1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
12 #include "ordered-data.h"
13 #include "transaction.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
54 struct scrub_recover
{
56 struct btrfs_bio
*bbio
;
61 struct scrub_block
*sblock
;
63 struct btrfs_device
*dev
;
64 struct list_head list
;
65 u64 flags
; /* extent flags */
69 u64 physical_for_dev_replace
;
72 unsigned int mirror_num
:8;
73 unsigned int have_csum
:1;
74 unsigned int io_error
:1;
76 u8 csum
[BTRFS_CSUM_SIZE
];
78 struct scrub_recover
*recover
;
83 struct scrub_ctx
*sctx
;
84 struct btrfs_device
*dev
;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
92 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
96 struct btrfs_work work
;
100 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
102 atomic_t outstanding_pages
;
103 refcount_t refs
; /* free mem on transition to zero */
104 struct scrub_ctx
*sctx
;
105 struct scrub_parity
*sparity
;
107 unsigned int header_error
:1;
108 unsigned int checksum_error
:1;
109 unsigned int no_io_error_seen
:1;
110 unsigned int generation_error
:1; /* also sets header_error */
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected
:1;
116 struct btrfs_work work
;
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity
{
121 struct scrub_ctx
*sctx
;
123 struct btrfs_device
*scrub_dev
;
135 struct list_head spages
;
137 /* Work of parity check and repair */
138 struct btrfs_work work
;
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap
;
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
147 unsigned long *ebitmap
;
149 unsigned long bitmap
[0];
153 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
154 struct btrfs_fs_info
*fs_info
;
157 atomic_t bios_in_flight
;
158 atomic_t workers_pending
;
159 spinlock_t list_lock
;
160 wait_queue_head_t list_wait
;
162 struct list_head csum_list
;
165 int pages_per_rd_bio
;
169 struct scrub_bio
*wr_curr_bio
;
170 struct mutex wr_lock
;
171 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device
*wr_tgtdev
;
173 bool flush_all_writes
;
178 struct btrfs_scrub_progress stat
;
179 spinlock_t stat_lock
;
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
191 struct scrub_fixup_nodatasum
{
192 struct scrub_ctx
*sctx
;
193 struct btrfs_device
*dev
;
195 struct btrfs_root
*root
;
196 struct btrfs_work work
;
200 struct scrub_nocow_inode
{
204 struct list_head list
;
207 struct scrub_copy_nocow_ctx
{
208 struct scrub_ctx
*sctx
;
212 u64 physical_for_dev_replace
;
213 struct list_head inodes
;
214 struct btrfs_work work
;
217 struct scrub_warning
{
218 struct btrfs_path
*path
;
219 u64 extent_item_size
;
223 struct btrfs_device
*dev
;
226 struct full_stripe_lock
{
233 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
234 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
235 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
236 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
237 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
238 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
239 struct scrub_block
*sblocks_for_recheck
);
240 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
241 struct scrub_block
*sblock
,
242 int retry_failed_mirror
);
243 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
);
244 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
245 struct scrub_block
*sblock_good
);
246 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
247 struct scrub_block
*sblock_good
,
248 int page_num
, int force_write
);
249 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
250 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
252 static int scrub_checksum_data(struct scrub_block
*sblock
);
253 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
254 static int scrub_checksum_super(struct scrub_block
*sblock
);
255 static void scrub_block_get(struct scrub_block
*sblock
);
256 static void scrub_block_put(struct scrub_block
*sblock
);
257 static void scrub_page_get(struct scrub_page
*spage
);
258 static void scrub_page_put(struct scrub_page
*spage
);
259 static void scrub_parity_get(struct scrub_parity
*sparity
);
260 static void scrub_parity_put(struct scrub_parity
*sparity
);
261 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
262 struct scrub_page
*spage
);
263 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
264 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
265 u64 gen
, int mirror_num
, u8
*csum
, int force
,
266 u64 physical_for_dev_replace
);
267 static void scrub_bio_end_io(struct bio
*bio
);
268 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
269 static void scrub_block_complete(struct scrub_block
*sblock
);
270 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
271 u64 extent_logical
, u64 extent_len
,
272 u64
*extent_physical
,
273 struct btrfs_device
**extent_dev
,
274 int *extent_mirror_num
);
275 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
276 struct scrub_page
*spage
);
277 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
278 static void scrub_wr_bio_end_io(struct bio
*bio
);
279 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
280 static int write_page_nocow(struct scrub_ctx
*sctx
,
281 u64 physical_for_dev_replace
, struct page
*page
);
282 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
283 struct scrub_copy_nocow_ctx
*ctx
);
284 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
285 int mirror_num
, u64 physical_for_dev_replace
);
286 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
287 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
288 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
289 static void scrub_put_ctx(struct scrub_ctx
*sctx
);
291 static inline int scrub_is_page_on_raid56(struct scrub_page
*page
)
293 return page
->recover
&&
294 (page
->recover
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
);
297 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
299 refcount_inc(&sctx
->refs
);
300 atomic_inc(&sctx
->bios_in_flight
);
303 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
305 atomic_dec(&sctx
->bios_in_flight
);
306 wake_up(&sctx
->list_wait
);
310 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
312 while (atomic_read(&fs_info
->scrub_pause_req
)) {
313 mutex_unlock(&fs_info
->scrub_lock
);
314 wait_event(fs_info
->scrub_pause_wait
,
315 atomic_read(&fs_info
->scrub_pause_req
) == 0);
316 mutex_lock(&fs_info
->scrub_lock
);
320 static void scrub_pause_on(struct btrfs_fs_info
*fs_info
)
322 atomic_inc(&fs_info
->scrubs_paused
);
323 wake_up(&fs_info
->scrub_pause_wait
);
326 static void scrub_pause_off(struct btrfs_fs_info
*fs_info
)
328 mutex_lock(&fs_info
->scrub_lock
);
329 __scrub_blocked_if_needed(fs_info
);
330 atomic_dec(&fs_info
->scrubs_paused
);
331 mutex_unlock(&fs_info
->scrub_lock
);
333 wake_up(&fs_info
->scrub_pause_wait
);
336 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
338 scrub_pause_on(fs_info
);
339 scrub_pause_off(fs_info
);
343 * Insert new full stripe lock into full stripe locks tree
345 * Return pointer to existing or newly inserted full_stripe_lock structure if
346 * everything works well.
347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
352 static struct full_stripe_lock
*insert_full_stripe_lock(
353 struct btrfs_full_stripe_locks_tree
*locks_root
,
357 struct rb_node
*parent
= NULL
;
358 struct full_stripe_lock
*entry
;
359 struct full_stripe_lock
*ret
;
361 lockdep_assert_held(&locks_root
->lock
);
363 p
= &locks_root
->root
.rb_node
;
366 entry
= rb_entry(parent
, struct full_stripe_lock
, node
);
367 if (fstripe_logical
< entry
->logical
) {
369 } else if (fstripe_logical
> entry
->logical
) {
377 /* Insert new lock */
378 ret
= kmalloc(sizeof(*ret
), GFP_KERNEL
);
380 return ERR_PTR(-ENOMEM
);
381 ret
->logical
= fstripe_logical
;
383 mutex_init(&ret
->mutex
);
385 rb_link_node(&ret
->node
, parent
, p
);
386 rb_insert_color(&ret
->node
, &locks_root
->root
);
391 * Search for a full stripe lock of a block group
393 * Return pointer to existing full stripe lock if found
394 * Return NULL if not found
396 static struct full_stripe_lock
*search_full_stripe_lock(
397 struct btrfs_full_stripe_locks_tree
*locks_root
,
400 struct rb_node
*node
;
401 struct full_stripe_lock
*entry
;
403 lockdep_assert_held(&locks_root
->lock
);
405 node
= locks_root
->root
.rb_node
;
407 entry
= rb_entry(node
, struct full_stripe_lock
, node
);
408 if (fstripe_logical
< entry
->logical
)
409 node
= node
->rb_left
;
410 else if (fstripe_logical
> entry
->logical
)
411 node
= node
->rb_right
;
419 * Helper to get full stripe logical from a normal bytenr.
421 * Caller must ensure @cache is a RAID56 block group.
423 static u64
get_full_stripe_logical(struct btrfs_block_group_cache
*cache
,
429 * Due to chunk item size limit, full stripe length should not be
430 * larger than U32_MAX. Just a sanity check here.
432 WARN_ON_ONCE(cache
->full_stripe_len
>= U32_MAX
);
435 * round_down() can only handle power of 2, while RAID56 full
436 * stripe length can be 64KiB * n, so we need to manually round down.
438 ret
= div64_u64(bytenr
- cache
->key
.objectid
, cache
->full_stripe_len
) *
439 cache
->full_stripe_len
+ cache
->key
.objectid
;
444 * Lock a full stripe to avoid concurrency of recovery and read
446 * It's only used for profiles with parities (RAID5/6), for other profiles it
449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
450 * So caller must call unlock_full_stripe() at the same context.
452 * Return <0 if encounters error.
454 static int lock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
457 struct btrfs_block_group_cache
*bg_cache
;
458 struct btrfs_full_stripe_locks_tree
*locks_root
;
459 struct full_stripe_lock
*existing
;
464 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
470 /* Profiles not based on parity don't need full stripe lock */
471 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
473 locks_root
= &bg_cache
->full_stripe_locks_root
;
475 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
477 /* Now insert the full stripe lock */
478 mutex_lock(&locks_root
->lock
);
479 existing
= insert_full_stripe_lock(locks_root
, fstripe_start
);
480 mutex_unlock(&locks_root
->lock
);
481 if (IS_ERR(existing
)) {
482 ret
= PTR_ERR(existing
);
485 mutex_lock(&existing
->mutex
);
488 btrfs_put_block_group(bg_cache
);
493 * Unlock a full stripe.
495 * NOTE: Caller must ensure it's the same context calling corresponding
496 * lock_full_stripe().
498 * Return 0 if we unlock full stripe without problem.
499 * Return <0 for error
501 static int unlock_full_stripe(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
504 struct btrfs_block_group_cache
*bg_cache
;
505 struct btrfs_full_stripe_locks_tree
*locks_root
;
506 struct full_stripe_lock
*fstripe_lock
;
511 /* If we didn't acquire full stripe lock, no need to continue */
515 bg_cache
= btrfs_lookup_block_group(fs_info
, bytenr
);
520 if (!(bg_cache
->flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
523 locks_root
= &bg_cache
->full_stripe_locks_root
;
524 fstripe_start
= get_full_stripe_logical(bg_cache
, bytenr
);
526 mutex_lock(&locks_root
->lock
);
527 fstripe_lock
= search_full_stripe_lock(locks_root
, fstripe_start
);
528 /* Unpaired unlock_full_stripe() detected */
532 mutex_unlock(&locks_root
->lock
);
536 if (fstripe_lock
->refs
== 0) {
538 btrfs_warn(fs_info
, "full stripe lock at %llu refcount underflow",
539 fstripe_lock
->logical
);
541 fstripe_lock
->refs
--;
544 if (fstripe_lock
->refs
== 0) {
545 rb_erase(&fstripe_lock
->node
, &locks_root
->root
);
548 mutex_unlock(&locks_root
->lock
);
550 mutex_unlock(&fstripe_lock
->mutex
);
554 btrfs_put_block_group(bg_cache
);
559 * used for workers that require transaction commits (i.e., for the
562 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
564 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
566 refcount_inc(&sctx
->refs
);
568 * increment scrubs_running to prevent cancel requests from
569 * completing as long as a worker is running. we must also
570 * increment scrubs_paused to prevent deadlocking on pause
571 * requests used for transactions commits (as the worker uses a
572 * transaction context). it is safe to regard the worker
573 * as paused for all matters practical. effectively, we only
574 * avoid cancellation requests from completing.
576 mutex_lock(&fs_info
->scrub_lock
);
577 atomic_inc(&fs_info
->scrubs_running
);
578 atomic_inc(&fs_info
->scrubs_paused
);
579 mutex_unlock(&fs_info
->scrub_lock
);
582 * check if @scrubs_running=@scrubs_paused condition
583 * inside wait_event() is not an atomic operation.
584 * which means we may inc/dec @scrub_running/paused
585 * at any time. Let's wake up @scrub_pause_wait as
586 * much as we can to let commit transaction blocked less.
588 wake_up(&fs_info
->scrub_pause_wait
);
590 atomic_inc(&sctx
->workers_pending
);
593 /* used for workers that require transaction commits */
594 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
596 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
599 * see scrub_pending_trans_workers_inc() why we're pretending
600 * to be paused in the scrub counters
602 mutex_lock(&fs_info
->scrub_lock
);
603 atomic_dec(&fs_info
->scrubs_running
);
604 atomic_dec(&fs_info
->scrubs_paused
);
605 mutex_unlock(&fs_info
->scrub_lock
);
606 atomic_dec(&sctx
->workers_pending
);
607 wake_up(&fs_info
->scrub_pause_wait
);
608 wake_up(&sctx
->list_wait
);
612 static void scrub_free_csums(struct scrub_ctx
*sctx
)
614 while (!list_empty(&sctx
->csum_list
)) {
615 struct btrfs_ordered_sum
*sum
;
616 sum
= list_first_entry(&sctx
->csum_list
,
617 struct btrfs_ordered_sum
, list
);
618 list_del(&sum
->list
);
623 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
630 /* this can happen when scrub is cancelled */
631 if (sctx
->curr
!= -1) {
632 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
634 for (i
= 0; i
< sbio
->page_count
; i
++) {
635 WARN_ON(!sbio
->pagev
[i
]->page
);
636 scrub_block_put(sbio
->pagev
[i
]->sblock
);
641 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
642 struct scrub_bio
*sbio
= sctx
->bios
[i
];
649 kfree(sctx
->wr_curr_bio
);
650 scrub_free_csums(sctx
);
654 static void scrub_put_ctx(struct scrub_ctx
*sctx
)
656 if (refcount_dec_and_test(&sctx
->refs
))
657 scrub_free_ctx(sctx
);
660 static noinline_for_stack
661 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
663 struct scrub_ctx
*sctx
;
665 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
667 sctx
= kzalloc(sizeof(*sctx
), GFP_KERNEL
);
670 refcount_set(&sctx
->refs
, 1);
671 sctx
->is_dev_replace
= is_dev_replace
;
672 sctx
->pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
674 sctx
->fs_info
= dev
->fs_info
;
675 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
676 struct scrub_bio
*sbio
;
678 sbio
= kzalloc(sizeof(*sbio
), GFP_KERNEL
);
681 sctx
->bios
[i
] = sbio
;
685 sbio
->page_count
= 0;
686 btrfs_init_work(&sbio
->work
, btrfs_scrub_helper
,
687 scrub_bio_end_io_worker
, NULL
, NULL
);
689 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
690 sctx
->bios
[i
]->next_free
= i
+ 1;
692 sctx
->bios
[i
]->next_free
= -1;
694 sctx
->first_free
= 0;
695 atomic_set(&sctx
->bios_in_flight
, 0);
696 atomic_set(&sctx
->workers_pending
, 0);
697 atomic_set(&sctx
->cancel_req
, 0);
698 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
699 INIT_LIST_HEAD(&sctx
->csum_list
);
701 spin_lock_init(&sctx
->list_lock
);
702 spin_lock_init(&sctx
->stat_lock
);
703 init_waitqueue_head(&sctx
->list_wait
);
705 WARN_ON(sctx
->wr_curr_bio
!= NULL
);
706 mutex_init(&sctx
->wr_lock
);
707 sctx
->wr_curr_bio
= NULL
;
708 if (is_dev_replace
) {
709 WARN_ON(!fs_info
->dev_replace
.tgtdev
);
710 sctx
->pages_per_wr_bio
= SCRUB_PAGES_PER_WR_BIO
;
711 sctx
->wr_tgtdev
= fs_info
->dev_replace
.tgtdev
;
712 sctx
->flush_all_writes
= false;
718 scrub_free_ctx(sctx
);
719 return ERR_PTR(-ENOMEM
);
722 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
730 struct extent_buffer
*eb
;
731 struct btrfs_inode_item
*inode_item
;
732 struct scrub_warning
*swarn
= warn_ctx
;
733 struct btrfs_fs_info
*fs_info
= swarn
->dev
->fs_info
;
734 struct inode_fs_paths
*ipath
= NULL
;
735 struct btrfs_root
*local_root
;
736 struct btrfs_key root_key
;
737 struct btrfs_key key
;
739 root_key
.objectid
= root
;
740 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
741 root_key
.offset
= (u64
)-1;
742 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
743 if (IS_ERR(local_root
)) {
744 ret
= PTR_ERR(local_root
);
749 * this makes the path point to (inum INODE_ITEM ioff)
752 key
.type
= BTRFS_INODE_ITEM_KEY
;
755 ret
= btrfs_search_slot(NULL
, local_root
, &key
, swarn
->path
, 0, 0);
757 btrfs_release_path(swarn
->path
);
761 eb
= swarn
->path
->nodes
[0];
762 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
763 struct btrfs_inode_item
);
764 isize
= btrfs_inode_size(eb
, inode_item
);
765 nlink
= btrfs_inode_nlink(eb
, inode_item
);
766 btrfs_release_path(swarn
->path
);
769 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
770 * uses GFP_NOFS in this context, so we keep it consistent but it does
771 * not seem to be strictly necessary.
773 nofs_flag
= memalloc_nofs_save();
774 ipath
= init_ipath(4096, local_root
, swarn
->path
);
775 memalloc_nofs_restore(nofs_flag
);
777 ret
= PTR_ERR(ipath
);
781 ret
= paths_from_inode(inum
, ipath
);
787 * we deliberately ignore the bit ipath might have been too small to
788 * hold all of the paths here
790 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
791 btrfs_warn_in_rcu(fs_info
,
792 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
793 swarn
->errstr
, swarn
->logical
,
794 rcu_str_deref(swarn
->dev
->name
),
797 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
798 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
804 btrfs_warn_in_rcu(fs_info
,
805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
806 swarn
->errstr
, swarn
->logical
,
807 rcu_str_deref(swarn
->dev
->name
),
809 root
, inum
, offset
, ret
);
815 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
817 struct btrfs_device
*dev
;
818 struct btrfs_fs_info
*fs_info
;
819 struct btrfs_path
*path
;
820 struct btrfs_key found_key
;
821 struct extent_buffer
*eb
;
822 struct btrfs_extent_item
*ei
;
823 struct scrub_warning swarn
;
824 unsigned long ptr
= 0;
832 WARN_ON(sblock
->page_count
< 1);
833 dev
= sblock
->pagev
[0]->dev
;
834 fs_info
= sblock
->sctx
->fs_info
;
836 path
= btrfs_alloc_path();
840 swarn
.physical
= sblock
->pagev
[0]->physical
;
841 swarn
.logical
= sblock
->pagev
[0]->logical
;
842 swarn
.errstr
= errstr
;
845 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
850 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
851 swarn
.extent_item_size
= found_key
.offset
;
854 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
855 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
857 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
859 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
860 item_size
, &ref_root
,
862 btrfs_warn_in_rcu(fs_info
,
863 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
864 errstr
, swarn
.logical
,
865 rcu_str_deref(dev
->name
),
867 ref_level
? "node" : "leaf",
868 ret
< 0 ? -1 : ref_level
,
869 ret
< 0 ? -1 : ref_root
);
871 btrfs_release_path(path
);
873 btrfs_release_path(path
);
876 iterate_extent_inodes(fs_info
, found_key
.objectid
,
878 scrub_print_warning_inode
, &swarn
, false);
882 btrfs_free_path(path
);
885 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
887 struct page
*page
= NULL
;
889 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
892 struct btrfs_key key
;
893 struct inode
*inode
= NULL
;
894 struct btrfs_fs_info
*fs_info
;
895 u64 end
= offset
+ PAGE_SIZE
- 1;
896 struct btrfs_root
*local_root
;
900 key
.type
= BTRFS_ROOT_ITEM_KEY
;
901 key
.offset
= (u64
)-1;
903 fs_info
= fixup
->root
->fs_info
;
904 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
906 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
907 if (IS_ERR(local_root
)) {
908 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
909 return PTR_ERR(local_root
);
912 key
.type
= BTRFS_INODE_ITEM_KEY
;
915 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
916 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
918 return PTR_ERR(inode
);
920 index
= offset
>> PAGE_SHIFT
;
922 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
928 if (PageUptodate(page
)) {
929 if (PageDirty(page
)) {
931 * we need to write the data to the defect sector. the
932 * data that was in that sector is not in memory,
933 * because the page was modified. we must not write the
934 * modified page to that sector.
936 * TODO: what could be done here: wait for the delalloc
937 * runner to write out that page (might involve
938 * COW) and see whether the sector is still
939 * referenced afterwards.
941 * For the meantime, we'll treat this error
942 * incorrectable, although there is a chance that a
943 * later scrub will find the bad sector again and that
944 * there's no dirty page in memory, then.
949 ret
= repair_io_failure(fs_info
, inum
, offset
, PAGE_SIZE
,
950 fixup
->logical
, page
,
951 offset
- page_offset(page
),
957 * we need to get good data first. the general readpage path
958 * will call repair_io_failure for us, we just have to make
959 * sure we read the bad mirror.
961 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
964 /* set_extent_bits should give proper error */
971 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
974 wait_on_page_locked(page
);
976 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
977 end
, EXTENT_DAMAGED
, 0, NULL
);
979 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
992 if (ret
== 0 && corrected
) {
994 * we only need to call readpage for one of the inodes belonging
995 * to this extent. so make iterate_extent_inodes stop
1003 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
1005 struct btrfs_fs_info
*fs_info
;
1007 struct scrub_fixup_nodatasum
*fixup
;
1008 struct scrub_ctx
*sctx
;
1009 struct btrfs_trans_handle
*trans
= NULL
;
1010 struct btrfs_path
*path
;
1011 int uncorrectable
= 0;
1013 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
1015 fs_info
= fixup
->root
->fs_info
;
1017 path
= btrfs_alloc_path();
1019 spin_lock(&sctx
->stat_lock
);
1020 ++sctx
->stat
.malloc_errors
;
1021 spin_unlock(&sctx
->stat_lock
);
1026 trans
= btrfs_join_transaction(fixup
->root
);
1027 if (IS_ERR(trans
)) {
1033 * the idea is to trigger a regular read through the standard path. we
1034 * read a page from the (failed) logical address by specifying the
1035 * corresponding copynum of the failed sector. thus, that readpage is
1037 * that is the point where on-the-fly error correction will kick in
1038 * (once it's finished) and rewrite the failed sector if a good copy
1041 ret
= iterate_inodes_from_logical(fixup
->logical
, fs_info
, path
,
1042 scrub_fixup_readpage
, fixup
, false);
1049 spin_lock(&sctx
->stat_lock
);
1050 ++sctx
->stat
.corrected_errors
;
1051 spin_unlock(&sctx
->stat_lock
);
1054 if (trans
&& !IS_ERR(trans
))
1055 btrfs_end_transaction(trans
);
1056 if (uncorrectable
) {
1057 spin_lock(&sctx
->stat_lock
);
1058 ++sctx
->stat
.uncorrectable_errors
;
1059 spin_unlock(&sctx
->stat_lock
);
1060 btrfs_dev_replace_stats_inc(
1061 &fs_info
->dev_replace
.num_uncorrectable_read_errors
);
1062 btrfs_err_rl_in_rcu(fs_info
,
1063 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
1067 btrfs_free_path(path
);
1070 scrub_pending_trans_workers_dec(sctx
);
1073 static inline void scrub_get_recover(struct scrub_recover
*recover
)
1075 refcount_inc(&recover
->refs
);
1078 static inline void scrub_put_recover(struct btrfs_fs_info
*fs_info
,
1079 struct scrub_recover
*recover
)
1081 if (refcount_dec_and_test(&recover
->refs
)) {
1082 btrfs_bio_counter_dec(fs_info
);
1083 btrfs_put_bbio(recover
->bbio
);
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1096 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
1098 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
1099 struct btrfs_device
*dev
;
1100 struct btrfs_fs_info
*fs_info
;
1102 unsigned int failed_mirror_index
;
1103 unsigned int is_metadata
;
1104 unsigned int have_csum
;
1105 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
1106 struct scrub_block
*sblock_bad
;
1111 bool full_stripe_locked
;
1112 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1113 DEFAULT_RATELIMIT_BURST
);
1115 BUG_ON(sblock_to_check
->page_count
< 1);
1116 fs_info
= sctx
->fs_info
;
1117 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
1119 * if we find an error in a super block, we just report it.
1120 * They will get written with the next transaction commit
1123 spin_lock(&sctx
->stat_lock
);
1124 ++sctx
->stat
.super_errors
;
1125 spin_unlock(&sctx
->stat_lock
);
1128 logical
= sblock_to_check
->pagev
[0]->logical
;
1129 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
1130 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
1131 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
1132 BTRFS_EXTENT_FLAG_DATA
);
1133 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
1134 dev
= sblock_to_check
->pagev
[0]->dev
;
1137 * For RAID5/6, race can happen for a different device scrub thread.
1138 * For data corruption, Parity and Data threads will both try
1139 * to recovery the data.
1140 * Race can lead to doubly added csum error, or even unrecoverable
1143 ret
= lock_full_stripe(fs_info
, logical
, &full_stripe_locked
);
1145 spin_lock(&sctx
->stat_lock
);
1147 sctx
->stat
.malloc_errors
++;
1148 sctx
->stat
.read_errors
++;
1149 sctx
->stat
.uncorrectable_errors
++;
1150 spin_unlock(&sctx
->stat_lock
);
1155 * read all mirrors one after the other. This includes to
1156 * re-read the extent or metadata block that failed (that was
1157 * the cause that this fixup code is called) another time,
1158 * page by page this time in order to know which pages
1159 * caused I/O errors and which ones are good (for all mirrors).
1160 * It is the goal to handle the situation when more than one
1161 * mirror contains I/O errors, but the errors do not
1162 * overlap, i.e. the data can be repaired by selecting the
1163 * pages from those mirrors without I/O error on the
1164 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1165 * would be that mirror #1 has an I/O error on the first page,
1166 * the second page is good, and mirror #2 has an I/O error on
1167 * the second page, but the first page is good.
1168 * Then the first page of the first mirror can be repaired by
1169 * taking the first page of the second mirror, and the
1170 * second page of the second mirror can be repaired by
1171 * copying the contents of the 2nd page of the 1st mirror.
1172 * One more note: if the pages of one mirror contain I/O
1173 * errors, the checksum cannot be verified. In order to get
1174 * the best data for repairing, the first attempt is to find
1175 * a mirror without I/O errors and with a validated checksum.
1176 * Only if this is not possible, the pages are picked from
1177 * mirrors with I/O errors without considering the checksum.
1178 * If the latter is the case, at the end, the checksum of the
1179 * repaired area is verified in order to correctly maintain
1183 sblocks_for_recheck
= kcalloc(BTRFS_MAX_MIRRORS
,
1184 sizeof(*sblocks_for_recheck
), GFP_NOFS
);
1185 if (!sblocks_for_recheck
) {
1186 spin_lock(&sctx
->stat_lock
);
1187 sctx
->stat
.malloc_errors
++;
1188 sctx
->stat
.read_errors
++;
1189 sctx
->stat
.uncorrectable_errors
++;
1190 spin_unlock(&sctx
->stat_lock
);
1191 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1195 /* setup the context, map the logical blocks and alloc the pages */
1196 ret
= scrub_setup_recheck_block(sblock_to_check
, sblocks_for_recheck
);
1198 spin_lock(&sctx
->stat_lock
);
1199 sctx
->stat
.read_errors
++;
1200 sctx
->stat
.uncorrectable_errors
++;
1201 spin_unlock(&sctx
->stat_lock
);
1202 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1205 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
1206 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
1208 /* build and submit the bios for the failed mirror, check checksums */
1209 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1211 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
1212 sblock_bad
->no_io_error_seen
) {
1214 * the error disappeared after reading page by page, or
1215 * the area was part of a huge bio and other parts of the
1216 * bio caused I/O errors, or the block layer merged several
1217 * read requests into one and the error is caused by a
1218 * different bio (usually one of the two latter cases is
1221 spin_lock(&sctx
->stat_lock
);
1222 sctx
->stat
.unverified_errors
++;
1223 sblock_to_check
->data_corrected
= 1;
1224 spin_unlock(&sctx
->stat_lock
);
1226 if (sctx
->is_dev_replace
)
1227 scrub_write_block_to_dev_replace(sblock_bad
);
1231 if (!sblock_bad
->no_io_error_seen
) {
1232 spin_lock(&sctx
->stat_lock
);
1233 sctx
->stat
.read_errors
++;
1234 spin_unlock(&sctx
->stat_lock
);
1235 if (__ratelimit(&_rs
))
1236 scrub_print_warning("i/o error", sblock_to_check
);
1237 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1238 } else if (sblock_bad
->checksum_error
) {
1239 spin_lock(&sctx
->stat_lock
);
1240 sctx
->stat
.csum_errors
++;
1241 spin_unlock(&sctx
->stat_lock
);
1242 if (__ratelimit(&_rs
))
1243 scrub_print_warning("checksum error", sblock_to_check
);
1244 btrfs_dev_stat_inc_and_print(dev
,
1245 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1246 } else if (sblock_bad
->header_error
) {
1247 spin_lock(&sctx
->stat_lock
);
1248 sctx
->stat
.verify_errors
++;
1249 spin_unlock(&sctx
->stat_lock
);
1250 if (__ratelimit(&_rs
))
1251 scrub_print_warning("checksum/header error",
1253 if (sblock_bad
->generation_error
)
1254 btrfs_dev_stat_inc_and_print(dev
,
1255 BTRFS_DEV_STAT_GENERATION_ERRS
);
1257 btrfs_dev_stat_inc_and_print(dev
,
1258 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1261 if (sctx
->readonly
) {
1262 ASSERT(!sctx
->is_dev_replace
);
1267 * NOTE: Even for nodatasum case, it's still possible that it's a
1268 * compressed data extent, thus scrub_fixup_nodatasum(), which write
1269 * inode page cache onto disk, could cause serious data corruption.
1271 * So here we could only read from disk, and hope our recovery could
1272 * reach disk before the newer write.
1274 if (0 && !is_metadata
&& !have_csum
) {
1275 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
1277 WARN_ON(sctx
->is_dev_replace
);
1280 * !is_metadata and !have_csum, this means that the data
1281 * might not be COWed, that it might be modified
1282 * concurrently. The general strategy to work on the
1283 * commit root does not help in the case when COW is not
1286 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
1287 if (!fixup_nodatasum
)
1288 goto did_not_correct_error
;
1289 fixup_nodatasum
->sctx
= sctx
;
1290 fixup_nodatasum
->dev
= dev
;
1291 fixup_nodatasum
->logical
= logical
;
1292 fixup_nodatasum
->root
= fs_info
->extent_root
;
1293 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
1294 scrub_pending_trans_workers_inc(sctx
);
1295 btrfs_init_work(&fixup_nodatasum
->work
, btrfs_scrub_helper
,
1296 scrub_fixup_nodatasum
, NULL
, NULL
);
1297 btrfs_queue_work(fs_info
->scrub_workers
,
1298 &fixup_nodatasum
->work
);
1303 * now build and submit the bios for the other mirrors, check
1305 * First try to pick the mirror which is completely without I/O
1306 * errors and also does not have a checksum error.
1307 * If one is found, and if a checksum is present, the full block
1308 * that is known to contain an error is rewritten. Afterwards
1309 * the block is known to be corrected.
1310 * If a mirror is found which is completely correct, and no
1311 * checksum is present, only those pages are rewritten that had
1312 * an I/O error in the block to be repaired, since it cannot be
1313 * determined, which copy of the other pages is better (and it
1314 * could happen otherwise that a correct page would be
1315 * overwritten by a bad one).
1317 for (mirror_index
= 0; ;mirror_index
++) {
1318 struct scrub_block
*sblock_other
;
1320 if (mirror_index
== failed_mirror_index
)
1323 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1324 if (!scrub_is_page_on_raid56(sblock_bad
->pagev
[0])) {
1325 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1327 if (!sblocks_for_recheck
[mirror_index
].page_count
)
1330 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1332 struct scrub_recover
*r
= sblock_bad
->pagev
[0]->recover
;
1333 int max_allowed
= r
->bbio
->num_stripes
-
1334 r
->bbio
->num_tgtdevs
;
1336 if (mirror_index
>= max_allowed
)
1338 if (!sblocks_for_recheck
[1].page_count
)
1341 ASSERT(failed_mirror_index
== 0);
1342 sblock_other
= sblocks_for_recheck
+ 1;
1343 sblock_other
->pagev
[0]->mirror_num
= 1 + mirror_index
;
1346 /* build and submit the bios, check checksums */
1347 scrub_recheck_block(fs_info
, sblock_other
, 0);
1349 if (!sblock_other
->header_error
&&
1350 !sblock_other
->checksum_error
&&
1351 sblock_other
->no_io_error_seen
) {
1352 if (sctx
->is_dev_replace
) {
1353 scrub_write_block_to_dev_replace(sblock_other
);
1354 goto corrected_error
;
1356 ret
= scrub_repair_block_from_good_copy(
1357 sblock_bad
, sblock_other
);
1359 goto corrected_error
;
1364 if (sblock_bad
->no_io_error_seen
&& !sctx
->is_dev_replace
)
1365 goto did_not_correct_error
;
1368 * In case of I/O errors in the area that is supposed to be
1369 * repaired, continue by picking good copies of those pages.
1370 * Select the good pages from mirrors to rewrite bad pages from
1371 * the area to fix. Afterwards verify the checksum of the block
1372 * that is supposed to be repaired. This verification step is
1373 * only done for the purpose of statistic counting and for the
1374 * final scrub report, whether errors remain.
1375 * A perfect algorithm could make use of the checksum and try
1376 * all possible combinations of pages from the different mirrors
1377 * until the checksum verification succeeds. For example, when
1378 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1379 * of mirror #2 is readable but the final checksum test fails,
1380 * then the 2nd page of mirror #3 could be tried, whether now
1381 * the final checksum succeeds. But this would be a rare
1382 * exception and is therefore not implemented. At least it is
1383 * avoided that the good copy is overwritten.
1384 * A more useful improvement would be to pick the sectors
1385 * without I/O error based on sector sizes (512 bytes on legacy
1386 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1387 * mirror could be repaired by taking 512 byte of a different
1388 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1389 * area are unreadable.
1392 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1394 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1395 struct scrub_block
*sblock_other
= NULL
;
1397 /* skip no-io-error page in scrub */
1398 if (!page_bad
->io_error
&& !sctx
->is_dev_replace
)
1401 if (scrub_is_page_on_raid56(sblock_bad
->pagev
[0])) {
1403 * In case of dev replace, if raid56 rebuild process
1404 * didn't work out correct data, then copy the content
1405 * in sblock_bad to make sure target device is identical
1406 * to source device, instead of writing garbage data in
1407 * sblock_for_recheck array to target device.
1409 sblock_other
= NULL
;
1410 } else if (page_bad
->io_error
) {
1411 /* try to find no-io-error page in mirrors */
1412 for (mirror_index
= 0;
1413 mirror_index
< BTRFS_MAX_MIRRORS
&&
1414 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1416 if (!sblocks_for_recheck
[mirror_index
].
1417 pagev
[page_num
]->io_error
) {
1418 sblock_other
= sblocks_for_recheck
+
1427 if (sctx
->is_dev_replace
) {
1429 * did not find a mirror to fetch the page
1430 * from. scrub_write_page_to_dev_replace()
1431 * handles this case (page->io_error), by
1432 * filling the block with zeros before
1433 * submitting the write request
1436 sblock_other
= sblock_bad
;
1438 if (scrub_write_page_to_dev_replace(sblock_other
,
1440 btrfs_dev_replace_stats_inc(
1441 &fs_info
->dev_replace
.num_write_errors
);
1444 } else if (sblock_other
) {
1445 ret
= scrub_repair_page_from_good_copy(sblock_bad
,
1449 page_bad
->io_error
= 0;
1455 if (success
&& !sctx
->is_dev_replace
) {
1456 if (is_metadata
|| have_csum
) {
1458 * need to verify the checksum now that all
1459 * sectors on disk are repaired (the write
1460 * request for data to be repaired is on its way).
1461 * Just be lazy and use scrub_recheck_block()
1462 * which re-reads the data before the checksum
1463 * is verified, but most likely the data comes out
1464 * of the page cache.
1466 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1467 if (!sblock_bad
->header_error
&&
1468 !sblock_bad
->checksum_error
&&
1469 sblock_bad
->no_io_error_seen
)
1470 goto corrected_error
;
1472 goto did_not_correct_error
;
1475 spin_lock(&sctx
->stat_lock
);
1476 sctx
->stat
.corrected_errors
++;
1477 sblock_to_check
->data_corrected
= 1;
1478 spin_unlock(&sctx
->stat_lock
);
1479 btrfs_err_rl_in_rcu(fs_info
,
1480 "fixed up error at logical %llu on dev %s",
1481 logical
, rcu_str_deref(dev
->name
));
1484 did_not_correct_error
:
1485 spin_lock(&sctx
->stat_lock
);
1486 sctx
->stat
.uncorrectable_errors
++;
1487 spin_unlock(&sctx
->stat_lock
);
1488 btrfs_err_rl_in_rcu(fs_info
,
1489 "unable to fixup (regular) error at logical %llu on dev %s",
1490 logical
, rcu_str_deref(dev
->name
));
1494 if (sblocks_for_recheck
) {
1495 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1497 struct scrub_block
*sblock
= sblocks_for_recheck
+
1499 struct scrub_recover
*recover
;
1502 for (page_index
= 0; page_index
< sblock
->page_count
;
1504 sblock
->pagev
[page_index
]->sblock
= NULL
;
1505 recover
= sblock
->pagev
[page_index
]->recover
;
1507 scrub_put_recover(fs_info
, recover
);
1508 sblock
->pagev
[page_index
]->recover
=
1511 scrub_page_put(sblock
->pagev
[page_index
]);
1514 kfree(sblocks_for_recheck
);
1517 ret
= unlock_full_stripe(fs_info
, logical
, full_stripe_locked
);
1523 static inline int scrub_nr_raid_mirrors(struct btrfs_bio
*bbio
)
1525 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1527 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1530 return (int)bbio
->num_stripes
;
1533 static inline void scrub_stripe_index_and_offset(u64 logical
, u64 map_type
,
1536 int nstripes
, int mirror
,
1542 if (map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
1544 for (i
= 0; i
< nstripes
; i
++) {
1545 if (raid_map
[i
] == RAID6_Q_STRIPE
||
1546 raid_map
[i
] == RAID5_P_STRIPE
)
1549 if (logical
>= raid_map
[i
] &&
1550 logical
< raid_map
[i
] + mapped_length
)
1555 *stripe_offset
= logical
- raid_map
[i
];
1557 /* The other RAID type */
1558 *stripe_index
= mirror
;
1563 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
1564 struct scrub_block
*sblocks_for_recheck
)
1566 struct scrub_ctx
*sctx
= original_sblock
->sctx
;
1567 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1568 u64 length
= original_sblock
->page_count
* PAGE_SIZE
;
1569 u64 logical
= original_sblock
->pagev
[0]->logical
;
1570 u64 generation
= original_sblock
->pagev
[0]->generation
;
1571 u64 flags
= original_sblock
->pagev
[0]->flags
;
1572 u64 have_csum
= original_sblock
->pagev
[0]->have_csum
;
1573 struct scrub_recover
*recover
;
1574 struct btrfs_bio
*bbio
;
1585 * note: the two members refs and outstanding_pages
1586 * are not used (and not set) in the blocks that are used for
1587 * the recheck procedure
1590 while (length
> 0) {
1591 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1592 mapped_length
= sublen
;
1596 * with a length of PAGE_SIZE, each returned stripe
1597 * represents one mirror
1599 btrfs_bio_counter_inc_blocked(fs_info
);
1600 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
1601 logical
, &mapped_length
, &bbio
);
1602 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1603 btrfs_put_bbio(bbio
);
1604 btrfs_bio_counter_dec(fs_info
);
1608 recover
= kzalloc(sizeof(struct scrub_recover
), GFP_NOFS
);
1610 btrfs_put_bbio(bbio
);
1611 btrfs_bio_counter_dec(fs_info
);
1615 refcount_set(&recover
->refs
, 1);
1616 recover
->bbio
= bbio
;
1617 recover
->map_length
= mapped_length
;
1619 BUG_ON(page_index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1621 nmirrors
= min(scrub_nr_raid_mirrors(bbio
), BTRFS_MAX_MIRRORS
);
1623 for (mirror_index
= 0; mirror_index
< nmirrors
;
1625 struct scrub_block
*sblock
;
1626 struct scrub_page
*page
;
1628 sblock
= sblocks_for_recheck
+ mirror_index
;
1629 sblock
->sctx
= sctx
;
1631 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1634 spin_lock(&sctx
->stat_lock
);
1635 sctx
->stat
.malloc_errors
++;
1636 spin_unlock(&sctx
->stat_lock
);
1637 scrub_put_recover(fs_info
, recover
);
1640 scrub_page_get(page
);
1641 sblock
->pagev
[page_index
] = page
;
1642 page
->sblock
= sblock
;
1643 page
->flags
= flags
;
1644 page
->generation
= generation
;
1645 page
->logical
= logical
;
1646 page
->have_csum
= have_csum
;
1649 original_sblock
->pagev
[0]->csum
,
1652 scrub_stripe_index_and_offset(logical
,
1661 page
->physical
= bbio
->stripes
[stripe_index
].physical
+
1663 page
->dev
= bbio
->stripes
[stripe_index
].dev
;
1665 BUG_ON(page_index
>= original_sblock
->page_count
);
1666 page
->physical_for_dev_replace
=
1667 original_sblock
->pagev
[page_index
]->
1668 physical_for_dev_replace
;
1669 /* for missing devices, dev->bdev is NULL */
1670 page
->mirror_num
= mirror_index
+ 1;
1671 sblock
->page_count
++;
1672 page
->page
= alloc_page(GFP_NOFS
);
1676 scrub_get_recover(recover
);
1677 page
->recover
= recover
;
1679 scrub_put_recover(fs_info
, recover
);
1688 static void scrub_bio_wait_endio(struct bio
*bio
)
1690 complete(bio
->bi_private
);
1693 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info
*fs_info
,
1695 struct scrub_page
*page
)
1697 DECLARE_COMPLETION_ONSTACK(done
);
1701 bio
->bi_iter
.bi_sector
= page
->logical
>> 9;
1702 bio
->bi_private
= &done
;
1703 bio
->bi_end_io
= scrub_bio_wait_endio
;
1705 mirror_num
= page
->sblock
->pagev
[0]->mirror_num
;
1706 ret
= raid56_parity_recover(fs_info
, bio
, page
->recover
->bbio
,
1707 page
->recover
->map_length
,
1712 wait_for_completion_io(&done
);
1713 return blk_status_to_errno(bio
->bi_status
);
1716 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info
*fs_info
,
1717 struct scrub_block
*sblock
)
1719 struct scrub_page
*first_page
= sblock
->pagev
[0];
1723 /* All pages in sblock belong to the same stripe on the same device. */
1724 ASSERT(first_page
->dev
);
1725 if (!first_page
->dev
->bdev
)
1728 bio
= btrfs_io_bio_alloc(BIO_MAX_PAGES
);
1729 bio_set_dev(bio
, first_page
->dev
->bdev
);
1731 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1732 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1734 WARN_ON(!page
->page
);
1735 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1738 if (scrub_submit_raid56_bio_wait(fs_info
, bio
, first_page
)) {
1745 scrub_recheck_block_checksum(sblock
);
1749 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++)
1750 sblock
->pagev
[page_num
]->io_error
= 1;
1752 sblock
->no_io_error_seen
= 0;
1756 * this function will check the on disk data for checksum errors, header
1757 * errors and read I/O errors. If any I/O errors happen, the exact pages
1758 * which are errored are marked as being bad. The goal is to enable scrub
1759 * to take those pages that are not errored from all the mirrors so that
1760 * the pages that are errored in the just handled mirror can be repaired.
1762 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1763 struct scrub_block
*sblock
,
1764 int retry_failed_mirror
)
1768 sblock
->no_io_error_seen
= 1;
1770 /* short cut for raid56 */
1771 if (!retry_failed_mirror
&& scrub_is_page_on_raid56(sblock
->pagev
[0]))
1772 return scrub_recheck_block_on_raid56(fs_info
, sblock
);
1774 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1776 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1778 if (page
->dev
->bdev
== NULL
) {
1780 sblock
->no_io_error_seen
= 0;
1784 WARN_ON(!page
->page
);
1785 bio
= btrfs_io_bio_alloc(1);
1786 bio_set_dev(bio
, page
->dev
->bdev
);
1788 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1789 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1790 bio
->bi_opf
= REQ_OP_READ
;
1792 if (btrfsic_submit_bio_wait(bio
)) {
1794 sblock
->no_io_error_seen
= 0;
1800 if (sblock
->no_io_error_seen
)
1801 scrub_recheck_block_checksum(sblock
);
1804 static inline int scrub_check_fsid(u8 fsid
[],
1805 struct scrub_page
*spage
)
1807 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1810 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1814 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
)
1816 sblock
->header_error
= 0;
1817 sblock
->checksum_error
= 0;
1818 sblock
->generation_error
= 0;
1820 if (sblock
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_DATA
)
1821 scrub_checksum_data(sblock
);
1823 scrub_checksum_tree_block(sblock
);
1826 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1827 struct scrub_block
*sblock_good
)
1832 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1835 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1845 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1846 struct scrub_block
*sblock_good
,
1847 int page_num
, int force_write
)
1849 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1850 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1851 struct btrfs_fs_info
*fs_info
= sblock_bad
->sctx
->fs_info
;
1853 BUG_ON(page_bad
->page
== NULL
);
1854 BUG_ON(page_good
->page
== NULL
);
1855 if (force_write
|| sblock_bad
->header_error
||
1856 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1860 if (!page_bad
->dev
->bdev
) {
1861 btrfs_warn_rl(fs_info
,
1862 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1866 bio
= btrfs_io_bio_alloc(1);
1867 bio_set_dev(bio
, page_bad
->dev
->bdev
);
1868 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1869 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1871 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1872 if (PAGE_SIZE
!= ret
) {
1877 if (btrfsic_submit_bio_wait(bio
)) {
1878 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1879 BTRFS_DEV_STAT_WRITE_ERRS
);
1880 btrfs_dev_replace_stats_inc(
1881 &fs_info
->dev_replace
.num_write_errors
);
1891 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1893 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
1897 * This block is used for the check of the parity on the source device,
1898 * so the data needn't be written into the destination device.
1900 if (sblock
->sparity
)
1903 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1906 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1908 btrfs_dev_replace_stats_inc(
1909 &fs_info
->dev_replace
.num_write_errors
);
1913 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1916 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1918 BUG_ON(spage
->page
== NULL
);
1919 if (spage
->io_error
) {
1920 void *mapped_buffer
= kmap_atomic(spage
->page
);
1922 clear_page(mapped_buffer
);
1923 flush_dcache_page(spage
->page
);
1924 kunmap_atomic(mapped_buffer
);
1926 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1929 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1930 struct scrub_page
*spage
)
1932 struct scrub_bio
*sbio
;
1935 mutex_lock(&sctx
->wr_lock
);
1937 if (!sctx
->wr_curr_bio
) {
1938 sctx
->wr_curr_bio
= kzalloc(sizeof(*sctx
->wr_curr_bio
),
1940 if (!sctx
->wr_curr_bio
) {
1941 mutex_unlock(&sctx
->wr_lock
);
1944 sctx
->wr_curr_bio
->sctx
= sctx
;
1945 sctx
->wr_curr_bio
->page_count
= 0;
1947 sbio
= sctx
->wr_curr_bio
;
1948 if (sbio
->page_count
== 0) {
1951 sbio
->physical
= spage
->physical_for_dev_replace
;
1952 sbio
->logical
= spage
->logical
;
1953 sbio
->dev
= sctx
->wr_tgtdev
;
1956 bio
= btrfs_io_bio_alloc(sctx
->pages_per_wr_bio
);
1960 bio
->bi_private
= sbio
;
1961 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1962 bio_set_dev(bio
, sbio
->dev
->bdev
);
1963 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1964 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1966 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1967 spage
->physical_for_dev_replace
||
1968 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1970 scrub_wr_submit(sctx
);
1974 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1975 if (ret
!= PAGE_SIZE
) {
1976 if (sbio
->page_count
< 1) {
1979 mutex_unlock(&sctx
->wr_lock
);
1982 scrub_wr_submit(sctx
);
1986 sbio
->pagev
[sbio
->page_count
] = spage
;
1987 scrub_page_get(spage
);
1989 if (sbio
->page_count
== sctx
->pages_per_wr_bio
)
1990 scrub_wr_submit(sctx
);
1991 mutex_unlock(&sctx
->wr_lock
);
1996 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1998 struct scrub_bio
*sbio
;
2000 if (!sctx
->wr_curr_bio
)
2003 sbio
= sctx
->wr_curr_bio
;
2004 sctx
->wr_curr_bio
= NULL
;
2005 WARN_ON(!sbio
->bio
->bi_disk
);
2006 scrub_pending_bio_inc(sctx
);
2007 /* process all writes in a single worker thread. Then the block layer
2008 * orders the requests before sending them to the driver which
2009 * doubled the write performance on spinning disks when measured
2011 btrfsic_submit_bio(sbio
->bio
);
2014 static void scrub_wr_bio_end_io(struct bio
*bio
)
2016 struct scrub_bio
*sbio
= bio
->bi_private
;
2017 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2019 sbio
->status
= bio
->bi_status
;
2022 btrfs_init_work(&sbio
->work
, btrfs_scrubwrc_helper
,
2023 scrub_wr_bio_end_io_worker
, NULL
, NULL
);
2024 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
2027 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
2029 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2030 struct scrub_ctx
*sctx
= sbio
->sctx
;
2033 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
2035 struct btrfs_dev_replace
*dev_replace
=
2036 &sbio
->sctx
->fs_info
->dev_replace
;
2038 for (i
= 0; i
< sbio
->page_count
; i
++) {
2039 struct scrub_page
*spage
= sbio
->pagev
[i
];
2041 spage
->io_error
= 1;
2042 btrfs_dev_replace_stats_inc(&dev_replace
->
2047 for (i
= 0; i
< sbio
->page_count
; i
++)
2048 scrub_page_put(sbio
->pagev
[i
]);
2052 scrub_pending_bio_dec(sctx
);
2055 static int scrub_checksum(struct scrub_block
*sblock
)
2061 * No need to initialize these stats currently,
2062 * because this function only use return value
2063 * instead of these stats value.
2068 sblock
->header_error
= 0;
2069 sblock
->generation_error
= 0;
2070 sblock
->checksum_error
= 0;
2072 WARN_ON(sblock
->page_count
< 1);
2073 flags
= sblock
->pagev
[0]->flags
;
2075 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
2076 ret
= scrub_checksum_data(sblock
);
2077 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
2078 ret
= scrub_checksum_tree_block(sblock
);
2079 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
2080 (void)scrub_checksum_super(sblock
);
2084 scrub_handle_errored_block(sblock
);
2089 static int scrub_checksum_data(struct scrub_block
*sblock
)
2091 struct scrub_ctx
*sctx
= sblock
->sctx
;
2092 u8 csum
[BTRFS_CSUM_SIZE
];
2100 BUG_ON(sblock
->page_count
< 1);
2101 if (!sblock
->pagev
[0]->have_csum
)
2104 on_disk_csum
= sblock
->pagev
[0]->csum
;
2105 page
= sblock
->pagev
[0]->page
;
2106 buffer
= kmap_atomic(page
);
2108 len
= sctx
->fs_info
->sectorsize
;
2111 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2113 crc
= btrfs_csum_data(buffer
, crc
, l
);
2114 kunmap_atomic(buffer
);
2119 BUG_ON(index
>= sblock
->page_count
);
2120 BUG_ON(!sblock
->pagev
[index
]->page
);
2121 page
= sblock
->pagev
[index
]->page
;
2122 buffer
= kmap_atomic(page
);
2125 btrfs_csum_final(crc
, csum
);
2126 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
2127 sblock
->checksum_error
= 1;
2129 return sblock
->checksum_error
;
2132 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
2134 struct scrub_ctx
*sctx
= sblock
->sctx
;
2135 struct btrfs_header
*h
;
2136 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2137 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
2138 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
2140 void *mapped_buffer
;
2147 BUG_ON(sblock
->page_count
< 1);
2148 page
= sblock
->pagev
[0]->page
;
2149 mapped_buffer
= kmap_atomic(page
);
2150 h
= (struct btrfs_header
*)mapped_buffer
;
2151 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
2154 * we don't use the getter functions here, as we
2155 * a) don't have an extent buffer and
2156 * b) the page is already kmapped
2158 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
2159 sblock
->header_error
= 1;
2161 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
)) {
2162 sblock
->header_error
= 1;
2163 sblock
->generation_error
= 1;
2166 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
2167 sblock
->header_error
= 1;
2169 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
2171 sblock
->header_error
= 1;
2173 len
= sctx
->fs_info
->nodesize
- BTRFS_CSUM_SIZE
;
2174 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
2175 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
2178 u64 l
= min_t(u64
, len
, mapped_size
);
2180 crc
= btrfs_csum_data(p
, crc
, l
);
2181 kunmap_atomic(mapped_buffer
);
2186 BUG_ON(index
>= sblock
->page_count
);
2187 BUG_ON(!sblock
->pagev
[index
]->page
);
2188 page
= sblock
->pagev
[index
]->page
;
2189 mapped_buffer
= kmap_atomic(page
);
2190 mapped_size
= PAGE_SIZE
;
2194 btrfs_csum_final(crc
, calculated_csum
);
2195 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
2196 sblock
->checksum_error
= 1;
2198 return sblock
->header_error
|| sblock
->checksum_error
;
2201 static int scrub_checksum_super(struct scrub_block
*sblock
)
2203 struct btrfs_super_block
*s
;
2204 struct scrub_ctx
*sctx
= sblock
->sctx
;
2205 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
2206 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
2208 void *mapped_buffer
;
2217 BUG_ON(sblock
->page_count
< 1);
2218 page
= sblock
->pagev
[0]->page
;
2219 mapped_buffer
= kmap_atomic(page
);
2220 s
= (struct btrfs_super_block
*)mapped_buffer
;
2221 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
2223 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
2226 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
2229 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
2232 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
2233 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
2234 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
2237 u64 l
= min_t(u64
, len
, mapped_size
);
2239 crc
= btrfs_csum_data(p
, crc
, l
);
2240 kunmap_atomic(mapped_buffer
);
2245 BUG_ON(index
>= sblock
->page_count
);
2246 BUG_ON(!sblock
->pagev
[index
]->page
);
2247 page
= sblock
->pagev
[index
]->page
;
2248 mapped_buffer
= kmap_atomic(page
);
2249 mapped_size
= PAGE_SIZE
;
2253 btrfs_csum_final(crc
, calculated_csum
);
2254 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
2257 if (fail_cor
+ fail_gen
) {
2259 * if we find an error in a super block, we just report it.
2260 * They will get written with the next transaction commit
2263 spin_lock(&sctx
->stat_lock
);
2264 ++sctx
->stat
.super_errors
;
2265 spin_unlock(&sctx
->stat_lock
);
2267 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
2268 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
2270 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
2271 BTRFS_DEV_STAT_GENERATION_ERRS
);
2274 return fail_cor
+ fail_gen
;
2277 static void scrub_block_get(struct scrub_block
*sblock
)
2279 refcount_inc(&sblock
->refs
);
2282 static void scrub_block_put(struct scrub_block
*sblock
)
2284 if (refcount_dec_and_test(&sblock
->refs
)) {
2287 if (sblock
->sparity
)
2288 scrub_parity_put(sblock
->sparity
);
2290 for (i
= 0; i
< sblock
->page_count
; i
++)
2291 scrub_page_put(sblock
->pagev
[i
]);
2296 static void scrub_page_get(struct scrub_page
*spage
)
2298 atomic_inc(&spage
->refs
);
2301 static void scrub_page_put(struct scrub_page
*spage
)
2303 if (atomic_dec_and_test(&spage
->refs
)) {
2305 __free_page(spage
->page
);
2310 static void scrub_submit(struct scrub_ctx
*sctx
)
2312 struct scrub_bio
*sbio
;
2314 if (sctx
->curr
== -1)
2317 sbio
= sctx
->bios
[sctx
->curr
];
2319 scrub_pending_bio_inc(sctx
);
2320 btrfsic_submit_bio(sbio
->bio
);
2323 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
2324 struct scrub_page
*spage
)
2326 struct scrub_block
*sblock
= spage
->sblock
;
2327 struct scrub_bio
*sbio
;
2332 * grab a fresh bio or wait for one to become available
2334 while (sctx
->curr
== -1) {
2335 spin_lock(&sctx
->list_lock
);
2336 sctx
->curr
= sctx
->first_free
;
2337 if (sctx
->curr
!= -1) {
2338 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
2339 sctx
->bios
[sctx
->curr
]->next_free
= -1;
2340 sctx
->bios
[sctx
->curr
]->page_count
= 0;
2341 spin_unlock(&sctx
->list_lock
);
2343 spin_unlock(&sctx
->list_lock
);
2344 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
2347 sbio
= sctx
->bios
[sctx
->curr
];
2348 if (sbio
->page_count
== 0) {
2351 sbio
->physical
= spage
->physical
;
2352 sbio
->logical
= spage
->logical
;
2353 sbio
->dev
= spage
->dev
;
2356 bio
= btrfs_io_bio_alloc(sctx
->pages_per_rd_bio
);
2360 bio
->bi_private
= sbio
;
2361 bio
->bi_end_io
= scrub_bio_end_io
;
2362 bio_set_dev(bio
, sbio
->dev
->bdev
);
2363 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
2364 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2366 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
2368 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
2370 sbio
->dev
!= spage
->dev
) {
2375 sbio
->pagev
[sbio
->page_count
] = spage
;
2376 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
2377 if (ret
!= PAGE_SIZE
) {
2378 if (sbio
->page_count
< 1) {
2387 scrub_block_get(sblock
); /* one for the page added to the bio */
2388 atomic_inc(&sblock
->outstanding_pages
);
2390 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
2396 static void scrub_missing_raid56_end_io(struct bio
*bio
)
2398 struct scrub_block
*sblock
= bio
->bi_private
;
2399 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
2402 sblock
->no_io_error_seen
= 0;
2406 btrfs_queue_work(fs_info
->scrub_workers
, &sblock
->work
);
2409 static void scrub_missing_raid56_worker(struct btrfs_work
*work
)
2411 struct scrub_block
*sblock
= container_of(work
, struct scrub_block
, work
);
2412 struct scrub_ctx
*sctx
= sblock
->sctx
;
2413 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2415 struct btrfs_device
*dev
;
2417 logical
= sblock
->pagev
[0]->logical
;
2418 dev
= sblock
->pagev
[0]->dev
;
2420 if (sblock
->no_io_error_seen
)
2421 scrub_recheck_block_checksum(sblock
);
2423 if (!sblock
->no_io_error_seen
) {
2424 spin_lock(&sctx
->stat_lock
);
2425 sctx
->stat
.read_errors
++;
2426 spin_unlock(&sctx
->stat_lock
);
2427 btrfs_err_rl_in_rcu(fs_info
,
2428 "IO error rebuilding logical %llu for dev %s",
2429 logical
, rcu_str_deref(dev
->name
));
2430 } else if (sblock
->header_error
|| sblock
->checksum_error
) {
2431 spin_lock(&sctx
->stat_lock
);
2432 sctx
->stat
.uncorrectable_errors
++;
2433 spin_unlock(&sctx
->stat_lock
);
2434 btrfs_err_rl_in_rcu(fs_info
,
2435 "failed to rebuild valid logical %llu for dev %s",
2436 logical
, rcu_str_deref(dev
->name
));
2438 scrub_write_block_to_dev_replace(sblock
);
2441 scrub_block_put(sblock
);
2443 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2444 mutex_lock(&sctx
->wr_lock
);
2445 scrub_wr_submit(sctx
);
2446 mutex_unlock(&sctx
->wr_lock
);
2449 scrub_pending_bio_dec(sctx
);
2452 static void scrub_missing_raid56_pages(struct scrub_block
*sblock
)
2454 struct scrub_ctx
*sctx
= sblock
->sctx
;
2455 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2456 u64 length
= sblock
->page_count
* PAGE_SIZE
;
2457 u64 logical
= sblock
->pagev
[0]->logical
;
2458 struct btrfs_bio
*bbio
= NULL
;
2460 struct btrfs_raid_bio
*rbio
;
2464 btrfs_bio_counter_inc_blocked(fs_info
);
2465 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
2467 if (ret
|| !bbio
|| !bbio
->raid_map
)
2470 if (WARN_ON(!sctx
->is_dev_replace
||
2471 !(bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))) {
2473 * We shouldn't be scrubbing a missing device. Even for dev
2474 * replace, we should only get here for RAID 5/6. We either
2475 * managed to mount something with no mirrors remaining or
2476 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2481 bio
= btrfs_io_bio_alloc(0);
2482 bio
->bi_iter
.bi_sector
= logical
>> 9;
2483 bio
->bi_private
= sblock
;
2484 bio
->bi_end_io
= scrub_missing_raid56_end_io
;
2486 rbio
= raid56_alloc_missing_rbio(fs_info
, bio
, bbio
, length
);
2490 for (i
= 0; i
< sblock
->page_count
; i
++) {
2491 struct scrub_page
*spage
= sblock
->pagev
[i
];
2493 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2496 btrfs_init_work(&sblock
->work
, btrfs_scrub_helper
,
2497 scrub_missing_raid56_worker
, NULL
, NULL
);
2498 scrub_block_get(sblock
);
2499 scrub_pending_bio_inc(sctx
);
2500 raid56_submit_missing_rbio(rbio
);
2506 btrfs_bio_counter_dec(fs_info
);
2507 btrfs_put_bbio(bbio
);
2508 spin_lock(&sctx
->stat_lock
);
2509 sctx
->stat
.malloc_errors
++;
2510 spin_unlock(&sctx
->stat_lock
);
2513 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2514 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2515 u64 gen
, int mirror_num
, u8
*csum
, int force
,
2516 u64 physical_for_dev_replace
)
2518 struct scrub_block
*sblock
;
2521 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2523 spin_lock(&sctx
->stat_lock
);
2524 sctx
->stat
.malloc_errors
++;
2525 spin_unlock(&sctx
->stat_lock
);
2529 /* one ref inside this function, plus one for each page added to
2531 refcount_set(&sblock
->refs
, 1);
2532 sblock
->sctx
= sctx
;
2533 sblock
->no_io_error_seen
= 1;
2535 for (index
= 0; len
> 0; index
++) {
2536 struct scrub_page
*spage
;
2537 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2539 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2542 spin_lock(&sctx
->stat_lock
);
2543 sctx
->stat
.malloc_errors
++;
2544 spin_unlock(&sctx
->stat_lock
);
2545 scrub_block_put(sblock
);
2548 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2549 scrub_page_get(spage
);
2550 sblock
->pagev
[index
] = spage
;
2551 spage
->sblock
= sblock
;
2553 spage
->flags
= flags
;
2554 spage
->generation
= gen
;
2555 spage
->logical
= logical
;
2556 spage
->physical
= physical
;
2557 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2558 spage
->mirror_num
= mirror_num
;
2560 spage
->have_csum
= 1;
2561 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2563 spage
->have_csum
= 0;
2565 sblock
->page_count
++;
2566 spage
->page
= alloc_page(GFP_KERNEL
);
2572 physical_for_dev_replace
+= l
;
2575 WARN_ON(sblock
->page_count
== 0);
2576 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2578 * This case should only be hit for RAID 5/6 device replace. See
2579 * the comment in scrub_missing_raid56_pages() for details.
2581 scrub_missing_raid56_pages(sblock
);
2583 for (index
= 0; index
< sblock
->page_count
; index
++) {
2584 struct scrub_page
*spage
= sblock
->pagev
[index
];
2587 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2589 scrub_block_put(sblock
);
2598 /* last one frees, either here or in bio completion for last page */
2599 scrub_block_put(sblock
);
2603 static void scrub_bio_end_io(struct bio
*bio
)
2605 struct scrub_bio
*sbio
= bio
->bi_private
;
2606 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2608 sbio
->status
= bio
->bi_status
;
2611 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2614 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2616 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2617 struct scrub_ctx
*sctx
= sbio
->sctx
;
2620 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2622 for (i
= 0; i
< sbio
->page_count
; i
++) {
2623 struct scrub_page
*spage
= sbio
->pagev
[i
];
2625 spage
->io_error
= 1;
2626 spage
->sblock
->no_io_error_seen
= 0;
2630 /* now complete the scrub_block items that have all pages completed */
2631 for (i
= 0; i
< sbio
->page_count
; i
++) {
2632 struct scrub_page
*spage
= sbio
->pagev
[i
];
2633 struct scrub_block
*sblock
= spage
->sblock
;
2635 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2636 scrub_block_complete(sblock
);
2637 scrub_block_put(sblock
);
2642 spin_lock(&sctx
->list_lock
);
2643 sbio
->next_free
= sctx
->first_free
;
2644 sctx
->first_free
= sbio
->index
;
2645 spin_unlock(&sctx
->list_lock
);
2647 if (sctx
->is_dev_replace
&& sctx
->flush_all_writes
) {
2648 mutex_lock(&sctx
->wr_lock
);
2649 scrub_wr_submit(sctx
);
2650 mutex_unlock(&sctx
->wr_lock
);
2653 scrub_pending_bio_dec(sctx
);
2656 static inline void __scrub_mark_bitmap(struct scrub_parity
*sparity
,
2657 unsigned long *bitmap
,
2663 int sectorsize
= sparity
->sctx
->fs_info
->sectorsize
;
2665 if (len
>= sparity
->stripe_len
) {
2666 bitmap_set(bitmap
, 0, sparity
->nsectors
);
2670 start
-= sparity
->logic_start
;
2671 start
= div64_u64_rem(start
, sparity
->stripe_len
, &offset
);
2672 offset
= div_u64(offset
, sectorsize
);
2673 nsectors64
= div_u64(len
, sectorsize
);
2675 ASSERT(nsectors64
< UINT_MAX
);
2676 nsectors
= (u32
)nsectors64
;
2678 if (offset
+ nsectors
<= sparity
->nsectors
) {
2679 bitmap_set(bitmap
, offset
, nsectors
);
2683 bitmap_set(bitmap
, offset
, sparity
->nsectors
- offset
);
2684 bitmap_set(bitmap
, 0, nsectors
- (sparity
->nsectors
- offset
));
2687 static inline void scrub_parity_mark_sectors_error(struct scrub_parity
*sparity
,
2690 __scrub_mark_bitmap(sparity
, sparity
->ebitmap
, start
, len
);
2693 static inline void scrub_parity_mark_sectors_data(struct scrub_parity
*sparity
,
2696 __scrub_mark_bitmap(sparity
, sparity
->dbitmap
, start
, len
);
2699 static void scrub_block_complete(struct scrub_block
*sblock
)
2703 if (!sblock
->no_io_error_seen
) {
2705 scrub_handle_errored_block(sblock
);
2708 * if has checksum error, write via repair mechanism in
2709 * dev replace case, otherwise write here in dev replace
2712 corrupted
= scrub_checksum(sblock
);
2713 if (!corrupted
&& sblock
->sctx
->is_dev_replace
)
2714 scrub_write_block_to_dev_replace(sblock
);
2717 if (sblock
->sparity
&& corrupted
&& !sblock
->data_corrected
) {
2718 u64 start
= sblock
->pagev
[0]->logical
;
2719 u64 end
= sblock
->pagev
[sblock
->page_count
- 1]->logical
+
2722 scrub_parity_mark_sectors_error(sblock
->sparity
,
2723 start
, end
- start
);
2727 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u8
*csum
)
2729 struct btrfs_ordered_sum
*sum
= NULL
;
2730 unsigned long index
;
2731 unsigned long num_sectors
;
2733 while (!list_empty(&sctx
->csum_list
)) {
2734 sum
= list_first_entry(&sctx
->csum_list
,
2735 struct btrfs_ordered_sum
, list
);
2736 if (sum
->bytenr
> logical
)
2738 if (sum
->bytenr
+ sum
->len
> logical
)
2741 ++sctx
->stat
.csum_discards
;
2742 list_del(&sum
->list
);
2749 index
= div_u64(logical
- sum
->bytenr
, sctx
->fs_info
->sectorsize
);
2750 ASSERT(index
< UINT_MAX
);
2752 num_sectors
= sum
->len
/ sctx
->fs_info
->sectorsize
;
2753 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2754 if (index
== num_sectors
- 1) {
2755 list_del(&sum
->list
);
2761 /* scrub extent tries to collect up to 64 kB for each bio */
2762 static int scrub_extent(struct scrub_ctx
*sctx
, struct map_lookup
*map
,
2763 u64 logical
, u64 len
,
2764 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2765 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2768 u8 csum
[BTRFS_CSUM_SIZE
];
2771 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2772 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
2773 blocksize
= map
->stripe_len
;
2775 blocksize
= sctx
->fs_info
->sectorsize
;
2776 spin_lock(&sctx
->stat_lock
);
2777 sctx
->stat
.data_extents_scrubbed
++;
2778 sctx
->stat
.data_bytes_scrubbed
+= len
;
2779 spin_unlock(&sctx
->stat_lock
);
2780 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2781 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
2782 blocksize
= map
->stripe_len
;
2784 blocksize
= sctx
->fs_info
->nodesize
;
2785 spin_lock(&sctx
->stat_lock
);
2786 sctx
->stat
.tree_extents_scrubbed
++;
2787 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2788 spin_unlock(&sctx
->stat_lock
);
2790 blocksize
= sctx
->fs_info
->sectorsize
;
2795 u64 l
= min_t(u64
, len
, blocksize
);
2798 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2799 /* push csums to sbio */
2800 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2802 ++sctx
->stat
.no_csum
;
2803 if (0 && sctx
->is_dev_replace
&& !have_csum
) {
2804 ret
= copy_nocow_pages(sctx
, logical
, l
,
2806 physical_for_dev_replace
);
2807 goto behind_scrub_pages
;
2810 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2811 mirror_num
, have_csum
? csum
: NULL
, 0,
2812 physical_for_dev_replace
);
2819 physical_for_dev_replace
+= l
;
2824 static int scrub_pages_for_parity(struct scrub_parity
*sparity
,
2825 u64 logical
, u64 len
,
2826 u64 physical
, struct btrfs_device
*dev
,
2827 u64 flags
, u64 gen
, int mirror_num
, u8
*csum
)
2829 struct scrub_ctx
*sctx
= sparity
->sctx
;
2830 struct scrub_block
*sblock
;
2833 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2835 spin_lock(&sctx
->stat_lock
);
2836 sctx
->stat
.malloc_errors
++;
2837 spin_unlock(&sctx
->stat_lock
);
2841 /* one ref inside this function, plus one for each page added to
2843 refcount_set(&sblock
->refs
, 1);
2844 sblock
->sctx
= sctx
;
2845 sblock
->no_io_error_seen
= 1;
2846 sblock
->sparity
= sparity
;
2847 scrub_parity_get(sparity
);
2849 for (index
= 0; len
> 0; index
++) {
2850 struct scrub_page
*spage
;
2851 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2853 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2856 spin_lock(&sctx
->stat_lock
);
2857 sctx
->stat
.malloc_errors
++;
2858 spin_unlock(&sctx
->stat_lock
);
2859 scrub_block_put(sblock
);
2862 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2863 /* For scrub block */
2864 scrub_page_get(spage
);
2865 sblock
->pagev
[index
] = spage
;
2866 /* For scrub parity */
2867 scrub_page_get(spage
);
2868 list_add_tail(&spage
->list
, &sparity
->spages
);
2869 spage
->sblock
= sblock
;
2871 spage
->flags
= flags
;
2872 spage
->generation
= gen
;
2873 spage
->logical
= logical
;
2874 spage
->physical
= physical
;
2875 spage
->mirror_num
= mirror_num
;
2877 spage
->have_csum
= 1;
2878 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2880 spage
->have_csum
= 0;
2882 sblock
->page_count
++;
2883 spage
->page
= alloc_page(GFP_KERNEL
);
2891 WARN_ON(sblock
->page_count
== 0);
2892 for (index
= 0; index
< sblock
->page_count
; index
++) {
2893 struct scrub_page
*spage
= sblock
->pagev
[index
];
2896 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2898 scrub_block_put(sblock
);
2903 /* last one frees, either here or in bio completion for last page */
2904 scrub_block_put(sblock
);
2908 static int scrub_extent_for_parity(struct scrub_parity
*sparity
,
2909 u64 logical
, u64 len
,
2910 u64 physical
, struct btrfs_device
*dev
,
2911 u64 flags
, u64 gen
, int mirror_num
)
2913 struct scrub_ctx
*sctx
= sparity
->sctx
;
2915 u8 csum
[BTRFS_CSUM_SIZE
];
2918 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
)) {
2919 scrub_parity_mark_sectors_error(sparity
, logical
, len
);
2923 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2924 blocksize
= sparity
->stripe_len
;
2925 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2926 blocksize
= sparity
->stripe_len
;
2928 blocksize
= sctx
->fs_info
->sectorsize
;
2933 u64 l
= min_t(u64
, len
, blocksize
);
2936 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2937 /* push csums to sbio */
2938 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2942 ret
= scrub_pages_for_parity(sparity
, logical
, l
, physical
, dev
,
2943 flags
, gen
, mirror_num
,
2944 have_csum
? csum
: NULL
);
2956 * Given a physical address, this will calculate it's
2957 * logical offset. if this is a parity stripe, it will return
2958 * the most left data stripe's logical offset.
2960 * return 0 if it is a data stripe, 1 means parity stripe.
2962 static int get_raid56_logic_offset(u64 physical
, int num
,
2963 struct map_lookup
*map
, u64
*offset
,
2973 last_offset
= (physical
- map
->stripes
[num
].physical
) *
2974 nr_data_stripes(map
);
2976 *stripe_start
= last_offset
;
2978 *offset
= last_offset
;
2979 for (i
= 0; i
< nr_data_stripes(map
); i
++) {
2980 *offset
= last_offset
+ i
* map
->stripe_len
;
2982 stripe_nr
= div64_u64(*offset
, map
->stripe_len
);
2983 stripe_nr
= div_u64(stripe_nr
, nr_data_stripes(map
));
2985 /* Work out the disk rotation on this stripe-set */
2986 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
, &rot
);
2987 /* calculate which stripe this data locates */
2989 stripe_index
= rot
% map
->num_stripes
;
2990 if (stripe_index
== num
)
2992 if (stripe_index
< num
)
2995 *offset
= last_offset
+ j
* map
->stripe_len
;
2999 static void scrub_free_parity(struct scrub_parity
*sparity
)
3001 struct scrub_ctx
*sctx
= sparity
->sctx
;
3002 struct scrub_page
*curr
, *next
;
3005 nbits
= bitmap_weight(sparity
->ebitmap
, sparity
->nsectors
);
3007 spin_lock(&sctx
->stat_lock
);
3008 sctx
->stat
.read_errors
+= nbits
;
3009 sctx
->stat
.uncorrectable_errors
+= nbits
;
3010 spin_unlock(&sctx
->stat_lock
);
3013 list_for_each_entry_safe(curr
, next
, &sparity
->spages
, list
) {
3014 list_del_init(&curr
->list
);
3015 scrub_page_put(curr
);
3021 static void scrub_parity_bio_endio_worker(struct btrfs_work
*work
)
3023 struct scrub_parity
*sparity
= container_of(work
, struct scrub_parity
,
3025 struct scrub_ctx
*sctx
= sparity
->sctx
;
3027 scrub_free_parity(sparity
);
3028 scrub_pending_bio_dec(sctx
);
3031 static void scrub_parity_bio_endio(struct bio
*bio
)
3033 struct scrub_parity
*sparity
= (struct scrub_parity
*)bio
->bi_private
;
3034 struct btrfs_fs_info
*fs_info
= sparity
->sctx
->fs_info
;
3037 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
3042 btrfs_init_work(&sparity
->work
, btrfs_scrubparity_helper
,
3043 scrub_parity_bio_endio_worker
, NULL
, NULL
);
3044 btrfs_queue_work(fs_info
->scrub_parity_workers
, &sparity
->work
);
3047 static void scrub_parity_check_and_repair(struct scrub_parity
*sparity
)
3049 struct scrub_ctx
*sctx
= sparity
->sctx
;
3050 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3052 struct btrfs_raid_bio
*rbio
;
3053 struct btrfs_bio
*bbio
= NULL
;
3057 if (!bitmap_andnot(sparity
->dbitmap
, sparity
->dbitmap
, sparity
->ebitmap
,
3061 length
= sparity
->logic_end
- sparity
->logic_start
;
3063 btrfs_bio_counter_inc_blocked(fs_info
);
3064 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_WRITE
, sparity
->logic_start
,
3066 if (ret
|| !bbio
|| !bbio
->raid_map
)
3069 bio
= btrfs_io_bio_alloc(0);
3070 bio
->bi_iter
.bi_sector
= sparity
->logic_start
>> 9;
3071 bio
->bi_private
= sparity
;
3072 bio
->bi_end_io
= scrub_parity_bio_endio
;
3074 rbio
= raid56_parity_alloc_scrub_rbio(fs_info
, bio
, bbio
,
3075 length
, sparity
->scrub_dev
,
3081 scrub_pending_bio_inc(sctx
);
3082 raid56_parity_submit_scrub_rbio(rbio
);
3088 btrfs_bio_counter_dec(fs_info
);
3089 btrfs_put_bbio(bbio
);
3090 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
3092 spin_lock(&sctx
->stat_lock
);
3093 sctx
->stat
.malloc_errors
++;
3094 spin_unlock(&sctx
->stat_lock
);
3096 scrub_free_parity(sparity
);
3099 static inline int scrub_calc_parity_bitmap_len(int nsectors
)
3101 return DIV_ROUND_UP(nsectors
, BITS_PER_LONG
) * sizeof(long);
3104 static void scrub_parity_get(struct scrub_parity
*sparity
)
3106 refcount_inc(&sparity
->refs
);
3109 static void scrub_parity_put(struct scrub_parity
*sparity
)
3111 if (!refcount_dec_and_test(&sparity
->refs
))
3114 scrub_parity_check_and_repair(sparity
);
3117 static noinline_for_stack
int scrub_raid56_parity(struct scrub_ctx
*sctx
,
3118 struct map_lookup
*map
,
3119 struct btrfs_device
*sdev
,
3120 struct btrfs_path
*path
,
3124 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3125 struct btrfs_root
*root
= fs_info
->extent_root
;
3126 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3127 struct btrfs_extent_item
*extent
;
3128 struct btrfs_bio
*bbio
= NULL
;
3132 struct extent_buffer
*l
;
3133 struct btrfs_key key
;
3136 u64 extent_physical
;
3139 struct btrfs_device
*extent_dev
;
3140 struct scrub_parity
*sparity
;
3143 int extent_mirror_num
;
3146 nsectors
= div_u64(map
->stripe_len
, fs_info
->sectorsize
);
3147 bitmap_len
= scrub_calc_parity_bitmap_len(nsectors
);
3148 sparity
= kzalloc(sizeof(struct scrub_parity
) + 2 * bitmap_len
,
3151 spin_lock(&sctx
->stat_lock
);
3152 sctx
->stat
.malloc_errors
++;
3153 spin_unlock(&sctx
->stat_lock
);
3157 sparity
->stripe_len
= map
->stripe_len
;
3158 sparity
->nsectors
= nsectors
;
3159 sparity
->sctx
= sctx
;
3160 sparity
->scrub_dev
= sdev
;
3161 sparity
->logic_start
= logic_start
;
3162 sparity
->logic_end
= logic_end
;
3163 refcount_set(&sparity
->refs
, 1);
3164 INIT_LIST_HEAD(&sparity
->spages
);
3165 sparity
->dbitmap
= sparity
->bitmap
;
3166 sparity
->ebitmap
= (void *)sparity
->bitmap
+ bitmap_len
;
3169 while (logic_start
< logic_end
) {
3170 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3171 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3173 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3174 key
.objectid
= logic_start
;
3175 key
.offset
= (u64
)-1;
3177 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3182 ret
= btrfs_previous_extent_item(root
, path
, 0);
3186 btrfs_release_path(path
);
3187 ret
= btrfs_search_slot(NULL
, root
, &key
,
3199 slot
= path
->slots
[0];
3200 if (slot
>= btrfs_header_nritems(l
)) {
3201 ret
= btrfs_next_leaf(root
, path
);
3210 btrfs_item_key_to_cpu(l
, &key
, slot
);
3212 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3213 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3216 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3217 bytes
= fs_info
->nodesize
;
3221 if (key
.objectid
+ bytes
<= logic_start
)
3224 if (key
.objectid
>= logic_end
) {
3229 while (key
.objectid
>= logic_start
+ map
->stripe_len
)
3230 logic_start
+= map
->stripe_len
;
3232 extent
= btrfs_item_ptr(l
, slot
,
3233 struct btrfs_extent_item
);
3234 flags
= btrfs_extent_flags(l
, extent
);
3235 generation
= btrfs_extent_generation(l
, extent
);
3237 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3238 (key
.objectid
< logic_start
||
3239 key
.objectid
+ bytes
>
3240 logic_start
+ map
->stripe_len
)) {
3242 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3243 key
.objectid
, logic_start
);
3244 spin_lock(&sctx
->stat_lock
);
3245 sctx
->stat
.uncorrectable_errors
++;
3246 spin_unlock(&sctx
->stat_lock
);
3250 extent_logical
= key
.objectid
;
3253 if (extent_logical
< logic_start
) {
3254 extent_len
-= logic_start
- extent_logical
;
3255 extent_logical
= logic_start
;
3258 if (extent_logical
+ extent_len
>
3259 logic_start
+ map
->stripe_len
)
3260 extent_len
= logic_start
+ map
->stripe_len
-
3263 scrub_parity_mark_sectors_data(sparity
, extent_logical
,
3266 mapped_length
= extent_len
;
3268 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
,
3269 extent_logical
, &mapped_length
, &bbio
,
3272 if (!bbio
|| mapped_length
< extent_len
)
3276 btrfs_put_bbio(bbio
);
3279 extent_physical
= bbio
->stripes
[0].physical
;
3280 extent_mirror_num
= bbio
->mirror_num
;
3281 extent_dev
= bbio
->stripes
[0].dev
;
3282 btrfs_put_bbio(bbio
);
3284 ret
= btrfs_lookup_csums_range(csum_root
,
3286 extent_logical
+ extent_len
- 1,
3287 &sctx
->csum_list
, 1);
3291 ret
= scrub_extent_for_parity(sparity
, extent_logical
,
3298 scrub_free_csums(sctx
);
3303 if (extent_logical
+ extent_len
<
3304 key
.objectid
+ bytes
) {
3305 logic_start
+= map
->stripe_len
;
3307 if (logic_start
>= logic_end
) {
3312 if (logic_start
< key
.objectid
+ bytes
) {
3321 btrfs_release_path(path
);
3326 logic_start
+= map
->stripe_len
;
3330 scrub_parity_mark_sectors_error(sparity
, logic_start
,
3331 logic_end
- logic_start
);
3332 scrub_parity_put(sparity
);
3334 mutex_lock(&sctx
->wr_lock
);
3335 scrub_wr_submit(sctx
);
3336 mutex_unlock(&sctx
->wr_lock
);
3338 btrfs_release_path(path
);
3339 return ret
< 0 ? ret
: 0;
3342 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
3343 struct map_lookup
*map
,
3344 struct btrfs_device
*scrub_dev
,
3345 int num
, u64 base
, u64 length
,
3348 struct btrfs_path
*path
, *ppath
;
3349 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3350 struct btrfs_root
*root
= fs_info
->extent_root
;
3351 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3352 struct btrfs_extent_item
*extent
;
3353 struct blk_plug plug
;
3358 struct extent_buffer
*l
;
3365 struct reada_control
*reada1
;
3366 struct reada_control
*reada2
;
3367 struct btrfs_key key
;
3368 struct btrfs_key key_end
;
3369 u64 increment
= map
->stripe_len
;
3372 u64 extent_physical
;
3376 struct btrfs_device
*extent_dev
;
3377 int extent_mirror_num
;
3380 physical
= map
->stripes
[num
].physical
;
3382 nstripes
= div64_u64(length
, map
->stripe_len
);
3383 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3384 offset
= map
->stripe_len
* num
;
3385 increment
= map
->stripe_len
* map
->num_stripes
;
3387 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3388 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3389 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
3390 increment
= map
->stripe_len
* factor
;
3391 mirror_num
= num
% map
->sub_stripes
+ 1;
3392 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
3393 increment
= map
->stripe_len
;
3394 mirror_num
= num
% map
->num_stripes
+ 1;
3395 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3396 increment
= map
->stripe_len
;
3397 mirror_num
= num
% map
->num_stripes
+ 1;
3398 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3399 get_raid56_logic_offset(physical
, num
, map
, &offset
, NULL
);
3400 increment
= map
->stripe_len
* nr_data_stripes(map
);
3403 increment
= map
->stripe_len
;
3407 path
= btrfs_alloc_path();
3411 ppath
= btrfs_alloc_path();
3413 btrfs_free_path(path
);
3418 * work on commit root. The related disk blocks are static as
3419 * long as COW is applied. This means, it is save to rewrite
3420 * them to repair disk errors without any race conditions
3422 path
->search_commit_root
= 1;
3423 path
->skip_locking
= 1;
3425 ppath
->search_commit_root
= 1;
3426 ppath
->skip_locking
= 1;
3428 * trigger the readahead for extent tree csum tree and wait for
3429 * completion. During readahead, the scrub is officially paused
3430 * to not hold off transaction commits
3432 logical
= base
+ offset
;
3433 physical_end
= physical
+ nstripes
* map
->stripe_len
;
3434 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3435 get_raid56_logic_offset(physical_end
, num
,
3436 map
, &logic_end
, NULL
);
3439 logic_end
= logical
+ increment
* nstripes
;
3441 wait_event(sctx
->list_wait
,
3442 atomic_read(&sctx
->bios_in_flight
) == 0);
3443 scrub_blocked_if_needed(fs_info
);
3445 /* FIXME it might be better to start readahead at commit root */
3446 key
.objectid
= logical
;
3447 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3448 key
.offset
= (u64
)0;
3449 key_end
.objectid
= logic_end
;
3450 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
3451 key_end
.offset
= (u64
)-1;
3452 reada1
= btrfs_reada_add(root
, &key
, &key_end
);
3454 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3455 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
3456 key
.offset
= logical
;
3457 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3458 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
3459 key_end
.offset
= logic_end
;
3460 reada2
= btrfs_reada_add(csum_root
, &key
, &key_end
);
3462 if (!IS_ERR(reada1
))
3463 btrfs_reada_wait(reada1
);
3464 if (!IS_ERR(reada2
))
3465 btrfs_reada_wait(reada2
);
3469 * collect all data csums for the stripe to avoid seeking during
3470 * the scrub. This might currently (crc32) end up to be about 1MB
3472 blk_start_plug(&plug
);
3475 * now find all extents for each stripe and scrub them
3478 while (physical
< physical_end
) {
3482 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
3483 atomic_read(&sctx
->cancel_req
)) {
3488 * check to see if we have to pause
3490 if (atomic_read(&fs_info
->scrub_pause_req
)) {
3491 /* push queued extents */
3492 sctx
->flush_all_writes
= true;
3494 mutex_lock(&sctx
->wr_lock
);
3495 scrub_wr_submit(sctx
);
3496 mutex_unlock(&sctx
->wr_lock
);
3497 wait_event(sctx
->list_wait
,
3498 atomic_read(&sctx
->bios_in_flight
) == 0);
3499 sctx
->flush_all_writes
= false;
3500 scrub_blocked_if_needed(fs_info
);
3503 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3504 ret
= get_raid56_logic_offset(physical
, num
, map
,
3509 /* it is parity strip */
3510 stripe_logical
+= base
;
3511 stripe_end
= stripe_logical
+ increment
;
3512 ret
= scrub_raid56_parity(sctx
, map
, scrub_dev
,
3513 ppath
, stripe_logical
,
3521 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3522 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3524 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3525 key
.objectid
= logical
;
3526 key
.offset
= (u64
)-1;
3528 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3533 ret
= btrfs_previous_extent_item(root
, path
, 0);
3537 /* there's no smaller item, so stick with the
3539 btrfs_release_path(path
);
3540 ret
= btrfs_search_slot(NULL
, root
, &key
,
3552 slot
= path
->slots
[0];
3553 if (slot
>= btrfs_header_nritems(l
)) {
3554 ret
= btrfs_next_leaf(root
, path
);
3563 btrfs_item_key_to_cpu(l
, &key
, slot
);
3565 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3566 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3569 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3570 bytes
= fs_info
->nodesize
;
3574 if (key
.objectid
+ bytes
<= logical
)
3577 if (key
.objectid
>= logical
+ map
->stripe_len
) {
3578 /* out of this device extent */
3579 if (key
.objectid
>= logic_end
)
3584 extent
= btrfs_item_ptr(l
, slot
,
3585 struct btrfs_extent_item
);
3586 flags
= btrfs_extent_flags(l
, extent
);
3587 generation
= btrfs_extent_generation(l
, extent
);
3589 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3590 (key
.objectid
< logical
||
3591 key
.objectid
+ bytes
>
3592 logical
+ map
->stripe_len
)) {
3594 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3595 key
.objectid
, logical
);
3596 spin_lock(&sctx
->stat_lock
);
3597 sctx
->stat
.uncorrectable_errors
++;
3598 spin_unlock(&sctx
->stat_lock
);
3603 extent_logical
= key
.objectid
;
3607 * trim extent to this stripe
3609 if (extent_logical
< logical
) {
3610 extent_len
-= logical
- extent_logical
;
3611 extent_logical
= logical
;
3613 if (extent_logical
+ extent_len
>
3614 logical
+ map
->stripe_len
) {
3615 extent_len
= logical
+ map
->stripe_len
-
3619 extent_physical
= extent_logical
- logical
+ physical
;
3620 extent_dev
= scrub_dev
;
3621 extent_mirror_num
= mirror_num
;
3623 scrub_remap_extent(fs_info
, extent_logical
,
3624 extent_len
, &extent_physical
,
3626 &extent_mirror_num
);
3628 ret
= btrfs_lookup_csums_range(csum_root
,
3632 &sctx
->csum_list
, 1);
3636 ret
= scrub_extent(sctx
, map
, extent_logical
, extent_len
,
3637 extent_physical
, extent_dev
, flags
,
3638 generation
, extent_mirror_num
,
3639 extent_logical
- logical
+ physical
);
3641 scrub_free_csums(sctx
);
3646 if (extent_logical
+ extent_len
<
3647 key
.objectid
+ bytes
) {
3648 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3650 * loop until we find next data stripe
3651 * or we have finished all stripes.
3654 physical
+= map
->stripe_len
;
3655 ret
= get_raid56_logic_offset(physical
,
3660 if (ret
&& physical
< physical_end
) {
3661 stripe_logical
+= base
;
3662 stripe_end
= stripe_logical
+
3664 ret
= scrub_raid56_parity(sctx
,
3665 map
, scrub_dev
, ppath
,
3673 physical
+= map
->stripe_len
;
3674 logical
+= increment
;
3676 if (logical
< key
.objectid
+ bytes
) {
3681 if (physical
>= physical_end
) {
3689 btrfs_release_path(path
);
3691 logical
+= increment
;
3692 physical
+= map
->stripe_len
;
3693 spin_lock(&sctx
->stat_lock
);
3695 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
3698 sctx
->stat
.last_physical
= physical
;
3699 spin_unlock(&sctx
->stat_lock
);
3704 /* push queued extents */
3706 mutex_lock(&sctx
->wr_lock
);
3707 scrub_wr_submit(sctx
);
3708 mutex_unlock(&sctx
->wr_lock
);
3710 blk_finish_plug(&plug
);
3711 btrfs_free_path(path
);
3712 btrfs_free_path(ppath
);
3713 return ret
< 0 ? ret
: 0;
3716 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
3717 struct btrfs_device
*scrub_dev
,
3718 u64 chunk_offset
, u64 length
,
3720 struct btrfs_block_group_cache
*cache
,
3723 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3724 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
3725 struct map_lookup
*map
;
3726 struct extent_map
*em
;
3730 read_lock(&map_tree
->map_tree
.lock
);
3731 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
3732 read_unlock(&map_tree
->map_tree
.lock
);
3736 * Might have been an unused block group deleted by the cleaner
3737 * kthread or relocation.
3739 spin_lock(&cache
->lock
);
3740 if (!cache
->removed
)
3742 spin_unlock(&cache
->lock
);
3747 map
= em
->map_lookup
;
3748 if (em
->start
!= chunk_offset
)
3751 if (em
->len
< length
)
3754 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3755 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
3756 map
->stripes
[i
].physical
== dev_offset
) {
3757 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
3758 chunk_offset
, length
,
3765 free_extent_map(em
);
3770 static noinline_for_stack
3771 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
3772 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
3775 struct btrfs_dev_extent
*dev_extent
= NULL
;
3776 struct btrfs_path
*path
;
3777 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3778 struct btrfs_root
*root
= fs_info
->dev_root
;
3784 struct extent_buffer
*l
;
3785 struct btrfs_key key
;
3786 struct btrfs_key found_key
;
3787 struct btrfs_block_group_cache
*cache
;
3788 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
3790 path
= btrfs_alloc_path();
3794 path
->reada
= READA_FORWARD
;
3795 path
->search_commit_root
= 1;
3796 path
->skip_locking
= 1;
3798 key
.objectid
= scrub_dev
->devid
;
3800 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3803 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3807 if (path
->slots
[0] >=
3808 btrfs_header_nritems(path
->nodes
[0])) {
3809 ret
= btrfs_next_leaf(root
, path
);
3822 slot
= path
->slots
[0];
3824 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
3826 if (found_key
.objectid
!= scrub_dev
->devid
)
3829 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
3832 if (found_key
.offset
>= end
)
3835 if (found_key
.offset
< key
.offset
)
3838 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3839 length
= btrfs_dev_extent_length(l
, dev_extent
);
3841 if (found_key
.offset
+ length
<= start
)
3844 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3847 * get a reference on the corresponding block group to prevent
3848 * the chunk from going away while we scrub it
3850 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3852 /* some chunks are removed but not committed to disk yet,
3853 * continue scrubbing */
3858 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3859 * to avoid deadlock caused by:
3860 * btrfs_inc_block_group_ro()
3861 * -> btrfs_wait_for_commit()
3862 * -> btrfs_commit_transaction()
3863 * -> btrfs_scrub_pause()
3865 scrub_pause_on(fs_info
);
3866 ret
= btrfs_inc_block_group_ro(fs_info
, cache
);
3867 if (!ret
&& is_dev_replace
) {
3869 * If we are doing a device replace wait for any tasks
3870 * that started dellaloc right before we set the block
3871 * group to RO mode, as they might have just allocated
3872 * an extent from it or decided they could do a nocow
3873 * write. And if any such tasks did that, wait for their
3874 * ordered extents to complete and then commit the
3875 * current transaction, so that we can later see the new
3876 * extent items in the extent tree - the ordered extents
3877 * create delayed data references (for cow writes) when
3878 * they complete, which will be run and insert the
3879 * corresponding extent items into the extent tree when
3880 * we commit the transaction they used when running
3881 * inode.c:btrfs_finish_ordered_io(). We later use
3882 * the commit root of the extent tree to find extents
3883 * to copy from the srcdev into the tgtdev, and we don't
3884 * want to miss any new extents.
3886 btrfs_wait_block_group_reservations(cache
);
3887 btrfs_wait_nocow_writers(cache
);
3888 ret
= btrfs_wait_ordered_roots(fs_info
, U64_MAX
,
3889 cache
->key
.objectid
,
3892 struct btrfs_trans_handle
*trans
;
3894 trans
= btrfs_join_transaction(root
);
3896 ret
= PTR_ERR(trans
);
3898 ret
= btrfs_commit_transaction(trans
);
3900 scrub_pause_off(fs_info
);
3901 btrfs_put_block_group(cache
);
3906 scrub_pause_off(fs_info
);
3910 } else if (ret
== -ENOSPC
) {
3912 * btrfs_inc_block_group_ro return -ENOSPC when it
3913 * failed in creating new chunk for metadata.
3914 * It is not a problem for scrub/replace, because
3915 * metadata are always cowed, and our scrub paused
3916 * commit_transactions.
3921 "failed setting block group ro: %d", ret
);
3922 btrfs_put_block_group(cache
);
3926 btrfs_dev_replace_write_lock(&fs_info
->dev_replace
);
3927 dev_replace
->cursor_right
= found_key
.offset
+ length
;
3928 dev_replace
->cursor_left
= found_key
.offset
;
3929 dev_replace
->item_needs_writeback
= 1;
3930 btrfs_dev_replace_write_unlock(&fs_info
->dev_replace
);
3931 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_offset
, length
,
3932 found_key
.offset
, cache
, is_dev_replace
);
3935 * flush, submit all pending read and write bios, afterwards
3937 * Note that in the dev replace case, a read request causes
3938 * write requests that are submitted in the read completion
3939 * worker. Therefore in the current situation, it is required
3940 * that all write requests are flushed, so that all read and
3941 * write requests are really completed when bios_in_flight
3944 sctx
->flush_all_writes
= true;
3946 mutex_lock(&sctx
->wr_lock
);
3947 scrub_wr_submit(sctx
);
3948 mutex_unlock(&sctx
->wr_lock
);
3950 wait_event(sctx
->list_wait
,
3951 atomic_read(&sctx
->bios_in_flight
) == 0);
3953 scrub_pause_on(fs_info
);
3956 * must be called before we decrease @scrub_paused.
3957 * make sure we don't block transaction commit while
3958 * we are waiting pending workers finished.
3960 wait_event(sctx
->list_wait
,
3961 atomic_read(&sctx
->workers_pending
) == 0);
3962 sctx
->flush_all_writes
= false;
3964 scrub_pause_off(fs_info
);
3966 btrfs_dev_replace_write_lock(&fs_info
->dev_replace
);
3967 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
3968 dev_replace
->item_needs_writeback
= 1;
3969 btrfs_dev_replace_write_unlock(&fs_info
->dev_replace
);
3972 btrfs_dec_block_group_ro(cache
);
3975 * We might have prevented the cleaner kthread from deleting
3976 * this block group if it was already unused because we raced
3977 * and set it to RO mode first. So add it back to the unused
3978 * list, otherwise it might not ever be deleted unless a manual
3979 * balance is triggered or it becomes used and unused again.
3981 spin_lock(&cache
->lock
);
3982 if (!cache
->removed
&& !cache
->ro
&& cache
->reserved
== 0 &&
3983 btrfs_block_group_used(&cache
->item
) == 0) {
3984 spin_unlock(&cache
->lock
);
3985 spin_lock(&fs_info
->unused_bgs_lock
);
3986 if (list_empty(&cache
->bg_list
)) {
3987 btrfs_get_block_group(cache
);
3988 trace_btrfs_add_unused_block_group(cache
);
3989 list_add_tail(&cache
->bg_list
,
3990 &fs_info
->unused_bgs
);
3992 spin_unlock(&fs_info
->unused_bgs_lock
);
3994 spin_unlock(&cache
->lock
);
3997 btrfs_put_block_group(cache
);
4000 if (is_dev_replace
&&
4001 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
4005 if (sctx
->stat
.malloc_errors
> 0) {
4010 key
.offset
= found_key
.offset
+ length
;
4011 btrfs_release_path(path
);
4014 btrfs_free_path(path
);
4019 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
4020 struct btrfs_device
*scrub_dev
)
4026 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4028 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
4031 /* Seed devices of a new filesystem has their own generation. */
4032 if (scrub_dev
->fs_devices
!= fs_info
->fs_devices
)
4033 gen
= scrub_dev
->generation
;
4035 gen
= fs_info
->last_trans_committed
;
4037 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
4038 bytenr
= btrfs_sb_offset(i
);
4039 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
4040 scrub_dev
->commit_total_bytes
)
4043 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
4044 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
4049 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
4055 * get a reference count on fs_info->scrub_workers. start worker if necessary
4057 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
4060 unsigned int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
4061 int max_active
= fs_info
->thread_pool_size
;
4063 if (fs_info
->scrub_workers_refcnt
== 0) {
4064 fs_info
->scrub_workers
= btrfs_alloc_workqueue(fs_info
, "scrub",
4065 flags
, is_dev_replace
? 1 : max_active
, 4);
4066 if (!fs_info
->scrub_workers
)
4067 goto fail_scrub_workers
;
4069 fs_info
->scrub_wr_completion_workers
=
4070 btrfs_alloc_workqueue(fs_info
, "scrubwrc", flags
,
4072 if (!fs_info
->scrub_wr_completion_workers
)
4073 goto fail_scrub_wr_completion_workers
;
4075 fs_info
->scrub_nocow_workers
=
4076 btrfs_alloc_workqueue(fs_info
, "scrubnc", flags
, 1, 0);
4077 if (!fs_info
->scrub_nocow_workers
)
4078 goto fail_scrub_nocow_workers
;
4079 fs_info
->scrub_parity_workers
=
4080 btrfs_alloc_workqueue(fs_info
, "scrubparity", flags
,
4082 if (!fs_info
->scrub_parity_workers
)
4083 goto fail_scrub_parity_workers
;
4085 ++fs_info
->scrub_workers_refcnt
;
4088 fail_scrub_parity_workers
:
4089 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
4090 fail_scrub_nocow_workers
:
4091 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
4092 fail_scrub_wr_completion_workers
:
4093 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
4098 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
4100 if (--fs_info
->scrub_workers_refcnt
== 0) {
4101 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
4102 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
4103 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
4104 btrfs_destroy_workqueue(fs_info
->scrub_parity_workers
);
4106 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
4109 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
4110 u64 end
, struct btrfs_scrub_progress
*progress
,
4111 int readonly
, int is_dev_replace
)
4113 struct scrub_ctx
*sctx
;
4115 struct btrfs_device
*dev
;
4116 struct rcu_string
*name
;
4118 if (btrfs_fs_closing(fs_info
))
4121 if (fs_info
->nodesize
> BTRFS_STRIPE_LEN
) {
4123 * in this case scrub is unable to calculate the checksum
4124 * the way scrub is implemented. Do not handle this
4125 * situation at all because it won't ever happen.
4128 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4134 if (fs_info
->sectorsize
!= PAGE_SIZE
) {
4135 /* not supported for data w/o checksums */
4136 btrfs_err_rl(fs_info
,
4137 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4138 fs_info
->sectorsize
, PAGE_SIZE
);
4142 if (fs_info
->nodesize
>
4143 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
4144 fs_info
->sectorsize
> PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
4146 * would exhaust the array bounds of pagev member in
4147 * struct scrub_block
4150 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4152 SCRUB_MAX_PAGES_PER_BLOCK
,
4153 fs_info
->sectorsize
,
4154 SCRUB_MAX_PAGES_PER_BLOCK
);
4159 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4160 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4161 if (!dev
|| (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) &&
4163 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4167 if (!is_dev_replace
&& !readonly
&&
4168 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
4169 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4171 name
= rcu_dereference(dev
->name
);
4172 btrfs_err(fs_info
, "scrub: device %s is not writable",
4178 mutex_lock(&fs_info
->scrub_lock
);
4179 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
4180 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &dev
->dev_state
)) {
4181 mutex_unlock(&fs_info
->scrub_lock
);
4182 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4186 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
4187 if (dev
->scrub_ctx
||
4189 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
4190 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
4191 mutex_unlock(&fs_info
->scrub_lock
);
4192 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4193 return -EINPROGRESS
;
4195 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
4197 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
4199 mutex_unlock(&fs_info
->scrub_lock
);
4200 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4204 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
4206 mutex_unlock(&fs_info
->scrub_lock
);
4207 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4208 scrub_workers_put(fs_info
);
4209 return PTR_ERR(sctx
);
4211 sctx
->readonly
= readonly
;
4212 dev
->scrub_ctx
= sctx
;
4213 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4216 * checking @scrub_pause_req here, we can avoid
4217 * race between committing transaction and scrubbing.
4219 __scrub_blocked_if_needed(fs_info
);
4220 atomic_inc(&fs_info
->scrubs_running
);
4221 mutex_unlock(&fs_info
->scrub_lock
);
4223 if (!is_dev_replace
) {
4225 * by holding device list mutex, we can
4226 * kick off writing super in log tree sync.
4228 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4229 ret
= scrub_supers(sctx
, dev
);
4230 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4234 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
4237 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
4238 atomic_dec(&fs_info
->scrubs_running
);
4239 wake_up(&fs_info
->scrub_pause_wait
);
4241 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
4244 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4246 mutex_lock(&fs_info
->scrub_lock
);
4247 dev
->scrub_ctx
= NULL
;
4248 scrub_workers_put(fs_info
);
4249 mutex_unlock(&fs_info
->scrub_lock
);
4251 scrub_put_ctx(sctx
);
4256 void btrfs_scrub_pause(struct btrfs_fs_info
*fs_info
)
4258 mutex_lock(&fs_info
->scrub_lock
);
4259 atomic_inc(&fs_info
->scrub_pause_req
);
4260 while (atomic_read(&fs_info
->scrubs_paused
) !=
4261 atomic_read(&fs_info
->scrubs_running
)) {
4262 mutex_unlock(&fs_info
->scrub_lock
);
4263 wait_event(fs_info
->scrub_pause_wait
,
4264 atomic_read(&fs_info
->scrubs_paused
) ==
4265 atomic_read(&fs_info
->scrubs_running
));
4266 mutex_lock(&fs_info
->scrub_lock
);
4268 mutex_unlock(&fs_info
->scrub_lock
);
4271 void btrfs_scrub_continue(struct btrfs_fs_info
*fs_info
)
4273 atomic_dec(&fs_info
->scrub_pause_req
);
4274 wake_up(&fs_info
->scrub_pause_wait
);
4277 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4279 mutex_lock(&fs_info
->scrub_lock
);
4280 if (!atomic_read(&fs_info
->scrubs_running
)) {
4281 mutex_unlock(&fs_info
->scrub_lock
);
4285 atomic_inc(&fs_info
->scrub_cancel_req
);
4286 while (atomic_read(&fs_info
->scrubs_running
)) {
4287 mutex_unlock(&fs_info
->scrub_lock
);
4288 wait_event(fs_info
->scrub_pause_wait
,
4289 atomic_read(&fs_info
->scrubs_running
) == 0);
4290 mutex_lock(&fs_info
->scrub_lock
);
4292 atomic_dec(&fs_info
->scrub_cancel_req
);
4293 mutex_unlock(&fs_info
->scrub_lock
);
4298 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
4299 struct btrfs_device
*dev
)
4301 struct scrub_ctx
*sctx
;
4303 mutex_lock(&fs_info
->scrub_lock
);
4304 sctx
= dev
->scrub_ctx
;
4306 mutex_unlock(&fs_info
->scrub_lock
);
4309 atomic_inc(&sctx
->cancel_req
);
4310 while (dev
->scrub_ctx
) {
4311 mutex_unlock(&fs_info
->scrub_lock
);
4312 wait_event(fs_info
->scrub_pause_wait
,
4313 dev
->scrub_ctx
== NULL
);
4314 mutex_lock(&fs_info
->scrub_lock
);
4316 mutex_unlock(&fs_info
->scrub_lock
);
4321 int btrfs_scrub_progress(struct btrfs_fs_info
*fs_info
, u64 devid
,
4322 struct btrfs_scrub_progress
*progress
)
4324 struct btrfs_device
*dev
;
4325 struct scrub_ctx
*sctx
= NULL
;
4327 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4328 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4330 sctx
= dev
->scrub_ctx
;
4332 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4333 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4335 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
4338 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
4339 u64 extent_logical
, u64 extent_len
,
4340 u64
*extent_physical
,
4341 struct btrfs_device
**extent_dev
,
4342 int *extent_mirror_num
)
4345 struct btrfs_bio
*bbio
= NULL
;
4348 mapped_length
= extent_len
;
4349 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, extent_logical
,
4350 &mapped_length
, &bbio
, 0);
4351 if (ret
|| !bbio
|| mapped_length
< extent_len
||
4352 !bbio
->stripes
[0].dev
->bdev
) {
4353 btrfs_put_bbio(bbio
);
4357 *extent_physical
= bbio
->stripes
[0].physical
;
4358 *extent_mirror_num
= bbio
->mirror_num
;
4359 *extent_dev
= bbio
->stripes
[0].dev
;
4360 btrfs_put_bbio(bbio
);
4363 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
4364 int mirror_num
, u64 physical_for_dev_replace
)
4366 struct scrub_copy_nocow_ctx
*nocow_ctx
;
4367 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4369 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
4371 spin_lock(&sctx
->stat_lock
);
4372 sctx
->stat
.malloc_errors
++;
4373 spin_unlock(&sctx
->stat_lock
);
4377 scrub_pending_trans_workers_inc(sctx
);
4379 nocow_ctx
->sctx
= sctx
;
4380 nocow_ctx
->logical
= logical
;
4381 nocow_ctx
->len
= len
;
4382 nocow_ctx
->mirror_num
= mirror_num
;
4383 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
4384 btrfs_init_work(&nocow_ctx
->work
, btrfs_scrubnc_helper
,
4385 copy_nocow_pages_worker
, NULL
, NULL
);
4386 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
4387 btrfs_queue_work(fs_info
->scrub_nocow_workers
,
4393 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4395 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
4396 struct scrub_nocow_inode
*nocow_inode
;
4398 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
4401 nocow_inode
->inum
= inum
;
4402 nocow_inode
->offset
= offset
;
4403 nocow_inode
->root
= root
;
4404 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
4408 #define COPY_COMPLETE 1
4410 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
4412 struct scrub_copy_nocow_ctx
*nocow_ctx
=
4413 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
4414 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
4415 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4416 struct btrfs_root
*root
= fs_info
->extent_root
;
4417 u64 logical
= nocow_ctx
->logical
;
4418 u64 len
= nocow_ctx
->len
;
4419 int mirror_num
= nocow_ctx
->mirror_num
;
4420 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4422 struct btrfs_trans_handle
*trans
= NULL
;
4423 struct btrfs_path
*path
;
4424 int not_written
= 0;
4426 path
= btrfs_alloc_path();
4428 spin_lock(&sctx
->stat_lock
);
4429 sctx
->stat
.malloc_errors
++;
4430 spin_unlock(&sctx
->stat_lock
);
4435 trans
= btrfs_join_transaction(root
);
4436 if (IS_ERR(trans
)) {
4441 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
4442 record_inode_for_nocow
, nocow_ctx
, false);
4443 if (ret
!= 0 && ret
!= -ENOENT
) {
4445 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4446 logical
, physical_for_dev_replace
, len
, mirror_num
,
4452 btrfs_end_transaction(trans
);
4454 while (!list_empty(&nocow_ctx
->inodes
)) {
4455 struct scrub_nocow_inode
*entry
;
4456 entry
= list_first_entry(&nocow_ctx
->inodes
,
4457 struct scrub_nocow_inode
,
4459 list_del_init(&entry
->list
);
4460 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
4461 entry
->root
, nocow_ctx
);
4463 if (ret
== COPY_COMPLETE
) {
4471 while (!list_empty(&nocow_ctx
->inodes
)) {
4472 struct scrub_nocow_inode
*entry
;
4473 entry
= list_first_entry(&nocow_ctx
->inodes
,
4474 struct scrub_nocow_inode
,
4476 list_del_init(&entry
->list
);
4479 if (trans
&& !IS_ERR(trans
))
4480 btrfs_end_transaction(trans
);
4482 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
4483 num_uncorrectable_read_errors
);
4485 btrfs_free_path(path
);
4488 scrub_pending_trans_workers_dec(sctx
);
4491 static int check_extent_to_block(struct btrfs_inode
*inode
, u64 start
, u64 len
,
4494 struct extent_state
*cached_state
= NULL
;
4495 struct btrfs_ordered_extent
*ordered
;
4496 struct extent_io_tree
*io_tree
;
4497 struct extent_map
*em
;
4498 u64 lockstart
= start
, lockend
= start
+ len
- 1;
4501 io_tree
= &inode
->io_tree
;
4503 lock_extent_bits(io_tree
, lockstart
, lockend
, &cached_state
);
4504 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
4506 btrfs_put_ordered_extent(ordered
);
4511 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
4518 * This extent does not actually cover the logical extent anymore,
4519 * move on to the next inode.
4521 if (em
->block_start
> logical
||
4522 em
->block_start
+ em
->block_len
< logical
+ len
||
4523 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4524 free_extent_map(em
);
4528 free_extent_map(em
);
4531 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
);
4535 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
4536 struct scrub_copy_nocow_ctx
*nocow_ctx
)
4538 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->fs_info
;
4539 struct btrfs_key key
;
4540 struct inode
*inode
;
4542 struct btrfs_root
*local_root
;
4543 struct extent_io_tree
*io_tree
;
4544 u64 physical_for_dev_replace
;
4545 u64 nocow_ctx_logical
;
4546 u64 len
= nocow_ctx
->len
;
4547 unsigned long index
;
4552 key
.objectid
= root
;
4553 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4554 key
.offset
= (u64
)-1;
4556 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
4558 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4559 if (IS_ERR(local_root
)) {
4560 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4561 return PTR_ERR(local_root
);
4564 key
.type
= BTRFS_INODE_ITEM_KEY
;
4565 key
.objectid
= inum
;
4567 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
4568 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4570 return PTR_ERR(inode
);
4572 /* Avoid truncate/dio/punch hole.. */
4574 inode_dio_wait(inode
);
4576 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4577 io_tree
= &BTRFS_I(inode
)->io_tree
;
4578 nocow_ctx_logical
= nocow_ctx
->logical
;
4580 ret
= check_extent_to_block(BTRFS_I(inode
), offset
, len
,
4583 ret
= ret
> 0 ? 0 : ret
;
4587 while (len
>= PAGE_SIZE
) {
4588 index
= offset
>> PAGE_SHIFT
;
4590 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4592 btrfs_err(fs_info
, "find_or_create_page() failed");
4597 if (PageUptodate(page
)) {
4598 if (PageDirty(page
))
4601 ClearPageError(page
);
4602 err
= extent_read_full_page(io_tree
, page
,
4604 nocow_ctx
->mirror_num
);
4612 * If the page has been remove from the page cache,
4613 * the data on it is meaningless, because it may be
4614 * old one, the new data may be written into the new
4615 * page in the page cache.
4617 if (page
->mapping
!= inode
->i_mapping
) {
4622 if (!PageUptodate(page
)) {
4628 ret
= check_extent_to_block(BTRFS_I(inode
), offset
, len
,
4631 ret
= ret
> 0 ? 0 : ret
;
4635 err
= write_page_nocow(nocow_ctx
->sctx
,
4636 physical_for_dev_replace
, page
);
4646 offset
+= PAGE_SIZE
;
4647 physical_for_dev_replace
+= PAGE_SIZE
;
4648 nocow_ctx_logical
+= PAGE_SIZE
;
4651 ret
= COPY_COMPLETE
;
4653 inode_unlock(inode
);
4658 static int write_page_nocow(struct scrub_ctx
*sctx
,
4659 u64 physical_for_dev_replace
, struct page
*page
)
4662 struct btrfs_device
*dev
;
4664 dev
= sctx
->wr_tgtdev
;
4668 btrfs_warn_rl(dev
->fs_info
,
4669 "scrub write_page_nocow(bdev == NULL) is unexpected");
4672 bio
= btrfs_io_bio_alloc(1);
4673 bio
->bi_iter
.bi_size
= 0;
4674 bio
->bi_iter
.bi_sector
= physical_for_dev_replace
>> 9;
4675 bio_set_dev(bio
, dev
->bdev
);
4676 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
4677 /* bio_add_page won't fail on a freshly allocated bio */
4678 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
4680 if (btrfsic_submit_bio_wait(bio
)) {
4682 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);