1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
15 #include "transaction.h"
18 #include "inode-map.h"
20 #include "dev-replace.h"
23 #define BTRFS_ROOT_TRANS_TAG 0
25 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
26 [TRANS_STATE_RUNNING
] = 0U,
27 [TRANS_STATE_BLOCKED
] = __TRANS_START
,
28 [TRANS_STATE_COMMIT_START
] = (__TRANS_START
| __TRANS_ATTACH
),
29 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_START
|
32 [TRANS_STATE_UNBLOCKED
] = (__TRANS_START
|
36 [TRANS_STATE_COMPLETED
] = (__TRANS_START
|
42 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
44 WARN_ON(refcount_read(&transaction
->use_count
) == 0);
45 if (refcount_dec_and_test(&transaction
->use_count
)) {
46 BUG_ON(!list_empty(&transaction
->list
));
47 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
48 if (transaction
->delayed_refs
.pending_csums
)
49 btrfs_err(transaction
->fs_info
,
50 "pending csums is %llu",
51 transaction
->delayed_refs
.pending_csums
);
52 while (!list_empty(&transaction
->pending_chunks
)) {
53 struct extent_map
*em
;
55 em
= list_first_entry(&transaction
->pending_chunks
,
56 struct extent_map
, list
);
57 list_del_init(&em
->list
);
61 * If any block groups are found in ->deleted_bgs then it's
62 * because the transaction was aborted and a commit did not
63 * happen (things failed before writing the new superblock
64 * and calling btrfs_finish_extent_commit()), so we can not
65 * discard the physical locations of the block groups.
67 while (!list_empty(&transaction
->deleted_bgs
)) {
68 struct btrfs_block_group_cache
*cache
;
70 cache
= list_first_entry(&transaction
->deleted_bgs
,
71 struct btrfs_block_group_cache
,
73 list_del_init(&cache
->bg_list
);
74 btrfs_put_block_group_trimming(cache
);
75 btrfs_put_block_group(cache
);
81 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
83 spin_lock(&tree
->lock
);
85 * Do a single barrier for the waitqueue_active check here, the state
86 * of the waitqueue should not change once clear_btree_io_tree is
90 while (!RB_EMPTY_ROOT(&tree
->state
)) {
92 struct extent_state
*state
;
94 node
= rb_first(&tree
->state
);
95 state
= rb_entry(node
, struct extent_state
, rb_node
);
96 rb_erase(&state
->rb_node
, &tree
->state
);
97 RB_CLEAR_NODE(&state
->rb_node
);
99 * btree io trees aren't supposed to have tasks waiting for
100 * changes in the flags of extent states ever.
102 ASSERT(!waitqueue_active(&state
->wq
));
103 free_extent_state(state
);
105 cond_resched_lock(&tree
->lock
);
107 spin_unlock(&tree
->lock
);
110 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
)
112 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
113 struct btrfs_root
*root
, *tmp
;
115 down_write(&fs_info
->commit_root_sem
);
116 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
118 list_del_init(&root
->dirty_list
);
119 free_extent_buffer(root
->commit_root
);
120 root
->commit_root
= btrfs_root_node(root
);
121 if (is_fstree(root
->objectid
))
122 btrfs_unpin_free_ino(root
);
123 clear_btree_io_tree(&root
->dirty_log_pages
);
126 /* We can free old roots now. */
127 spin_lock(&trans
->dropped_roots_lock
);
128 while (!list_empty(&trans
->dropped_roots
)) {
129 root
= list_first_entry(&trans
->dropped_roots
,
130 struct btrfs_root
, root_list
);
131 list_del_init(&root
->root_list
);
132 spin_unlock(&trans
->dropped_roots_lock
);
133 btrfs_drop_and_free_fs_root(fs_info
, root
);
134 spin_lock(&trans
->dropped_roots_lock
);
136 spin_unlock(&trans
->dropped_roots_lock
);
137 up_write(&fs_info
->commit_root_sem
);
140 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
143 if (type
& TRANS_EXTWRITERS
)
144 atomic_inc(&trans
->num_extwriters
);
147 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
150 if (type
& TRANS_EXTWRITERS
)
151 atomic_dec(&trans
->num_extwriters
);
154 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
157 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
160 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
162 return atomic_read(&trans
->num_extwriters
);
166 * either allocate a new transaction or hop into the existing one
168 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
171 struct btrfs_transaction
*cur_trans
;
173 spin_lock(&fs_info
->trans_lock
);
175 /* The file system has been taken offline. No new transactions. */
176 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
177 spin_unlock(&fs_info
->trans_lock
);
181 cur_trans
= fs_info
->running_transaction
;
183 if (cur_trans
->aborted
) {
184 spin_unlock(&fs_info
->trans_lock
);
185 return cur_trans
->aborted
;
187 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
188 spin_unlock(&fs_info
->trans_lock
);
191 refcount_inc(&cur_trans
->use_count
);
192 atomic_inc(&cur_trans
->num_writers
);
193 extwriter_counter_inc(cur_trans
, type
);
194 spin_unlock(&fs_info
->trans_lock
);
197 spin_unlock(&fs_info
->trans_lock
);
200 * If we are ATTACH, we just want to catch the current transaction,
201 * and commit it. If there is no transaction, just return ENOENT.
203 if (type
== TRANS_ATTACH
)
207 * JOIN_NOLOCK only happens during the transaction commit, so
208 * it is impossible that ->running_transaction is NULL
210 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
212 cur_trans
= kmalloc(sizeof(*cur_trans
), GFP_NOFS
);
216 spin_lock(&fs_info
->trans_lock
);
217 if (fs_info
->running_transaction
) {
219 * someone started a transaction after we unlocked. Make sure
220 * to redo the checks above
224 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
225 spin_unlock(&fs_info
->trans_lock
);
230 cur_trans
->fs_info
= fs_info
;
231 atomic_set(&cur_trans
->num_writers
, 1);
232 extwriter_counter_init(cur_trans
, type
);
233 init_waitqueue_head(&cur_trans
->writer_wait
);
234 init_waitqueue_head(&cur_trans
->commit_wait
);
235 init_waitqueue_head(&cur_trans
->pending_wait
);
236 cur_trans
->state
= TRANS_STATE_RUNNING
;
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
241 refcount_set(&cur_trans
->use_count
, 2);
242 atomic_set(&cur_trans
->pending_ordered
, 0);
243 cur_trans
->flags
= 0;
244 cur_trans
->start_time
= get_seconds();
246 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
248 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
249 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
250 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
253 * although the tree mod log is per file system and not per transaction,
254 * the log must never go across transaction boundaries.
257 if (!list_empty(&fs_info
->tree_mod_seq_list
))
258 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
259 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
260 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
261 atomic64_set(&fs_info
->tree_mod_seq
, 0);
263 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
265 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
266 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
267 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
268 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
269 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
270 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
271 mutex_init(&cur_trans
->cache_write_mutex
);
272 cur_trans
->num_dirty_bgs
= 0;
273 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
274 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
275 spin_lock_init(&cur_trans
->dropped_roots_lock
);
276 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
277 extent_io_tree_init(&cur_trans
->dirty_pages
,
278 fs_info
->btree_inode
);
279 fs_info
->generation
++;
280 cur_trans
->transid
= fs_info
->generation
;
281 fs_info
->running_transaction
= cur_trans
;
282 cur_trans
->aborted
= 0;
283 spin_unlock(&fs_info
->trans_lock
);
289 * this does all the record keeping required to make sure that a reference
290 * counted root is properly recorded in a given transaction. This is required
291 * to make sure the old root from before we joined the transaction is deleted
292 * when the transaction commits
294 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
295 struct btrfs_root
*root
,
298 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
300 if ((test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
301 root
->last_trans
< trans
->transid
) || force
) {
302 WARN_ON(root
== fs_info
->extent_root
);
303 WARN_ON(!force
&& root
->commit_root
!= root
->node
);
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
317 spin_lock(&fs_info
->fs_roots_radix_lock
);
318 if (root
->last_trans
== trans
->transid
&& !force
) {
319 spin_unlock(&fs_info
->fs_roots_radix_lock
);
322 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
323 (unsigned long)root
->root_key
.objectid
,
324 BTRFS_ROOT_TRANS_TAG
);
325 spin_unlock(&fs_info
->fs_roots_radix_lock
);
326 root
->last_trans
= trans
->transid
;
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
347 btrfs_init_reloc_root(trans
, root
);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
355 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
356 struct btrfs_root
*root
)
358 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
359 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
361 /* Add ourselves to the transaction dropped list */
362 spin_lock(&cur_trans
->dropped_roots_lock
);
363 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
364 spin_unlock(&cur_trans
->dropped_roots_lock
);
366 /* Make sure we don't try to update the root at commit time */
367 spin_lock(&fs_info
->fs_roots_radix_lock
);
368 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
369 (unsigned long)root
->root_key
.objectid
,
370 BTRFS_ROOT_TRANS_TAG
);
371 spin_unlock(&fs_info
->fs_roots_radix_lock
);
374 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
375 struct btrfs_root
*root
)
377 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
379 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
383 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
387 if (root
->last_trans
== trans
->transid
&&
388 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
391 mutex_lock(&fs_info
->reloc_mutex
);
392 record_root_in_trans(trans
, root
, 0);
393 mutex_unlock(&fs_info
->reloc_mutex
);
398 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
400 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
401 trans
->state
< TRANS_STATE_UNBLOCKED
&&
405 /* wait for commit against the current transaction to become unblocked
406 * when this is done, it is safe to start a new transaction, but the current
407 * transaction might not be fully on disk.
409 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
411 struct btrfs_transaction
*cur_trans
;
413 spin_lock(&fs_info
->trans_lock
);
414 cur_trans
= fs_info
->running_transaction
;
415 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
416 refcount_inc(&cur_trans
->use_count
);
417 spin_unlock(&fs_info
->trans_lock
);
419 wait_event(fs_info
->transaction_wait
,
420 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
422 btrfs_put_transaction(cur_trans
);
424 spin_unlock(&fs_info
->trans_lock
);
428 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
430 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
433 if (type
== TRANS_START
)
439 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
441 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
443 if (!fs_info
->reloc_ctl
||
444 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
445 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
452 static struct btrfs_trans_handle
*
453 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
454 unsigned int type
, enum btrfs_reserve_flush_enum flush
,
455 bool enforce_qgroups
)
457 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
459 struct btrfs_trans_handle
*h
;
460 struct btrfs_transaction
*cur_trans
;
462 u64 qgroup_reserved
= 0;
463 bool reloc_reserved
= false;
466 /* Send isn't supposed to start transactions. */
467 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
469 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
470 return ERR_PTR(-EROFS
);
472 if (current
->journal_info
) {
473 WARN_ON(type
& TRANS_EXTWRITERS
);
474 h
= current
->journal_info
;
475 refcount_inc(&h
->use_count
);
476 WARN_ON(refcount_read(&h
->use_count
) > 2);
477 h
->orig_rsv
= h
->block_rsv
;
483 * Do the reservation before we join the transaction so we can do all
484 * the appropriate flushing if need be.
486 if (num_items
&& root
!= fs_info
->chunk_root
) {
487 qgroup_reserved
= num_items
* fs_info
->nodesize
;
488 ret
= btrfs_qgroup_reserve_meta_pertrans(root
, qgroup_reserved
,
493 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, num_items
);
495 * Do the reservation for the relocation root creation
497 if (need_reserve_reloc_root(root
)) {
498 num_bytes
+= fs_info
->nodesize
;
499 reloc_reserved
= true;
502 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
508 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
515 * If we are JOIN_NOLOCK we're already committing a transaction and
516 * waiting on this guy, so we don't need to do the sb_start_intwrite
517 * because we're already holding a ref. We need this because we could
518 * have raced in and did an fsync() on a file which can kick a commit
519 * and then we deadlock with somebody doing a freeze.
521 * If we are ATTACH, it means we just want to catch the current
522 * transaction and commit it, so we needn't do sb_start_intwrite().
524 if (type
& __TRANS_FREEZABLE
)
525 sb_start_intwrite(fs_info
->sb
);
527 if (may_wait_transaction(fs_info
, type
))
528 wait_current_trans(fs_info
);
531 ret
= join_transaction(fs_info
, type
);
533 wait_current_trans(fs_info
);
534 if (unlikely(type
== TRANS_ATTACH
))
537 } while (ret
== -EBUSY
);
542 cur_trans
= fs_info
->running_transaction
;
544 h
->transid
= cur_trans
->transid
;
545 h
->transaction
= cur_trans
;
547 refcount_set(&h
->use_count
, 1);
548 h
->fs_info
= root
->fs_info
;
551 h
->can_flush_pending_bgs
= true;
552 INIT_LIST_HEAD(&h
->new_bgs
);
555 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
556 may_wait_transaction(fs_info
, type
)) {
557 current
->journal_info
= h
;
558 btrfs_commit_transaction(h
);
563 trace_btrfs_space_reservation(fs_info
, "transaction",
564 h
->transid
, num_bytes
, 1);
565 h
->block_rsv
= &fs_info
->trans_block_rsv
;
566 h
->bytes_reserved
= num_bytes
;
567 h
->reloc_reserved
= reloc_reserved
;
571 btrfs_record_root_in_trans(h
, root
);
573 if (!current
->journal_info
)
574 current
->journal_info
= h
;
578 if (type
& __TRANS_FREEZABLE
)
579 sb_end_intwrite(fs_info
->sb
);
580 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
583 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
586 btrfs_qgroup_free_meta_pertrans(root
, qgroup_reserved
);
590 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
591 unsigned int num_items
)
593 return start_transaction(root
, num_items
, TRANS_START
,
594 BTRFS_RESERVE_FLUSH_ALL
, true);
597 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
598 struct btrfs_root
*root
,
599 unsigned int num_items
,
602 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
603 struct btrfs_trans_handle
*trans
;
608 * We have two callers: unlink and block group removal. The
609 * former should succeed even if we will temporarily exceed
610 * quota and the latter operates on the extent root so
611 * qgroup enforcement is ignored anyway.
613 trans
= start_transaction(root
, num_items
, TRANS_START
,
614 BTRFS_RESERVE_FLUSH_ALL
, false);
615 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
618 trans
= btrfs_start_transaction(root
, 0);
622 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, num_items
);
623 ret
= btrfs_cond_migrate_bytes(fs_info
, &fs_info
->trans_block_rsv
,
624 num_bytes
, min_factor
);
626 btrfs_end_transaction(trans
);
630 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
631 trans
->bytes_reserved
= num_bytes
;
632 trace_btrfs_space_reservation(fs_info
, "transaction",
633 trans
->transid
, num_bytes
, 1);
638 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
640 return start_transaction(root
, 0, TRANS_JOIN
, BTRFS_RESERVE_NO_FLUSH
,
644 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
646 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
647 BTRFS_RESERVE_NO_FLUSH
, true);
651 * btrfs_attach_transaction() - catch the running transaction
653 * It is used when we want to commit the current the transaction, but
654 * don't want to start a new one.
656 * Note: If this function return -ENOENT, it just means there is no
657 * running transaction. But it is possible that the inactive transaction
658 * is still in the memory, not fully on disk. If you hope there is no
659 * inactive transaction in the fs when -ENOENT is returned, you should
661 * btrfs_attach_transaction_barrier()
663 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
665 return start_transaction(root
, 0, TRANS_ATTACH
,
666 BTRFS_RESERVE_NO_FLUSH
, true);
670 * btrfs_attach_transaction_barrier() - catch the running transaction
672 * It is similar to the above function, the differentia is this one
673 * will wait for all the inactive transactions until they fully
676 struct btrfs_trans_handle
*
677 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
679 struct btrfs_trans_handle
*trans
;
681 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
682 BTRFS_RESERVE_NO_FLUSH
, true);
683 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
684 btrfs_wait_for_commit(root
->fs_info
, 0);
689 /* wait for a transaction commit to be fully complete */
690 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
692 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
695 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
697 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
701 if (transid
<= fs_info
->last_trans_committed
)
704 /* find specified transaction */
705 spin_lock(&fs_info
->trans_lock
);
706 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
707 if (t
->transid
== transid
) {
709 refcount_inc(&cur_trans
->use_count
);
713 if (t
->transid
> transid
) {
718 spin_unlock(&fs_info
->trans_lock
);
721 * The specified transaction doesn't exist, or we
722 * raced with btrfs_commit_transaction
725 if (transid
> fs_info
->last_trans_committed
)
730 /* find newest transaction that is committing | committed */
731 spin_lock(&fs_info
->trans_lock
);
732 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
734 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
735 if (t
->state
== TRANS_STATE_COMPLETED
)
738 refcount_inc(&cur_trans
->use_count
);
742 spin_unlock(&fs_info
->trans_lock
);
744 goto out
; /* nothing committing|committed */
747 wait_for_commit(cur_trans
);
748 btrfs_put_transaction(cur_trans
);
753 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
755 wait_current_trans(fs_info
);
758 static int should_end_transaction(struct btrfs_trans_handle
*trans
)
760 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
762 if (btrfs_check_space_for_delayed_refs(trans
, fs_info
))
765 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
768 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
770 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
775 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
776 cur_trans
->delayed_refs
.flushing
)
779 updates
= trans
->delayed_ref_updates
;
780 trans
->delayed_ref_updates
= 0;
782 err
= btrfs_run_delayed_refs(trans
, updates
* 2);
783 if (err
) /* Error code will also eval true */
787 return should_end_transaction(trans
);
790 static void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
)
793 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
795 if (!trans
->block_rsv
) {
796 ASSERT(!trans
->bytes_reserved
);
800 if (!trans
->bytes_reserved
)
803 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
804 trace_btrfs_space_reservation(fs_info
, "transaction",
805 trans
->transid
, trans
->bytes_reserved
, 0);
806 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
807 trans
->bytes_reserved
);
808 trans
->bytes_reserved
= 0;
811 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
814 struct btrfs_fs_info
*info
= trans
->fs_info
;
815 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
816 u64 transid
= trans
->transid
;
817 unsigned long cur
= trans
->delayed_ref_updates
;
818 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
820 int must_run_delayed_refs
= 0;
822 if (refcount_read(&trans
->use_count
) > 1) {
823 refcount_dec(&trans
->use_count
);
824 trans
->block_rsv
= trans
->orig_rsv
;
828 btrfs_trans_release_metadata(trans
);
829 trans
->block_rsv
= NULL
;
831 if (!list_empty(&trans
->new_bgs
))
832 btrfs_create_pending_block_groups(trans
);
834 trans
->delayed_ref_updates
= 0;
836 must_run_delayed_refs
=
837 btrfs_should_throttle_delayed_refs(trans
, info
);
838 cur
= max_t(unsigned long, cur
, 32);
841 * don't make the caller wait if they are from a NOLOCK
842 * or ATTACH transaction, it will deadlock with commit
844 if (must_run_delayed_refs
== 1 &&
845 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
846 must_run_delayed_refs
= 2;
849 btrfs_trans_release_metadata(trans
);
850 trans
->block_rsv
= NULL
;
852 if (!list_empty(&trans
->new_bgs
))
853 btrfs_create_pending_block_groups(trans
);
855 btrfs_trans_release_chunk_metadata(trans
);
857 if (lock
&& should_end_transaction(trans
) &&
858 READ_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
859 spin_lock(&info
->trans_lock
);
860 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
861 cur_trans
->state
= TRANS_STATE_BLOCKED
;
862 spin_unlock(&info
->trans_lock
);
865 if (lock
&& READ_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
867 return btrfs_commit_transaction(trans
);
869 wake_up_process(info
->transaction_kthread
);
872 if (trans
->type
& __TRANS_FREEZABLE
)
873 sb_end_intwrite(info
->sb
);
875 WARN_ON(cur_trans
!= info
->running_transaction
);
876 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
877 atomic_dec(&cur_trans
->num_writers
);
878 extwriter_counter_dec(cur_trans
, trans
->type
);
880 cond_wake_up(&cur_trans
->writer_wait
);
881 btrfs_put_transaction(cur_trans
);
883 if (current
->journal_info
== trans
)
884 current
->journal_info
= NULL
;
887 btrfs_run_delayed_iputs(info
);
889 if (trans
->aborted
||
890 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
891 wake_up_process(info
->transaction_kthread
);
895 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
896 if (must_run_delayed_refs
) {
897 btrfs_async_run_delayed_refs(info
, cur
, transid
,
898 must_run_delayed_refs
== 1);
903 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
905 return __btrfs_end_transaction(trans
, 0);
908 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
910 return __btrfs_end_transaction(trans
, 1);
914 * when btree blocks are allocated, they have some corresponding bits set for
915 * them in one of two extent_io trees. This is used to make sure all of
916 * those extents are sent to disk but does not wait on them
918 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
919 struct extent_io_tree
*dirty_pages
, int mark
)
923 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
924 struct extent_state
*cached_state
= NULL
;
928 atomic_inc(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
929 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
930 mark
, &cached_state
)) {
931 bool wait_writeback
= false;
933 err
= convert_extent_bit(dirty_pages
, start
, end
,
935 mark
, &cached_state
);
937 * convert_extent_bit can return -ENOMEM, which is most of the
938 * time a temporary error. So when it happens, ignore the error
939 * and wait for writeback of this range to finish - because we
940 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
941 * to __btrfs_wait_marked_extents() would not know that
942 * writeback for this range started and therefore wouldn't
943 * wait for it to finish - we don't want to commit a
944 * superblock that points to btree nodes/leafs for which
945 * writeback hasn't finished yet (and without errors).
946 * We cleanup any entries left in the io tree when committing
947 * the transaction (through clear_btree_io_tree()).
949 if (err
== -ENOMEM
) {
951 wait_writeback
= true;
954 err
= filemap_fdatawrite_range(mapping
, start
, end
);
957 else if (wait_writeback
)
958 werr
= filemap_fdatawait_range(mapping
, start
, end
);
959 free_extent_state(cached_state
);
964 atomic_dec(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
969 * when btree blocks are allocated, they have some corresponding bits set for
970 * them in one of two extent_io trees. This is used to make sure all of
971 * those extents are on disk for transaction or log commit. We wait
972 * on all the pages and clear them from the dirty pages state tree
974 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
975 struct extent_io_tree
*dirty_pages
)
979 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
980 struct extent_state
*cached_state
= NULL
;
984 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
985 EXTENT_NEED_WAIT
, &cached_state
)) {
987 * Ignore -ENOMEM errors returned by clear_extent_bit().
988 * When committing the transaction, we'll remove any entries
989 * left in the io tree. For a log commit, we don't remove them
990 * after committing the log because the tree can be accessed
991 * concurrently - we do it only at transaction commit time when
992 * it's safe to do it (through clear_btree_io_tree()).
994 err
= clear_extent_bit(dirty_pages
, start
, end
,
995 EXTENT_NEED_WAIT
, 0, 0, &cached_state
);
999 err
= filemap_fdatawait_range(mapping
, start
, end
);
1002 free_extent_state(cached_state
);
1003 cached_state
= NULL
;
1012 int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
1013 struct extent_io_tree
*dirty_pages
)
1015 bool errors
= false;
1018 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1019 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
1027 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
1029 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
1030 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
1031 bool errors
= false;
1034 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
1036 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1037 if ((mark
& EXTENT_DIRTY
) &&
1038 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
1041 if ((mark
& EXTENT_NEW
) &&
1042 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
1051 * When btree blocks are allocated the corresponding extents are marked dirty.
1052 * This function ensures such extents are persisted on disk for transaction or
1055 * @trans: transaction whose dirty pages we'd like to write
1057 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
)
1061 struct extent_io_tree
*dirty_pages
= &trans
->transaction
->dirty_pages
;
1062 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1063 struct blk_plug plug
;
1065 blk_start_plug(&plug
);
1066 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, EXTENT_DIRTY
);
1067 blk_finish_plug(&plug
);
1068 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1070 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1081 * this is used to update the root pointer in the tree of tree roots.
1083 * But, in the case of the extent allocation tree, updating the root
1084 * pointer may allocate blocks which may change the root of the extent
1087 * So, this loops and repeats and makes sure the cowonly root didn't
1088 * change while the root pointer was being updated in the metadata.
1090 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1091 struct btrfs_root
*root
)
1094 u64 old_root_bytenr
;
1096 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1097 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1099 old_root_used
= btrfs_root_used(&root
->root_item
);
1102 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1103 if (old_root_bytenr
== root
->node
->start
&&
1104 old_root_used
== btrfs_root_used(&root
->root_item
))
1107 btrfs_set_root_node(&root
->root_item
, root
->node
);
1108 ret
= btrfs_update_root(trans
, tree_root
,
1114 old_root_used
= btrfs_root_used(&root
->root_item
);
1121 * update all the cowonly tree roots on disk
1123 * The error handling in this function may not be obvious. Any of the
1124 * failures will cause the file system to go offline. We still need
1125 * to clean up the delayed refs.
1127 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
)
1129 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1130 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1131 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1132 struct list_head
*next
;
1133 struct extent_buffer
*eb
;
1136 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1137 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1139 btrfs_tree_unlock(eb
);
1140 free_extent_buffer(eb
);
1145 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1149 ret
= btrfs_run_dev_stats(trans
, fs_info
);
1152 ret
= btrfs_run_dev_replace(trans
, fs_info
);
1155 ret
= btrfs_run_qgroups(trans
, fs_info
);
1159 ret
= btrfs_setup_space_cache(trans
, fs_info
);
1163 /* run_qgroups might have added some more refs */
1164 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1168 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1169 struct btrfs_root
*root
;
1170 next
= fs_info
->dirty_cowonly_roots
.next
;
1171 list_del_init(next
);
1172 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1173 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1175 if (root
!= fs_info
->extent_root
)
1176 list_add_tail(&root
->dirty_list
,
1177 &trans
->transaction
->switch_commits
);
1178 ret
= update_cowonly_root(trans
, root
);
1181 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1186 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1187 ret
= btrfs_write_dirty_block_groups(trans
, fs_info
);
1190 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1195 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1198 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1199 &trans
->transaction
->switch_commits
);
1200 btrfs_after_dev_replace_commit(fs_info
);
1206 * dead roots are old snapshots that need to be deleted. This allocates
1207 * a dirty root struct and adds it into the list of dead roots that need to
1210 void btrfs_add_dead_root(struct btrfs_root
*root
)
1212 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1214 spin_lock(&fs_info
->trans_lock
);
1215 if (list_empty(&root
->root_list
))
1216 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1217 spin_unlock(&fs_info
->trans_lock
);
1221 * update all the cowonly tree roots on disk
1223 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
)
1225 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1226 struct btrfs_root
*gang
[8];
1231 spin_lock(&fs_info
->fs_roots_radix_lock
);
1233 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1236 BTRFS_ROOT_TRANS_TAG
);
1239 for (i
= 0; i
< ret
; i
++) {
1240 struct btrfs_root
*root
= gang
[i
];
1241 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1242 (unsigned long)root
->root_key
.objectid
,
1243 BTRFS_ROOT_TRANS_TAG
);
1244 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1246 btrfs_free_log(trans
, root
);
1247 btrfs_update_reloc_root(trans
, root
);
1249 btrfs_save_ino_cache(root
, trans
);
1251 /* see comments in should_cow_block() */
1252 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1253 smp_mb__after_atomic();
1255 if (root
->commit_root
!= root
->node
) {
1256 list_add_tail(&root
->dirty_list
,
1257 &trans
->transaction
->switch_commits
);
1258 btrfs_set_root_node(&root
->root_item
,
1262 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1265 spin_lock(&fs_info
->fs_roots_radix_lock
);
1268 btrfs_qgroup_free_meta_all_pertrans(root
);
1271 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1276 * defrag a given btree.
1277 * Every leaf in the btree is read and defragged.
1279 int btrfs_defrag_root(struct btrfs_root
*root
)
1281 struct btrfs_fs_info
*info
= root
->fs_info
;
1282 struct btrfs_trans_handle
*trans
;
1285 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1289 trans
= btrfs_start_transaction(root
, 0);
1291 return PTR_ERR(trans
);
1293 ret
= btrfs_defrag_leaves(trans
, root
);
1295 btrfs_end_transaction(trans
);
1296 btrfs_btree_balance_dirty(info
);
1299 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1302 if (btrfs_defrag_cancelled(info
)) {
1303 btrfs_debug(info
, "defrag_root cancelled");
1308 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1313 * Do all special snapshot related qgroup dirty hack.
1315 * Will do all needed qgroup inherit and dirty hack like switch commit
1316 * roots inside one transaction and write all btree into disk, to make
1319 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1320 struct btrfs_root
*src
,
1321 struct btrfs_root
*parent
,
1322 struct btrfs_qgroup_inherit
*inherit
,
1325 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1329 * Save some performance in the case that qgroups are not
1330 * enabled. If this check races with the ioctl, rescan will
1333 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
))
1337 * Ensure dirty @src will be commited. Or, after comming
1338 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1339 * recorded root will never be updated again, causing an outdated root
1342 record_root_in_trans(trans
, src
, 1);
1345 * We are going to commit transaction, see btrfs_commit_transaction()
1346 * comment for reason locking tree_log_mutex
1348 mutex_lock(&fs_info
->tree_log_mutex
);
1350 ret
= commit_fs_roots(trans
);
1353 ret
= btrfs_qgroup_account_extents(trans
);
1357 /* Now qgroup are all updated, we can inherit it to new qgroups */
1358 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1359 src
->root_key
.objectid
, dst_objectid
,
1365 * Now we do a simplified commit transaction, which will:
1366 * 1) commit all subvolume and extent tree
1367 * To ensure all subvolume and extent tree have a valid
1368 * commit_root to accounting later insert_dir_item()
1369 * 2) write all btree blocks onto disk
1370 * This is to make sure later btree modification will be cowed
1371 * Or commit_root can be populated and cause wrong qgroup numbers
1372 * In this simplified commit, we don't really care about other trees
1373 * like chunk and root tree, as they won't affect qgroup.
1374 * And we don't write super to avoid half committed status.
1376 ret
= commit_cowonly_roots(trans
);
1379 switch_commit_roots(trans
->transaction
);
1380 ret
= btrfs_write_and_wait_transaction(trans
);
1382 btrfs_handle_fs_error(fs_info
, ret
,
1383 "Error while writing out transaction for qgroup");
1386 mutex_unlock(&fs_info
->tree_log_mutex
);
1389 * Force parent root to be updated, as we recorded it before so its
1390 * last_trans == cur_transid.
1391 * Or it won't be committed again onto disk after later
1395 record_root_in_trans(trans
, parent
, 1);
1400 * new snapshots need to be created at a very specific time in the
1401 * transaction commit. This does the actual creation.
1404 * If the error which may affect the commitment of the current transaction
1405 * happens, we should return the error number. If the error which just affect
1406 * the creation of the pending snapshots, just return 0.
1408 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1409 struct btrfs_pending_snapshot
*pending
)
1412 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1413 struct btrfs_key key
;
1414 struct btrfs_root_item
*new_root_item
;
1415 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1416 struct btrfs_root
*root
= pending
->root
;
1417 struct btrfs_root
*parent_root
;
1418 struct btrfs_block_rsv
*rsv
;
1419 struct inode
*parent_inode
;
1420 struct btrfs_path
*path
;
1421 struct btrfs_dir_item
*dir_item
;
1422 struct dentry
*dentry
;
1423 struct extent_buffer
*tmp
;
1424 struct extent_buffer
*old
;
1425 struct timespec64 cur_time
;
1433 ASSERT(pending
->path
);
1434 path
= pending
->path
;
1436 ASSERT(pending
->root_item
);
1437 new_root_item
= pending
->root_item
;
1439 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1441 goto no_free_objectid
;
1444 * Make qgroup to skip current new snapshot's qgroupid, as it is
1445 * accounted by later btrfs_qgroup_inherit().
1447 btrfs_set_skip_qgroup(trans
, objectid
);
1449 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1451 if (to_reserve
> 0) {
1452 pending
->error
= btrfs_block_rsv_add(root
,
1453 &pending
->block_rsv
,
1455 BTRFS_RESERVE_NO_FLUSH
);
1457 goto clear_skip_qgroup
;
1460 key
.objectid
= objectid
;
1461 key
.offset
= (u64
)-1;
1462 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1464 rsv
= trans
->block_rsv
;
1465 trans
->block_rsv
= &pending
->block_rsv
;
1466 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1467 trace_btrfs_space_reservation(fs_info
, "transaction",
1469 trans
->bytes_reserved
, 1);
1470 dentry
= pending
->dentry
;
1471 parent_inode
= pending
->dir
;
1472 parent_root
= BTRFS_I(parent_inode
)->root
;
1473 record_root_in_trans(trans
, parent_root
, 0);
1475 cur_time
= current_time(parent_inode
);
1478 * insert the directory item
1480 ret
= btrfs_set_inode_index(BTRFS_I(parent_inode
), &index
);
1481 BUG_ON(ret
); /* -ENOMEM */
1483 /* check if there is a file/dir which has the same name. */
1484 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1485 btrfs_ino(BTRFS_I(parent_inode
)),
1486 dentry
->d_name
.name
,
1487 dentry
->d_name
.len
, 0);
1488 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1489 pending
->error
= -EEXIST
;
1490 goto dir_item_existed
;
1491 } else if (IS_ERR(dir_item
)) {
1492 ret
= PTR_ERR(dir_item
);
1493 btrfs_abort_transaction(trans
, ret
);
1496 btrfs_release_path(path
);
1499 * pull in the delayed directory update
1500 * and the delayed inode item
1501 * otherwise we corrupt the FS during
1504 ret
= btrfs_run_delayed_items(trans
);
1505 if (ret
) { /* Transaction aborted */
1506 btrfs_abort_transaction(trans
, ret
);
1510 record_root_in_trans(trans
, root
, 0);
1511 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1512 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1513 btrfs_check_and_init_root_item(new_root_item
);
1515 root_flags
= btrfs_root_flags(new_root_item
);
1516 if (pending
->readonly
)
1517 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1519 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1520 btrfs_set_root_flags(new_root_item
, root_flags
);
1522 btrfs_set_root_generation_v2(new_root_item
,
1524 uuid_le_gen(&new_uuid
);
1525 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1526 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1528 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1529 memset(new_root_item
->received_uuid
, 0,
1530 sizeof(new_root_item
->received_uuid
));
1531 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1532 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1533 btrfs_set_root_stransid(new_root_item
, 0);
1534 btrfs_set_root_rtransid(new_root_item
, 0);
1536 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1537 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1538 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1540 old
= btrfs_lock_root_node(root
);
1541 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1543 btrfs_tree_unlock(old
);
1544 free_extent_buffer(old
);
1545 btrfs_abort_transaction(trans
, ret
);
1549 btrfs_set_lock_blocking(old
);
1551 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1552 /* clean up in any case */
1553 btrfs_tree_unlock(old
);
1554 free_extent_buffer(old
);
1556 btrfs_abort_transaction(trans
, ret
);
1559 /* see comments in should_cow_block() */
1560 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1563 btrfs_set_root_node(new_root_item
, tmp
);
1564 /* record when the snapshot was created in key.offset */
1565 key
.offset
= trans
->transid
;
1566 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1567 btrfs_tree_unlock(tmp
);
1568 free_extent_buffer(tmp
);
1570 btrfs_abort_transaction(trans
, ret
);
1575 * insert root back/forward references
1577 ret
= btrfs_add_root_ref(trans
, fs_info
, objectid
,
1578 parent_root
->root_key
.objectid
,
1579 btrfs_ino(BTRFS_I(parent_inode
)), index
,
1580 dentry
->d_name
.name
, dentry
->d_name
.len
);
1582 btrfs_abort_transaction(trans
, ret
);
1586 key
.offset
= (u64
)-1;
1587 pending
->snap
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1588 if (IS_ERR(pending
->snap
)) {
1589 ret
= PTR_ERR(pending
->snap
);
1590 btrfs_abort_transaction(trans
, ret
);
1594 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1596 btrfs_abort_transaction(trans
, ret
);
1600 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1602 btrfs_abort_transaction(trans
, ret
);
1607 * Do special qgroup accounting for snapshot, as we do some qgroup
1608 * snapshot hack to do fast snapshot.
1609 * To co-operate with that hack, we do hack again.
1610 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1612 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1613 pending
->inherit
, objectid
);
1617 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1618 dentry
->d_name
.name
, dentry
->d_name
.len
,
1619 BTRFS_I(parent_inode
), &key
,
1620 BTRFS_FT_DIR
, index
);
1621 /* We have check then name at the beginning, so it is impossible. */
1622 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1624 btrfs_abort_transaction(trans
, ret
);
1628 btrfs_i_size_write(BTRFS_I(parent_inode
), parent_inode
->i_size
+
1629 dentry
->d_name
.len
* 2);
1630 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1631 current_time(parent_inode
);
1632 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1634 btrfs_abort_transaction(trans
, ret
);
1637 ret
= btrfs_uuid_tree_add(trans
, new_uuid
.b
, BTRFS_UUID_KEY_SUBVOL
,
1640 btrfs_abort_transaction(trans
, ret
);
1643 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1644 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->received_uuid
,
1645 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1647 if (ret
&& ret
!= -EEXIST
) {
1648 btrfs_abort_transaction(trans
, ret
);
1653 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1655 btrfs_abort_transaction(trans
, ret
);
1660 pending
->error
= ret
;
1662 trans
->block_rsv
= rsv
;
1663 trans
->bytes_reserved
= 0;
1665 btrfs_clear_skip_qgroup(trans
);
1667 kfree(new_root_item
);
1668 pending
->root_item
= NULL
;
1669 btrfs_free_path(path
);
1670 pending
->path
= NULL
;
1676 * create all the snapshots we've scheduled for creation
1678 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
)
1680 struct btrfs_pending_snapshot
*pending
, *next
;
1681 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1684 list_for_each_entry_safe(pending
, next
, head
, list
) {
1685 list_del(&pending
->list
);
1686 ret
= create_pending_snapshot(trans
, pending
);
1693 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1695 struct btrfs_root_item
*root_item
;
1696 struct btrfs_super_block
*super
;
1698 super
= fs_info
->super_copy
;
1700 root_item
= &fs_info
->chunk_root
->root_item
;
1701 super
->chunk_root
= root_item
->bytenr
;
1702 super
->chunk_root_generation
= root_item
->generation
;
1703 super
->chunk_root_level
= root_item
->level
;
1705 root_item
= &fs_info
->tree_root
->root_item
;
1706 super
->root
= root_item
->bytenr
;
1707 super
->generation
= root_item
->generation
;
1708 super
->root_level
= root_item
->level
;
1709 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1710 super
->cache_generation
= root_item
->generation
;
1711 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1712 super
->uuid_tree_generation
= root_item
->generation
;
1715 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1717 struct btrfs_transaction
*trans
;
1720 spin_lock(&info
->trans_lock
);
1721 trans
= info
->running_transaction
;
1723 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1724 spin_unlock(&info
->trans_lock
);
1728 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1730 struct btrfs_transaction
*trans
;
1733 spin_lock(&info
->trans_lock
);
1734 trans
= info
->running_transaction
;
1736 ret
= is_transaction_blocked(trans
);
1737 spin_unlock(&info
->trans_lock
);
1742 * wait for the current transaction commit to start and block subsequent
1745 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1746 struct btrfs_transaction
*trans
)
1748 wait_event(fs_info
->transaction_blocked_wait
,
1749 trans
->state
>= TRANS_STATE_COMMIT_START
|| trans
->aborted
);
1753 * wait for the current transaction to start and then become unblocked.
1756 static void wait_current_trans_commit_start_and_unblock(
1757 struct btrfs_fs_info
*fs_info
,
1758 struct btrfs_transaction
*trans
)
1760 wait_event(fs_info
->transaction_wait
,
1761 trans
->state
>= TRANS_STATE_UNBLOCKED
|| trans
->aborted
);
1765 * commit transactions asynchronously. once btrfs_commit_transaction_async
1766 * returns, any subsequent transaction will not be allowed to join.
1768 struct btrfs_async_commit
{
1769 struct btrfs_trans_handle
*newtrans
;
1770 struct work_struct work
;
1773 static void do_async_commit(struct work_struct
*work
)
1775 struct btrfs_async_commit
*ac
=
1776 container_of(work
, struct btrfs_async_commit
, work
);
1779 * We've got freeze protection passed with the transaction.
1780 * Tell lockdep about it.
1782 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1783 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1785 current
->journal_info
= ac
->newtrans
;
1787 btrfs_commit_transaction(ac
->newtrans
);
1791 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1792 int wait_for_unblock
)
1794 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1795 struct btrfs_async_commit
*ac
;
1796 struct btrfs_transaction
*cur_trans
;
1798 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1802 INIT_WORK(&ac
->work
, do_async_commit
);
1803 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1804 if (IS_ERR(ac
->newtrans
)) {
1805 int err
= PTR_ERR(ac
->newtrans
);
1810 /* take transaction reference */
1811 cur_trans
= trans
->transaction
;
1812 refcount_inc(&cur_trans
->use_count
);
1814 btrfs_end_transaction(trans
);
1817 * Tell lockdep we've released the freeze rwsem, since the
1818 * async commit thread will be the one to unlock it.
1820 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1821 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1823 schedule_work(&ac
->work
);
1825 /* wait for transaction to start and unblock */
1826 if (wait_for_unblock
)
1827 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1829 wait_current_trans_commit_start(fs_info
, cur_trans
);
1831 if (current
->journal_info
== trans
)
1832 current
->journal_info
= NULL
;
1834 btrfs_put_transaction(cur_trans
);
1839 static void cleanup_transaction(struct btrfs_trans_handle
*trans
, int err
)
1841 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1842 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1845 WARN_ON(refcount_read(&trans
->use_count
) > 1);
1847 btrfs_abort_transaction(trans
, err
);
1849 spin_lock(&fs_info
->trans_lock
);
1852 * If the transaction is removed from the list, it means this
1853 * transaction has been committed successfully, so it is impossible
1854 * to call the cleanup function.
1856 BUG_ON(list_empty(&cur_trans
->list
));
1858 list_del_init(&cur_trans
->list
);
1859 if (cur_trans
== fs_info
->running_transaction
) {
1860 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1861 spin_unlock(&fs_info
->trans_lock
);
1862 wait_event(cur_trans
->writer_wait
,
1863 atomic_read(&cur_trans
->num_writers
) == 1);
1865 spin_lock(&fs_info
->trans_lock
);
1867 spin_unlock(&fs_info
->trans_lock
);
1869 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1871 spin_lock(&fs_info
->trans_lock
);
1872 if (cur_trans
== fs_info
->running_transaction
)
1873 fs_info
->running_transaction
= NULL
;
1874 spin_unlock(&fs_info
->trans_lock
);
1876 if (trans
->type
& __TRANS_FREEZABLE
)
1877 sb_end_intwrite(fs_info
->sb
);
1878 btrfs_put_transaction(cur_trans
);
1879 btrfs_put_transaction(cur_trans
);
1881 trace_btrfs_transaction_commit(trans
->root
);
1883 if (current
->journal_info
== trans
)
1884 current
->journal_info
= NULL
;
1885 btrfs_scrub_cancel(fs_info
);
1887 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1890 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1893 * We use writeback_inodes_sb here because if we used
1894 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1895 * Currently are holding the fs freeze lock, if we do an async flush
1896 * we'll do btrfs_join_transaction() and deadlock because we need to
1897 * wait for the fs freeze lock. Using the direct flushing we benefit
1898 * from already being in a transaction and our join_transaction doesn't
1899 * have to re-take the fs freeze lock.
1901 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
1902 writeback_inodes_sb(fs_info
->sb
, WB_REASON_SYNC
);
1906 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1908 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
))
1909 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1913 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
)
1915 wait_event(cur_trans
->pending_wait
,
1916 atomic_read(&cur_trans
->pending_ordered
) == 0);
1919 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
1921 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1922 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1923 struct btrfs_transaction
*prev_trans
= NULL
;
1926 /* Stop the commit early if ->aborted is set */
1927 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
1928 ret
= cur_trans
->aborted
;
1929 btrfs_end_transaction(trans
);
1933 /* make a pass through all the delayed refs we have so far
1934 * any runnings procs may add more while we are here
1936 ret
= btrfs_run_delayed_refs(trans
, 0);
1938 btrfs_end_transaction(trans
);
1942 btrfs_trans_release_metadata(trans
);
1943 trans
->block_rsv
= NULL
;
1945 cur_trans
= trans
->transaction
;
1948 * set the flushing flag so procs in this transaction have to
1949 * start sending their work down.
1951 cur_trans
->delayed_refs
.flushing
= 1;
1954 if (!list_empty(&trans
->new_bgs
))
1955 btrfs_create_pending_block_groups(trans
);
1957 ret
= btrfs_run_delayed_refs(trans
, 0);
1959 btrfs_end_transaction(trans
);
1963 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1966 /* this mutex is also taken before trying to set
1967 * block groups readonly. We need to make sure
1968 * that nobody has set a block group readonly
1969 * after a extents from that block group have been
1970 * allocated for cache files. btrfs_set_block_group_ro
1971 * will wait for the transaction to commit if it
1972 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1974 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1975 * only one process starts all the block group IO. It wouldn't
1976 * hurt to have more than one go through, but there's no
1977 * real advantage to it either.
1979 mutex_lock(&fs_info
->ro_block_group_mutex
);
1980 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
1983 mutex_unlock(&fs_info
->ro_block_group_mutex
);
1986 ret
= btrfs_start_dirty_block_groups(trans
);
1988 btrfs_end_transaction(trans
);
1994 spin_lock(&fs_info
->trans_lock
);
1995 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1996 spin_unlock(&fs_info
->trans_lock
);
1997 refcount_inc(&cur_trans
->use_count
);
1998 ret
= btrfs_end_transaction(trans
);
2000 wait_for_commit(cur_trans
);
2002 if (unlikely(cur_trans
->aborted
))
2003 ret
= cur_trans
->aborted
;
2005 btrfs_put_transaction(cur_trans
);
2010 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2011 wake_up(&fs_info
->transaction_blocked_wait
);
2013 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2014 prev_trans
= list_entry(cur_trans
->list
.prev
,
2015 struct btrfs_transaction
, list
);
2016 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2017 refcount_inc(&prev_trans
->use_count
);
2018 spin_unlock(&fs_info
->trans_lock
);
2020 wait_for_commit(prev_trans
);
2021 ret
= prev_trans
->aborted
;
2023 btrfs_put_transaction(prev_trans
);
2025 goto cleanup_transaction
;
2027 spin_unlock(&fs_info
->trans_lock
);
2030 spin_unlock(&fs_info
->trans_lock
);
2033 extwriter_counter_dec(cur_trans
, trans
->type
);
2035 ret
= btrfs_start_delalloc_flush(fs_info
);
2037 goto cleanup_transaction
;
2039 ret
= btrfs_run_delayed_items(trans
);
2041 goto cleanup_transaction
;
2043 wait_event(cur_trans
->writer_wait
,
2044 extwriter_counter_read(cur_trans
) == 0);
2046 /* some pending stuffs might be added after the previous flush. */
2047 ret
= btrfs_run_delayed_items(trans
);
2049 goto cleanup_transaction
;
2051 btrfs_wait_delalloc_flush(fs_info
);
2053 btrfs_wait_pending_ordered(cur_trans
);
2055 btrfs_scrub_pause(fs_info
);
2057 * Ok now we need to make sure to block out any other joins while we
2058 * commit the transaction. We could have started a join before setting
2059 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2061 spin_lock(&fs_info
->trans_lock
);
2062 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2063 spin_unlock(&fs_info
->trans_lock
);
2064 wait_event(cur_trans
->writer_wait
,
2065 atomic_read(&cur_trans
->num_writers
) == 1);
2067 /* ->aborted might be set after the previous check, so check it */
2068 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2069 ret
= cur_trans
->aborted
;
2070 goto scrub_continue
;
2073 * the reloc mutex makes sure that we stop
2074 * the balancing code from coming in and moving
2075 * extents around in the middle of the commit
2077 mutex_lock(&fs_info
->reloc_mutex
);
2080 * We needn't worry about the delayed items because we will
2081 * deal with them in create_pending_snapshot(), which is the
2082 * core function of the snapshot creation.
2084 ret
= create_pending_snapshots(trans
);
2086 mutex_unlock(&fs_info
->reloc_mutex
);
2087 goto scrub_continue
;
2091 * We insert the dir indexes of the snapshots and update the inode
2092 * of the snapshots' parents after the snapshot creation, so there
2093 * are some delayed items which are not dealt with. Now deal with
2096 * We needn't worry that this operation will corrupt the snapshots,
2097 * because all the tree which are snapshoted will be forced to COW
2098 * the nodes and leaves.
2100 ret
= btrfs_run_delayed_items(trans
);
2102 mutex_unlock(&fs_info
->reloc_mutex
);
2103 goto scrub_continue
;
2106 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2108 mutex_unlock(&fs_info
->reloc_mutex
);
2109 goto scrub_continue
;
2113 * make sure none of the code above managed to slip in a
2116 btrfs_assert_delayed_root_empty(fs_info
);
2118 WARN_ON(cur_trans
!= trans
->transaction
);
2120 /* btrfs_commit_tree_roots is responsible for getting the
2121 * various roots consistent with each other. Every pointer
2122 * in the tree of tree roots has to point to the most up to date
2123 * root for every subvolume and other tree. So, we have to keep
2124 * the tree logging code from jumping in and changing any
2127 * At this point in the commit, there can't be any tree-log
2128 * writers, but a little lower down we drop the trans mutex
2129 * and let new people in. By holding the tree_log_mutex
2130 * from now until after the super is written, we avoid races
2131 * with the tree-log code.
2133 mutex_lock(&fs_info
->tree_log_mutex
);
2135 ret
= commit_fs_roots(trans
);
2137 mutex_unlock(&fs_info
->tree_log_mutex
);
2138 mutex_unlock(&fs_info
->reloc_mutex
);
2139 goto scrub_continue
;
2143 * Since the transaction is done, we can apply the pending changes
2144 * before the next transaction.
2146 btrfs_apply_pending_changes(fs_info
);
2148 /* commit_fs_roots gets rid of all the tree log roots, it is now
2149 * safe to free the root of tree log roots
2151 btrfs_free_log_root_tree(trans
, fs_info
);
2154 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2155 * new delayed refs. Must handle them or qgroup can be wrong.
2157 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2159 mutex_unlock(&fs_info
->tree_log_mutex
);
2160 mutex_unlock(&fs_info
->reloc_mutex
);
2161 goto scrub_continue
;
2165 * Since fs roots are all committed, we can get a quite accurate
2166 * new_roots. So let's do quota accounting.
2168 ret
= btrfs_qgroup_account_extents(trans
);
2170 mutex_unlock(&fs_info
->tree_log_mutex
);
2171 mutex_unlock(&fs_info
->reloc_mutex
);
2172 goto scrub_continue
;
2175 ret
= commit_cowonly_roots(trans
);
2177 mutex_unlock(&fs_info
->tree_log_mutex
);
2178 mutex_unlock(&fs_info
->reloc_mutex
);
2179 goto scrub_continue
;
2183 * The tasks which save the space cache and inode cache may also
2184 * update ->aborted, check it.
2186 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2187 ret
= cur_trans
->aborted
;
2188 mutex_unlock(&fs_info
->tree_log_mutex
);
2189 mutex_unlock(&fs_info
->reloc_mutex
);
2190 goto scrub_continue
;
2193 btrfs_prepare_extent_commit(fs_info
);
2195 cur_trans
= fs_info
->running_transaction
;
2197 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2198 fs_info
->tree_root
->node
);
2199 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2200 &cur_trans
->switch_commits
);
2202 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2203 fs_info
->chunk_root
->node
);
2204 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2205 &cur_trans
->switch_commits
);
2207 switch_commit_roots(cur_trans
);
2209 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2210 ASSERT(list_empty(&cur_trans
->io_bgs
));
2211 update_super_roots(fs_info
);
2213 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2214 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2215 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2216 sizeof(*fs_info
->super_copy
));
2218 btrfs_update_commit_device_size(fs_info
);
2219 btrfs_update_commit_device_bytes_used(cur_trans
);
2221 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2222 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2224 btrfs_trans_release_chunk_metadata(trans
);
2226 spin_lock(&fs_info
->trans_lock
);
2227 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2228 fs_info
->running_transaction
= NULL
;
2229 spin_unlock(&fs_info
->trans_lock
);
2230 mutex_unlock(&fs_info
->reloc_mutex
);
2232 wake_up(&fs_info
->transaction_wait
);
2234 ret
= btrfs_write_and_wait_transaction(trans
);
2236 btrfs_handle_fs_error(fs_info
, ret
,
2237 "Error while writing out transaction");
2238 mutex_unlock(&fs_info
->tree_log_mutex
);
2239 goto scrub_continue
;
2242 ret
= write_all_supers(fs_info
, 0);
2244 * the super is written, we can safely allow the tree-loggers
2245 * to go about their business
2247 mutex_unlock(&fs_info
->tree_log_mutex
);
2249 goto scrub_continue
;
2251 btrfs_finish_extent_commit(trans
);
2253 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2254 btrfs_clear_space_info_full(fs_info
);
2256 fs_info
->last_trans_committed
= cur_trans
->transid
;
2258 * We needn't acquire the lock here because there is no other task
2259 * which can change it.
2261 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2262 wake_up(&cur_trans
->commit_wait
);
2263 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
);
2265 spin_lock(&fs_info
->trans_lock
);
2266 list_del_init(&cur_trans
->list
);
2267 spin_unlock(&fs_info
->trans_lock
);
2269 btrfs_put_transaction(cur_trans
);
2270 btrfs_put_transaction(cur_trans
);
2272 if (trans
->type
& __TRANS_FREEZABLE
)
2273 sb_end_intwrite(fs_info
->sb
);
2275 trace_btrfs_transaction_commit(trans
->root
);
2277 btrfs_scrub_continue(fs_info
);
2279 if (current
->journal_info
== trans
)
2280 current
->journal_info
= NULL
;
2282 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2285 * If fs has been frozen, we can not handle delayed iputs, otherwise
2286 * it'll result in deadlock about SB_FREEZE_FS.
2288 if (current
!= fs_info
->transaction_kthread
&&
2289 current
!= fs_info
->cleaner_kthread
&&
2290 !test_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
))
2291 btrfs_run_delayed_iputs(fs_info
);
2296 btrfs_scrub_continue(fs_info
);
2297 cleanup_transaction
:
2298 btrfs_trans_release_metadata(trans
);
2299 btrfs_trans_release_chunk_metadata(trans
);
2300 trans
->block_rsv
= NULL
;
2301 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2302 if (current
->journal_info
== trans
)
2303 current
->journal_info
= NULL
;
2304 cleanup_transaction(trans
, ret
);
2310 * return < 0 if error
2311 * 0 if there are no more dead_roots at the time of call
2312 * 1 there are more to be processed, call me again
2314 * The return value indicates there are certainly more snapshots to delete, but
2315 * if there comes a new one during processing, it may return 0. We don't mind,
2316 * because btrfs_commit_super will poke cleaner thread and it will process it a
2317 * few seconds later.
2319 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2322 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2324 spin_lock(&fs_info
->trans_lock
);
2325 if (list_empty(&fs_info
->dead_roots
)) {
2326 spin_unlock(&fs_info
->trans_lock
);
2329 root
= list_first_entry(&fs_info
->dead_roots
,
2330 struct btrfs_root
, root_list
);
2331 list_del_init(&root
->root_list
);
2332 spin_unlock(&fs_info
->trans_lock
);
2334 btrfs_debug(fs_info
, "cleaner removing %llu", root
->objectid
);
2336 btrfs_kill_all_delayed_nodes(root
);
2338 if (btrfs_header_backref_rev(root
->node
) <
2339 BTRFS_MIXED_BACKREF_REV
)
2340 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2342 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2344 return (ret
< 0) ? 0 : 1;
2347 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2352 prev
= xchg(&fs_info
->pending_changes
, 0);
2356 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2358 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2361 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2363 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2366 bit
= 1 << BTRFS_PENDING_COMMIT
;
2368 btrfs_debug(fs_info
, "pending commit done");
2373 "unknown pending changes left 0x%lx, ignoring", prev
);