trans
);
5473 if (!(root
== fs_info
->tree_root
||
5474 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5475 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5478 btrfs_free_block_rsv(fs_info
, rsv
);
5481 * If we didn't successfully delete, the orphan item will still be in
5482 * the tree and we'll retry on the next mount. Again, we might also want
5483 * to retry these periodically in the future.
5485 btrfs_remove_delayed_node(BTRFS_I(inode
));
5490 * this returns the key found in the dir entry in the location pointer.
5491 * If no dir entries were found, returns -ENOENT.
5492 * If found a corrupted location in dir entry, returns -EUCLEAN.
5494 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5495 struct btrfs_key
*location
)
5497 const char *name
= dentry
->d_name
.name
;
5498 int namelen
= dentry
->d_name
.len
;
5499 struct btrfs_dir_item
*di
;
5500 struct btrfs_path
*path
;
5501 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5504 path
= btrfs_alloc_path();
5508 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5519 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5520 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5521 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5523 btrfs_warn(root
->fs_info
,
5524 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5525 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5526 location
->objectid
, location
->type
, location
->offset
);
5529 btrfs_free_path(path
);
5534 * when we hit a tree root in a directory, the btrfs part of the inode
5535 * needs to be changed to reflect the root directory of the tree root. This
5536 * is kind of like crossing a mount point.
5538 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5540 struct dentry
*dentry
,
5541 struct btrfs_key
*location
,
5542 struct btrfs_root
**sub_root
)
5544 struct btrfs_path
*path
;
5545 struct btrfs_root
*new_root
;
5546 struct btrfs_root_ref
*ref
;
5547 struct extent_buffer
*leaf
;
5548 struct btrfs_key key
;
5552 path
= btrfs_alloc_path();
5559 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5560 key
.type
= BTRFS_ROOT_REF_KEY
;
5561 key
.offset
= location
->objectid
;
5563 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5570 leaf
= path
->nodes
[0];
5571 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5572 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5573 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5576 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5577 (unsigned long)(ref
+ 1),
5578 dentry
->d_name
.len
);
5582 btrfs_release_path(path
);
5584 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5585 if (IS_ERR(new_root
)) {
5586 err
= PTR_ERR(new_root
);
5590 *sub_root
= new_root
;
5591 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5592 location
->type
= BTRFS_INODE_ITEM_KEY
;
5593 location
->offset
= 0;
5596 btrfs_free_path(path
);
5600 static void inode_tree_add(struct inode
*inode
)
5602 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5603 struct btrfs_inode
*entry
;
5605 struct rb_node
*parent
;
5606 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5607 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5609 if (inode_unhashed(inode
))
5612 spin_lock(&root
->inode_lock
);
5613 p
= &root
->inode_tree
.rb_node
;
5616 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5618 if (ino
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5619 p
= &parent
->rb_left
;
5620 else if (ino
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5621 p
= &parent
->rb_right
;
5623 WARN_ON(!(entry
->vfs_inode
.i_state
&
5624 (I_WILL_FREE
| I_FREEING
)));
5625 rb_replace_node(parent
, new, &root
->inode_tree
);
5626 RB_CLEAR_NODE(parent
);
5627 spin_unlock(&root
->inode_lock
);
5631 rb_link_node(new, parent
, p
);
5632 rb_insert_color(new, &root
->inode_tree
);
5633 spin_unlock(&root
->inode_lock
);
5636 static void inode_tree_del(struct inode
*inode
)
5638 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5639 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5642 spin_lock(&root
->inode_lock
);
5643 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5644 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5645 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5646 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5648 spin_unlock(&root
->inode_lock
);
5650 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5651 synchronize_srcu(&fs_info
->subvol_srcu
);
5652 spin_lock(&root
->inode_lock
);
5653 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5654 spin_unlock(&root
->inode_lock
);
5656 btrfs_add_dead_root(root
);
5661 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5663 struct btrfs_iget_args
*args
= p
;
5664 inode
->i_ino
= args
->location
->objectid
;
5665 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5666 sizeof(*args
->location
));
5667 BTRFS_I(inode
)->root
= args
->root
;
5671 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5673 struct btrfs_iget_args
*args
= opaque
;
5674 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5675 args
->root
== BTRFS_I(inode
)->root
;
5678 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5679 struct btrfs_key
*location
,
5680 struct btrfs_root
*root
)
5682 struct inode
*inode
;
5683 struct btrfs_iget_args args
;
5684 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5686 args
.location
= location
;
5689 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5690 btrfs_init_locked_inode
,
5695 /* Get an inode object given its location and corresponding root.
5696 * Returns in *is_new if the inode was read from disk
5698 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5699 struct btrfs_root
*root
, int *new)
5701 struct inode
*inode
;
5703 inode
= btrfs_iget_locked(s
, location
, root
);
5705 return ERR_PTR(-ENOMEM
);
5707 if (inode
->i_state
& I_NEW
) {
5710 ret
= btrfs_read_locked_inode(inode
);
5711 if (!is_bad_inode(inode
)) {
5712 inode_tree_add(inode
);
5713 unlock_new_inode(inode
);
5717 unlock_new_inode(inode
);
5720 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5727 static struct inode
*new_simple_dir(struct super_block
*s
,
5728 struct btrfs_key
*key
,
5729 struct btrfs_root
*root
)
5731 struct inode
*inode
= new_inode(s
);
5734 return ERR_PTR(-ENOMEM
);
5736 BTRFS_I(inode
)->root
= root
;
5737 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5738 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5740 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5741 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5742 inode
->i_opflags
&= ~IOP_XATTR
;
5743 inode
->i_fop
= &simple_dir_operations
;
5744 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5745 inode
->i_mtime
= current_time(inode
);
5746 inode
->i_atime
= inode
->i_mtime
;
5747 inode
->i_ctime
= inode
->i_mtime
;
5748 BTRFS_I(inode
)->i_otime
= timespec64_to_timespec(inode
->i_mtime
);
5753 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5755 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5756 struct inode
*inode
;
5757 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5758 struct btrfs_root
*sub_root
= root
;
5759 struct btrfs_key location
;
5763 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5764 return ERR_PTR(-ENAMETOOLONG
);
5766 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5768 return ERR_PTR(ret
);
5770 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5771 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5775 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5776 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5777 &location
, &sub_root
);
5780 inode
= ERR_PTR(ret
);
5782 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5784 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5786 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5788 if (!IS_ERR(inode
) && root
!= sub_root
) {
5789 down_read(&fs_info
->cleanup_work_sem
);
5790 if (!sb_rdonly(inode
->i_sb
))
5791 ret
= btrfs_orphan_cleanup(sub_root
);
5792 up_read(&fs_info
->cleanup_work_sem
);
5795 inode
= ERR_PTR(ret
);
5802 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5804 struct btrfs_root
*root
;
5805 struct inode
*inode
= d_inode(dentry
);
5807 if (!inode
&& !IS_ROOT(dentry
))
5808 inode
= d_inode(dentry
->d_parent
);
5811 root
= BTRFS_I(inode
)->root
;
5812 if (btrfs_root_refs(&root
->root_item
) == 0)
5815 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5821 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5824 struct inode
*inode
;
5826 inode
= btrfs_lookup_dentry(dir
, dentry
);
5827 if (IS_ERR(inode
)) {
5828 if (PTR_ERR(inode
) == -ENOENT
)
5831 return ERR_CAST(inode
);
5834 return d_splice_alias(inode
, dentry
);
5837 unsigned char btrfs_filetype_table
[] = {
5838 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5842 * All this infrastructure exists because dir_emit can fault, and we are holding
5843 * the tree lock when doing readdir. For now just allocate a buffer and copy
5844 * our information into that, and then dir_emit from the buffer. This is
5845 * similar to what NFS does, only we don't keep the buffer around in pagecache
5846 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5847 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5850 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5852 struct btrfs_file_private
*private;
5854 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5857 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5858 if (!private->filldir_buf
) {
5862 file
->private_data
= private;
5873 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5876 struct dir_entry
*entry
= addr
;
5877 char *name
= (char *)(entry
+ 1);
5879 ctx
->pos
= get_unaligned(&entry
->offset
);
5880 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5881 get_unaligned(&entry
->ino
),
5882 get_unaligned(&entry
->type
)))
5884 addr
+= sizeof(struct dir_entry
) +
5885 get_unaligned(&entry
->name_len
);
5891 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5893 struct inode
*inode
= file_inode(file
);
5894 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5895 struct btrfs_file_private
*private = file
->private_data
;
5896 struct btrfs_dir_item
*di
;
5897 struct btrfs_key key
;
5898 struct btrfs_key found_key
;
5899 struct btrfs_path
*path
;
5901 struct list_head ins_list
;
5902 struct list_head del_list
;
5904 struct extent_buffer
*leaf
;
5911 struct btrfs_key location
;
5913 if (!dir_emit_dots(file
, ctx
))
5916 path
= btrfs_alloc_path();
5920 addr
= private->filldir_buf
;
5921 path
->reada
= READA_FORWARD
;
5923 INIT_LIST_HEAD(&ins_list
);
5924 INIT_LIST_HEAD(&del_list
);
5925 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5928 key
.type
= BTRFS_DIR_INDEX_KEY
;
5929 key
.offset
= ctx
->pos
;
5930 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5932 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5937 struct dir_entry
*entry
;
5939 leaf
= path
->nodes
[0];
5940 slot
= path
->slots
[0];
5941 if (slot
>= btrfs_header_nritems(leaf
)) {
5942 ret
= btrfs_next_leaf(root
, path
);
5950 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5952 if (found_key
.objectid
!= key
.objectid
)
5954 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5956 if (found_key
.offset
< ctx
->pos
)
5958 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5960 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5961 name_len
= btrfs_dir_name_len(leaf
, di
);
5962 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5964 btrfs_release_path(path
);
5965 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5968 addr
= private->filldir_buf
;
5975 put_unaligned(name_len
, &entry
->name_len
);
5976 name_ptr
= (char *)(entry
+ 1);
5977 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5979 put_unaligned(btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)],
5981 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5982 put_unaligned(location
.objectid
, &entry
->ino
);
5983 put_unaligned(found_key
.offset
, &entry
->offset
);
5985 addr
+= sizeof(struct dir_entry
) + name_len
;
5986 total_len
+= sizeof(struct dir_entry
) + name_len
;
5990 btrfs_release_path(path
);
5992 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5996 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
6001 * Stop new entries from being returned after we return the last
6004 * New directory entries are assigned a strictly increasing
6005 * offset. This means that new entries created during readdir
6006 * are *guaranteed* to be seen in the future by that readdir.
6007 * This has broken buggy programs which operate on names as
6008 * they're returned by readdir. Until we re-use freed offsets
6009 * we have this hack to stop new entries from being returned
6010 * under the assumption that they'll never reach this huge
6013 * This is being careful not to overflow 32bit loff_t unless the
6014 * last entry requires it because doing so has broken 32bit apps
6017 if (ctx
->pos
>= INT_MAX
)
6018 ctx
->pos
= LLONG_MAX
;
6025 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
6026 btrfs_free_path(path
);
6031 * This is somewhat expensive, updating the tree every time the
6032 * inode changes. But, it is most likely to find the inode in cache.
6033 * FIXME, needs more benchmarking...there are no reasons other than performance
6034 * to keep or drop this code.
6036 static int btrfs_dirty_inode(struct inode
*inode
)
6038 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6039 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6040 struct btrfs_trans_handle
*trans
;
6043 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6046 trans
= btrfs_join_transaction(root
);
6048 return PTR_ERR(trans
);
6050 ret
= btrfs_update_inode(trans
, root
, inode
);
6051 if (ret
&& ret
== -ENOSPC
) {
6052 /* whoops, lets try again with the full transaction */
6053 btrfs_end_transaction(trans
);
6054 trans
= btrfs_start_transaction(root
, 1);
6056 return PTR_ERR(trans
);
6058 ret
= btrfs_update_inode(trans
, root
, inode
);
6060 btrfs_end_transaction(trans
);
6061 if (BTRFS_I(inode
)->delayed_node
)
6062 btrfs_balance_delayed_items(fs_info
);
6068 * This is a copy of file_update_time. We need this so we can return error on
6069 * ENOSPC for updating the inode in the case of file write and mmap writes.
6071 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
6074 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6075 bool dirty
= flags
& ~S_VERSION
;
6077 if (btrfs_root_readonly(root
))
6080 if (flags
& S_VERSION
)
6081 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
6082 if (flags
& S_CTIME
)
6083 inode
->i_ctime
= *now
;
6084 if (flags
& S_MTIME
)
6085 inode
->i_mtime
= *now
;
6086 if (flags
& S_ATIME
)
6087 inode
->i_atime
= *now
;
6088 return dirty
? btrfs_dirty_inode(inode
) : 0;
6092 * find the highest existing sequence number in a directory
6093 * and then set the in-memory index_cnt variable to reflect
6094 * free sequence numbers
6096 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6098 struct btrfs_root
*root
= inode
->root
;
6099 struct btrfs_key key
, found_key
;
6100 struct btrfs_path
*path
;
6101 struct extent_buffer
*leaf
;
6104 key
.objectid
= btrfs_ino(inode
);
6105 key
.type
= BTRFS_DIR_INDEX_KEY
;
6106 key
.offset
= (u64
)-1;
6108 path
= btrfs_alloc_path();
6112 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6115 /* FIXME: we should be able to handle this */
6121 * MAGIC NUMBER EXPLANATION:
6122 * since we search a directory based on f_pos we have to start at 2
6123 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6124 * else has to start at 2
6126 if (path
->slots
[0] == 0) {
6127 inode
->index_cnt
= 2;
6133 leaf
= path
->nodes
[0];
6134 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6136 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6137 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6138 inode
->index_cnt
= 2;
6142 inode
->index_cnt
= found_key
.offset
+ 1;
6144 btrfs_free_path(path
);
6149 * helper to find a free sequence number in a given directory. This current
6150 * code is very simple, later versions will do smarter things in the btree
6152 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6156 if (dir
->index_cnt
== (u64
)-1) {
6157 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6159 ret
= btrfs_set_inode_index_count(dir
);
6165 *index
= dir
->index_cnt
;
6171 static int btrfs_insert_inode_locked(struct inode
*inode
)
6173 struct btrfs_iget_args args
;
6174 args
.location
= &BTRFS_I(inode
)->location
;
6175 args
.root
= BTRFS_I(inode
)->root
;
6177 return insert_inode_locked4(inode
,
6178 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6179 btrfs_find_actor
, &args
);
6183 * Inherit flags from the parent inode.
6185 * Currently only the compression flags and the cow flags are inherited.
6187 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6194 flags
= BTRFS_I(dir
)->flags
;
6196 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6197 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6198 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6199 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6200 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6201 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6204 if (flags
& BTRFS_INODE_NODATACOW
) {
6205 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6206 if (S_ISREG(inode
->i_mode
))
6207 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6210 btrfs_sync_inode_flags_to_i_flags(inode
);
6213 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6214 struct btrfs_root
*root
,
6216 const char *name
, int name_len
,
6217 u64 ref_objectid
, u64 objectid
,
6218 umode_t mode
, u64
*index
)
6220 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6221 struct inode
*inode
;
6222 struct btrfs_inode_item
*inode_item
;
6223 struct btrfs_key
*location
;
6224 struct btrfs_path
*path
;
6225 struct btrfs_inode_ref
*ref
;
6226 struct btrfs_key key
[2];
6228 int nitems
= name
? 2 : 1;
6232 path
= btrfs_alloc_path();
6234 return ERR_PTR(-ENOMEM
);
6236 inode
= new_inode(fs_info
->sb
);
6238 btrfs_free_path(path
);
6239 return ERR_PTR(-ENOMEM
);
6243 * O_TMPFILE, set link count to 0, so that after this point,
6244 * we fill in an inode item with the correct link count.
6247 set_nlink(inode
, 0);
6250 * we have to initialize this early, so we can reclaim the inode
6251 * number if we fail afterwards in this function.
6253 inode
->i_ino
= objectid
;
6256 trace_btrfs_inode_request(dir
);
6258 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6260 btrfs_free_path(path
);
6262 return ERR_PTR(ret
);
6268 * index_cnt is ignored for everything but a dir,
6269 * btrfs_set_inode_index_count has an explanation for the magic
6272 BTRFS_I(inode
)->index_cnt
= 2;
6273 BTRFS_I(inode
)->dir_index
= *index
;
6274 BTRFS_I(inode
)->root
= root
;
6275 BTRFS_I(inode
)->generation
= trans
->transid
;
6276 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6279 * We could have gotten an inode number from somebody who was fsynced
6280 * and then removed in this same transaction, so let's just set full
6281 * sync since it will be a full sync anyway and this will blow away the
6282 * old info in the log.
6284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6286 key
[0].objectid
= objectid
;
6287 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6290 sizes
[0] = sizeof(struct btrfs_inode_item
);
6294 * Start new inodes with an inode_ref. This is slightly more
6295 * efficient for small numbers of hard links since they will
6296 * be packed into one item. Extended refs will kick in if we
6297 * add more hard links than can fit in the ref item.
6299 key
[1].objectid
= objectid
;
6300 key
[1].type
= BTRFS_INODE_REF_KEY
;
6301 key
[1].offset
= ref_objectid
;
6303 sizes
[1] = name_len
+ sizeof(*ref
);
6306 location
= &BTRFS_I(inode
)->location
;
6307 location
->objectid
= objectid
;
6308 location
->offset
= 0;
6309 location
->type
= BTRFS_INODE_ITEM_KEY
;
6311 ret
= btrfs_insert_inode_locked(inode
);
6315 path
->leave_spinning
= 1;
6316 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6320 inode_init_owner(inode
, dir
, mode
);
6321 inode_set_bytes(inode
, 0);
6323 inode
->i_mtime
= current_time(inode
);
6324 inode
->i_atime
= inode
->i_mtime
;
6325 inode
->i_ctime
= inode
->i_mtime
;
6326 BTRFS_I(inode
)->i_otime
= timespec64_to_timespec(inode
->i_mtime
);
6328 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6329 struct btrfs_inode_item
);
6330 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6331 sizeof(*inode_item
));
6332 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6335 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6336 struct btrfs_inode_ref
);
6337 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6338 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6339 ptr
= (unsigned long)(ref
+ 1);
6340 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6343 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6344 btrfs_free_path(path
);
6346 btrfs_inherit_iflags(inode
, dir
);
6348 if (S_ISREG(mode
)) {
6349 if (btrfs_test_opt(fs_info
, NODATASUM
))
6350 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6351 if (btrfs_test_opt(fs_info
, NODATACOW
))
6352 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6353 BTRFS_INODE_NODATASUM
;
6356 inode_tree_add(inode
);
6358 trace_btrfs_inode_new(inode
);
6359 btrfs_set_inode_last_trans(trans
, inode
);
6361 btrfs_update_root_times(trans
, root
);
6363 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6366 "error inheriting props for ino %llu (root %llu): %d",
6367 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6372 unlock_new_inode(inode
);
6375 BTRFS_I(dir
)->index_cnt
--;
6376 btrfs_free_path(path
);
6378 return ERR_PTR(ret
);
6381 static inline u8
btrfs_inode_type(struct inode
*inode
)
6383 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6387 * utility function to add 'inode' into 'parent_inode' with
6388 * a give name and a given sequence number.
6389 * if 'add_backref' is true, also insert a backref from the
6390 * inode to the parent directory.
6392 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6393 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6394 const char *name
, int name_len
, int add_backref
, u64 index
)
6396 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6398 struct btrfs_key key
;
6399 struct btrfs_root
*root
= parent_inode
->root
;
6400 u64 ino
= btrfs_ino(inode
);
6401 u64 parent_ino
= btrfs_ino(parent_inode
);
6403 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6404 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6407 key
.type
= BTRFS_INODE_ITEM_KEY
;
6411 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6412 ret
= btrfs_add_root_ref(trans
, fs_info
, key
.objectid
,
6413 root
->root_key
.objectid
, parent_ino
,
6414 index
, name
, name_len
);
6415 } else if (add_backref
) {
6416 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6420 /* Nothing to clean up yet */
6424 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6426 btrfs_inode_type(&inode
->vfs_inode
), index
);
6427 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6430 btrfs_abort_transaction(trans
, ret
);
6434 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6436 inode_inc_iversion(&parent_inode
->vfs_inode
);
6437 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6438 current_time(&parent_inode
->vfs_inode
);
6439 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6441 btrfs_abort_transaction(trans
, ret
);
6445 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6448 err
= btrfs_del_root_ref(trans
, fs_info
, key
.objectid
,
6449 root
->root_key
.objectid
, parent_ino
,
6450 &local_index
, name
, name_len
);
6452 } else if (add_backref
) {
6456 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6457 ino
, parent_ino
, &local_index
);
6462 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6463 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6464 struct btrfs_inode
*inode
, int backref
, u64 index
)
6466 int err
= btrfs_add_link(trans
, dir
, inode
,
6467 dentry
->d_name
.name
, dentry
->d_name
.len
,
6474 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6475 umode_t mode
, dev_t rdev
)
6477 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6478 struct btrfs_trans_handle
*trans
;
6479 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6480 struct inode
*inode
= NULL
;
6487 * 2 for inode item and ref
6489 * 1 for xattr if selinux is on
6491 trans
= btrfs_start_transaction(root
, 5);
6493 return PTR_ERR(trans
);
6495 err
= btrfs_find_free_ino(root
, &objectid
);
6499 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6500 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6502 if (IS_ERR(inode
)) {
6503 err
= PTR_ERR(inode
);
6508 * If the active LSM wants to access the inode during
6509 * d_instantiate it needs these. Smack checks to see
6510 * if the filesystem supports xattrs by looking at the
6513 inode
->i_op
= &btrfs_special_inode_operations
;
6514 init_special_inode(inode
, inode
->i_mode
, rdev
);
6516 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6518 goto out_unlock_inode
;
6520 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6523 goto out_unlock_inode
;
6525 btrfs_update_inode(trans
, root
, inode
);
6526 d_instantiate_new(dentry
, inode
);
6530 btrfs_end_transaction(trans
);
6531 btrfs_btree_balance_dirty(fs_info
);
6533 inode_dec_link_count(inode
);
6540 unlock_new_inode(inode
);
6545 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6546 umode_t mode
, bool excl
)
6548 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6549 struct btrfs_trans_handle
*trans
;
6550 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6551 struct inode
*inode
= NULL
;
6552 int drop_inode_on_err
= 0;
6558 * 2 for inode item and ref
6560 * 1 for xattr if selinux is on
6562 trans
= btrfs_start_transaction(root
, 5);
6564 return PTR_ERR(trans
);
6566 err
= btrfs_find_free_ino(root
, &objectid
);
6570 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6571 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6573 if (IS_ERR(inode
)) {
6574 err
= PTR_ERR(inode
);
6577 drop_inode_on_err
= 1;
6579 * If the active LSM wants to access the inode during
6580 * d_instantiate it needs these. Smack checks to see
6581 * if the filesystem supports xattrs by looking at the
6584 inode
->i_fop
= &btrfs_file_operations
;
6585 inode
->i_op
= &btrfs_file_inode_operations
;
6586 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6588 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6590 goto out_unlock_inode
;
6592 err
= btrfs_update_inode(trans
, root
, inode
);
6594 goto out_unlock_inode
;
6596 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6599 goto out_unlock_inode
;
6601 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6602 d_instantiate_new(dentry
, inode
);
6605 btrfs_end_transaction(trans
);
6606 if (err
&& drop_inode_on_err
) {
6607 inode_dec_link_count(inode
);
6610 btrfs_btree_balance_dirty(fs_info
);
6614 unlock_new_inode(inode
);
6619 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6620 struct dentry
*dentry
)
6622 struct btrfs_trans_handle
*trans
= NULL
;
6623 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6624 struct inode
*inode
= d_inode(old_dentry
);
6625 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6630 /* do not allow sys_link's with other subvols of the same device */
6631 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6634 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6637 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6642 * 2 items for inode and inode ref
6643 * 2 items for dir items
6644 * 1 item for parent inode
6645 * 1 item for orphan item deletion if O_TMPFILE
6647 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6648 if (IS_ERR(trans
)) {
6649 err
= PTR_ERR(trans
);
6654 /* There are several dir indexes for this inode, clear the cache. */
6655 BTRFS_I(inode
)->dir_index
= 0ULL;
6657 inode_inc_iversion(inode
);
6658 inode
->i_ctime
= current_time(inode
);
6660 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6662 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6668 struct dentry
*parent
= dentry
->d_parent
;
6669 err
= btrfs_update_inode(trans
, root
, inode
);
6672 if (inode
->i_nlink
== 1) {
6674 * If new hard link count is 1, it's a file created
6675 * with open(2) O_TMPFILE flag.
6677 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6681 d_instantiate(dentry
, inode
);
6682 btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
);
6687 btrfs_end_transaction(trans
);
6689 inode_dec_link_count(inode
);
6692 btrfs_btree_balance_dirty(fs_info
);
6696 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6698 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6699 struct inode
*inode
= NULL
;
6700 struct btrfs_trans_handle
*trans
;
6701 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6703 int drop_on_err
= 0;
6708 * 2 items for inode and ref
6709 * 2 items for dir items
6710 * 1 for xattr if selinux is on
6712 trans
= btrfs_start_transaction(root
, 5);
6714 return PTR_ERR(trans
);
6716 err
= btrfs_find_free_ino(root
, &objectid
);
6720 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6721 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6722 S_IFDIR
| mode
, &index
);
6723 if (IS_ERR(inode
)) {
6724 err
= PTR_ERR(inode
);
6729 /* these must be set before we unlock the inode */
6730 inode
->i_op
= &btrfs_dir_inode_operations
;
6731 inode
->i_fop
= &btrfs_dir_file_operations
;
6733 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6735 goto out_fail_inode
;
6737 btrfs_i_size_write(BTRFS_I(inode
), 0);
6738 err
= btrfs_update_inode(trans
, root
, inode
);
6740 goto out_fail_inode
;
6742 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6743 dentry
->d_name
.name
,
6744 dentry
->d_name
.len
, 0, index
);
6746 goto out_fail_inode
;
6748 d_instantiate_new(dentry
, inode
);
6752 btrfs_end_transaction(trans
);
6754 inode_dec_link_count(inode
);
6757 btrfs_btree_balance_dirty(fs_info
);
6761 unlock_new_inode(inode
);
6765 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6767 size_t pg_offset
, u64 extent_offset
,
6768 struct btrfs_file_extent_item
*item
)
6771 struct extent_buffer
*leaf
= path
->nodes
[0];
6774 unsigned long inline_size
;
6778 WARN_ON(pg_offset
!= 0);
6779 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6780 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6781 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6782 btrfs_item_nr(path
->slots
[0]));
6783 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6786 ptr
= btrfs_file_extent_inline_start(item
);
6788 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6790 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6791 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6792 extent_offset
, inline_size
, max_size
);
6795 * decompression code contains a memset to fill in any space between the end
6796 * of the uncompressed data and the end of max_size in case the decompressed
6797 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6798 * the end of an inline extent and the beginning of the next block, so we
6799 * cover that region here.
6802 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6803 char *map
= kmap(page
);
6804 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6812 * a bit scary, this does extent mapping from logical file offset to the disk.
6813 * the ugly parts come from merging extents from the disk with the in-ram
6814 * representation. This gets more complex because of the data=ordered code,
6815 * where the in-ram extents might be locked pending data=ordered completion.
6817 * This also copies inline extents directly into the page.
6819 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6821 size_t pg_offset
, u64 start
, u64 len
,
6824 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6827 u64 extent_start
= 0;
6829 u64 objectid
= btrfs_ino(inode
);
6831 struct btrfs_path
*path
= NULL
;
6832 struct btrfs_root
*root
= inode
->root
;
6833 struct btrfs_file_extent_item
*item
;
6834 struct extent_buffer
*leaf
;
6835 struct btrfs_key found_key
;
6836 struct extent_map
*em
= NULL
;
6837 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6838 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6839 const bool new_inline
= !page
|| create
;
6841 read_lock(&em_tree
->lock
);
6842 em
= lookup_extent_mapping(em_tree
, start
, len
);
6844 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6845 read_unlock(&em_tree
->lock
);
6848 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6849 free_extent_map(em
);
6850 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6851 free_extent_map(em
);
6855 em
= alloc_extent_map();
6860 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6861 em
->start
= EXTENT_MAP_HOLE
;
6862 em
->orig_start
= EXTENT_MAP_HOLE
;
6864 em
->block_len
= (u64
)-1;
6867 path
= btrfs_alloc_path();
6873 * Chances are we'll be called again, so go ahead and do
6876 path
->reada
= READA_FORWARD
;
6879 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6886 if (path
->slots
[0] == 0)
6891 leaf
= path
->nodes
[0];
6892 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6893 struct btrfs_file_extent_item
);
6894 /* are we inside the extent that was found? */
6895 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6896 found_type
= found_key
.type
;
6897 if (found_key
.objectid
!= objectid
||
6898 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6900 * If we backup past the first extent we want to move forward
6901 * and see if there is an extent in front of us, otherwise we'll
6902 * say there is a hole for our whole search range which can
6909 found_type
= btrfs_file_extent_type(leaf
, item
);
6910 extent_start
= found_key
.offset
;
6911 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6912 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6913 extent_end
= extent_start
+
6914 btrfs_file_extent_num_bytes(leaf
, item
);
6916 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6918 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6920 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6921 extent_end
= ALIGN(extent_start
+ size
,
6922 fs_info
->sectorsize
);
6924 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6929 if (start
>= extent_end
) {
6931 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6932 ret
= btrfs_next_leaf(root
, path
);
6939 leaf
= path
->nodes
[0];
6941 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6942 if (found_key
.objectid
!= objectid
||
6943 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6945 if (start
+ len
<= found_key
.offset
)
6947 if (start
> found_key
.offset
)
6950 em
->orig_start
= start
;
6951 em
->len
= found_key
.offset
- start
;
6955 btrfs_extent_item_to_extent_map(inode
, path
, item
,
6958 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6959 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6961 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6965 size_t extent_offset
;
6971 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6972 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6973 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6974 size
- extent_offset
);
6975 em
->start
= extent_start
+ extent_offset
;
6976 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6977 em
->orig_block_len
= em
->len
;
6978 em
->orig_start
= em
->start
;
6979 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6980 if (!PageUptodate(page
)) {
6981 if (btrfs_file_extent_compression(leaf
, item
) !=
6982 BTRFS_COMPRESS_NONE
) {
6983 ret
= uncompress_inline(path
, page
, pg_offset
,
6984 extent_offset
, item
);
6991 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6993 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6994 memset(map
+ pg_offset
+ copy_size
, 0,
6995 PAGE_SIZE
- pg_offset
-
7000 flush_dcache_page(page
);
7002 set_extent_uptodate(io_tree
, em
->start
,
7003 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7008 em
->orig_start
= start
;
7011 em
->block_start
= EXTENT_MAP_HOLE
;
7013 btrfs_release_path(path
);
7014 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7016 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7017 em
->start
, em
->len
, start
, len
);
7023 write_lock(&em_tree
->lock
);
7024 err
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
7025 write_unlock(&em_tree
->lock
);
7028 trace_btrfs_get_extent(root
, inode
, em
);
7030 btrfs_free_path(path
);
7032 free_extent_map(em
);
7033 return ERR_PTR(err
);
7035 BUG_ON(!em
); /* Error is always set */
7039 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7041 size_t pg_offset
, u64 start
, u64 len
,
7044 struct extent_map
*em
;
7045 struct extent_map
*hole_em
= NULL
;
7046 u64 range_start
= start
;
7052 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7056 * If our em maps to:
7058 * - a pre-alloc extent,
7059 * there might actually be delalloc bytes behind it.
7061 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7062 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7067 /* check to see if we've wrapped (len == -1 or similar) */
7076 /* ok, we didn't find anything, lets look for delalloc */
7077 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7078 end
, len
, EXTENT_DELALLOC
, 1);
7079 found_end
= range_start
+ found
;
7080 if (found_end
< range_start
)
7081 found_end
= (u64
)-1;
7084 * we didn't find anything useful, return
7085 * the original results from get_extent()
7087 if (range_start
> end
|| found_end
<= start
) {
7093 /* adjust the range_start to make sure it doesn't
7094 * go backwards from the start they passed in
7096 range_start
= max(start
, range_start
);
7097 found
= found_end
- range_start
;
7100 u64 hole_start
= start
;
7103 em
= alloc_extent_map();
7109 * when btrfs_get_extent can't find anything it
7110 * returns one huge hole
7112 * make sure what it found really fits our range, and
7113 * adjust to make sure it is based on the start from
7117 u64 calc_end
= extent_map_end(hole_em
);
7119 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7120 free_extent_map(hole_em
);
7123 hole_start
= max(hole_em
->start
, start
);
7124 hole_len
= calc_end
- hole_start
;
7128 if (hole_em
&& range_start
> hole_start
) {
7129 /* our hole starts before our delalloc, so we
7130 * have to return just the parts of the hole
7131 * that go until the delalloc starts
7133 em
->len
= min(hole_len
,
7134 range_start
- hole_start
);
7135 em
->start
= hole_start
;
7136 em
->orig_start
= hole_start
;
7138 * don't adjust block start at all,
7139 * it is fixed at EXTENT_MAP_HOLE
7141 em
->block_start
= hole_em
->block_start
;
7142 em
->block_len
= hole_len
;
7143 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7144 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7146 em
->start
= range_start
;
7148 em
->orig_start
= range_start
;
7149 em
->block_start
= EXTENT_MAP_DELALLOC
;
7150 em
->block_len
= found
;
7157 free_extent_map(hole_em
);
7159 free_extent_map(em
);
7160 return ERR_PTR(err
);
7165 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7168 const u64 orig_start
,
7169 const u64 block_start
,
7170 const u64 block_len
,
7171 const u64 orig_block_len
,
7172 const u64 ram_bytes
,
7175 struct extent_map
*em
= NULL
;
7178 if (type
!= BTRFS_ORDERED_NOCOW
) {
7179 em
= create_io_em(inode
, start
, len
, orig_start
,
7180 block_start
, block_len
, orig_block_len
,
7182 BTRFS_COMPRESS_NONE
, /* compress_type */
7187 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7188 len
, block_len
, type
);
7191 free_extent_map(em
);
7192 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7193 start
+ len
- 1, 0);
7202 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7205 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7206 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7207 struct extent_map
*em
;
7208 struct btrfs_key ins
;
7212 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7213 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7214 0, alloc_hint
, &ins
, 1, 1);
7216 return ERR_PTR(ret
);
7218 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7219 ins
.objectid
, ins
.offset
, ins
.offset
,
7220 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7221 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7223 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7230 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7231 * block must be cow'd
7233 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7234 u64
*orig_start
, u64
*orig_block_len
,
7237 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7238 struct btrfs_path
*path
;
7240 struct extent_buffer
*leaf
;
7241 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7242 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7243 struct btrfs_file_extent_item
*fi
;
7244 struct btrfs_key key
;
7251 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7253 path
= btrfs_alloc_path();
7257 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7258 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7262 slot
= path
->slots
[0];
7265 /* can't find the item, must cow */
7272 leaf
= path
->nodes
[0];
7273 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7274 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7275 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7276 /* not our file or wrong item type, must cow */
7280 if (key
.offset
> offset
) {
7281 /* Wrong offset, must cow */
7285 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7286 found_type
= btrfs_file_extent_type(leaf
, fi
);
7287 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7288 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7289 /* not a regular extent, must cow */
7293 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7296 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7297 if (extent_end
<= offset
)
7300 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7301 if (disk_bytenr
== 0)
7304 if (btrfs_file_extent_compression(leaf
, fi
) ||
7305 btrfs_file_extent_encryption(leaf
, fi
) ||
7306 btrfs_file_extent_other_encoding(leaf
, fi
))
7310 * Do the same check as in btrfs_cross_ref_exist but without the
7311 * unnecessary search.
7313 if (btrfs_file_extent_generation(leaf
, fi
) <=
7314 btrfs_root_last_snapshot(&root
->root_item
))
7317 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7320 *orig_start
= key
.offset
- backref_offset
;
7321 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7322 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7325 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7328 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7329 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7332 range_end
= round_up(offset
+ num_bytes
,
7333 root
->fs_info
->sectorsize
) - 1;
7334 ret
= test_range_bit(io_tree
, offset
, range_end
,
7335 EXTENT_DELALLOC
, 0, NULL
);
7342 btrfs_release_path(path
);
7345 * look for other files referencing this extent, if we
7346 * find any we must cow
7349 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7350 key
.offset
- backref_offset
, disk_bytenr
);
7357 * adjust disk_bytenr and num_bytes to cover just the bytes
7358 * in this extent we are about to write. If there
7359 * are any csums in that range we have to cow in order
7360 * to keep the csums correct
7362 disk_bytenr
+= backref_offset
;
7363 disk_bytenr
+= offset
- key
.offset
;
7364 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7367 * all of the above have passed, it is safe to overwrite this extent
7373 btrfs_free_path(path
);
7377 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7378 struct extent_state
**cached_state
, int writing
)
7380 struct btrfs_ordered_extent
*ordered
;
7384 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7387 * We're concerned with the entire range that we're going to be
7388 * doing DIO to, so we need to make sure there's no ordered
7389 * extents in this range.
7391 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7392 lockend
- lockstart
+ 1);
7395 * We need to make sure there are no buffered pages in this
7396 * range either, we could have raced between the invalidate in
7397 * generic_file_direct_write and locking the extent. The
7398 * invalidate needs to happen so that reads after a write do not
7402 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7403 lockstart
, lockend
)))
7406 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7411 * If we are doing a DIO read and the ordered extent we
7412 * found is for a buffered write, we can not wait for it
7413 * to complete and retry, because if we do so we can
7414 * deadlock with concurrent buffered writes on page
7415 * locks. This happens only if our DIO read covers more
7416 * than one extent map, if at this point has already
7417 * created an ordered extent for a previous extent map
7418 * and locked its range in the inode's io tree, and a
7419 * concurrent write against that previous extent map's
7420 * range and this range started (we unlock the ranges
7421 * in the io tree only when the bios complete and
7422 * buffered writes always lock pages before attempting
7423 * to lock range in the io tree).
7426 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7427 btrfs_start_ordered_extent(inode
, ordered
, 1);
7430 btrfs_put_ordered_extent(ordered
);
7433 * We could trigger writeback for this range (and wait
7434 * for it to complete) and then invalidate the pages for
7435 * this range (through invalidate_inode_pages2_range()),
7436 * but that can lead us to a deadlock with a concurrent
7437 * call to readpages() (a buffered read or a defrag call
7438 * triggered a readahead) on a page lock due to an
7439 * ordered dio extent we created before but did not have
7440 * yet a corresponding bio submitted (whence it can not
7441 * complete), which makes readpages() wait for that
7442 * ordered extent to complete while holding a lock on
7457 /* The callers of this must take lock_extent() */
7458 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7459 u64 orig_start
, u64 block_start
,
7460 u64 block_len
, u64 orig_block_len
,
7461 u64 ram_bytes
, int compress_type
,
7464 struct extent_map_tree
*em_tree
;
7465 struct extent_map
*em
;
7466 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7469 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7470 type
== BTRFS_ORDERED_COMPRESSED
||
7471 type
== BTRFS_ORDERED_NOCOW
||
7472 type
== BTRFS_ORDERED_REGULAR
);
7474 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7475 em
= alloc_extent_map();
7477 return ERR_PTR(-ENOMEM
);
7480 em
->orig_start
= orig_start
;
7482 em
->block_len
= block_len
;
7483 em
->block_start
= block_start
;
7484 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7485 em
->orig_block_len
= orig_block_len
;
7486 em
->ram_bytes
= ram_bytes
;
7487 em
->generation
= -1;
7488 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7489 if (type
== BTRFS_ORDERED_PREALLOC
) {
7490 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7491 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7492 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7493 em
->compress_type
= compress_type
;
7497 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7498 em
->start
+ em
->len
- 1, 0);
7499 write_lock(&em_tree
->lock
);
7500 ret
= add_extent_mapping(em_tree
, em
, 1);
7501 write_unlock(&em_tree
->lock
);
7503 * The caller has taken lock_extent(), who could race with us
7506 } while (ret
== -EEXIST
);
7509 free_extent_map(em
);
7510 return ERR_PTR(ret
);
7513 /* em got 2 refs now, callers needs to do free_extent_map once. */
7518 static int btrfs_get_blocks_direct_read(struct extent_map
*em
,
7519 struct buffer_head
*bh_result
,
7520 struct inode
*inode
,
7523 if (em
->block_start
== EXTENT_MAP_HOLE
||
7524 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7527 len
= min(len
, em
->len
- (start
- em
->start
));
7529 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7531 bh_result
->b_size
= len
;
7532 bh_result
->b_bdev
= em
->bdev
;
7533 set_buffer_mapped(bh_result
);
7538 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7539 struct buffer_head
*bh_result
,
7540 struct inode
*inode
,
7541 struct btrfs_dio_data
*dio_data
,
7544 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7545 struct extent_map
*em
= *map
;
7549 * We don't allocate a new extent in the following cases
7551 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7553 * 2) The extent is marked as PREALLOC. We're good to go here and can
7554 * just use the extent.
7557 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7558 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7559 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7561 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7563 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7564 type
= BTRFS_ORDERED_PREALLOC
;
7566 type
= BTRFS_ORDERED_NOCOW
;
7567 len
= min(len
, em
->len
- (start
- em
->start
));
7568 block_start
= em
->block_start
+ (start
- em
->start
);
7570 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7571 &orig_block_len
, &ram_bytes
) == 1 &&
7572 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7573 struct extent_map
*em2
;
7575 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7576 orig_start
, block_start
,
7577 len
, orig_block_len
,
7579 btrfs_dec_nocow_writers(fs_info
, block_start
);
7580 if (type
== BTRFS_ORDERED_PREALLOC
) {
7581 free_extent_map(em
);
7585 if (em2
&& IS_ERR(em2
)) {
7590 * For inode marked NODATACOW or extent marked PREALLOC,
7591 * use the existing or preallocated extent, so does not
7592 * need to adjust btrfs_space_info's bytes_may_use.
7594 btrfs_free_reserved_data_space_noquota(inode
, start
,
7600 /* this will cow the extent */
7601 len
= bh_result
->b_size
;
7602 free_extent_map(em
);
7603 *map
= em
= btrfs_new_extent_direct(inode
, start
, len
);
7609 len
= min(len
, em
->len
- (start
- em
->start
));
7612 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7614 bh_result
->b_size
= len
;
7615 bh_result
->b_bdev
= em
->bdev
;
7616 set_buffer_mapped(bh_result
);
7618 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7619 set_buffer_new(bh_result
);
7622 * Need to update the i_size under the extent lock so buffered
7623 * readers will get the updated i_size when we unlock.
7625 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7626 i_size_write(inode
, start
+ len
);
7628 WARN_ON(dio_data
->reserve
< len
);
7629 dio_data
->reserve
-= len
;
7630 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7631 current
->journal_info
= dio_data
;
7636 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7637 struct buffer_head
*bh_result
, int create
)
7639 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7640 struct extent_map
*em
;
7641 struct extent_state
*cached_state
= NULL
;
7642 struct btrfs_dio_data
*dio_data
= NULL
;
7643 u64 start
= iblock
<< inode
->i_blkbits
;
7644 u64 lockstart
, lockend
;
7645 u64 len
= bh_result
->b_size
;
7646 int unlock_bits
= EXTENT_LOCKED
;
7650 unlock_bits
|= EXTENT_DIRTY
;
7652 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7655 lockend
= start
+ len
- 1;
7657 if (current
->journal_info
) {
7659 * Need to pull our outstanding extents and set journal_info to NULL so
7660 * that anything that needs to check if there's a transaction doesn't get
7663 dio_data
= current
->journal_info
;
7664 current
->journal_info
= NULL
;
7668 * If this errors out it's because we couldn't invalidate pagecache for
7669 * this range and we need to fallback to buffered.
7671 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7677 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7684 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7685 * io. INLINE is special, and we could probably kludge it in here, but
7686 * it's still buffered so for safety lets just fall back to the generic
7689 * For COMPRESSED we _have_ to read the entire extent in so we can
7690 * decompress it, so there will be buffering required no matter what we
7691 * do, so go ahead and fallback to buffered.
7693 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7694 * to buffered IO. Don't blame me, this is the price we pay for using
7697 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7698 em
->block_start
== EXTENT_MAP_INLINE
) {
7699 free_extent_map(em
);
7705 ret
= btrfs_get_blocks_direct_write(&em
, bh_result
, inode
,
7706 dio_data
, start
, len
);
7710 /* clear and unlock the entire range */
7711 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7712 unlock_bits
, 1, 0, &cached_state
);
7714 ret
= btrfs_get_blocks_direct_read(em
, bh_result
, inode
,
7716 /* Can be negative only if we read from a hole */
7719 free_extent_map(em
);
7723 * We need to unlock only the end area that we aren't using.
7724 * The rest is going to be unlocked by the endio routine.
7726 lockstart
= start
+ bh_result
->b_size
;
7727 if (lockstart
< lockend
) {
7728 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7729 lockend
, unlock_bits
, 1, 0,
7732 free_extent_state(cached_state
);
7736 free_extent_map(em
);
7741 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7742 unlock_bits
, 1, 0, &cached_state
);
7745 current
->journal_info
= dio_data
;
7749 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7753 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7756 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7758 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7762 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7767 static int btrfs_check_dio_repairable(struct inode
*inode
,
7768 struct bio
*failed_bio
,
7769 struct io_failure_record
*failrec
,
7772 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7775 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7776 if (num_copies
== 1) {
7778 * we only have a single copy of the data, so don't bother with
7779 * all the retry and error correction code that follows. no
7780 * matter what the error is, it is very likely to persist.
7782 btrfs_debug(fs_info
,
7783 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7784 num_copies
, failrec
->this_mirror
, failed_mirror
);
7788 failrec
->failed_mirror
= failed_mirror
;
7789 failrec
->this_mirror
++;
7790 if (failrec
->this_mirror
== failed_mirror
)
7791 failrec
->this_mirror
++;
7793 if (failrec
->this_mirror
> num_copies
) {
7794 btrfs_debug(fs_info
,
7795 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7796 num_copies
, failrec
->this_mirror
, failed_mirror
);
7803 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7804 struct page
*page
, unsigned int pgoff
,
7805 u64 start
, u64 end
, int failed_mirror
,
7806 bio_end_io_t
*repair_endio
, void *repair_arg
)
7808 struct io_failure_record
*failrec
;
7809 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7810 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7813 unsigned int read_mode
= 0;
7816 blk_status_t status
;
7817 struct bio_vec bvec
;
7819 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7821 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7823 return errno_to_blk_status(ret
);
7825 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7828 free_io_failure(failure_tree
, io_tree
, failrec
);
7829 return BLK_STS_IOERR
;
7832 segs
= bio_segments(failed_bio
);
7833 bio_get_first_bvec(failed_bio
, &bvec
);
7835 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7836 read_mode
|= REQ_FAILFAST_DEV
;
7838 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7839 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7840 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7841 pgoff
, isector
, repair_endio
, repair_arg
);
7842 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
7844 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7845 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7846 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7848 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7850 free_io_failure(failure_tree
, io_tree
, failrec
);
7857 struct btrfs_retry_complete
{
7858 struct completion done
;
7859 struct inode
*inode
;
7864 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7866 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7867 struct inode
*inode
= done
->inode
;
7868 struct bio_vec
*bvec
;
7869 struct extent_io_tree
*io_tree
, *failure_tree
;
7875 ASSERT(bio
->bi_vcnt
== 1);
7876 io_tree
= &BTRFS_I(inode
)->io_tree
;
7877 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7878 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
7881 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7882 bio_for_each_segment_all(bvec
, bio
, i
)
7883 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
7884 io_tree
, done
->start
, bvec
->bv_page
,
7885 btrfs_ino(BTRFS_I(inode
)), 0);
7887 complete(&done
->done
);
7891 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
7892 struct btrfs_io_bio
*io_bio
)
7894 struct btrfs_fs_info
*fs_info
;
7895 struct bio_vec bvec
;
7896 struct bvec_iter iter
;
7897 struct btrfs_retry_complete done
;
7903 blk_status_t err
= BLK_STS_OK
;
7905 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7906 sectorsize
= fs_info
->sectorsize
;
7908 start
= io_bio
->logical
;
7910 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7912 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7913 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7914 pgoff
= bvec
.bv_offset
;
7916 next_block_or_try_again
:
7919 init_completion(&done
.done
);
7921 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7922 pgoff
, start
, start
+ sectorsize
- 1,
7924 btrfs_retry_endio_nocsum
, &done
);
7930 wait_for_completion_io(&done
.done
);
7932 if (!done
.uptodate
) {
7933 /* We might have another mirror, so try again */
7934 goto next_block_or_try_again
;
7938 start
+= sectorsize
;
7942 pgoff
+= sectorsize
;
7943 ASSERT(pgoff
< PAGE_SIZE
);
7944 goto next_block_or_try_again
;
7951 static void btrfs_retry_endio(struct bio
*bio
)
7953 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7954 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7955 struct extent_io_tree
*io_tree
, *failure_tree
;
7956 struct inode
*inode
= done
->inode
;
7957 struct bio_vec
*bvec
;
7967 ASSERT(bio
->bi_vcnt
== 1);
7968 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
7970 io_tree
= &BTRFS_I(inode
)->io_tree
;
7971 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7973 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7974 bio_for_each_segment_all(bvec
, bio
, i
) {
7975 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7976 bvec
->bv_offset
, done
->start
,
7979 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
7980 failure_tree
, io_tree
, done
->start
,
7982 btrfs_ino(BTRFS_I(inode
)),
7988 done
->uptodate
= uptodate
;
7990 complete(&done
->done
);
7994 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
7995 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
7997 struct btrfs_fs_info
*fs_info
;
7998 struct bio_vec bvec
;
7999 struct bvec_iter iter
;
8000 struct btrfs_retry_complete done
;
8007 bool uptodate
= (err
== 0);
8009 blk_status_t status
;
8011 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8012 sectorsize
= fs_info
->sectorsize
;
8015 start
= io_bio
->logical
;
8017 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8019 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8020 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8022 pgoff
= bvec
.bv_offset
;
8025 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8026 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8027 bvec
.bv_page
, pgoff
, start
, sectorsize
);
8034 init_completion(&done
.done
);
8036 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8037 pgoff
, start
, start
+ sectorsize
- 1,
8038 io_bio
->mirror_num
, btrfs_retry_endio
,
8045 wait_for_completion_io(&done
.done
);
8047 if (!done
.uptodate
) {
8048 /* We might have another mirror, so try again */
8052 offset
+= sectorsize
;
8053 start
+= sectorsize
;
8059 pgoff
+= sectorsize
;
8060 ASSERT(pgoff
< PAGE_SIZE
);
8068 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8069 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8071 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8075 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8079 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8083 static void btrfs_endio_direct_read(struct bio
*bio
)
8085 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8086 struct inode
*inode
= dip
->inode
;
8087 struct bio
*dio_bio
;
8088 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8089 blk_status_t err
= bio
->bi_status
;
8091 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8092 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8094 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8095 dip
->logical_offset
+ dip
->bytes
- 1);
8096 dio_bio
= dip
->dio_bio
;
8100 dio_bio
->bi_status
= err
;
8101 dio_end_io(dio_bio
);
8104 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8108 static void __endio_write_update_ordered(struct inode
*inode
,
8109 const u64 offset
, const u64 bytes
,
8110 const bool uptodate
)
8112 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8113 struct btrfs_ordered_extent
*ordered
= NULL
;
8114 struct btrfs_workqueue
*wq
;
8115 btrfs_work_func_t func
;
8116 u64 ordered_offset
= offset
;
8117 u64 ordered_bytes
= bytes
;
8120 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8121 wq
= fs_info
->endio_freespace_worker
;
8122 func
= btrfs_freespace_write_helper
;
8124 wq
= fs_info
->endio_write_workers
;
8125 func
= btrfs_endio_write_helper
;
8128 while (ordered_offset
< offset
+ bytes
) {
8129 last_offset
= ordered_offset
;
8130 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8134 btrfs_init_work(&ordered
->work
, func
,
8137 btrfs_queue_work(wq
, &ordered
->work
);
8140 * If btrfs_dec_test_ordered_pending does not find any ordered
8141 * extent in the range, we can exit.
8143 if (ordered_offset
== last_offset
)
8146 * Our bio might span multiple ordered extents. In this case
8147 * we keep goin until we have accounted the whole dio.
8149 if (ordered_offset
< offset
+ bytes
) {
8150 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8156 static void btrfs_endio_direct_write(struct bio
*bio
)
8158 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8159 struct bio
*dio_bio
= dip
->dio_bio
;
8161 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8162 dip
->bytes
, !bio
->bi_status
);
8166 dio_bio
->bi_status
= bio
->bi_status
;
8167 dio_end_io(dio_bio
);
8171 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
8172 struct bio
*bio
, u64 offset
)
8174 struct inode
*inode
= private_data
;
8176 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8177 BUG_ON(ret
); /* -ENOMEM */
8181 static void btrfs_end_dio_bio(struct bio
*bio
)
8183 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8184 blk_status_t err
= bio
->bi_status
;
8187 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8188 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8189 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8191 (unsigned long long)bio
->bi_iter
.bi_sector
,
8192 bio
->bi_iter
.bi_size
, err
);
8194 if (dip
->subio_endio
)
8195 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8199 * We want to perceive the errors flag being set before
8200 * decrementing the reference count. We don't need a barrier
8201 * since atomic operations with a return value are fully
8202 * ordered as per atomic_t.txt
8207 /* if there are more bios still pending for this dio, just exit */
8208 if (!atomic_dec_and_test(&dip
->pending_bios
))
8212 bio_io_error(dip
->orig_bio
);
8214 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8215 bio_endio(dip
->orig_bio
);
8221 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8222 struct btrfs_dio_private
*dip
,
8226 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8227 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8231 * We load all the csum data we need when we submit
8232 * the first bio to reduce the csum tree search and
8235 if (dip
->logical_offset
== file_offset
) {
8236 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8242 if (bio
== dip
->orig_bio
)
8245 file_offset
-= dip
->logical_offset
;
8246 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8247 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8252 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
8253 struct inode
*inode
, u64 file_offset
, int async_submit
)
8255 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8256 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8257 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8260 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8262 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8265 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8270 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8273 if (write
&& async_submit
) {
8274 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8276 btrfs_submit_bio_start_direct_io
,
8277 btrfs_submit_bio_done
);
8281 * If we aren't doing async submit, calculate the csum of the
8284 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8288 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8294 ret
= btrfs_map_bio(fs_info
, bio
, 0, 0);
8299 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8301 struct inode
*inode
= dip
->inode
;
8302 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8304 struct bio
*orig_bio
= dip
->orig_bio
;
8305 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8306 u64 file_offset
= dip
->logical_offset
;
8308 int async_submit
= 0;
8310 int clone_offset
= 0;
8313 blk_status_t status
;
8315 map_length
= orig_bio
->bi_iter
.bi_size
;
8316 submit_len
= map_length
;
8317 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8318 &map_length
, NULL
, 0);
8322 if (map_length
>= submit_len
) {
8324 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8328 /* async crcs make it difficult to collect full stripe writes. */
8329 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8335 ASSERT(map_length
<= INT_MAX
);
8336 atomic_inc(&dip
->pending_bios
);
8338 clone_len
= min_t(int, submit_len
, map_length
);
8341 * This will never fail as it's passing GPF_NOFS and
8342 * the allocation is backed by btrfs_bioset.
8344 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8346 bio
->bi_private
= dip
;
8347 bio
->bi_end_io
= btrfs_end_dio_bio
;
8348 btrfs_io_bio(bio
)->logical
= file_offset
;
8350 ASSERT(submit_len
>= clone_len
);
8351 submit_len
-= clone_len
;
8352 if (submit_len
== 0)
8356 * Increase the count before we submit the bio so we know
8357 * the end IO handler won't happen before we increase the
8358 * count. Otherwise, the dip might get freed before we're
8359 * done setting it up.
8361 atomic_inc(&dip
->pending_bios
);
8363 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8367 atomic_dec(&dip
->pending_bios
);
8371 clone_offset
+= clone_len
;
8372 start_sector
+= clone_len
>> 9;
8373 file_offset
+= clone_len
;
8375 map_length
= submit_len
;
8376 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8377 start_sector
<< 9, &map_length
, NULL
, 0);
8380 } while (submit_len
> 0);
8383 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8391 * Before atomic variable goto zero, we must make sure dip->errors is
8392 * perceived to be set. This ordering is ensured by the fact that an
8393 * atomic operations with a return value are fully ordered as per
8396 if (atomic_dec_and_test(&dip
->pending_bios
))
8397 bio_io_error(dip
->orig_bio
);
8399 /* bio_end_io() will handle error, so we needn't return it */
8403 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8406 struct btrfs_dio_private
*dip
= NULL
;
8407 struct bio
*bio
= NULL
;
8408 struct btrfs_io_bio
*io_bio
;
8409 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8412 bio
= btrfs_bio_clone(dio_bio
);
8414 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8420 dip
->private = dio_bio
->bi_private
;
8422 dip
->logical_offset
= file_offset
;
8423 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8424 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8425 bio
->bi_private
= dip
;
8426 dip
->orig_bio
= bio
;
8427 dip
->dio_bio
= dio_bio
;
8428 atomic_set(&dip
->pending_bios
, 0);
8429 io_bio
= btrfs_io_bio(bio
);
8430 io_bio
->logical
= file_offset
;
8433 bio
->bi_end_io
= btrfs_endio_direct_write
;
8435 bio
->bi_end_io
= btrfs_endio_direct_read
;
8436 dip
->subio_endio
= btrfs_subio_endio_read
;
8440 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8441 * even if we fail to submit a bio, because in such case we do the
8442 * corresponding error handling below and it must not be done a second
8443 * time by btrfs_direct_IO().
8446 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8448 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8450 dio_data
->unsubmitted_oe_range_start
=
8451 dio_data
->unsubmitted_oe_range_end
;
8454 ret
= btrfs_submit_direct_hook(dip
);
8459 io_bio
->end_io(io_bio
, ret
);
8463 * If we arrived here it means either we failed to submit the dip
8464 * or we either failed to clone the dio_bio or failed to allocate the
8465 * dip. If we cloned the dio_bio and allocated the dip, we can just
8466 * call bio_endio against our io_bio so that we get proper resource
8467 * cleanup if we fail to submit the dip, otherwise, we must do the
8468 * same as btrfs_endio_direct_[write|read] because we can't call these
8469 * callbacks - they require an allocated dip and a clone of dio_bio.
8474 * The end io callbacks free our dip, do the final put on bio
8475 * and all the cleanup and final put for dio_bio (through
8482 __endio_write_update_ordered(inode
,
8484 dio_bio
->bi_iter
.bi_size
,
8487 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8488 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8490 dio_bio
->bi_status
= BLK_STS_IOERR
;
8492 * Releases and cleans up our dio_bio, no need to bio_put()
8493 * nor bio_endio()/bio_io_error() against dio_bio.
8495 dio_end_io(dio_bio
);
8502 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8503 const struct iov_iter
*iter
, loff_t offset
)
8507 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8508 ssize_t retval
= -EINVAL
;
8510 if (offset
& blocksize_mask
)
8513 if (iov_iter_alignment(iter
) & blocksize_mask
)
8516 /* If this is a write we don't need to check anymore */
8517 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8520 * Check to make sure we don't have duplicate iov_base's in this
8521 * iovec, if so return EINVAL, otherwise we'll get csum errors
8522 * when reading back.
8524 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8525 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8526 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8535 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8537 struct file
*file
= iocb
->ki_filp
;
8538 struct inode
*inode
= file
->f_mapping
->host
;
8539 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8540 struct btrfs_dio_data dio_data
= { 0 };
8541 struct extent_changeset
*data_reserved
= NULL
;
8542 loff_t offset
= iocb
->ki_pos
;
8546 bool relock
= false;
8549 if (check_direct_IO(fs_info
, iter
, offset
))
8552 inode_dio_begin(inode
);
8555 * The generic stuff only does filemap_write_and_wait_range, which
8556 * isn't enough if we've written compressed pages to this area, so
8557 * we need to flush the dirty pages again to make absolutely sure
8558 * that any outstanding dirty pages are on disk.
8560 count
= iov_iter_count(iter
);
8561 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8562 &BTRFS_I(inode
)->runtime_flags
))
8563 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8564 offset
+ count
- 1);
8566 if (iov_iter_rw(iter
) == WRITE
) {
8568 * If the write DIO is beyond the EOF, we need update
8569 * the isize, but it is protected by i_mutex. So we can
8570 * not unlock the i_mutex at this case.
8572 if (offset
+ count
<= inode
->i_size
) {
8573 dio_data
.overwrite
= 1;
8574 inode_unlock(inode
);
8576 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8580 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8586 * We need to know how many extents we reserved so that we can
8587 * do the accounting properly if we go over the number we
8588 * originally calculated. Abuse current->journal_info for this.
8590 dio_data
.reserve
= round_up(count
,
8591 fs_info
->sectorsize
);
8592 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8593 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8594 current
->journal_info
= &dio_data
;
8595 down_read(&BTRFS_I(inode
)->dio_sem
);
8596 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8597 &BTRFS_I(inode
)->runtime_flags
)) {
8598 inode_dio_end(inode
);
8599 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8603 ret
= __blockdev_direct_IO(iocb
, inode
,
8604 fs_info
->fs_devices
->latest_bdev
,
8605 iter
, btrfs_get_blocks_direct
, NULL
,
8606 btrfs_submit_direct
, flags
);
8607 if (iov_iter_rw(iter
) == WRITE
) {
8608 up_read(&BTRFS_I(inode
)->dio_sem
);
8609 current
->journal_info
= NULL
;
8610 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8611 if (dio_data
.reserve
)
8612 btrfs_delalloc_release_space(inode
, data_reserved
,
8613 offset
, dio_data
.reserve
, true);
8615 * On error we might have left some ordered extents
8616 * without submitting corresponding bios for them, so
8617 * cleanup them up to avoid other tasks getting them
8618 * and waiting for them to complete forever.
8620 if (dio_data
.unsubmitted_oe_range_start
<
8621 dio_data
.unsubmitted_oe_range_end
)
8622 __endio_write_update_ordered(inode
,
8623 dio_data
.unsubmitted_oe_range_start
,
8624 dio_data
.unsubmitted_oe_range_end
-
8625 dio_data
.unsubmitted_oe_range_start
,
8627 } else if (ret
>= 0 && (size_t)ret
< count
)
8628 btrfs_delalloc_release_space(inode
, data_reserved
,
8629 offset
, count
- (size_t)ret
, true);
8630 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
, false);
8634 inode_dio_end(inode
);
8638 extent_changeset_free(data_reserved
);
8642 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8644 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8645 __u64 start
, __u64 len
)
8649 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8653 return extent_fiemap(inode
, fieinfo
, start
, len
);
8656 int btrfs_readpage(struct file
*file
, struct page
*page
)
8658 struct extent_io_tree
*tree
;
8659 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8660 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8663 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8665 struct inode
*inode
= page
->mapping
->host
;
8668 if (current
->flags
& PF_MEMALLOC
) {
8669 redirty_page_for_writepage(wbc
, page
);
8675 * If we are under memory pressure we will call this directly from the
8676 * VM, we need to make sure we have the inode referenced for the ordered
8677 * extent. If not just return like we didn't do anything.
8679 if (!igrab(inode
)) {
8680 redirty_page_for_writepage(wbc
, page
);
8681 return AOP_WRITEPAGE_ACTIVATE
;
8683 ret
= extent_write_full_page(page
, wbc
);
8684 btrfs_add_delayed_iput(inode
);
8688 static int btrfs_writepages(struct address_space
*mapping
,
8689 struct writeback_control
*wbc
)
8691 return extent_writepages(mapping
, wbc
);
8695 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8696 struct list_head
*pages
, unsigned nr_pages
)
8698 return extent_readpages(mapping
, pages
, nr_pages
);
8701 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8703 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8705 ClearPagePrivate(page
);
8706 set_page_private(page
, 0);
8712 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8714 if (PageWriteback(page
) || PageDirty(page
))
8716 return __btrfs_releasepage(page
, gfp_flags
);
8719 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8720 unsigned int length
)
8722 struct inode
*inode
= page
->mapping
->host
;
8723 struct extent_io_tree
*tree
;
8724 struct btrfs_ordered_extent
*ordered
;
8725 struct extent_state
*cached_state
= NULL
;
8726 u64 page_start
= page_offset(page
);
8727 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8730 int inode_evicting
= inode
->i_state
& I_FREEING
;
8733 * we have the page locked, so new writeback can't start,
8734 * and the dirty bit won't be cleared while we are here.
8736 * Wait for IO on this page so that we can safely clear
8737 * the PagePrivate2 bit and do ordered accounting
8739 wait_on_page_writeback(page
);
8741 tree
= &BTRFS_I(inode
)->io_tree
;
8743 btrfs_releasepage(page
, GFP_NOFS
);
8747 if (!inode_evicting
)
8748 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8751 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8752 page_end
- start
+ 1);
8754 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8756 * IO on this page will never be started, so we need
8757 * to account for any ordered extents now
8759 if (!inode_evicting
)
8760 clear_extent_bit(tree
, start
, end
,
8761 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8762 EXTENT_DELALLOC_NEW
|
8763 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8764 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8766 * whoever cleared the private bit is responsible
8767 * for the finish_ordered_io
8769 if (TestClearPagePrivate2(page
)) {
8770 struct btrfs_ordered_inode_tree
*tree
;
8773 tree
= &BTRFS_I(inode
)->ordered_tree
;
8775 spin_lock_irq(&tree
->lock
);
8776 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8777 new_len
= start
- ordered
->file_offset
;
8778 if (new_len
< ordered
->truncated_len
)
8779 ordered
->truncated_len
= new_len
;
8780 spin_unlock_irq(&tree
->lock
);
8782 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8784 end
- start
+ 1, 1))
8785 btrfs_finish_ordered_io(ordered
);
8787 btrfs_put_ordered_extent(ordered
);
8788 if (!inode_evicting
) {
8789 cached_state
= NULL
;
8790 lock_extent_bits(tree
, start
, end
,
8795 if (start
< page_end
)
8800 * Qgroup reserved space handler
8801 * Page here will be either
8802 * 1) Already written to disk
8803 * In this case, its reserved space is released from data rsv map
8804 * and will be freed by delayed_ref handler finally.
8805 * So even we call qgroup_free_data(), it won't decrease reserved
8807 * 2) Not written to disk
8808 * This means the reserved space should be freed here. However,
8809 * if a truncate invalidates the page (by clearing PageDirty)
8810 * and the page is accounted for while allocating extent
8811 * in btrfs_check_data_free_space() we let delayed_ref to
8812 * free the entire extent.
8814 if (PageDirty(page
))
8815 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8816 if (!inode_evicting
) {
8817 clear_extent_bit(tree
, page_start
, page_end
,
8818 EXTENT_LOCKED
| EXTENT_DIRTY
|
8819 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8820 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8823 __btrfs_releasepage(page
, GFP_NOFS
);
8826 ClearPageChecked(page
);
8827 if (PagePrivate(page
)) {
8828 ClearPagePrivate(page
);
8829 set_page_private(page
, 0);
8835 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8836 * called from a page fault handler when a page is first dirtied. Hence we must
8837 * be careful to check for EOF conditions here. We set the page up correctly
8838 * for a written page which means we get ENOSPC checking when writing into
8839 * holes and correct delalloc and unwritten extent mapping on filesystems that
8840 * support these features.
8842 * We are not allowed to take the i_mutex here so we have to play games to
8843 * protect against truncate races as the page could now be beyond EOF. Because
8844 * truncate_setsize() writes the inode size before removing pages, once we have
8845 * the page lock we can determine safely if the page is beyond EOF. If it is not
8846 * beyond EOF, then the page is guaranteed safe against truncation until we
8849 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8851 struct page
*page
= vmf
->page
;
8852 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8853 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8854 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8855 struct btrfs_ordered_extent
*ordered
;
8856 struct extent_state
*cached_state
= NULL
;
8857 struct extent_changeset
*data_reserved
= NULL
;
8859 unsigned long zero_start
;
8869 reserved_space
= PAGE_SIZE
;
8871 sb_start_pagefault(inode
->i_sb
);
8872 page_start
= page_offset(page
);
8873 page_end
= page_start
+ PAGE_SIZE
- 1;
8877 * Reserving delalloc space after obtaining the page lock can lead to
8878 * deadlock. For example, if a dirty page is locked by this function
8879 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8880 * dirty page write out, then the btrfs_writepage() function could
8881 * end up waiting indefinitely to get a lock on the page currently
8882 * being processed by btrfs_page_mkwrite() function.
8884 ret2
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8887 ret2
= file_update_time(vmf
->vma
->vm_file
);
8891 ret
= vmf_error(ret2
);
8897 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8900 size
= i_size_read(inode
);
8902 if ((page
->mapping
!= inode
->i_mapping
) ||
8903 (page_start
>= size
)) {
8904 /* page got truncated out from underneath us */
8907 wait_on_page_writeback(page
);
8909 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8910 set_page_extent_mapped(page
);
8913 * we can't set the delalloc bits if there are pending ordered
8914 * extents. Drop our locks and wait for them to finish
8916 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8919 unlock_extent_cached(io_tree
, page_start
, page_end
,
8922 btrfs_start_ordered_extent(inode
, ordered
, 1);
8923 btrfs_put_ordered_extent(ordered
);
8927 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8928 reserved_space
= round_up(size
- page_start
,
8929 fs_info
->sectorsize
);
8930 if (reserved_space
< PAGE_SIZE
) {
8931 end
= page_start
+ reserved_space
- 1;
8932 btrfs_delalloc_release_space(inode
, data_reserved
,
8933 page_start
, PAGE_SIZE
- reserved_space
,
8939 * page_mkwrite gets called when the page is firstly dirtied after it's
8940 * faulted in, but write(2) could also dirty a page and set delalloc
8941 * bits, thus in this case for space account reason, we still need to
8942 * clear any delalloc bits within this page range since we have to
8943 * reserve data&meta space before lock_page() (see above comments).
8945 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8946 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8947 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
8948 0, 0, &cached_state
);
8950 ret2
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
8953 unlock_extent_cached(io_tree
, page_start
, page_end
,
8955 ret
= VM_FAULT_SIGBUS
;
8960 /* page is wholly or partially inside EOF */
8961 if (page_start
+ PAGE_SIZE
> size
)
8962 zero_start
= size
& ~PAGE_MASK
;
8964 zero_start
= PAGE_SIZE
;
8966 if (zero_start
!= PAGE_SIZE
) {
8968 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8969 flush_dcache_page(page
);
8972 ClearPageChecked(page
);
8973 set_page_dirty(page
);
8974 SetPageUptodate(page
);
8976 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
8977 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8978 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8980 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
8983 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, true);
8984 sb_end_pagefault(inode
->i_sb
);
8985 extent_changeset_free(data_reserved
);
8986 return VM_FAULT_LOCKED
;
8992 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, (ret
!= 0));
8993 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
8994 reserved_space
, (ret
!= 0));
8996 sb_end_pagefault(inode
->i_sb
);
8997 extent_changeset_free(data_reserved
);
9001 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
9003 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9004 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9005 struct btrfs_block_rsv
*rsv
;
9007 struct btrfs_trans_handle
*trans
;
9008 u64 mask
= fs_info
->sectorsize
- 1;
9009 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
9011 if (!skip_writeback
) {
9012 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9019 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9020 * things going on here:
9022 * 1) We need to reserve space to update our inode.
9024 * 2) We need to have something to cache all the space that is going to
9025 * be free'd up by the truncate operation, but also have some slack
9026 * space reserved in case it uses space during the truncate (thank you
9027 * very much snapshotting).
9029 * And we need these to be separate. The fact is we can use a lot of
9030 * space doing the truncate, and we have no earthly idea how much space
9031 * we will use, so we need the truncate reservation to be separate so it
9032 * doesn't end up using space reserved for updating the inode. We also
9033 * need to be able to stop the transaction and start a new one, which
9034 * means we need to be able to update the inode several times, and we
9035 * have no idea of knowing how many times that will be, so we can't just
9036 * reserve 1 item for the entirety of the operation, so that has to be
9037 * done separately as well.
9039 * So that leaves us with
9041 * 1) rsv - for the truncate reservation, which we will steal from the
9042 * transaction reservation.
9043 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9044 * updating the inode.
9046 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9049 rsv
->size
= min_size
;
9053 * 1 for the truncate slack space
9054 * 1 for updating the inode.
9056 trans
= btrfs_start_transaction(root
, 2);
9057 if (IS_ERR(trans
)) {
9058 ret
= PTR_ERR(trans
);
9062 /* Migrate the slack space for the truncate to our reserve */
9063 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9068 * So if we truncate and then write and fsync we normally would just
9069 * write the extents that changed, which is a problem if we need to
9070 * first truncate that entire inode. So set this flag so we write out
9071 * all of the extents in the inode to the sync log so we're completely
9074 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9075 trans
->block_rsv
= rsv
;
9078 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9080 BTRFS_EXTENT_DATA_KEY
);
9081 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9082 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
9085 ret
= btrfs_update_inode(trans
, root
, inode
);
9089 btrfs_end_transaction(trans
);
9090 btrfs_btree_balance_dirty(fs_info
);
9092 trans
= btrfs_start_transaction(root
, 2);
9093 if (IS_ERR(trans
)) {
9094 ret
= PTR_ERR(trans
);
9099 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9100 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9102 BUG_ON(ret
); /* shouldn't happen */
9103 trans
->block_rsv
= rsv
;
9107 * We can't call btrfs_truncate_block inside a trans handle as we could
9108 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9109 * we've truncated everything except the last little bit, and can do
9110 * btrfs_truncate_block and then update the disk_i_size.
9112 if (ret
== NEED_TRUNCATE_BLOCK
) {
9113 btrfs_end_transaction(trans
);
9114 btrfs_btree_balance_dirty(fs_info
);
9116 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9119 trans
= btrfs_start_transaction(root
, 1);
9120 if (IS_ERR(trans
)) {
9121 ret
= PTR_ERR(trans
);
9124 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9130 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9131 ret2
= btrfs_update_inode(trans
, root
, inode
);
9135 ret2
= btrfs_end_transaction(trans
);
9138 btrfs_btree_balance_dirty(fs_info
);
9141 btrfs_free_block_rsv(fs_info
, rsv
);
9147 * create a new subvolume directory/inode (helper for the ioctl).
9149 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9150 struct btrfs_root
*new_root
,
9151 struct btrfs_root
*parent_root
,
9154 struct inode
*inode
;
9158 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9159 new_dirid
, new_dirid
,
9160 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9163 return PTR_ERR(inode
);
9164 inode
->i_op
= &btrfs_dir_inode_operations
;
9165 inode
->i_fop
= &btrfs_dir_file_operations
;
9167 set_nlink(inode
, 1);
9168 btrfs_i_size_write(BTRFS_I(inode
), 0);
9169 unlock_new_inode(inode
);
9171 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9173 btrfs_err(new_root
->fs_info
,
9174 "error inheriting subvolume %llu properties: %d",
9175 new_root
->root_key
.objectid
, err
);
9177 err
= btrfs_update_inode(trans
, new_root
, inode
);
9183 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9185 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9186 struct btrfs_inode
*ei
;
9187 struct inode
*inode
;
9189 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
9196 ei
->last_sub_trans
= 0;
9197 ei
->logged_trans
= 0;
9198 ei
->delalloc_bytes
= 0;
9199 ei
->new_delalloc_bytes
= 0;
9200 ei
->defrag_bytes
= 0;
9201 ei
->disk_i_size
= 0;
9204 ei
->index_cnt
= (u64
)-1;
9206 ei
->last_unlink_trans
= 0;
9207 ei
->last_log_commit
= 0;
9209 spin_lock_init(&ei
->lock
);
9210 ei
->outstanding_extents
= 0;
9211 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9212 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9213 BTRFS_BLOCK_RSV_DELALLOC
);
9214 ei
->runtime_flags
= 0;
9215 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9216 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9218 ei
->delayed_node
= NULL
;
9220 ei
->i_otime
.tv_sec
= 0;
9221 ei
->i_otime
.tv_nsec
= 0;
9223 inode
= &ei
->vfs_inode
;
9224 extent_map_tree_init(&ei
->extent_tree
);
9225 extent_io_tree_init(&ei
->io_tree
, inode
);
9226 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9227 ei
->io_tree
.track_uptodate
= 1;
9228 ei
->io_failure_tree
.track_uptodate
= 1;
9229 atomic_set(&ei
->sync_writers
, 0);
9230 mutex_init(&ei
->log_mutex
);
9231 mutex_init(&ei
->delalloc_mutex
);
9232 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9233 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9234 INIT_LIST_HEAD(&ei
->delayed_iput
);
9235 RB_CLEAR_NODE(&ei
->rb_node
);
9236 init_rwsem(&ei
->dio_sem
);
9241 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9242 void btrfs_test_destroy_inode(struct inode
*inode
)
9244 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9245 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9249 static void btrfs_i_callback(struct rcu_head
*head
)
9251 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9252 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9255 void btrfs_destroy_inode(struct inode
*inode
)
9257 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9258 struct btrfs_ordered_extent
*ordered
;
9259 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9261 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9262 WARN_ON(inode
->i_data
.nrpages
);
9263 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9264 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9265 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9266 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9267 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9268 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9269 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9272 * This can happen where we create an inode, but somebody else also
9273 * created the same inode and we need to destroy the one we already
9280 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9285 "found ordered extent %llu %llu on inode cleanup",
9286 ordered
->file_offset
, ordered
->len
);
9287 btrfs_remove_ordered_extent(inode
, ordered
);
9288 btrfs_put_ordered_extent(ordered
);
9289 btrfs_put_ordered_extent(ordered
);
9292 btrfs_qgroup_check_reserved_leak(inode
);
9293 inode_tree_del(inode
);
9294 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9296 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9299 int btrfs_drop_inode(struct inode
*inode
)
9301 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9306 /* the snap/subvol tree is on deleting */
9307 if (btrfs_root_refs(&root
->root_item
) == 0)
9310 return generic_drop_inode(inode
);
9313 static void init_once(void *foo
)
9315 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9317 inode_init_once(&ei
->vfs_inode
);
9320 void __cold
btrfs_destroy_cachep(void)
9323 * Make sure all delayed rcu free inodes are flushed before we
9327 kmem_cache_destroy(btrfs_inode_cachep
);
9328 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9329 kmem_cache_destroy(btrfs_path_cachep
);
9330 kmem_cache_destroy(btrfs_free_space_cachep
);
9333 int __init
btrfs_init_cachep(void)
9335 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9336 sizeof(struct btrfs_inode
), 0,
9337 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9339 if (!btrfs_inode_cachep
)
9342 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9343 sizeof(struct btrfs_trans_handle
), 0,
9344 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9345 if (!btrfs_trans_handle_cachep
)
9348 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9349 sizeof(struct btrfs_path
), 0,
9350 SLAB_MEM_SPREAD
, NULL
);
9351 if (!btrfs_path_cachep
)
9354 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9355 sizeof(struct btrfs_free_space
), 0,
9356 SLAB_MEM_SPREAD
, NULL
);
9357 if (!btrfs_free_space_cachep
)
9362 btrfs_destroy_cachep();
9366 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9367 u32 request_mask
, unsigned int flags
)
9370 struct inode
*inode
= d_inode(path
->dentry
);
9371 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9372 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9374 stat
->result_mask
|= STATX_BTIME
;
9375 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9376 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9377 if (bi_flags
& BTRFS_INODE_APPEND
)
9378 stat
->attributes
|= STATX_ATTR_APPEND
;
9379 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9380 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9381 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9382 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9383 if (bi_flags
& BTRFS_INODE_NODUMP
)
9384 stat
->attributes
|= STATX_ATTR_NODUMP
;
9386 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9387 STATX_ATTR_COMPRESSED
|
9388 STATX_ATTR_IMMUTABLE
|
9391 generic_fillattr(inode
, stat
);
9392 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9394 spin_lock(&BTRFS_I(inode
)->lock
);
9395 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9396 spin_unlock(&BTRFS_I(inode
)->lock
);
9397 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9398 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9402 static int btrfs_rename_exchange(struct inode
*old_dir
,
9403 struct dentry
*old_dentry
,
9404 struct inode
*new_dir
,
9405 struct dentry
*new_dentry
)
9407 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9408 struct btrfs_trans_handle
*trans
;
9409 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9410 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9411 struct inode
*new_inode
= new_dentry
->d_inode
;
9412 struct inode
*old_inode
= old_dentry
->d_inode
;
9413 struct timespec64 ctime
= current_time(old_inode
);
9414 struct dentry
*parent
;
9415 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9416 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9422 bool root_log_pinned
= false;
9423 bool dest_log_pinned
= false;
9425 /* we only allow rename subvolume link between subvolumes */
9426 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9429 /* close the race window with snapshot create/destroy ioctl */
9430 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9431 down_read(&fs_info
->subvol_sem
);
9432 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9433 down_read(&fs_info
->subvol_sem
);
9436 * We want to reserve the absolute worst case amount of items. So if
9437 * both inodes are subvols and we need to unlink them then that would
9438 * require 4 item modifications, but if they are both normal inodes it
9439 * would require 5 item modifications, so we'll assume their normal
9440 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9441 * should cover the worst case number of items we'll modify.
9443 trans
= btrfs_start_transaction(root
, 12);
9444 if (IS_ERR(trans
)) {
9445 ret
= PTR_ERR(trans
);
9450 * We need to find a free sequence number both in the source and
9451 * in the destination directory for the exchange.
9453 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9456 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9460 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9461 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9463 /* Reference for the source. */
9464 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9465 /* force full log commit if subvolume involved. */
9466 btrfs_set_log_full_commit(fs_info
, trans
);
9468 btrfs_pin_log_trans(root
);
9469 root_log_pinned
= true;
9470 ret
= btrfs_insert_inode_ref(trans
, dest
,
9471 new_dentry
->d_name
.name
,
9472 new_dentry
->d_name
.len
,
9474 btrfs_ino(BTRFS_I(new_dir
)),
9480 /* And now for the dest. */
9481 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9482 /* force full log commit if subvolume involved. */
9483 btrfs_set_log_full_commit(fs_info
, trans
);
9485 btrfs_pin_log_trans(dest
);
9486 dest_log_pinned
= true;
9487 ret
= btrfs_insert_inode_ref(trans
, root
,
9488 old_dentry
->d_name
.name
,
9489 old_dentry
->d_name
.len
,
9491 btrfs_ino(BTRFS_I(old_dir
)),
9497 /* Update inode version and ctime/mtime. */
9498 inode_inc_iversion(old_dir
);
9499 inode_inc_iversion(new_dir
);
9500 inode_inc_iversion(old_inode
);
9501 inode_inc_iversion(new_inode
);
9502 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9503 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9504 old_inode
->i_ctime
= ctime
;
9505 new_inode
->i_ctime
= ctime
;
9507 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9508 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9509 BTRFS_I(old_inode
), 1);
9510 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9511 BTRFS_I(new_inode
), 1);
9514 /* src is a subvolume */
9515 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9516 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9517 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9519 old_dentry
->d_name
.name
,
9520 old_dentry
->d_name
.len
);
9521 } else { /* src is an inode */
9522 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9523 BTRFS_I(old_dentry
->d_inode
),
9524 old_dentry
->d_name
.name
,
9525 old_dentry
->d_name
.len
);
9527 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9530 btrfs_abort_transaction(trans
, ret
);
9534 /* dest is a subvolume */
9535 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9536 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9537 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9539 new_dentry
->d_name
.name
,
9540 new_dentry
->d_name
.len
);
9541 } else { /* dest is an inode */
9542 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9543 BTRFS_I(new_dentry
->d_inode
),
9544 new_dentry
->d_name
.name
,
9545 new_dentry
->d_name
.len
);
9547 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9550 btrfs_abort_transaction(trans
, ret
);
9554 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9555 new_dentry
->d_name
.name
,
9556 new_dentry
->d_name
.len
, 0, old_idx
);
9558 btrfs_abort_transaction(trans
, ret
);
9562 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9563 old_dentry
->d_name
.name
,
9564 old_dentry
->d_name
.len
, 0, new_idx
);
9566 btrfs_abort_transaction(trans
, ret
);
9570 if (old_inode
->i_nlink
== 1)
9571 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9572 if (new_inode
->i_nlink
== 1)
9573 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9575 if (root_log_pinned
) {
9576 parent
= new_dentry
->d_parent
;
9577 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9579 btrfs_end_log_trans(root
);
9580 root_log_pinned
= false;
9582 if (dest_log_pinned
) {
9583 parent
= old_dentry
->d_parent
;
9584 btrfs_log_new_name(trans
, BTRFS_I(new_inode
), BTRFS_I(new_dir
),
9586 btrfs_end_log_trans(dest
);
9587 dest_log_pinned
= false;
9591 * If we have pinned a log and an error happened, we unpin tasks
9592 * trying to sync the log and force them to fallback to a transaction
9593 * commit if the log currently contains any of the inodes involved in
9594 * this rename operation (to ensure we do not persist a log with an
9595 * inconsistent state for any of these inodes or leading to any
9596 * inconsistencies when replayed). If the transaction was aborted, the
9597 * abortion reason is propagated to userspace when attempting to commit
9598 * the transaction. If the log does not contain any of these inodes, we
9599 * allow the tasks to sync it.
9601 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9602 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9603 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9604 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9606 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9607 btrfs_set_log_full_commit(fs_info
, trans
);
9609 if (root_log_pinned
) {
9610 btrfs_end_log_trans(root
);
9611 root_log_pinned
= false;
9613 if (dest_log_pinned
) {
9614 btrfs_end_log_trans(dest
);
9615 dest_log_pinned
= false;
9618 ret2
= btrfs_end_transaction(trans
);
9619 ret
= ret
? ret
: ret2
;
9621 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9622 up_read(&fs_info
->subvol_sem
);
9623 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9624 up_read(&fs_info
->subvol_sem
);
9629 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9630 struct btrfs_root
*root
,
9632 struct dentry
*dentry
)
9635 struct inode
*inode
;
9639 ret
= btrfs_find_free_ino(root
, &objectid
);
9643 inode
= btrfs_new_inode(trans
, root
, dir
,
9644 dentry
->d_name
.name
,
9646 btrfs_ino(BTRFS_I(dir
)),
9648 S_IFCHR
| WHITEOUT_MODE
,
9651 if (IS_ERR(inode
)) {
9652 ret
= PTR_ERR(inode
);
9656 inode
->i_op
= &btrfs_special_inode_operations
;
9657 init_special_inode(inode
, inode
->i_mode
,
9660 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9665 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9666 BTRFS_I(inode
), 0, index
);
9670 ret
= btrfs_update_inode(trans
, root
, inode
);
9672 unlock_new_inode(inode
);
9674 inode_dec_link_count(inode
);
9680 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9681 struct inode
*new_dir
, struct dentry
*new_dentry
,
9684 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9685 struct btrfs_trans_handle
*trans
;
9686 unsigned int trans_num_items
;
9687 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9688 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9689 struct inode
*new_inode
= d_inode(new_dentry
);
9690 struct inode
*old_inode
= d_inode(old_dentry
);
9694 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9695 bool log_pinned
= false;
9697 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9700 /* we only allow rename subvolume link between subvolumes */
9701 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9704 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9705 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9708 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9709 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9713 /* check for collisions, even if the name isn't there */
9714 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9715 new_dentry
->d_name
.name
,
9716 new_dentry
->d_name
.len
);
9719 if (ret
== -EEXIST
) {
9721 * eexist without a new_inode */
9722 if (WARN_ON(!new_inode
)) {
9726 /* maybe -EOVERFLOW */
9733 * we're using rename to replace one file with another. Start IO on it
9734 * now so we don't add too much work to the end of the transaction
9736 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9737 filemap_flush(old_inode
->i_mapping
);
9739 /* close the racy window with snapshot create/destroy ioctl */
9740 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9741 down_read(&fs_info
->subvol_sem
);
9743 * We want to reserve the absolute worst case amount of items. So if
9744 * both inodes are subvols and we need to unlink them then that would
9745 * require 4 item modifications, but if they are both normal inodes it
9746 * would require 5 item modifications, so we'll assume they are normal
9747 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748 * should cover the worst case number of items we'll modify.
9749 * If our rename has the whiteout flag, we need more 5 units for the
9750 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751 * when selinux is enabled).
9753 trans_num_items
= 11;
9754 if (flags
& RENAME_WHITEOUT
)
9755 trans_num_items
+= 5;
9756 trans
= btrfs_start_transaction(root
, trans_num_items
);
9757 if (IS_ERR(trans
)) {
9758 ret
= PTR_ERR(trans
);
9763 btrfs_record_root_in_trans(trans
, dest
);
9765 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9769 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9770 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9771 /* force full log commit if subvolume involved. */
9772 btrfs_set_log_full_commit(fs_info
, trans
);
9774 btrfs_pin_log_trans(root
);
9776 ret
= btrfs_insert_inode_ref(trans
, dest
,
9777 new_dentry
->d_name
.name
,
9778 new_dentry
->d_name
.len
,
9780 btrfs_ino(BTRFS_I(new_dir
)), index
);
9785 inode_inc_iversion(old_dir
);
9786 inode_inc_iversion(new_dir
);
9787 inode_inc_iversion(old_inode
);
9788 old_dir
->i_ctime
= old_dir
->i_mtime
=
9789 new_dir
->i_ctime
= new_dir
->i_mtime
=
9790 old_inode
->i_ctime
= current_time(old_dir
);
9792 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9793 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9794 BTRFS_I(old_inode
), 1);
9796 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9797 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9798 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9799 old_dentry
->d_name
.name
,
9800 old_dentry
->d_name
.len
);
9802 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9803 BTRFS_I(d_inode(old_dentry
)),
9804 old_dentry
->d_name
.name
,
9805 old_dentry
->d_name
.len
);
9807 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9810 btrfs_abort_transaction(trans
, ret
);
9815 inode_inc_iversion(new_inode
);
9816 new_inode
->i_ctime
= current_time(new_inode
);
9817 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9818 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9819 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9820 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9822 new_dentry
->d_name
.name
,
9823 new_dentry
->d_name
.len
);
9824 BUG_ON(new_inode
->i_nlink
== 0);
9826 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9827 BTRFS_I(d_inode(new_dentry
)),
9828 new_dentry
->d_name
.name
,
9829 new_dentry
->d_name
.len
);
9831 if (!ret
&& new_inode
->i_nlink
== 0)
9832 ret
= btrfs_orphan_add(trans
,
9833 BTRFS_I(d_inode(new_dentry
)));
9835 btrfs_abort_transaction(trans
, ret
);
9840 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9841 new_dentry
->d_name
.name
,
9842 new_dentry
->d_name
.len
, 0, index
);
9844 btrfs_abort_transaction(trans
, ret
);
9848 if (old_inode
->i_nlink
== 1)
9849 BTRFS_I(old_inode
)->dir_index
= index
;
9852 struct dentry
*parent
= new_dentry
->d_parent
;
9854 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9856 btrfs_end_log_trans(root
);
9860 if (flags
& RENAME_WHITEOUT
) {
9861 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9865 btrfs_abort_transaction(trans
, ret
);
9871 * If we have pinned the log and an error happened, we unpin tasks
9872 * trying to sync the log and force them to fallback to a transaction
9873 * commit if the log currently contains any of the inodes involved in
9874 * this rename operation (to ensure we do not persist a log with an
9875 * inconsistent state for any of these inodes or leading to any
9876 * inconsistencies when replayed). If the transaction was aborted, the
9877 * abortion reason is propagated to userspace when attempting to commit
9878 * the transaction. If the log does not contain any of these inodes, we
9879 * allow the tasks to sync it.
9881 if (ret
&& log_pinned
) {
9882 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9883 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9884 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9886 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9887 btrfs_set_log_full_commit(fs_info
, trans
);
9889 btrfs_end_log_trans(root
);
9892 btrfs_end_transaction(trans
);
9894 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9895 up_read(&fs_info
->subvol_sem
);
9900 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9901 struct inode
*new_dir
, struct dentry
*new_dentry
,
9904 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9907 if (flags
& RENAME_EXCHANGE
)
9908 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9911 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9914 struct btrfs_delalloc_work
{
9915 struct inode
*inode
;
9916 struct completion completion
;
9917 struct list_head list
;
9918 struct btrfs_work work
;
9921 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9923 struct btrfs_delalloc_work
*delalloc_work
;
9924 struct inode
*inode
;
9926 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9928 inode
= delalloc_work
->inode
;
9929 filemap_flush(inode
->i_mapping
);
9930 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9931 &BTRFS_I(inode
)->runtime_flags
))
9932 filemap_flush(inode
->i_mapping
);
9935 complete(&delalloc_work
->completion
);
9938 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
9940 struct btrfs_delalloc_work
*work
;
9942 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9946 init_completion(&work
->completion
);
9947 INIT_LIST_HEAD(&work
->list
);
9948 work
->inode
= inode
;
9949 WARN_ON_ONCE(!inode
);
9950 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
9951 btrfs_run_delalloc_work
, NULL
, NULL
);
9957 * some fairly slow code that needs optimization. This walks the list
9958 * of all the inodes with pending delalloc and forces them to disk.
9960 static int start_delalloc_inodes(struct btrfs_root
*root
, int nr
)
9962 struct btrfs_inode
*binode
;
9963 struct inode
*inode
;
9964 struct btrfs_delalloc_work
*work
, *next
;
9965 struct list_head works
;
9966 struct list_head splice
;
9969 INIT_LIST_HEAD(&works
);
9970 INIT_LIST_HEAD(&splice
);
9972 mutex_lock(&root
->delalloc_mutex
);
9973 spin_lock(&root
->delalloc_lock
);
9974 list_splice_init(&root
->delalloc_inodes
, &splice
);
9975 while (!list_empty(&splice
)) {
9976 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9979 list_move_tail(&binode
->delalloc_inodes
,
9980 &root
->delalloc_inodes
);
9981 inode
= igrab(&binode
->vfs_inode
);
9983 cond_resched_lock(&root
->delalloc_lock
);
9986 spin_unlock(&root
->delalloc_lock
);
9988 work
= btrfs_alloc_delalloc_work(inode
);
9994 list_add_tail(&work
->list
, &works
);
9995 btrfs_queue_work(root
->fs_info
->flush_workers
,
9998 if (nr
!= -1 && ret
>= nr
)
10001 spin_lock(&root
->delalloc_lock
);
10003 spin_unlock(&root
->delalloc_lock
);
10006 list_for_each_entry_safe(work
, next
, &works
, list
) {
10007 list_del_init(&work
->list
);
10008 wait_for_completion(&work
->completion
);
10012 if (!list_empty(&splice
)) {
10013 spin_lock(&root
->delalloc_lock
);
10014 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10015 spin_unlock(&root
->delalloc_lock
);
10017 mutex_unlock(&root
->delalloc_mutex
);
10021 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
10023 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10026 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10029 ret
= start_delalloc_inodes(root
, -1);
10035 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int nr
)
10037 struct btrfs_root
*root
;
10038 struct list_head splice
;
10041 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10044 INIT_LIST_HEAD(&splice
);
10046 mutex_lock(&fs_info
->delalloc_root_mutex
);
10047 spin_lock(&fs_info
->delalloc_root_lock
);
10048 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10049 while (!list_empty(&splice
) && nr
) {
10050 root
= list_first_entry(&splice
, struct btrfs_root
,
10052 root
= btrfs_grab_fs_root(root
);
10054 list_move_tail(&root
->delalloc_root
,
10055 &fs_info
->delalloc_roots
);
10056 spin_unlock(&fs_info
->delalloc_root_lock
);
10058 ret
= start_delalloc_inodes(root
, nr
);
10059 btrfs_put_fs_root(root
);
10067 spin_lock(&fs_info
->delalloc_root_lock
);
10069 spin_unlock(&fs_info
->delalloc_root_lock
);
10073 if (!list_empty(&splice
)) {
10074 spin_lock(&fs_info
->delalloc_root_lock
);
10075 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10076 spin_unlock(&fs_info
->delalloc_root_lock
);
10078 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10082 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10083 const char *symname
)
10085 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10086 struct btrfs_trans_handle
*trans
;
10087 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10088 struct btrfs_path
*path
;
10089 struct btrfs_key key
;
10090 struct inode
*inode
= NULL
;
10092 int drop_inode
= 0;
10098 struct btrfs_file_extent_item
*ei
;
10099 struct extent_buffer
*leaf
;
10101 name_len
= strlen(symname
);
10102 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10103 return -ENAMETOOLONG
;
10106 * 2 items for inode item and ref
10107 * 2 items for dir items
10108 * 1 item for updating parent inode item
10109 * 1 item for the inline extent item
10110 * 1 item for xattr if selinux is on
10112 trans
= btrfs_start_transaction(root
, 7);
10114 return PTR_ERR(trans
);
10116 err
= btrfs_find_free_ino(root
, &objectid
);
10120 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10121 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10122 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10123 if (IS_ERR(inode
)) {
10124 err
= PTR_ERR(inode
);
10129 * If the active LSM wants to access the inode during
10130 * d_instantiate it needs these. Smack checks to see
10131 * if the filesystem supports xattrs by looking at the
10134 inode
->i_fop
= &btrfs_file_operations
;
10135 inode
->i_op
= &btrfs_file_inode_operations
;
10136 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10137 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10139 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10141 goto out_unlock_inode
;
10143 path
= btrfs_alloc_path();
10146 goto out_unlock_inode
;
10148 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10150 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10151 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10152 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10155 btrfs_free_path(path
);
10156 goto out_unlock_inode
;
10158 leaf
= path
->nodes
[0];
10159 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10160 struct btrfs_file_extent_item
);
10161 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10162 btrfs_set_file_extent_type(leaf
, ei
,
10163 BTRFS_FILE_EXTENT_INLINE
);
10164 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10165 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10166 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10167 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10169 ptr
= btrfs_file_extent_inline_start(ei
);
10170 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10171 btrfs_mark_buffer_dirty(leaf
);
10172 btrfs_free_path(path
);
10174 inode
->i_op
= &btrfs_symlink_inode_operations
;
10175 inode_nohighmem(inode
);
10176 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10177 inode_set_bytes(inode
, name_len
);
10178 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10179 err
= btrfs_update_inode(trans
, root
, inode
);
10181 * Last step, add directory indexes for our symlink inode. This is the
10182 * last step to avoid extra cleanup of these indexes if an error happens
10186 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10187 BTRFS_I(inode
), 0, index
);
10190 goto out_unlock_inode
;
10193 d_instantiate_new(dentry
, inode
);
10196 btrfs_end_transaction(trans
);
10198 inode_dec_link_count(inode
);
10201 btrfs_btree_balance_dirty(fs_info
);
10206 unlock_new_inode(inode
);
10210 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10211 u64 start
, u64 num_bytes
, u64 min_size
,
10212 loff_t actual_len
, u64
*alloc_hint
,
10213 struct btrfs_trans_handle
*trans
)
10215 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10216 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10217 struct extent_map
*em
;
10218 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10219 struct btrfs_key ins
;
10220 u64 cur_offset
= start
;
10223 u64 last_alloc
= (u64
)-1;
10225 bool own_trans
= true;
10226 u64 end
= start
+ num_bytes
- 1;
10230 while (num_bytes
> 0) {
10232 trans
= btrfs_start_transaction(root
, 3);
10233 if (IS_ERR(trans
)) {
10234 ret
= PTR_ERR(trans
);
10239 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10240 cur_bytes
= max(cur_bytes
, min_size
);
10242 * If we are severely fragmented we could end up with really
10243 * small allocations, so if the allocator is returning small
10244 * chunks lets make its job easier by only searching for those
10247 cur_bytes
= min(cur_bytes
, last_alloc
);
10248 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10249 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10252 btrfs_end_transaction(trans
);
10255 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10257 last_alloc
= ins
.offset
;
10258 ret
= insert_reserved_file_extent(trans
, inode
,
10259 cur_offset
, ins
.objectid
,
10260 ins
.offset
, ins
.offset
,
10261 ins
.offset
, 0, 0, 0,
10262 BTRFS_FILE_EXTENT_PREALLOC
);
10264 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10266 btrfs_abort_transaction(trans
, ret
);
10268 btrfs_end_transaction(trans
);
10272 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10273 cur_offset
+ ins
.offset
-1, 0);
10275 em
= alloc_extent_map();
10277 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10278 &BTRFS_I(inode
)->runtime_flags
);
10282 em
->start
= cur_offset
;
10283 em
->orig_start
= cur_offset
;
10284 em
->len
= ins
.offset
;
10285 em
->block_start
= ins
.objectid
;
10286 em
->block_len
= ins
.offset
;
10287 em
->orig_block_len
= ins
.offset
;
10288 em
->ram_bytes
= ins
.offset
;
10289 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10290 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10291 em
->generation
= trans
->transid
;
10294 write_lock(&em_tree
->lock
);
10295 ret
= add_extent_mapping(em_tree
, em
, 1);
10296 write_unlock(&em_tree
->lock
);
10297 if (ret
!= -EEXIST
)
10299 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10300 cur_offset
+ ins
.offset
- 1,
10303 free_extent_map(em
);
10305 num_bytes
-= ins
.offset
;
10306 cur_offset
+= ins
.offset
;
10307 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10309 inode_inc_iversion(inode
);
10310 inode
->i_ctime
= current_time(inode
);
10311 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10312 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10313 (actual_len
> inode
->i_size
) &&
10314 (cur_offset
> inode
->i_size
)) {
10315 if (cur_offset
> actual_len
)
10316 i_size
= actual_len
;
10318 i_size
= cur_offset
;
10319 i_size_write(inode
, i_size
);
10320 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10323 ret
= btrfs_update_inode(trans
, root
, inode
);
10326 btrfs_abort_transaction(trans
, ret
);
10328 btrfs_end_transaction(trans
);
10333 btrfs_end_transaction(trans
);
10335 if (cur_offset
< end
)
10336 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10337 end
- cur_offset
+ 1);
10341 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10342 u64 start
, u64 num_bytes
, u64 min_size
,
10343 loff_t actual_len
, u64
*alloc_hint
)
10345 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10346 min_size
, actual_len
, alloc_hint
,
10350 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10351 struct btrfs_trans_handle
*trans
, int mode
,
10352 u64 start
, u64 num_bytes
, u64 min_size
,
10353 loff_t actual_len
, u64
*alloc_hint
)
10355 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10356 min_size
, actual_len
, alloc_hint
, trans
);
10359 static int btrfs_set_page_dirty(struct page
*page
)
10361 return __set_page_dirty_nobuffers(page
);
10364 static int btrfs_permission(struct inode
*inode
, int mask
)
10366 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10367 umode_t mode
= inode
->i_mode
;
10369 if (mask
& MAY_WRITE
&&
10370 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10371 if (btrfs_root_readonly(root
))
10373 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10376 return generic_permission(inode
, mask
);
10379 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10381 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10382 struct btrfs_trans_handle
*trans
;
10383 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10384 struct inode
*inode
= NULL
;
10390 * 5 units required for adding orphan entry
10392 trans
= btrfs_start_transaction(root
, 5);
10394 return PTR_ERR(trans
);
10396 ret
= btrfs_find_free_ino(root
, &objectid
);
10400 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10401 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10402 if (IS_ERR(inode
)) {
10403 ret
= PTR_ERR(inode
);
10408 inode
->i_fop
= &btrfs_file_operations
;
10409 inode
->i_op
= &btrfs_file_inode_operations
;
10411 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10412 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10414 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10418 ret
= btrfs_update_inode(trans
, root
, inode
);
10421 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10426 * We set number of links to 0 in btrfs_new_inode(), and here we set
10427 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10430 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10432 set_nlink(inode
, 1);
10433 unlock_new_inode(inode
);
10434 d_tmpfile(dentry
, inode
);
10435 mark_inode_dirty(inode
);
10438 btrfs_end_transaction(trans
);
10441 btrfs_btree_balance_dirty(fs_info
);
10445 unlock_new_inode(inode
);
10450 __attribute__((const))
10451 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10456 static struct btrfs_fs_info
*iotree_fs_info(void *private_data
)
10458 struct inode
*inode
= private_data
;
10459 return btrfs_sb(inode
->i_sb
);
10462 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10463 u64 start
, u64 end
)
10465 struct inode
*inode
= private_data
;
10468 isize
= i_size_read(inode
);
10469 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10470 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10471 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10472 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10476 void btrfs_set_range_writeback(void *private_data
, u64 start
, u64 end
)
10478 struct inode
*inode
= private_data
;
10479 unsigned long index
= start
>> PAGE_SHIFT
;
10480 unsigned long end_index
= end
>> PAGE_SHIFT
;
10483 while (index
<= end_index
) {
10484 page
= find_get_page(inode
->i_mapping
, index
);
10485 ASSERT(page
); /* Pages should be in the extent_io_tree */
10486 set_page_writeback(page
);
10492 static const struct inode_operations btrfs_dir_inode_operations
= {
10493 .getattr
= btrfs_getattr
,
10494 .lookup
= btrfs_lookup
,
10495 .create
= btrfs_create
,
10496 .unlink
= btrfs_unlink
,
10497 .link
= btrfs_link
,
10498 .mkdir
= btrfs_mkdir
,
10499 .rmdir
= btrfs_rmdir
,
10500 .rename
= btrfs_rename2
,
10501 .symlink
= btrfs_symlink
,
10502 .setattr
= btrfs_setattr
,
10503 .mknod
= btrfs_mknod
,
10504 .listxattr
= btrfs_listxattr
,
10505 .permission
= btrfs_permission
,
10506 .get_acl
= btrfs_get_acl
,
10507 .set_acl
= btrfs_set_acl
,
10508 .update_time
= btrfs_update_time
,
10509 .tmpfile
= btrfs_tmpfile
,
10511 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10512 .lookup
= btrfs_lookup
,
10513 .permission
= btrfs_permission
,
10514 .update_time
= btrfs_update_time
,
10517 static const struct file_operations btrfs_dir_file_operations
= {
10518 .llseek
= generic_file_llseek
,
10519 .read
= generic_read_dir
,
10520 .iterate_shared
= btrfs_real_readdir
,
10521 .open
= btrfs_opendir
,
10522 .unlocked_ioctl
= btrfs_ioctl
,
10523 #ifdef CONFIG_COMPAT
10524 .compat_ioctl
= btrfs_compat_ioctl
,
10526 .release
= btrfs_release_file
,
10527 .fsync
= btrfs_sync_file
,
10530 static const struct extent_io_ops btrfs_extent_io_ops
= {
10531 /* mandatory callbacks */
10532 .submit_bio_hook
= btrfs_submit_bio_hook
,
10533 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10534 .merge_bio_hook
= btrfs_merge_bio_hook
,
10535 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10536 .tree_fs_info
= iotree_fs_info
,
10537 .set_range_writeback
= btrfs_set_range_writeback
,
10539 /* optional callbacks */
10540 .fill_delalloc
= run_delalloc_range
,
10541 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10542 .writepage_start_hook
= btrfs_writepage_start_hook
,
10543 .set_bit_hook
= btrfs_set_bit_hook
,
10544 .clear_bit_hook
= btrfs_clear_bit_hook
,
10545 .merge_extent_hook
= btrfs_merge_extent_hook
,
10546 .split_extent_hook
= btrfs_split_extent_hook
,
10547 .check_extent_io_range
= btrfs_check_extent_io_range
,
10551 * btrfs doesn't support the bmap operation because swapfiles
10552 * use bmap to make a mapping of extents in the file. They assume
10553 * these extents won't change over the life of the file and they
10554 * use the bmap result to do IO directly to the drive.
10556 * the btrfs bmap call would return logical addresses that aren't
10557 * suitable for IO and they also will change frequently as COW
10558 * operations happen. So, swapfile + btrfs == corruption.
10560 * For now we're avoiding this by dropping bmap.
10562 static const struct address_space_operations btrfs_aops
= {
10563 .readpage
= btrfs_readpage
,
10564 .writepage
= btrfs_writepage
,
10565 .writepages
= btrfs_writepages
,
10566 .readpages
= btrfs_readpages
,
10567 .direct_IO
= btrfs_direct_IO
,
10568 .invalidatepage
= btrfs_invalidatepage
,
10569 .releasepage
= btrfs_releasepage
,
10570 .set_page_dirty
= btrfs_set_page_dirty
,
10571 .error_remove_page
= generic_error_remove_page
,
10574 static const struct address_space_operations btrfs_symlink_aops
= {
10575 .readpage
= btrfs_readpage
,
10576 .writepage
= btrfs_writepage
,
10577 .invalidatepage
= btrfs_invalidatepage
,
10578 .releasepage
= btrfs_releasepage
,
10581 static const struct inode_operations btrfs_file_inode_operations
= {
10582 .getattr
= btrfs_getattr
,
10583 .setattr
= btrfs_setattr
,
10584 .listxattr
= btrfs_listxattr
,
10585 .permission
= btrfs_permission
,
10586 .fiemap
= btrfs_fiemap
,
10587 .get_acl
= btrfs_get_acl
,
10588 .set_acl
= btrfs_set_acl
,
10589 .update_time
= btrfs_update_time
,
10591 static const struct inode_operations btrfs_special_inode_operations
= {
10592 .getattr
= btrfs_getattr
,
10593 .setattr
= btrfs_setattr
,
10594 .permission
= btrfs_permission
,
10595 .listxattr
= btrfs_listxattr
,
10596 .get_acl
= btrfs_get_acl
,
10597 .set_acl
= btrfs_set_acl
,
10598 .update_time
= btrfs_update_time
,
10600 static const struct inode_operations btrfs_symlink_inode_operations
= {
10601 .get_link
= page_get_link
,
10602 .getattr
= btrfs_getattr
,
10603 .setattr
= btrfs_setattr
,
10604 .permission
= btrfs_permission
,
10605 .listxattr
= btrfs_listxattr
,
10606 .update_time
= btrfs_update_time
,
10609 const struct dentry_operations btrfs_dentry_operations
= {
10610 .d_delete
= btrfs_dentry_delete
,