1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
21 #include "extent_map.h"
23 #include "transaction.h"
24 #include "print-tree.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
31 #include "dev-replace.h"
34 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
35 [BTRFS_RAID_RAID10
] = {
38 .devs_max
= 0, /* 0 == as many as possible */
40 .tolerated_failures
= 1,
43 .raid_name
= "raid10",
44 .bg_flag
= BTRFS_BLOCK_GROUP_RAID10
,
45 .mindev_error
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
47 [BTRFS_RAID_RAID1
] = {
52 .tolerated_failures
= 1,
56 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1
,
57 .mindev_error
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
64 .tolerated_failures
= 0,
68 .bg_flag
= BTRFS_BLOCK_GROUP_DUP
,
71 [BTRFS_RAID_RAID0
] = {
76 .tolerated_failures
= 0,
80 .bg_flag
= BTRFS_BLOCK_GROUP_RAID0
,
83 [BTRFS_RAID_SINGLE
] = {
88 .tolerated_failures
= 0,
91 .raid_name
= "single",
95 [BTRFS_RAID_RAID5
] = {
100 .tolerated_failures
= 1,
103 .raid_name
= "raid5",
104 .bg_flag
= BTRFS_BLOCK_GROUP_RAID5
,
105 .mindev_error
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
107 [BTRFS_RAID_RAID6
] = {
112 .tolerated_failures
= 2,
115 .raid_name
= "raid6",
116 .bg_flag
= BTRFS_BLOCK_GROUP_RAID6
,
117 .mindev_error
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
121 const char *get_raid_name(enum btrfs_raid_types type
)
123 if (type
>= BTRFS_NR_RAID_TYPES
)
126 return btrfs_raid_array
[type
].raid_name
;
129 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
130 struct btrfs_fs_info
*fs_info
);
131 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
132 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
133 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
134 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
135 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
136 enum btrfs_map_op op
,
137 u64 logical
, u64
*length
,
138 struct btrfs_bio
**bbio_ret
,
139 int mirror_num
, int need_raid_map
);
145 * There are several mutexes that protect manipulation of devices and low-level
146 * structures like chunks but not block groups, extents or files
148 * uuid_mutex (global lock)
149 * ------------------------
150 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152 * device) or requested by the device= mount option
154 * the mutex can be very coarse and can cover long-running operations
156 * protects: updates to fs_devices counters like missing devices, rw devices,
157 * seeding, structure cloning, openning/closing devices at mount/umount time
159 * global::fs_devs - add, remove, updates to the global list
161 * does not protect: manipulation of the fs_devices::devices list!
163 * btrfs_device::name - renames (write side), read is RCU
165 * fs_devices::device_list_mutex (per-fs, with RCU)
166 * ------------------------------------------------
167 * protects updates to fs_devices::devices, ie. adding and deleting
169 * simple list traversal with read-only actions can be done with RCU protection
171 * may be used to exclude some operations from running concurrently without any
172 * modifications to the list (see write_all_supers)
176 * protects balance structures (status, state) and context accessed from
177 * several places (internally, ioctl)
181 * protects chunks, adding or removing during allocation, trim or when a new
182 * device is added/removed
186 * a big lock that is held by the cleaner thread and prevents running subvolume
187 * cleaning together with relocation or delayed iputs
200 * Exclusive operations, BTRFS_FS_EXCL_OP
201 * ======================================
203 * Maintains the exclusivity of the following operations that apply to the
204 * whole filesystem and cannot run in parallel.
209 * - Device replace (*)
212 * The device operations (as above) can be in one of the following states:
218 * Only device operations marked with (*) can go into the Paused state for the
221 * - ioctl (only Balance can be Paused through ioctl)
222 * - filesystem remounted as read-only
223 * - filesystem unmounted and mounted as read-only
224 * - system power-cycle and filesystem mounted as read-only
225 * - filesystem or device errors leading to forced read-only
227 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229 * A device operation in Paused or Running state can be canceled or resumed
230 * either by ioctl (Balance only) or when remounted as read-write.
231 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
235 DEFINE_MUTEX(uuid_mutex
);
236 static LIST_HEAD(fs_uuids
);
237 struct list_head
*btrfs_get_fs_uuids(void)
243 * alloc_fs_devices - allocate struct btrfs_fs_devices
244 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
246 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247 * The returned struct is not linked onto any lists and can be destroyed with
248 * kfree() right away.
250 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
252 struct btrfs_fs_devices
*fs_devs
;
254 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
256 return ERR_PTR(-ENOMEM
);
258 mutex_init(&fs_devs
->device_list_mutex
);
260 INIT_LIST_HEAD(&fs_devs
->devices
);
261 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
262 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
263 INIT_LIST_HEAD(&fs_devs
->fs_list
);
265 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
270 void btrfs_free_device(struct btrfs_device
*device
)
272 rcu_string_free(device
->name
);
273 bio_put(device
->flush_bio
);
277 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
279 struct btrfs_device
*device
;
280 WARN_ON(fs_devices
->opened
);
281 while (!list_empty(&fs_devices
->devices
)) {
282 device
= list_entry(fs_devices
->devices
.next
,
283 struct btrfs_device
, dev_list
);
284 list_del(&device
->dev_list
);
285 btrfs_free_device(device
);
290 static void btrfs_kobject_uevent(struct block_device
*bdev
,
291 enum kobject_action action
)
295 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
297 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
299 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
300 &disk_to_dev(bdev
->bd_disk
)->kobj
);
303 void __exit
btrfs_cleanup_fs_uuids(void)
305 struct btrfs_fs_devices
*fs_devices
;
307 while (!list_empty(&fs_uuids
)) {
308 fs_devices
= list_entry(fs_uuids
.next
,
309 struct btrfs_fs_devices
, fs_list
);
310 list_del(&fs_devices
->fs_list
);
311 free_fs_devices(fs_devices
);
316 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317 * Returned struct is not linked onto any lists and must be destroyed using
320 static struct btrfs_device
*__alloc_device(void)
322 struct btrfs_device
*dev
;
324 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
326 return ERR_PTR(-ENOMEM
);
329 * Preallocate a bio that's always going to be used for flushing device
330 * barriers and matches the device lifespan
332 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
333 if (!dev
->flush_bio
) {
335 return ERR_PTR(-ENOMEM
);
338 INIT_LIST_HEAD(&dev
->dev_list
);
339 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
340 INIT_LIST_HEAD(&dev
->resized_list
);
342 spin_lock_init(&dev
->io_lock
);
344 atomic_set(&dev
->reada_in_flight
, 0);
345 atomic_set(&dev
->dev_stats_ccnt
, 0);
346 btrfs_device_data_ordered_init(dev
);
347 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
348 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
354 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
357 * If devid and uuid are both specified, the match must be exact, otherwise
358 * only devid is used.
360 static struct btrfs_device
*find_device(struct btrfs_fs_devices
*fs_devices
,
361 u64 devid
, const u8
*uuid
)
363 struct btrfs_device
*dev
;
365 list_for_each_entry(dev
, &fs_devices
->devices
, dev_list
) {
366 if (dev
->devid
== devid
&&
367 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
374 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
376 struct btrfs_fs_devices
*fs_devices
;
378 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
379 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
386 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
387 int flush
, struct block_device
**bdev
,
388 struct buffer_head
**bh
)
392 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
395 ret
= PTR_ERR(*bdev
);
400 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
401 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
403 blkdev_put(*bdev
, flags
);
406 invalidate_bdev(*bdev
);
407 *bh
= btrfs_read_dev_super(*bdev
);
410 blkdev_put(*bdev
, flags
);
422 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
423 struct bio
*head
, struct bio
*tail
)
426 struct bio
*old_head
;
428 old_head
= pending_bios
->head
;
429 pending_bios
->head
= head
;
430 if (pending_bios
->tail
)
431 tail
->bi_next
= old_head
;
433 pending_bios
->tail
= tail
;
437 * we try to collect pending bios for a device so we don't get a large
438 * number of procs sending bios down to the same device. This greatly
439 * improves the schedulers ability to collect and merge the bios.
441 * But, it also turns into a long list of bios to process and that is sure
442 * to eventually make the worker thread block. The solution here is to
443 * make some progress and then put this work struct back at the end of
444 * the list if the block device is congested. This way, multiple devices
445 * can make progress from a single worker thread.
447 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
449 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
451 struct backing_dev_info
*bdi
;
452 struct btrfs_pending_bios
*pending_bios
;
456 unsigned long num_run
;
457 unsigned long batch_run
= 0;
458 unsigned long last_waited
= 0;
460 int sync_pending
= 0;
461 struct blk_plug plug
;
464 * this function runs all the bios we've collected for
465 * a particular device. We don't want to wander off to
466 * another device without first sending all of these down.
467 * So, setup a plug here and finish it off before we return
469 blk_start_plug(&plug
);
471 bdi
= device
->bdev
->bd_bdi
;
474 spin_lock(&device
->io_lock
);
479 /* take all the bios off the list at once and process them
480 * later on (without the lock held). But, remember the
481 * tail and other pointers so the bios can be properly reinserted
482 * into the list if we hit congestion
484 if (!force_reg
&& device
->pending_sync_bios
.head
) {
485 pending_bios
= &device
->pending_sync_bios
;
488 pending_bios
= &device
->pending_bios
;
492 pending
= pending_bios
->head
;
493 tail
= pending_bios
->tail
;
494 WARN_ON(pending
&& !tail
);
497 * if pending was null this time around, no bios need processing
498 * at all and we can stop. Otherwise it'll loop back up again
499 * and do an additional check so no bios are missed.
501 * device->running_pending is used to synchronize with the
504 if (device
->pending_sync_bios
.head
== NULL
&&
505 device
->pending_bios
.head
== NULL
) {
507 device
->running_pending
= 0;
510 device
->running_pending
= 1;
513 pending_bios
->head
= NULL
;
514 pending_bios
->tail
= NULL
;
516 spin_unlock(&device
->io_lock
);
521 /* we want to work on both lists, but do more bios on the
522 * sync list than the regular list
525 pending_bios
!= &device
->pending_sync_bios
&&
526 device
->pending_sync_bios
.head
) ||
527 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
528 device
->pending_bios
.head
)) {
529 spin_lock(&device
->io_lock
);
530 requeue_list(pending_bios
, pending
, tail
);
535 pending
= pending
->bi_next
;
538 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
541 * if we're doing the sync list, record that our
542 * plug has some sync requests on it
544 * If we're doing the regular list and there are
545 * sync requests sitting around, unplug before
548 if (pending_bios
== &device
->pending_sync_bios
) {
550 } else if (sync_pending
) {
551 blk_finish_plug(&plug
);
552 blk_start_plug(&plug
);
556 btrfsic_submit_bio(cur
);
563 * we made progress, there is more work to do and the bdi
564 * is now congested. Back off and let other work structs
567 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
568 fs_info
->fs_devices
->open_devices
> 1) {
569 struct io_context
*ioc
;
571 ioc
= current
->io_context
;
574 * the main goal here is that we don't want to
575 * block if we're going to be able to submit
576 * more requests without blocking.
578 * This code does two great things, it pokes into
579 * the elevator code from a filesystem _and_
580 * it makes assumptions about how batching works.
582 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
583 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
585 ioc
->last_waited
== last_waited
)) {
587 * we want to go through our batch of
588 * requests and stop. So, we copy out
589 * the ioc->last_waited time and test
590 * against it before looping
592 last_waited
= ioc
->last_waited
;
596 spin_lock(&device
->io_lock
);
597 requeue_list(pending_bios
, pending
, tail
);
598 device
->running_pending
= 1;
600 spin_unlock(&device
->io_lock
);
601 btrfs_queue_work(fs_info
->submit_workers
,
611 spin_lock(&device
->io_lock
);
612 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
614 spin_unlock(&device
->io_lock
);
617 blk_finish_plug(&plug
);
620 static void pending_bios_fn(struct btrfs_work
*work
)
622 struct btrfs_device
*device
;
624 device
= container_of(work
, struct btrfs_device
, work
);
625 run_scheduled_bios(device
);
629 * Search and remove all stale (devices which are not mounted) devices.
630 * When both inputs are NULL, it will search and release all stale devices.
631 * path: Optional. When provided will it release all unmounted devices
632 * matching this path only.
633 * skip_dev: Optional. Will skip this device when searching for the stale
636 static void btrfs_free_stale_devices(const char *path
,
637 struct btrfs_device
*skip_device
)
639 struct btrfs_fs_devices
*fs_devices
, *tmp_fs_devices
;
640 struct btrfs_device
*device
, *tmp_device
;
642 list_for_each_entry_safe(fs_devices
, tmp_fs_devices
, &fs_uuids
, fs_list
) {
643 mutex_lock(&fs_devices
->device_list_mutex
);
644 if (fs_devices
->opened
) {
645 mutex_unlock(&fs_devices
->device_list_mutex
);
649 list_for_each_entry_safe(device
, tmp_device
,
650 &fs_devices
->devices
, dev_list
) {
653 if (skip_device
&& skip_device
== device
)
655 if (path
&& !device
->name
)
660 not_found
= strcmp(rcu_str_deref(device
->name
),
666 /* delete the stale device */
667 fs_devices
->num_devices
--;
668 list_del(&device
->dev_list
);
669 btrfs_free_device(device
);
671 if (fs_devices
->num_devices
== 0)
674 mutex_unlock(&fs_devices
->device_list_mutex
);
675 if (fs_devices
->num_devices
== 0) {
676 btrfs_sysfs_remove_fsid(fs_devices
);
677 list_del(&fs_devices
->fs_list
);
678 free_fs_devices(fs_devices
);
683 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
684 struct btrfs_device
*device
, fmode_t flags
,
687 struct request_queue
*q
;
688 struct block_device
*bdev
;
689 struct buffer_head
*bh
;
690 struct btrfs_super_block
*disk_super
;
699 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
704 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
705 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
706 if (devid
!= device
->devid
)
709 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
712 device
->generation
= btrfs_super_generation(disk_super
);
714 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
715 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
716 fs_devices
->seeding
= 1;
718 if (bdev_read_only(bdev
))
719 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
721 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
724 q
= bdev_get_queue(bdev
);
725 if (!blk_queue_nonrot(q
))
726 fs_devices
->rotating
= 1;
729 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
730 device
->mode
= flags
;
732 fs_devices
->open_devices
++;
733 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
734 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
735 fs_devices
->rw_devices
++;
736 list_add_tail(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
744 blkdev_put(bdev
, flags
);
750 * Add new device to list of registered devices
753 * device pointer which was just added or updated when successful
754 * error pointer when failed
756 static noinline
struct btrfs_device
*device_list_add(const char *path
,
757 struct btrfs_super_block
*disk_super
,
758 bool *new_device_added
)
760 struct btrfs_device
*device
;
761 struct btrfs_fs_devices
*fs_devices
;
762 struct rcu_string
*name
;
763 u64 found_transid
= btrfs_super_generation(disk_super
);
764 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
766 fs_devices
= find_fsid(disk_super
->fsid
);
768 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
769 if (IS_ERR(fs_devices
))
770 return ERR_CAST(fs_devices
);
772 mutex_lock(&fs_devices
->device_list_mutex
);
773 list_add(&fs_devices
->fs_list
, &fs_uuids
);
777 mutex_lock(&fs_devices
->device_list_mutex
);
778 device
= find_device(fs_devices
, devid
,
779 disk_super
->dev_item
.uuid
);
783 if (fs_devices
->opened
) {
784 mutex_unlock(&fs_devices
->device_list_mutex
);
785 return ERR_PTR(-EBUSY
);
788 device
= btrfs_alloc_device(NULL
, &devid
,
789 disk_super
->dev_item
.uuid
);
790 if (IS_ERR(device
)) {
791 mutex_unlock(&fs_devices
->device_list_mutex
);
792 /* we can safely leave the fs_devices entry around */
796 name
= rcu_string_strdup(path
, GFP_NOFS
);
798 btrfs_free_device(device
);
799 mutex_unlock(&fs_devices
->device_list_mutex
);
800 return ERR_PTR(-ENOMEM
);
802 rcu_assign_pointer(device
->name
, name
);
804 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
805 fs_devices
->num_devices
++;
807 device
->fs_devices
= fs_devices
;
808 *new_device_added
= true;
810 if (disk_super
->label
[0])
811 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
812 disk_super
->label
, devid
, found_transid
, path
);
814 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
815 disk_super
->fsid
, devid
, found_transid
, path
);
817 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
819 * When FS is already mounted.
820 * 1. If you are here and if the device->name is NULL that
821 * means this device was missing at time of FS mount.
822 * 2. If you are here and if the device->name is different
823 * from 'path' that means either
824 * a. The same device disappeared and reappeared with
826 * b. The missing-disk-which-was-replaced, has
829 * We must allow 1 and 2a above. But 2b would be a spurious
832 * Further in case of 1 and 2a above, the disk at 'path'
833 * would have missed some transaction when it was away and
834 * in case of 2a the stale bdev has to be updated as well.
835 * 2b must not be allowed at all time.
839 * For now, we do allow update to btrfs_fs_device through the
840 * btrfs dev scan cli after FS has been mounted. We're still
841 * tracking a problem where systems fail mount by subvolume id
842 * when we reject replacement on a mounted FS.
844 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
846 * That is if the FS is _not_ mounted and if you
847 * are here, that means there is more than one
848 * disk with same uuid and devid.We keep the one
849 * with larger generation number or the last-in if
850 * generation are equal.
852 mutex_unlock(&fs_devices
->device_list_mutex
);
853 return ERR_PTR(-EEXIST
);
856 name
= rcu_string_strdup(path
, GFP_NOFS
);
858 mutex_unlock(&fs_devices
->device_list_mutex
);
859 return ERR_PTR(-ENOMEM
);
861 rcu_string_free(device
->name
);
862 rcu_assign_pointer(device
->name
, name
);
863 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
864 fs_devices
->missing_devices
--;
865 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
870 * Unmount does not free the btrfs_device struct but would zero
871 * generation along with most of the other members. So just update
872 * it back. We need it to pick the disk with largest generation
875 if (!fs_devices
->opened
)
876 device
->generation
= found_transid
;
878 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
880 mutex_unlock(&fs_devices
->device_list_mutex
);
884 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
886 struct btrfs_fs_devices
*fs_devices
;
887 struct btrfs_device
*device
;
888 struct btrfs_device
*orig_dev
;
890 fs_devices
= alloc_fs_devices(orig
->fsid
);
891 if (IS_ERR(fs_devices
))
894 mutex_lock(&orig
->device_list_mutex
);
895 fs_devices
->total_devices
= orig
->total_devices
;
897 /* We have held the volume lock, it is safe to get the devices. */
898 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
899 struct rcu_string
*name
;
901 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
907 * This is ok to do without rcu read locked because we hold the
908 * uuid mutex so nothing we touch in here is going to disappear.
910 if (orig_dev
->name
) {
911 name
= rcu_string_strdup(orig_dev
->name
->str
,
914 btrfs_free_device(device
);
917 rcu_assign_pointer(device
->name
, name
);
920 list_add(&device
->dev_list
, &fs_devices
->devices
);
921 device
->fs_devices
= fs_devices
;
922 fs_devices
->num_devices
++;
924 mutex_unlock(&orig
->device_list_mutex
);
927 mutex_unlock(&orig
->device_list_mutex
);
928 free_fs_devices(fs_devices
);
929 return ERR_PTR(-ENOMEM
);
933 * After we have read the system tree and know devids belonging to
934 * this filesystem, remove the device which does not belong there.
936 void btrfs_free_extra_devids(struct btrfs_fs_devices
*fs_devices
, int step
)
938 struct btrfs_device
*device
, *next
;
939 struct btrfs_device
*latest_dev
= NULL
;
941 mutex_lock(&uuid_mutex
);
943 /* This is the initialized path, it is safe to release the devices. */
944 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
945 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
946 &device
->dev_state
)) {
947 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
948 &device
->dev_state
) &&
950 device
->generation
> latest_dev
->generation
)) {
956 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
958 * In the first step, keep the device which has
959 * the correct fsid and the devid that is used
960 * for the dev_replace procedure.
961 * In the second step, the dev_replace state is
962 * read from the device tree and it is known
963 * whether the procedure is really active or
964 * not, which means whether this device is
965 * used or whether it should be removed.
967 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
968 &device
->dev_state
)) {
973 blkdev_put(device
->bdev
, device
->mode
);
975 fs_devices
->open_devices
--;
977 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
978 list_del_init(&device
->dev_alloc_list
);
979 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
980 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
982 fs_devices
->rw_devices
--;
984 list_del_init(&device
->dev_list
);
985 fs_devices
->num_devices
--;
986 btrfs_free_device(device
);
989 if (fs_devices
->seed
) {
990 fs_devices
= fs_devices
->seed
;
994 fs_devices
->latest_bdev
= latest_dev
->bdev
;
996 mutex_unlock(&uuid_mutex
);
999 static void free_device_rcu(struct rcu_head
*head
)
1001 struct btrfs_device
*device
;
1003 device
= container_of(head
, struct btrfs_device
, rcu
);
1004 btrfs_free_device(device
);
1007 static void btrfs_close_bdev(struct btrfs_device
*device
)
1012 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1013 sync_blockdev(device
->bdev
);
1014 invalidate_bdev(device
->bdev
);
1017 blkdev_put(device
->bdev
, device
->mode
);
1020 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
1022 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
1023 struct btrfs_device
*new_device
;
1024 struct rcu_string
*name
;
1027 fs_devices
->open_devices
--;
1029 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1030 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1031 list_del_init(&device
->dev_alloc_list
);
1032 fs_devices
->rw_devices
--;
1035 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1036 fs_devices
->missing_devices
--;
1038 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
1040 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
1042 /* Safe because we are under uuid_mutex */
1044 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
1045 BUG_ON(!name
); /* -ENOMEM */
1046 rcu_assign_pointer(new_device
->name
, name
);
1049 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
1050 new_device
->fs_devices
= device
->fs_devices
;
1053 static int close_fs_devices(struct btrfs_fs_devices
*fs_devices
)
1055 struct btrfs_device
*device
, *tmp
;
1056 struct list_head pending_put
;
1058 INIT_LIST_HEAD(&pending_put
);
1060 if (--fs_devices
->opened
> 0)
1063 mutex_lock(&fs_devices
->device_list_mutex
);
1064 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1065 btrfs_prepare_close_one_device(device
);
1066 list_add(&device
->dev_list
, &pending_put
);
1068 mutex_unlock(&fs_devices
->device_list_mutex
);
1071 * btrfs_show_devname() is using the device_list_mutex,
1072 * sometimes call to blkdev_put() leads vfs calling
1073 * into this func. So do put outside of device_list_mutex,
1076 while (!list_empty(&pending_put
)) {
1077 device
= list_first_entry(&pending_put
,
1078 struct btrfs_device
, dev_list
);
1079 list_del(&device
->dev_list
);
1080 btrfs_close_bdev(device
);
1081 call_rcu(&device
->rcu
, free_device_rcu
);
1084 WARN_ON(fs_devices
->open_devices
);
1085 WARN_ON(fs_devices
->rw_devices
);
1086 fs_devices
->opened
= 0;
1087 fs_devices
->seeding
= 0;
1092 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1094 struct btrfs_fs_devices
*seed_devices
= NULL
;
1097 mutex_lock(&uuid_mutex
);
1098 ret
= close_fs_devices(fs_devices
);
1099 if (!fs_devices
->opened
) {
1100 seed_devices
= fs_devices
->seed
;
1101 fs_devices
->seed
= NULL
;
1103 mutex_unlock(&uuid_mutex
);
1105 while (seed_devices
) {
1106 fs_devices
= seed_devices
;
1107 seed_devices
= fs_devices
->seed
;
1108 close_fs_devices(fs_devices
);
1109 free_fs_devices(fs_devices
);
1114 static int open_fs_devices(struct btrfs_fs_devices
*fs_devices
,
1115 fmode_t flags
, void *holder
)
1117 struct btrfs_device
*device
;
1118 struct btrfs_device
*latest_dev
= NULL
;
1121 flags
|= FMODE_EXCL
;
1123 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
1124 /* Just open everything we can; ignore failures here */
1125 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1129 device
->generation
> latest_dev
->generation
)
1130 latest_dev
= device
;
1132 if (fs_devices
->open_devices
== 0) {
1136 fs_devices
->opened
= 1;
1137 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1138 fs_devices
->total_rw_bytes
= 0;
1143 static int devid_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1145 struct btrfs_device
*dev1
, *dev2
;
1147 dev1
= list_entry(a
, struct btrfs_device
, dev_list
);
1148 dev2
= list_entry(b
, struct btrfs_device
, dev_list
);
1150 if (dev1
->devid
< dev2
->devid
)
1152 else if (dev1
->devid
> dev2
->devid
)
1157 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1158 fmode_t flags
, void *holder
)
1162 lockdep_assert_held(&uuid_mutex
);
1164 mutex_lock(&fs_devices
->device_list_mutex
);
1165 if (fs_devices
->opened
) {
1166 fs_devices
->opened
++;
1169 list_sort(NULL
, &fs_devices
->devices
, devid_cmp
);
1170 ret
= open_fs_devices(fs_devices
, flags
, holder
);
1172 mutex_unlock(&fs_devices
->device_list_mutex
);
1177 static void btrfs_release_disk_super(struct page
*page
)
1183 static int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1185 struct btrfs_super_block
**disk_super
)
1190 /* make sure our super fits in the device */
1191 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1194 /* make sure our super fits in the page */
1195 if (sizeof(**disk_super
) > PAGE_SIZE
)
1198 /* make sure our super doesn't straddle pages on disk */
1199 index
= bytenr
>> PAGE_SHIFT
;
1200 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1203 /* pull in the page with our super */
1204 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1207 if (IS_ERR_OR_NULL(*page
))
1212 /* align our pointer to the offset of the super block */
1213 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1215 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1216 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1217 btrfs_release_disk_super(*page
);
1221 if ((*disk_super
)->label
[0] &&
1222 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1223 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1229 * Look for a btrfs signature on a device. This may be called out of the mount path
1230 * and we are not allowed to call set_blocksize during the scan. The superblock
1231 * is read via pagecache
1233 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1234 struct btrfs_fs_devices
**fs_devices_ret
)
1236 struct btrfs_super_block
*disk_super
;
1237 bool new_device_added
= false;
1238 struct btrfs_device
*device
;
1239 struct block_device
*bdev
;
1244 lockdep_assert_held(&uuid_mutex
);
1247 * we would like to check all the supers, but that would make
1248 * a btrfs mount succeed after a mkfs from a different FS.
1249 * So, we need to add a special mount option to scan for
1250 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1252 bytenr
= btrfs_sb_offset(0);
1253 flags
|= FMODE_EXCL
;
1255 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1257 return PTR_ERR(bdev
);
1259 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
)) {
1261 goto error_bdev_put
;
1264 device
= device_list_add(path
, disk_super
, &new_device_added
);
1265 if (IS_ERR(device
)) {
1266 ret
= PTR_ERR(device
);
1268 *fs_devices_ret
= device
->fs_devices
;
1269 if (new_device_added
)
1270 btrfs_free_stale_devices(path
, device
);
1273 btrfs_release_disk_super(page
);
1276 blkdev_put(bdev
, flags
);
1281 /* helper to account the used device space in the range */
1282 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1283 u64 end
, u64
*length
)
1285 struct btrfs_key key
;
1286 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1287 struct btrfs_dev_extent
*dev_extent
;
1288 struct btrfs_path
*path
;
1292 struct extent_buffer
*l
;
1296 if (start
>= device
->total_bytes
||
1297 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
1300 path
= btrfs_alloc_path();
1303 path
->reada
= READA_FORWARD
;
1305 key
.objectid
= device
->devid
;
1307 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1309 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1313 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1320 slot
= path
->slots
[0];
1321 if (slot
>= btrfs_header_nritems(l
)) {
1322 ret
= btrfs_next_leaf(root
, path
);
1330 btrfs_item_key_to_cpu(l
, &key
, slot
);
1332 if (key
.objectid
< device
->devid
)
1335 if (key
.objectid
> device
->devid
)
1338 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1341 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1342 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1344 if (key
.offset
<= start
&& extent_end
> end
) {
1345 *length
= end
- start
+ 1;
1347 } else if (key
.offset
<= start
&& extent_end
> start
)
1348 *length
+= extent_end
- start
;
1349 else if (key
.offset
> start
&& extent_end
<= end
)
1350 *length
+= extent_end
- key
.offset
;
1351 else if (key
.offset
> start
&& key
.offset
<= end
) {
1352 *length
+= end
- key
.offset
+ 1;
1354 } else if (key
.offset
> end
)
1362 btrfs_free_path(path
);
1366 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1367 struct btrfs_device
*device
,
1368 u64
*start
, u64 len
)
1370 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1371 struct extent_map
*em
;
1372 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1374 u64 physical_start
= *start
;
1377 search_list
= &transaction
->pending_chunks
;
1379 list_for_each_entry(em
, search_list
, list
) {
1380 struct map_lookup
*map
;
1383 map
= em
->map_lookup
;
1384 for (i
= 0; i
< map
->num_stripes
; i
++) {
1387 if (map
->stripes
[i
].dev
!= device
)
1389 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1390 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1394 * Make sure that while processing the pinned list we do
1395 * not override our *start with a lower value, because
1396 * we can have pinned chunks that fall within this
1397 * device hole and that have lower physical addresses
1398 * than the pending chunks we processed before. If we
1399 * do not take this special care we can end up getting
1400 * 2 pending chunks that start at the same physical
1401 * device offsets because the end offset of a pinned
1402 * chunk can be equal to the start offset of some
1405 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1412 if (search_list
!= &fs_info
->pinned_chunks
) {
1413 search_list
= &fs_info
->pinned_chunks
;
1422 * find_free_dev_extent_start - find free space in the specified device
1423 * @device: the device which we search the free space in
1424 * @num_bytes: the size of the free space that we need
1425 * @search_start: the position from which to begin the search
1426 * @start: store the start of the free space.
1427 * @len: the size of the free space. that we find, or the size
1428 * of the max free space if we don't find suitable free space
1430 * this uses a pretty simple search, the expectation is that it is
1431 * called very infrequently and that a given device has a small number
1434 * @start is used to store the start of the free space if we find. But if we
1435 * don't find suitable free space, it will be used to store the start position
1436 * of the max free space.
1438 * @len is used to store the size of the free space that we find.
1439 * But if we don't find suitable free space, it is used to store the size of
1440 * the max free space.
1442 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1443 struct btrfs_device
*device
, u64 num_bytes
,
1444 u64 search_start
, u64
*start
, u64
*len
)
1446 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1447 struct btrfs_root
*root
= fs_info
->dev_root
;
1448 struct btrfs_key key
;
1449 struct btrfs_dev_extent
*dev_extent
;
1450 struct btrfs_path
*path
;
1455 u64 search_end
= device
->total_bytes
;
1458 struct extent_buffer
*l
;
1461 * We don't want to overwrite the superblock on the drive nor any area
1462 * used by the boot loader (grub for example), so we make sure to start
1463 * at an offset of at least 1MB.
1465 search_start
= max_t(u64
, search_start
, SZ_1M
);
1467 path
= btrfs_alloc_path();
1471 max_hole_start
= search_start
;
1475 if (search_start
>= search_end
||
1476 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1481 path
->reada
= READA_FORWARD
;
1482 path
->search_commit_root
= 1;
1483 path
->skip_locking
= 1;
1485 key
.objectid
= device
->devid
;
1486 key
.offset
= search_start
;
1487 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1489 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1493 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1500 slot
= path
->slots
[0];
1501 if (slot
>= btrfs_header_nritems(l
)) {
1502 ret
= btrfs_next_leaf(root
, path
);
1510 btrfs_item_key_to_cpu(l
, &key
, slot
);
1512 if (key
.objectid
< device
->devid
)
1515 if (key
.objectid
> device
->devid
)
1518 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1521 if (key
.offset
> search_start
) {
1522 hole_size
= key
.offset
- search_start
;
1525 * Have to check before we set max_hole_start, otherwise
1526 * we could end up sending back this offset anyway.
1528 if (contains_pending_extent(transaction
, device
,
1531 if (key
.offset
>= search_start
) {
1532 hole_size
= key
.offset
- search_start
;
1539 if (hole_size
> max_hole_size
) {
1540 max_hole_start
= search_start
;
1541 max_hole_size
= hole_size
;
1545 * If this free space is greater than which we need,
1546 * it must be the max free space that we have found
1547 * until now, so max_hole_start must point to the start
1548 * of this free space and the length of this free space
1549 * is stored in max_hole_size. Thus, we return
1550 * max_hole_start and max_hole_size and go back to the
1553 if (hole_size
>= num_bytes
) {
1559 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1560 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1562 if (extent_end
> search_start
)
1563 search_start
= extent_end
;
1570 * At this point, search_start should be the end of
1571 * allocated dev extents, and when shrinking the device,
1572 * search_end may be smaller than search_start.
1574 if (search_end
> search_start
) {
1575 hole_size
= search_end
- search_start
;
1577 if (contains_pending_extent(transaction
, device
, &search_start
,
1579 btrfs_release_path(path
);
1583 if (hole_size
> max_hole_size
) {
1584 max_hole_start
= search_start
;
1585 max_hole_size
= hole_size
;
1590 if (max_hole_size
< num_bytes
)
1596 btrfs_free_path(path
);
1597 *start
= max_hole_start
;
1599 *len
= max_hole_size
;
1603 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1604 struct btrfs_device
*device
, u64 num_bytes
,
1605 u64
*start
, u64
*len
)
1607 /* FIXME use last free of some kind */
1608 return find_free_dev_extent_start(trans
->transaction
, device
,
1609 num_bytes
, 0, start
, len
);
1612 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1613 struct btrfs_device
*device
,
1614 u64 start
, u64
*dev_extent_len
)
1616 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1617 struct btrfs_root
*root
= fs_info
->dev_root
;
1619 struct btrfs_path
*path
;
1620 struct btrfs_key key
;
1621 struct btrfs_key found_key
;
1622 struct extent_buffer
*leaf
= NULL
;
1623 struct btrfs_dev_extent
*extent
= NULL
;
1625 path
= btrfs_alloc_path();
1629 key
.objectid
= device
->devid
;
1631 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1633 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1635 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1636 BTRFS_DEV_EXTENT_KEY
);
1639 leaf
= path
->nodes
[0];
1640 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1641 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1642 struct btrfs_dev_extent
);
1643 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1644 btrfs_dev_extent_length(leaf
, extent
) < start
);
1646 btrfs_release_path(path
);
1648 } else if (ret
== 0) {
1649 leaf
= path
->nodes
[0];
1650 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1651 struct btrfs_dev_extent
);
1653 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1657 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1659 ret
= btrfs_del_item(trans
, root
, path
);
1661 btrfs_handle_fs_error(fs_info
, ret
,
1662 "Failed to remove dev extent item");
1664 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1667 btrfs_free_path(path
);
1671 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1672 struct btrfs_device
*device
,
1673 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1676 struct btrfs_path
*path
;
1677 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1678 struct btrfs_root
*root
= fs_info
->dev_root
;
1679 struct btrfs_dev_extent
*extent
;
1680 struct extent_buffer
*leaf
;
1681 struct btrfs_key key
;
1683 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1684 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1685 path
= btrfs_alloc_path();
1689 key
.objectid
= device
->devid
;
1691 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1692 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1697 leaf
= path
->nodes
[0];
1698 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1699 struct btrfs_dev_extent
);
1700 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1701 BTRFS_CHUNK_TREE_OBJECTID
);
1702 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1703 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1704 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1706 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1707 btrfs_mark_buffer_dirty(leaf
);
1709 btrfs_free_path(path
);
1713 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1715 struct extent_map_tree
*em_tree
;
1716 struct extent_map
*em
;
1720 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1721 read_lock(&em_tree
->lock
);
1722 n
= rb_last(&em_tree
->map
);
1724 em
= rb_entry(n
, struct extent_map
, rb_node
);
1725 ret
= em
->start
+ em
->len
;
1727 read_unlock(&em_tree
->lock
);
1732 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1736 struct btrfs_key key
;
1737 struct btrfs_key found_key
;
1738 struct btrfs_path
*path
;
1740 path
= btrfs_alloc_path();
1744 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1745 key
.type
= BTRFS_DEV_ITEM_KEY
;
1746 key
.offset
= (u64
)-1;
1748 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1752 BUG_ON(ret
== 0); /* Corruption */
1754 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1755 BTRFS_DEV_ITEMS_OBJECTID
,
1756 BTRFS_DEV_ITEM_KEY
);
1760 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1762 *devid_ret
= found_key
.offset
+ 1;
1766 btrfs_free_path(path
);
1771 * the device information is stored in the chunk root
1772 * the btrfs_device struct should be fully filled in
1774 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1775 struct btrfs_fs_info
*fs_info
,
1776 struct btrfs_device
*device
)
1778 struct btrfs_root
*root
= fs_info
->chunk_root
;
1780 struct btrfs_path
*path
;
1781 struct btrfs_dev_item
*dev_item
;
1782 struct extent_buffer
*leaf
;
1783 struct btrfs_key key
;
1786 path
= btrfs_alloc_path();
1790 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1791 key
.type
= BTRFS_DEV_ITEM_KEY
;
1792 key
.offset
= device
->devid
;
1794 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1799 leaf
= path
->nodes
[0];
1800 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1802 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1803 btrfs_set_device_generation(leaf
, dev_item
, 0);
1804 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1805 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1806 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1807 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1808 btrfs_set_device_total_bytes(leaf
, dev_item
,
1809 btrfs_device_get_disk_total_bytes(device
));
1810 btrfs_set_device_bytes_used(leaf
, dev_item
,
1811 btrfs_device_get_bytes_used(device
));
1812 btrfs_set_device_group(leaf
, dev_item
, 0);
1813 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1814 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1815 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1817 ptr
= btrfs_device_uuid(dev_item
);
1818 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1819 ptr
= btrfs_device_fsid(dev_item
);
1820 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_FSID_SIZE
);
1821 btrfs_mark_buffer_dirty(leaf
);
1825 btrfs_free_path(path
);
1830 * Function to update ctime/mtime for a given device path.
1831 * Mainly used for ctime/mtime based probe like libblkid.
1833 static void update_dev_time(const char *path_name
)
1837 filp
= filp_open(path_name
, O_RDWR
, 0);
1840 file_update_time(filp
);
1841 filp_close(filp
, NULL
);
1844 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1845 struct btrfs_device
*device
)
1847 struct btrfs_root
*root
= fs_info
->chunk_root
;
1849 struct btrfs_path
*path
;
1850 struct btrfs_key key
;
1851 struct btrfs_trans_handle
*trans
;
1853 path
= btrfs_alloc_path();
1857 trans
= btrfs_start_transaction(root
, 0);
1858 if (IS_ERR(trans
)) {
1859 btrfs_free_path(path
);
1860 return PTR_ERR(trans
);
1862 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1863 key
.type
= BTRFS_DEV_ITEM_KEY
;
1864 key
.offset
= device
->devid
;
1866 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1870 btrfs_abort_transaction(trans
, ret
);
1871 btrfs_end_transaction(trans
);
1875 ret
= btrfs_del_item(trans
, root
, path
);
1877 btrfs_abort_transaction(trans
, ret
);
1878 btrfs_end_transaction(trans
);
1882 btrfs_free_path(path
);
1884 ret
= btrfs_commit_transaction(trans
);
1889 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1890 * filesystem. It's up to the caller to adjust that number regarding eg. device
1893 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1901 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1903 all_avail
= fs_info
->avail_data_alloc_bits
|
1904 fs_info
->avail_system_alloc_bits
|
1905 fs_info
->avail_metadata_alloc_bits
;
1906 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1908 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1909 if (!(all_avail
& btrfs_raid_array
[i
].bg_flag
))
1912 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1913 int ret
= btrfs_raid_array
[i
].mindev_error
;
1923 static struct btrfs_device
* btrfs_find_next_active_device(
1924 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1926 struct btrfs_device
*next_device
;
1928 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1929 if (next_device
!= device
&&
1930 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1931 && next_device
->bdev
)
1939 * Helper function to check if the given device is part of s_bdev / latest_bdev
1940 * and replace it with the provided or the next active device, in the context
1941 * where this function called, there should be always be another device (or
1942 * this_dev) which is active.
1944 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1945 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1947 struct btrfs_device
*next_device
;
1950 next_device
= this_dev
;
1952 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1954 ASSERT(next_device
);
1956 if (fs_info
->sb
->s_bdev
&&
1957 (fs_info
->sb
->s_bdev
== device
->bdev
))
1958 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1960 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1961 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1964 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1967 struct btrfs_device
*device
;
1968 struct btrfs_fs_devices
*cur_devices
;
1969 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1973 mutex_lock(&uuid_mutex
);
1975 num_devices
= fs_devices
->num_devices
;
1976 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
1977 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1978 WARN_ON(num_devices
< 1);
1981 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
1983 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1987 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1992 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1993 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1997 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1998 fs_info
->fs_devices
->rw_devices
== 1) {
1999 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
2003 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2004 mutex_lock(&fs_info
->chunk_mutex
);
2005 list_del_init(&device
->dev_alloc_list
);
2006 device
->fs_devices
->rw_devices
--;
2007 mutex_unlock(&fs_info
->chunk_mutex
);
2010 mutex_unlock(&uuid_mutex
);
2011 ret
= btrfs_shrink_device(device
, 0);
2012 mutex_lock(&uuid_mutex
);
2017 * TODO: the superblock still includes this device in its num_devices
2018 * counter although write_all_supers() is not locked out. This
2019 * could give a filesystem state which requires a degraded mount.
2021 ret
= btrfs_rm_dev_item(fs_info
, device
);
2025 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2026 btrfs_scrub_cancel_dev(fs_info
, device
);
2029 * the device list mutex makes sure that we don't change
2030 * the device list while someone else is writing out all
2031 * the device supers. Whoever is writing all supers, should
2032 * lock the device list mutex before getting the number of
2033 * devices in the super block (super_copy). Conversely,
2034 * whoever updates the number of devices in the super block
2035 * (super_copy) should hold the device list mutex.
2039 * In normal cases the cur_devices == fs_devices. But in case
2040 * of deleting a seed device, the cur_devices should point to
2041 * its own fs_devices listed under the fs_devices->seed.
2043 cur_devices
= device
->fs_devices
;
2044 mutex_lock(&fs_devices
->device_list_mutex
);
2045 list_del_rcu(&device
->dev_list
);
2047 cur_devices
->num_devices
--;
2048 cur_devices
->total_devices
--;
2049 /* Update total_devices of the parent fs_devices if it's seed */
2050 if (cur_devices
!= fs_devices
)
2051 fs_devices
->total_devices
--;
2053 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
2054 cur_devices
->missing_devices
--;
2056 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
2059 cur_devices
->open_devices
--;
2060 /* remove sysfs entry */
2061 btrfs_sysfs_rm_device_link(fs_devices
, device
);
2064 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2065 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2066 mutex_unlock(&fs_devices
->device_list_mutex
);
2069 * at this point, the device is zero sized and detached from
2070 * the devices list. All that's left is to zero out the old
2071 * supers and free the device.
2073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2074 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
2076 btrfs_close_bdev(device
);
2077 call_rcu(&device
->rcu
, free_device_rcu
);
2079 if (cur_devices
->open_devices
== 0) {
2080 while (fs_devices
) {
2081 if (fs_devices
->seed
== cur_devices
) {
2082 fs_devices
->seed
= cur_devices
->seed
;
2085 fs_devices
= fs_devices
->seed
;
2087 cur_devices
->seed
= NULL
;
2088 close_fs_devices(cur_devices
);
2089 free_fs_devices(cur_devices
);
2093 mutex_unlock(&uuid_mutex
);
2097 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2098 mutex_lock(&fs_info
->chunk_mutex
);
2099 list_add(&device
->dev_alloc_list
,
2100 &fs_devices
->alloc_list
);
2101 device
->fs_devices
->rw_devices
++;
2102 mutex_unlock(&fs_info
->chunk_mutex
);
2107 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
2108 struct btrfs_device
*srcdev
)
2110 struct btrfs_fs_devices
*fs_devices
;
2112 lockdep_assert_held(&fs_info
->fs_devices
->device_list_mutex
);
2115 * in case of fs with no seed, srcdev->fs_devices will point
2116 * to fs_devices of fs_info. However when the dev being replaced is
2117 * a seed dev it will point to the seed's local fs_devices. In short
2118 * srcdev will have its correct fs_devices in both the cases.
2120 fs_devices
= srcdev
->fs_devices
;
2122 list_del_rcu(&srcdev
->dev_list
);
2123 list_del(&srcdev
->dev_alloc_list
);
2124 fs_devices
->num_devices
--;
2125 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2126 fs_devices
->missing_devices
--;
2128 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2129 fs_devices
->rw_devices
--;
2132 fs_devices
->open_devices
--;
2135 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2136 struct btrfs_device
*srcdev
)
2138 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2140 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2141 /* zero out the old super if it is writable */
2142 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2145 btrfs_close_bdev(srcdev
);
2146 call_rcu(&srcdev
->rcu
, free_device_rcu
);
2148 /* if this is no devs we rather delete the fs_devices */
2149 if (!fs_devices
->num_devices
) {
2150 struct btrfs_fs_devices
*tmp_fs_devices
;
2153 * On a mounted FS, num_devices can't be zero unless it's a
2154 * seed. In case of a seed device being replaced, the replace
2155 * target added to the sprout FS, so there will be no more
2156 * device left under the seed FS.
2158 ASSERT(fs_devices
->seeding
);
2160 tmp_fs_devices
= fs_info
->fs_devices
;
2161 while (tmp_fs_devices
) {
2162 if (tmp_fs_devices
->seed
== fs_devices
) {
2163 tmp_fs_devices
->seed
= fs_devices
->seed
;
2166 tmp_fs_devices
= tmp_fs_devices
->seed
;
2168 fs_devices
->seed
= NULL
;
2169 close_fs_devices(fs_devices
);
2170 free_fs_devices(fs_devices
);
2174 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2175 struct btrfs_device
*tgtdev
)
2177 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2180 mutex_lock(&fs_devices
->device_list_mutex
);
2182 btrfs_sysfs_rm_device_link(fs_devices
, tgtdev
);
2185 fs_devices
->open_devices
--;
2187 fs_devices
->num_devices
--;
2189 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2191 list_del_rcu(&tgtdev
->dev_list
);
2193 mutex_unlock(&fs_devices
->device_list_mutex
);
2196 * The update_dev_time() with in btrfs_scratch_superblocks()
2197 * may lead to a call to btrfs_show_devname() which will try
2198 * to hold device_list_mutex. And here this device
2199 * is already out of device list, so we don't have to hold
2200 * the device_list_mutex lock.
2202 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2204 btrfs_close_bdev(tgtdev
);
2205 call_rcu(&tgtdev
->rcu
, free_device_rcu
);
2208 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2209 const char *device_path
,
2210 struct btrfs_device
**device
)
2213 struct btrfs_super_block
*disk_super
;
2216 struct block_device
*bdev
;
2217 struct buffer_head
*bh
;
2220 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2221 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2224 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2225 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2226 dev_uuid
= disk_super
->dev_item
.uuid
;
2227 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2231 blkdev_put(bdev
, FMODE_READ
);
2235 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2236 const char *device_path
,
2237 struct btrfs_device
**device
)
2240 if (strcmp(device_path
, "missing") == 0) {
2241 struct list_head
*devices
;
2242 struct btrfs_device
*tmp
;
2244 devices
= &fs_info
->fs_devices
->devices
;
2245 list_for_each_entry(tmp
, devices
, dev_list
) {
2246 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2247 &tmp
->dev_state
) && !tmp
->bdev
) {
2254 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2258 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2263 * Lookup a device given by device id, or the path if the id is 0.
2265 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2266 const char *devpath
,
2267 struct btrfs_device
**device
)
2273 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2277 if (!devpath
|| !devpath
[0])
2280 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2287 * does all the dirty work required for changing file system's UUID.
2289 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2291 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2292 struct btrfs_fs_devices
*old_devices
;
2293 struct btrfs_fs_devices
*seed_devices
;
2294 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2295 struct btrfs_device
*device
;
2298 lockdep_assert_held(&uuid_mutex
);
2299 if (!fs_devices
->seeding
)
2302 seed_devices
= alloc_fs_devices(NULL
);
2303 if (IS_ERR(seed_devices
))
2304 return PTR_ERR(seed_devices
);
2306 old_devices
= clone_fs_devices(fs_devices
);
2307 if (IS_ERR(old_devices
)) {
2308 kfree(seed_devices
);
2309 return PTR_ERR(old_devices
);
2312 list_add(&old_devices
->fs_list
, &fs_uuids
);
2314 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2315 seed_devices
->opened
= 1;
2316 INIT_LIST_HEAD(&seed_devices
->devices
);
2317 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2318 mutex_init(&seed_devices
->device_list_mutex
);
2320 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2321 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2323 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2324 device
->fs_devices
= seed_devices
;
2326 mutex_lock(&fs_info
->chunk_mutex
);
2327 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2328 mutex_unlock(&fs_info
->chunk_mutex
);
2330 fs_devices
->seeding
= 0;
2331 fs_devices
->num_devices
= 0;
2332 fs_devices
->open_devices
= 0;
2333 fs_devices
->missing_devices
= 0;
2334 fs_devices
->rotating
= 0;
2335 fs_devices
->seed
= seed_devices
;
2337 generate_random_uuid(fs_devices
->fsid
);
2338 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2339 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2340 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2342 super_flags
= btrfs_super_flags(disk_super
) &
2343 ~BTRFS_SUPER_FLAG_SEEDING
;
2344 btrfs_set_super_flags(disk_super
, super_flags
);
2350 * Store the expected generation for seed devices in device items.
2352 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2353 struct btrfs_fs_info
*fs_info
)
2355 struct btrfs_root
*root
= fs_info
->chunk_root
;
2356 struct btrfs_path
*path
;
2357 struct extent_buffer
*leaf
;
2358 struct btrfs_dev_item
*dev_item
;
2359 struct btrfs_device
*device
;
2360 struct btrfs_key key
;
2361 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2362 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2366 path
= btrfs_alloc_path();
2370 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2372 key
.type
= BTRFS_DEV_ITEM_KEY
;
2375 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2379 leaf
= path
->nodes
[0];
2381 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2382 ret
= btrfs_next_leaf(root
, path
);
2387 leaf
= path
->nodes
[0];
2388 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2389 btrfs_release_path(path
);
2393 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2394 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2395 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2398 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2399 struct btrfs_dev_item
);
2400 devid
= btrfs_device_id(leaf
, dev_item
);
2401 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2403 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2405 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2406 BUG_ON(!device
); /* Logic error */
2408 if (device
->fs_devices
->seeding
) {
2409 btrfs_set_device_generation(leaf
, dev_item
,
2410 device
->generation
);
2411 btrfs_mark_buffer_dirty(leaf
);
2419 btrfs_free_path(path
);
2423 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2425 struct btrfs_root
*root
= fs_info
->dev_root
;
2426 struct request_queue
*q
;
2427 struct btrfs_trans_handle
*trans
;
2428 struct btrfs_device
*device
;
2429 struct block_device
*bdev
;
2430 struct list_head
*devices
;
2431 struct super_block
*sb
= fs_info
->sb
;
2432 struct rcu_string
*name
;
2434 int seeding_dev
= 0;
2436 bool unlocked
= false;
2438 if (sb_rdonly(sb
) && !fs_info
->fs_devices
->seeding
)
2441 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2442 fs_info
->bdev_holder
);
2444 return PTR_ERR(bdev
);
2446 if (fs_info
->fs_devices
->seeding
) {
2448 down_write(&sb
->s_umount
);
2449 mutex_lock(&uuid_mutex
);
2452 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2454 devices
= &fs_info
->fs_devices
->devices
;
2456 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2457 list_for_each_entry(device
, devices
, dev_list
) {
2458 if (device
->bdev
== bdev
) {
2461 &fs_info
->fs_devices
->device_list_mutex
);
2465 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2467 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2468 if (IS_ERR(device
)) {
2469 /* we can safely leave the fs_devices entry around */
2470 ret
= PTR_ERR(device
);
2474 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2477 goto error_free_device
;
2479 rcu_assign_pointer(device
->name
, name
);
2481 trans
= btrfs_start_transaction(root
, 0);
2482 if (IS_ERR(trans
)) {
2483 ret
= PTR_ERR(trans
);
2484 goto error_free_device
;
2487 q
= bdev_get_queue(bdev
);
2488 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2489 device
->generation
= trans
->transid
;
2490 device
->io_width
= fs_info
->sectorsize
;
2491 device
->io_align
= fs_info
->sectorsize
;
2492 device
->sector_size
= fs_info
->sectorsize
;
2493 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2494 fs_info
->sectorsize
);
2495 device
->disk_total_bytes
= device
->total_bytes
;
2496 device
->commit_total_bytes
= device
->total_bytes
;
2497 device
->fs_info
= fs_info
;
2498 device
->bdev
= bdev
;
2499 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2500 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2501 device
->mode
= FMODE_EXCL
;
2502 device
->dev_stats_valid
= 1;
2503 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2506 sb
->s_flags
&= ~SB_RDONLY
;
2507 ret
= btrfs_prepare_sprout(fs_info
);
2509 btrfs_abort_transaction(trans
, ret
);
2514 device
->fs_devices
= fs_info
->fs_devices
;
2516 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2517 mutex_lock(&fs_info
->chunk_mutex
);
2518 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2519 list_add(&device
->dev_alloc_list
,
2520 &fs_info
->fs_devices
->alloc_list
);
2521 fs_info
->fs_devices
->num_devices
++;
2522 fs_info
->fs_devices
->open_devices
++;
2523 fs_info
->fs_devices
->rw_devices
++;
2524 fs_info
->fs_devices
->total_devices
++;
2525 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2527 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2529 if (!blk_queue_nonrot(q
))
2530 fs_info
->fs_devices
->rotating
= 1;
2532 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2533 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2534 round_down(tmp
+ device
->total_bytes
, fs_info
->sectorsize
));
2536 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2537 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2539 /* add sysfs device entry */
2540 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2543 * we've got more storage, clear any full flags on the space
2546 btrfs_clear_space_info_full(fs_info
);
2548 mutex_unlock(&fs_info
->chunk_mutex
);
2549 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2552 mutex_lock(&fs_info
->chunk_mutex
);
2553 ret
= init_first_rw_device(trans
, fs_info
);
2554 mutex_unlock(&fs_info
->chunk_mutex
);
2556 btrfs_abort_transaction(trans
, ret
);
2561 ret
= btrfs_add_dev_item(trans
, fs_info
, device
);
2563 btrfs_abort_transaction(trans
, ret
);
2568 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2570 ret
= btrfs_finish_sprout(trans
, fs_info
);
2572 btrfs_abort_transaction(trans
, ret
);
2576 /* Sprouting would change fsid of the mounted root,
2577 * so rename the fsid on the sysfs
2579 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2581 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2583 "sysfs: failed to create fsid for sprout");
2586 ret
= btrfs_commit_transaction(trans
);
2589 mutex_unlock(&uuid_mutex
);
2590 up_write(&sb
->s_umount
);
2593 if (ret
) /* transaction commit */
2596 ret
= btrfs_relocate_sys_chunks(fs_info
);
2598 btrfs_handle_fs_error(fs_info
, ret
,
2599 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2600 trans
= btrfs_attach_transaction(root
);
2601 if (IS_ERR(trans
)) {
2602 if (PTR_ERR(trans
) == -ENOENT
)
2604 ret
= PTR_ERR(trans
);
2608 ret
= btrfs_commit_transaction(trans
);
2611 /* Update ctime/mtime for libblkid */
2612 update_dev_time(device_path
);
2616 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2619 sb
->s_flags
|= SB_RDONLY
;
2621 btrfs_end_transaction(trans
);
2623 btrfs_free_device(device
);
2625 blkdev_put(bdev
, FMODE_EXCL
);
2626 if (seeding_dev
&& !unlocked
) {
2627 mutex_unlock(&uuid_mutex
);
2628 up_write(&sb
->s_umount
);
2633 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2634 struct btrfs_device
*device
)
2637 struct btrfs_path
*path
;
2638 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2639 struct btrfs_dev_item
*dev_item
;
2640 struct extent_buffer
*leaf
;
2641 struct btrfs_key key
;
2643 path
= btrfs_alloc_path();
2647 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2648 key
.type
= BTRFS_DEV_ITEM_KEY
;
2649 key
.offset
= device
->devid
;
2651 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2660 leaf
= path
->nodes
[0];
2661 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2663 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2664 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2665 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2666 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2667 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2668 btrfs_set_device_total_bytes(leaf
, dev_item
,
2669 btrfs_device_get_disk_total_bytes(device
));
2670 btrfs_set_device_bytes_used(leaf
, dev_item
,
2671 btrfs_device_get_bytes_used(device
));
2672 btrfs_mark_buffer_dirty(leaf
);
2675 btrfs_free_path(path
);
2679 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2680 struct btrfs_device
*device
, u64 new_size
)
2682 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2683 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2684 struct btrfs_fs_devices
*fs_devices
;
2688 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2691 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2693 mutex_lock(&fs_info
->chunk_mutex
);
2694 old_total
= btrfs_super_total_bytes(super_copy
);
2695 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2697 if (new_size
<= device
->total_bytes
||
2698 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2699 mutex_unlock(&fs_info
->chunk_mutex
);
2703 fs_devices
= fs_info
->fs_devices
;
2705 btrfs_set_super_total_bytes(super_copy
,
2706 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2707 device
->fs_devices
->total_rw_bytes
+= diff
;
2709 btrfs_device_set_total_bytes(device
, new_size
);
2710 btrfs_device_set_disk_total_bytes(device
, new_size
);
2711 btrfs_clear_space_info_full(device
->fs_info
);
2712 if (list_empty(&device
->resized_list
))
2713 list_add_tail(&device
->resized_list
,
2714 &fs_devices
->resized_devices
);
2715 mutex_unlock(&fs_info
->chunk_mutex
);
2717 return btrfs_update_device(trans
, device
);
2720 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2721 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2723 struct btrfs_root
*root
= fs_info
->chunk_root
;
2725 struct btrfs_path
*path
;
2726 struct btrfs_key key
;
2728 path
= btrfs_alloc_path();
2732 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2733 key
.offset
= chunk_offset
;
2734 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2736 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2739 else if (ret
> 0) { /* Logic error or corruption */
2740 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2741 "Failed lookup while freeing chunk.");
2746 ret
= btrfs_del_item(trans
, root
, path
);
2748 btrfs_handle_fs_error(fs_info
, ret
,
2749 "Failed to delete chunk item.");
2751 btrfs_free_path(path
);
2755 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2757 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2758 struct btrfs_disk_key
*disk_key
;
2759 struct btrfs_chunk
*chunk
;
2766 struct btrfs_key key
;
2768 mutex_lock(&fs_info
->chunk_mutex
);
2769 array_size
= btrfs_super_sys_array_size(super_copy
);
2771 ptr
= super_copy
->sys_chunk_array
;
2774 while (cur
< array_size
) {
2775 disk_key
= (struct btrfs_disk_key
*)ptr
;
2776 btrfs_disk_key_to_cpu(&key
, disk_key
);
2778 len
= sizeof(*disk_key
);
2780 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2781 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2782 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2783 len
+= btrfs_chunk_item_size(num_stripes
);
2788 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2789 key
.offset
== chunk_offset
) {
2790 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2792 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2798 mutex_unlock(&fs_info
->chunk_mutex
);
2802 static struct extent_map
*get_chunk_map(struct btrfs_fs_info
*fs_info
,
2803 u64 logical
, u64 length
)
2805 struct extent_map_tree
*em_tree
;
2806 struct extent_map
*em
;
2808 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2809 read_lock(&em_tree
->lock
);
2810 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2811 read_unlock(&em_tree
->lock
);
2814 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2816 return ERR_PTR(-EINVAL
);
2819 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2821 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2822 logical
, length
, em
->start
, em
->start
+ em
->len
);
2823 free_extent_map(em
);
2824 return ERR_PTR(-EINVAL
);
2827 /* callers are responsible for dropping em's ref. */
2831 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2832 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2834 struct extent_map
*em
;
2835 struct map_lookup
*map
;
2836 u64 dev_extent_len
= 0;
2838 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2840 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
2843 * This is a logic error, but we don't want to just rely on the
2844 * user having built with ASSERT enabled, so if ASSERT doesn't
2845 * do anything we still error out.
2850 map
= em
->map_lookup
;
2851 mutex_lock(&fs_info
->chunk_mutex
);
2852 check_system_chunk(trans
, fs_info
, map
->type
);
2853 mutex_unlock(&fs_info
->chunk_mutex
);
2856 * Take the device list mutex to prevent races with the final phase of
2857 * a device replace operation that replaces the device object associated
2858 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2860 mutex_lock(&fs_devices
->device_list_mutex
);
2861 for (i
= 0; i
< map
->num_stripes
; i
++) {
2862 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2863 ret
= btrfs_free_dev_extent(trans
, device
,
2864 map
->stripes
[i
].physical
,
2867 mutex_unlock(&fs_devices
->device_list_mutex
);
2868 btrfs_abort_transaction(trans
, ret
);
2872 if (device
->bytes_used
> 0) {
2873 mutex_lock(&fs_info
->chunk_mutex
);
2874 btrfs_device_set_bytes_used(device
,
2875 device
->bytes_used
- dev_extent_len
);
2876 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2877 btrfs_clear_space_info_full(fs_info
);
2878 mutex_unlock(&fs_info
->chunk_mutex
);
2881 if (map
->stripes
[i
].dev
) {
2882 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2884 mutex_unlock(&fs_devices
->device_list_mutex
);
2885 btrfs_abort_transaction(trans
, ret
);
2890 mutex_unlock(&fs_devices
->device_list_mutex
);
2892 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_offset
);
2894 btrfs_abort_transaction(trans
, ret
);
2898 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2900 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2901 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2903 btrfs_abort_transaction(trans
, ret
);
2908 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2910 btrfs_abort_transaction(trans
, ret
);
2916 free_extent_map(em
);
2920 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2922 struct btrfs_root
*root
= fs_info
->chunk_root
;
2923 struct btrfs_trans_handle
*trans
;
2927 * Prevent races with automatic removal of unused block groups.
2928 * After we relocate and before we remove the chunk with offset
2929 * chunk_offset, automatic removal of the block group can kick in,
2930 * resulting in a failure when calling btrfs_remove_chunk() below.
2932 * Make sure to acquire this mutex before doing a tree search (dev
2933 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2934 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2935 * we release the path used to search the chunk/dev tree and before
2936 * the current task acquires this mutex and calls us.
2938 lockdep_assert_held(&fs_info
->delete_unused_bgs_mutex
);
2940 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2944 /* step one, relocate all the extents inside this chunk */
2945 btrfs_scrub_pause(fs_info
);
2946 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2947 btrfs_scrub_continue(fs_info
);
2952 * We add the kobjects here (and after forcing data chunk creation)
2953 * since relocation is the only place we'll create chunks of a new
2954 * type at runtime. The only place where we'll remove the last
2955 * chunk of a type is the call immediately below this one. Even
2956 * so, we're protected against races with the cleaner thread since
2957 * we're covered by the delete_unused_bgs_mutex.
2959 btrfs_add_raid_kobjects(fs_info
);
2961 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2963 if (IS_ERR(trans
)) {
2964 ret
= PTR_ERR(trans
);
2965 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2970 * step two, delete the device extents and the
2971 * chunk tree entries
2973 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
2974 btrfs_end_transaction(trans
);
2978 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
2980 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2981 struct btrfs_path
*path
;
2982 struct extent_buffer
*leaf
;
2983 struct btrfs_chunk
*chunk
;
2984 struct btrfs_key key
;
2985 struct btrfs_key found_key
;
2987 bool retried
= false;
2991 path
= btrfs_alloc_path();
2996 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2997 key
.offset
= (u64
)-1;
2998 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3001 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3002 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3004 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3007 BUG_ON(ret
== 0); /* Corruption */
3009 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3012 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3018 leaf
= path
->nodes
[0];
3019 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3021 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3022 struct btrfs_chunk
);
3023 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3024 btrfs_release_path(path
);
3026 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3027 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3033 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3035 if (found_key
.offset
== 0)
3037 key
.offset
= found_key
.offset
- 1;
3040 if (failed
&& !retried
) {
3044 } else if (WARN_ON(failed
&& retried
)) {
3048 btrfs_free_path(path
);
3053 * return 1 : allocate a data chunk successfully,
3054 * return <0: errors during allocating a data chunk,
3055 * return 0 : no need to allocate a data chunk.
3057 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3060 struct btrfs_block_group_cache
*cache
;
3064 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3066 chunk_type
= cache
->flags
;
3067 btrfs_put_block_group(cache
);
3069 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
) {
3070 spin_lock(&fs_info
->data_sinfo
->lock
);
3071 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3072 spin_unlock(&fs_info
->data_sinfo
->lock
);
3075 struct btrfs_trans_handle
*trans
;
3078 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3080 return PTR_ERR(trans
);
3082 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3083 BTRFS_BLOCK_GROUP_DATA
);
3084 btrfs_end_transaction(trans
);
3088 btrfs_add_raid_kobjects(fs_info
);
3096 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3097 struct btrfs_balance_control
*bctl
)
3099 struct btrfs_root
*root
= fs_info
->tree_root
;
3100 struct btrfs_trans_handle
*trans
;
3101 struct btrfs_balance_item
*item
;
3102 struct btrfs_disk_balance_args disk_bargs
;
3103 struct btrfs_path
*path
;
3104 struct extent_buffer
*leaf
;
3105 struct btrfs_key key
;
3108 path
= btrfs_alloc_path();
3112 trans
= btrfs_start_transaction(root
, 0);
3113 if (IS_ERR(trans
)) {
3114 btrfs_free_path(path
);
3115 return PTR_ERR(trans
);
3118 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3119 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3122 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3127 leaf
= path
->nodes
[0];
3128 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3130 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3132 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3133 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3134 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3135 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3136 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3137 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3139 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3141 btrfs_mark_buffer_dirty(leaf
);
3143 btrfs_free_path(path
);
3144 err
= btrfs_commit_transaction(trans
);
3150 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3152 struct btrfs_root
*root
= fs_info
->tree_root
;
3153 struct btrfs_trans_handle
*trans
;
3154 struct btrfs_path
*path
;
3155 struct btrfs_key key
;
3158 path
= btrfs_alloc_path();
3162 trans
= btrfs_start_transaction(root
, 0);
3163 if (IS_ERR(trans
)) {
3164 btrfs_free_path(path
);
3165 return PTR_ERR(trans
);
3168 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3169 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3172 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3180 ret
= btrfs_del_item(trans
, root
, path
);
3182 btrfs_free_path(path
);
3183 err
= btrfs_commit_transaction(trans
);
3190 * This is a heuristic used to reduce the number of chunks balanced on
3191 * resume after balance was interrupted.
3193 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3196 * Turn on soft mode for chunk types that were being converted.
3198 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3199 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3200 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3201 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3202 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3203 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3206 * Turn on usage filter if is not already used. The idea is
3207 * that chunks that we have already balanced should be
3208 * reasonably full. Don't do it for chunks that are being
3209 * converted - that will keep us from relocating unconverted
3210 * (albeit full) chunks.
3212 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3213 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3214 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3215 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3216 bctl
->data
.usage
= 90;
3218 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3219 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3220 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3221 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3222 bctl
->sys
.usage
= 90;
3224 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3225 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3226 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3227 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3228 bctl
->meta
.usage
= 90;
3233 * Clear the balance status in fs_info and delete the balance item from disk.
3235 static void reset_balance_state(struct btrfs_fs_info
*fs_info
)
3237 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3240 BUG_ON(!fs_info
->balance_ctl
);
3242 spin_lock(&fs_info
->balance_lock
);
3243 fs_info
->balance_ctl
= NULL
;
3244 spin_unlock(&fs_info
->balance_lock
);
3247 ret
= del_balance_item(fs_info
);
3249 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3253 * Balance filters. Return 1 if chunk should be filtered out
3254 * (should not be balanced).
3256 static int chunk_profiles_filter(u64 chunk_type
,
3257 struct btrfs_balance_args
*bargs
)
3259 chunk_type
= chunk_to_extended(chunk_type
) &
3260 BTRFS_EXTENDED_PROFILE_MASK
;
3262 if (bargs
->profiles
& chunk_type
)
3268 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3269 struct btrfs_balance_args
*bargs
)
3271 struct btrfs_block_group_cache
*cache
;
3273 u64 user_thresh_min
;
3274 u64 user_thresh_max
;
3277 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3278 chunk_used
= btrfs_block_group_used(&cache
->item
);
3280 if (bargs
->usage_min
== 0)
3281 user_thresh_min
= 0;
3283 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3286 if (bargs
->usage_max
== 0)
3287 user_thresh_max
= 1;
3288 else if (bargs
->usage_max
> 100)
3289 user_thresh_max
= cache
->key
.offset
;
3291 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3294 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3297 btrfs_put_block_group(cache
);
3301 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3302 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3304 struct btrfs_block_group_cache
*cache
;
3305 u64 chunk_used
, user_thresh
;
3308 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3309 chunk_used
= btrfs_block_group_used(&cache
->item
);
3311 if (bargs
->usage_min
== 0)
3313 else if (bargs
->usage
> 100)
3314 user_thresh
= cache
->key
.offset
;
3316 user_thresh
= div_factor_fine(cache
->key
.offset
,
3319 if (chunk_used
< user_thresh
)
3322 btrfs_put_block_group(cache
);
3326 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3327 struct btrfs_chunk
*chunk
,
3328 struct btrfs_balance_args
*bargs
)
3330 struct btrfs_stripe
*stripe
;
3331 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3334 for (i
= 0; i
< num_stripes
; i
++) {
3335 stripe
= btrfs_stripe_nr(chunk
, i
);
3336 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3343 /* [pstart, pend) */
3344 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3345 struct btrfs_chunk
*chunk
,
3346 struct btrfs_balance_args
*bargs
)
3348 struct btrfs_stripe
*stripe
;
3349 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3355 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3358 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3359 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3360 factor
= num_stripes
/ 2;
3361 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3362 factor
= num_stripes
- 1;
3363 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3364 factor
= num_stripes
- 2;
3366 factor
= num_stripes
;
3369 for (i
= 0; i
< num_stripes
; i
++) {
3370 stripe
= btrfs_stripe_nr(chunk
, i
);
3371 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3374 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3375 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3376 stripe_length
= div_u64(stripe_length
, factor
);
3378 if (stripe_offset
< bargs
->pend
&&
3379 stripe_offset
+ stripe_length
> bargs
->pstart
)
3386 /* [vstart, vend) */
3387 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3388 struct btrfs_chunk
*chunk
,
3390 struct btrfs_balance_args
*bargs
)
3392 if (chunk_offset
< bargs
->vend
&&
3393 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3394 /* at least part of the chunk is inside this vrange */
3400 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3401 struct btrfs_chunk
*chunk
,
3402 struct btrfs_balance_args
*bargs
)
3404 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3406 if (bargs
->stripes_min
<= num_stripes
3407 && num_stripes
<= bargs
->stripes_max
)
3413 static int chunk_soft_convert_filter(u64 chunk_type
,
3414 struct btrfs_balance_args
*bargs
)
3416 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3419 chunk_type
= chunk_to_extended(chunk_type
) &
3420 BTRFS_EXTENDED_PROFILE_MASK
;
3422 if (bargs
->target
== chunk_type
)
3428 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3429 struct extent_buffer
*leaf
,
3430 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3432 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3433 struct btrfs_balance_args
*bargs
= NULL
;
3434 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3437 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3438 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3442 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3443 bargs
= &bctl
->data
;
3444 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3446 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3447 bargs
= &bctl
->meta
;
3449 /* profiles filter */
3450 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3451 chunk_profiles_filter(chunk_type
, bargs
)) {
3456 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3457 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3459 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3460 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3465 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3466 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3470 /* drange filter, makes sense only with devid filter */
3471 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3472 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3477 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3478 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3482 /* stripes filter */
3483 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3484 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3488 /* soft profile changing mode */
3489 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3490 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3495 * limited by count, must be the last filter
3497 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3498 if (bargs
->limit
== 0)
3502 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3504 * Same logic as the 'limit' filter; the minimum cannot be
3505 * determined here because we do not have the global information
3506 * about the count of all chunks that satisfy the filters.
3508 if (bargs
->limit_max
== 0)
3517 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3519 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3520 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3521 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3522 struct list_head
*devices
;
3523 struct btrfs_device
*device
;
3527 struct btrfs_chunk
*chunk
;
3528 struct btrfs_path
*path
= NULL
;
3529 struct btrfs_key key
;
3530 struct btrfs_key found_key
;
3531 struct btrfs_trans_handle
*trans
;
3532 struct extent_buffer
*leaf
;
3535 int enospc_errors
= 0;
3536 bool counting
= true;
3537 /* The single value limit and min/max limits use the same bytes in the */
3538 u64 limit_data
= bctl
->data
.limit
;
3539 u64 limit_meta
= bctl
->meta
.limit
;
3540 u64 limit_sys
= bctl
->sys
.limit
;
3544 int chunk_reserved
= 0;
3546 /* step one make some room on all the devices */
3547 devices
= &fs_info
->fs_devices
->devices
;
3548 list_for_each_entry(device
, devices
, dev_list
) {
3549 old_size
= btrfs_device_get_total_bytes(device
);
3550 size_to_free
= div_factor(old_size
, 1);
3551 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3552 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) ||
3553 btrfs_device_get_total_bytes(device
) -
3554 btrfs_device_get_bytes_used(device
) > size_to_free
||
3555 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
3558 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3562 /* btrfs_shrink_device never returns ret > 0 */
3567 trans
= btrfs_start_transaction(dev_root
, 0);
3568 if (IS_ERR(trans
)) {
3569 ret
= PTR_ERR(trans
);
3570 btrfs_info_in_rcu(fs_info
,
3571 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3572 rcu_str_deref(device
->name
), ret
,
3573 old_size
, old_size
- size_to_free
);
3577 ret
= btrfs_grow_device(trans
, device
, old_size
);
3579 btrfs_end_transaction(trans
);
3580 /* btrfs_grow_device never returns ret > 0 */
3582 btrfs_info_in_rcu(fs_info
,
3583 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3584 rcu_str_deref(device
->name
), ret
,
3585 old_size
, old_size
- size_to_free
);
3589 btrfs_end_transaction(trans
);
3592 /* step two, relocate all the chunks */
3593 path
= btrfs_alloc_path();
3599 /* zero out stat counters */
3600 spin_lock(&fs_info
->balance_lock
);
3601 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3602 spin_unlock(&fs_info
->balance_lock
);
3606 * The single value limit and min/max limits use the same bytes
3609 bctl
->data
.limit
= limit_data
;
3610 bctl
->meta
.limit
= limit_meta
;
3611 bctl
->sys
.limit
= limit_sys
;
3613 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3614 key
.offset
= (u64
)-1;
3615 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3618 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3619 atomic_read(&fs_info
->balance_cancel_req
)) {
3624 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3625 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3627 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3632 * this shouldn't happen, it means the last relocate
3636 BUG(); /* FIXME break ? */
3638 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3639 BTRFS_CHUNK_ITEM_KEY
);
3641 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3646 leaf
= path
->nodes
[0];
3647 slot
= path
->slots
[0];
3648 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3650 if (found_key
.objectid
!= key
.objectid
) {
3651 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3655 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3656 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3659 spin_lock(&fs_info
->balance_lock
);
3660 bctl
->stat
.considered
++;
3661 spin_unlock(&fs_info
->balance_lock
);
3664 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3667 btrfs_release_path(path
);
3669 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3674 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3675 spin_lock(&fs_info
->balance_lock
);
3676 bctl
->stat
.expected
++;
3677 spin_unlock(&fs_info
->balance_lock
);
3679 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3681 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3683 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3690 * Apply limit_min filter, no need to check if the LIMITS
3691 * filter is used, limit_min is 0 by default
3693 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3694 count_data
< bctl
->data
.limit_min
)
3695 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3696 count_meta
< bctl
->meta
.limit_min
)
3697 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3698 count_sys
< bctl
->sys
.limit_min
)) {
3699 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3703 if (!chunk_reserved
) {
3705 * We may be relocating the only data chunk we have,
3706 * which could potentially end up with losing data's
3707 * raid profile, so lets allocate an empty one in
3710 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3713 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3715 } else if (ret
== 1) {
3720 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3721 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3722 if (ret
&& ret
!= -ENOSPC
)
3724 if (ret
== -ENOSPC
) {
3727 spin_lock(&fs_info
->balance_lock
);
3728 bctl
->stat
.completed
++;
3729 spin_unlock(&fs_info
->balance_lock
);
3732 if (found_key
.offset
== 0)
3734 key
.offset
= found_key
.offset
- 1;
3738 btrfs_release_path(path
);
3743 btrfs_free_path(path
);
3744 if (enospc_errors
) {
3745 btrfs_info(fs_info
, "%d enospc errors during balance",
3755 * alloc_profile_is_valid - see if a given profile is valid and reduced
3756 * @flags: profile to validate
3757 * @extended: if true @flags is treated as an extended profile
3759 static int alloc_profile_is_valid(u64 flags
, int extended
)
3761 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3762 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3764 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3766 /* 1) check that all other bits are zeroed */
3770 /* 2) see if profile is reduced */
3772 return !extended
; /* "0" is valid for usual profiles */
3774 /* true if exactly one bit set */
3775 return (flags
& (flags
- 1)) == 0;
3778 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3780 /* cancel requested || normal exit path */
3781 return atomic_read(&fs_info
->balance_cancel_req
) ||
3782 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3783 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3786 /* Non-zero return value signifies invalidity */
3787 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3790 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3791 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3792 (bctl_arg
->target
& ~allowed
)));
3796 * Should be called with balance mutexe held
3798 int btrfs_balance(struct btrfs_fs_info
*fs_info
,
3799 struct btrfs_balance_control
*bctl
,
3800 struct btrfs_ioctl_balance_args
*bargs
)
3802 u64 meta_target
, data_target
;
3809 if (btrfs_fs_closing(fs_info
) ||
3810 atomic_read(&fs_info
->balance_pause_req
) ||
3811 atomic_read(&fs_info
->balance_cancel_req
)) {
3816 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3817 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3821 * In case of mixed groups both data and meta should be picked,
3822 * and identical options should be given for both of them.
3824 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3825 if (mixed
&& (bctl
->flags
& allowed
)) {
3826 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3827 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3828 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3830 "balance: mixed groups data and metadata options must be the same");
3836 num_devices
= fs_info
->fs_devices
->num_devices
;
3837 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
3838 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3839 BUG_ON(num_devices
< 1);
3842 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
3843 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3844 if (num_devices
> 1)
3845 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3846 if (num_devices
> 2)
3847 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3848 if (num_devices
> 3)
3849 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3850 BTRFS_BLOCK_GROUP_RAID6
);
3851 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3852 int index
= btrfs_bg_flags_to_raid_index(bctl
->data
.target
);
3855 "balance: invalid convert data profile %s",
3856 get_raid_name(index
));
3860 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3861 int index
= btrfs_bg_flags_to_raid_index(bctl
->meta
.target
);
3864 "balance: invalid convert metadata profile %s",
3865 get_raid_name(index
));
3869 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3870 int index
= btrfs_bg_flags_to_raid_index(bctl
->sys
.target
);
3873 "balance: invalid convert system profile %s",
3874 get_raid_name(index
));
3879 /* allow to reduce meta or sys integrity only if force set */
3880 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3881 BTRFS_BLOCK_GROUP_RAID10
|
3882 BTRFS_BLOCK_GROUP_RAID5
|
3883 BTRFS_BLOCK_GROUP_RAID6
;
3885 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3887 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3888 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3889 !(bctl
->sys
.target
& allowed
)) ||
3890 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3891 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3892 !(bctl
->meta
.target
& allowed
))) {
3893 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3895 "balance: force reducing metadata integrity");
3898 "balance: reduces metadata integrity, use --force if you want this");
3903 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3905 /* if we're not converting, the target field is uninitialized */
3906 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3907 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3908 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3909 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3910 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3911 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3912 int meta_index
= btrfs_bg_flags_to_raid_index(meta_target
);
3913 int data_index
= btrfs_bg_flags_to_raid_index(data_target
);
3916 "balance: metadata profile %s has lower redundancy than data profile %s",
3917 get_raid_name(meta_index
), get_raid_name(data_index
));
3920 ret
= insert_balance_item(fs_info
, bctl
);
3921 if (ret
&& ret
!= -EEXIST
)
3924 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3925 BUG_ON(ret
== -EEXIST
);
3926 BUG_ON(fs_info
->balance_ctl
);
3927 spin_lock(&fs_info
->balance_lock
);
3928 fs_info
->balance_ctl
= bctl
;
3929 spin_unlock(&fs_info
->balance_lock
);
3931 BUG_ON(ret
!= -EEXIST
);
3932 spin_lock(&fs_info
->balance_lock
);
3933 update_balance_args(bctl
);
3934 spin_unlock(&fs_info
->balance_lock
);
3937 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
3938 set_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
3939 mutex_unlock(&fs_info
->balance_mutex
);
3941 ret
= __btrfs_balance(fs_info
);
3943 mutex_lock(&fs_info
->balance_mutex
);
3944 clear_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
3947 memset(bargs
, 0, sizeof(*bargs
));
3948 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
3951 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3952 balance_need_close(fs_info
)) {
3953 reset_balance_state(fs_info
);
3954 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3957 wake_up(&fs_info
->balance_wait_q
);
3961 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3962 reset_balance_state(fs_info
);
3965 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3970 static int balance_kthread(void *data
)
3972 struct btrfs_fs_info
*fs_info
= data
;
3975 mutex_lock(&fs_info
->balance_mutex
);
3976 if (fs_info
->balance_ctl
) {
3977 btrfs_info(fs_info
, "balance: resuming");
3978 ret
= btrfs_balance(fs_info
, fs_info
->balance_ctl
, NULL
);
3980 mutex_unlock(&fs_info
->balance_mutex
);
3985 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3987 struct task_struct
*tsk
;
3989 mutex_lock(&fs_info
->balance_mutex
);
3990 if (!fs_info
->balance_ctl
) {
3991 mutex_unlock(&fs_info
->balance_mutex
);
3994 mutex_unlock(&fs_info
->balance_mutex
);
3996 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3997 btrfs_info(fs_info
, "balance: resume skipped");
4002 * A ro->rw remount sequence should continue with the paused balance
4003 * regardless of who pauses it, system or the user as of now, so set
4006 spin_lock(&fs_info
->balance_lock
);
4007 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
4008 spin_unlock(&fs_info
->balance_lock
);
4010 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4011 return PTR_ERR_OR_ZERO(tsk
);
4014 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4016 struct btrfs_balance_control
*bctl
;
4017 struct btrfs_balance_item
*item
;
4018 struct btrfs_disk_balance_args disk_bargs
;
4019 struct btrfs_path
*path
;
4020 struct extent_buffer
*leaf
;
4021 struct btrfs_key key
;
4024 path
= btrfs_alloc_path();
4028 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4029 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4032 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4035 if (ret
> 0) { /* ret = -ENOENT; */
4040 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4046 leaf
= path
->nodes
[0];
4047 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4049 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4050 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4052 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4053 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4054 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4055 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4056 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4057 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4060 * This should never happen, as the paused balance state is recovered
4061 * during mount without any chance of other exclusive ops to collide.
4063 * This gives the exclusive op status to balance and keeps in paused
4064 * state until user intervention (cancel or umount). If the ownership
4065 * cannot be assigned, show a message but do not fail. The balance
4066 * is in a paused state and must have fs_info::balance_ctl properly
4069 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
4071 "balance: cannot set exclusive op status, resume manually");
4073 mutex_lock(&fs_info
->balance_mutex
);
4074 BUG_ON(fs_info
->balance_ctl
);
4075 spin_lock(&fs_info
->balance_lock
);
4076 fs_info
->balance_ctl
= bctl
;
4077 spin_unlock(&fs_info
->balance_lock
);
4078 mutex_unlock(&fs_info
->balance_mutex
);
4080 btrfs_free_path(path
);
4084 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4088 mutex_lock(&fs_info
->balance_mutex
);
4089 if (!fs_info
->balance_ctl
) {
4090 mutex_unlock(&fs_info
->balance_mutex
);
4094 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4095 atomic_inc(&fs_info
->balance_pause_req
);
4096 mutex_unlock(&fs_info
->balance_mutex
);
4098 wait_event(fs_info
->balance_wait_q
,
4099 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4101 mutex_lock(&fs_info
->balance_mutex
);
4102 /* we are good with balance_ctl ripped off from under us */
4103 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4104 atomic_dec(&fs_info
->balance_pause_req
);
4109 mutex_unlock(&fs_info
->balance_mutex
);
4113 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4115 mutex_lock(&fs_info
->balance_mutex
);
4116 if (!fs_info
->balance_ctl
) {
4117 mutex_unlock(&fs_info
->balance_mutex
);
4122 * A paused balance with the item stored on disk can be resumed at
4123 * mount time if the mount is read-write. Otherwise it's still paused
4124 * and we must not allow cancelling as it deletes the item.
4126 if (sb_rdonly(fs_info
->sb
)) {
4127 mutex_unlock(&fs_info
->balance_mutex
);
4131 atomic_inc(&fs_info
->balance_cancel_req
);
4133 * if we are running just wait and return, balance item is
4134 * deleted in btrfs_balance in this case
4136 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4137 mutex_unlock(&fs_info
->balance_mutex
);
4138 wait_event(fs_info
->balance_wait_q
,
4139 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4140 mutex_lock(&fs_info
->balance_mutex
);
4142 mutex_unlock(&fs_info
->balance_mutex
);
4144 * Lock released to allow other waiters to continue, we'll
4145 * reexamine the status again.
4147 mutex_lock(&fs_info
->balance_mutex
);
4149 if (fs_info
->balance_ctl
) {
4150 reset_balance_state(fs_info
);
4151 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4152 btrfs_info(fs_info
, "balance: canceled");
4156 BUG_ON(fs_info
->balance_ctl
||
4157 test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4158 atomic_dec(&fs_info
->balance_cancel_req
);
4159 mutex_unlock(&fs_info
->balance_mutex
);
4163 static int btrfs_uuid_scan_kthread(void *data
)
4165 struct btrfs_fs_info
*fs_info
= data
;
4166 struct btrfs_root
*root
= fs_info
->tree_root
;
4167 struct btrfs_key key
;
4168 struct btrfs_path
*path
= NULL
;
4170 struct extent_buffer
*eb
;
4172 struct btrfs_root_item root_item
;
4174 struct btrfs_trans_handle
*trans
= NULL
;
4176 path
= btrfs_alloc_path();
4183 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4187 ret
= btrfs_search_forward(root
, &key
, path
,
4188 BTRFS_OLDEST_GENERATION
);
4195 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4196 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4197 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4198 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4201 eb
= path
->nodes
[0];
4202 slot
= path
->slots
[0];
4203 item_size
= btrfs_item_size_nr(eb
, slot
);
4204 if (item_size
< sizeof(root_item
))
4207 read_extent_buffer(eb
, &root_item
,
4208 btrfs_item_ptr_offset(eb
, slot
),
4209 (int)sizeof(root_item
));
4210 if (btrfs_root_refs(&root_item
) == 0)
4213 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4214 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4218 btrfs_release_path(path
);
4220 * 1 - subvol uuid item
4221 * 1 - received_subvol uuid item
4223 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4224 if (IS_ERR(trans
)) {
4225 ret
= PTR_ERR(trans
);
4233 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4234 ret
= btrfs_uuid_tree_add(trans
, root_item
.uuid
,
4235 BTRFS_UUID_KEY_SUBVOL
,
4238 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4244 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4245 ret
= btrfs_uuid_tree_add(trans
,
4246 root_item
.received_uuid
,
4247 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4250 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4258 ret
= btrfs_end_transaction(trans
);
4264 btrfs_release_path(path
);
4265 if (key
.offset
< (u64
)-1) {
4267 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4269 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4270 } else if (key
.objectid
< (u64
)-1) {
4272 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4281 btrfs_free_path(path
);
4282 if (trans
&& !IS_ERR(trans
))
4283 btrfs_end_transaction(trans
);
4285 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4287 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4288 up(&fs_info
->uuid_tree_rescan_sem
);
4293 * Callback for btrfs_uuid_tree_iterate().
4295 * 0 check succeeded, the entry is not outdated.
4296 * < 0 if an error occurred.
4297 * > 0 if the check failed, which means the caller shall remove the entry.
4299 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4300 u8
*uuid
, u8 type
, u64 subid
)
4302 struct btrfs_key key
;
4304 struct btrfs_root
*subvol_root
;
4306 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4307 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4310 key
.objectid
= subid
;
4311 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4312 key
.offset
= (u64
)-1;
4313 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4314 if (IS_ERR(subvol_root
)) {
4315 ret
= PTR_ERR(subvol_root
);
4322 case BTRFS_UUID_KEY_SUBVOL
:
4323 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4326 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4327 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4337 static int btrfs_uuid_rescan_kthread(void *data
)
4339 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4343 * 1st step is to iterate through the existing UUID tree and
4344 * to delete all entries that contain outdated data.
4345 * 2nd step is to add all missing entries to the UUID tree.
4347 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4349 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4350 up(&fs_info
->uuid_tree_rescan_sem
);
4353 return btrfs_uuid_scan_kthread(data
);
4356 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4358 struct btrfs_trans_handle
*trans
;
4359 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4360 struct btrfs_root
*uuid_root
;
4361 struct task_struct
*task
;
4368 trans
= btrfs_start_transaction(tree_root
, 2);
4370 return PTR_ERR(trans
);
4372 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4373 BTRFS_UUID_TREE_OBJECTID
);
4374 if (IS_ERR(uuid_root
)) {
4375 ret
= PTR_ERR(uuid_root
);
4376 btrfs_abort_transaction(trans
, ret
);
4377 btrfs_end_transaction(trans
);
4381 fs_info
->uuid_root
= uuid_root
;
4383 ret
= btrfs_commit_transaction(trans
);
4387 down(&fs_info
->uuid_tree_rescan_sem
);
4388 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4390 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4391 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4392 up(&fs_info
->uuid_tree_rescan_sem
);
4393 return PTR_ERR(task
);
4399 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4401 struct task_struct
*task
;
4403 down(&fs_info
->uuid_tree_rescan_sem
);
4404 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4406 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4407 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4408 up(&fs_info
->uuid_tree_rescan_sem
);
4409 return PTR_ERR(task
);
4416 * shrinking a device means finding all of the device extents past
4417 * the new size, and then following the back refs to the chunks.
4418 * The chunk relocation code actually frees the device extent
4420 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4422 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4423 struct btrfs_root
*root
= fs_info
->dev_root
;
4424 struct btrfs_trans_handle
*trans
;
4425 struct btrfs_dev_extent
*dev_extent
= NULL
;
4426 struct btrfs_path
*path
;
4432 bool retried
= false;
4433 bool checked_pending_chunks
= false;
4434 struct extent_buffer
*l
;
4435 struct btrfs_key key
;
4436 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4437 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4438 u64 old_size
= btrfs_device_get_total_bytes(device
);
4441 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4442 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4444 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4447 path
= btrfs_alloc_path();
4451 path
->reada
= READA_BACK
;
4453 mutex_lock(&fs_info
->chunk_mutex
);
4455 btrfs_device_set_total_bytes(device
, new_size
);
4456 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4457 device
->fs_devices
->total_rw_bytes
-= diff
;
4458 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4460 mutex_unlock(&fs_info
->chunk_mutex
);
4463 key
.objectid
= device
->devid
;
4464 key
.offset
= (u64
)-1;
4465 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4468 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4469 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4471 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4475 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4477 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4482 btrfs_release_path(path
);
4487 slot
= path
->slots
[0];
4488 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4490 if (key
.objectid
!= device
->devid
) {
4491 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4492 btrfs_release_path(path
);
4496 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4497 length
= btrfs_dev_extent_length(l
, dev_extent
);
4499 if (key
.offset
+ length
<= new_size
) {
4500 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4501 btrfs_release_path(path
);
4505 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4506 btrfs_release_path(path
);
4509 * We may be relocating the only data chunk we have,
4510 * which could potentially end up with losing data's
4511 * raid profile, so lets allocate an empty one in
4514 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4516 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4520 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4521 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4522 if (ret
&& ret
!= -ENOSPC
)
4526 } while (key
.offset
-- > 0);
4528 if (failed
&& !retried
) {
4532 } else if (failed
&& retried
) {
4537 /* Shrinking succeeded, else we would be at "done". */
4538 trans
= btrfs_start_transaction(root
, 0);
4539 if (IS_ERR(trans
)) {
4540 ret
= PTR_ERR(trans
);
4544 mutex_lock(&fs_info
->chunk_mutex
);
4547 * We checked in the above loop all device extents that were already in
4548 * the device tree. However before we have updated the device's
4549 * total_bytes to the new size, we might have had chunk allocations that
4550 * have not complete yet (new block groups attached to transaction
4551 * handles), and therefore their device extents were not yet in the
4552 * device tree and we missed them in the loop above. So if we have any
4553 * pending chunk using a device extent that overlaps the device range
4554 * that we can not use anymore, commit the current transaction and
4555 * repeat the search on the device tree - this way we guarantee we will
4556 * not have chunks using device extents that end beyond 'new_size'.
4558 if (!checked_pending_chunks
) {
4559 u64 start
= new_size
;
4560 u64 len
= old_size
- new_size
;
4562 if (contains_pending_extent(trans
->transaction
, device
,
4564 mutex_unlock(&fs_info
->chunk_mutex
);
4565 checked_pending_chunks
= true;
4568 ret
= btrfs_commit_transaction(trans
);
4575 btrfs_device_set_disk_total_bytes(device
, new_size
);
4576 if (list_empty(&device
->resized_list
))
4577 list_add_tail(&device
->resized_list
,
4578 &fs_info
->fs_devices
->resized_devices
);
4580 WARN_ON(diff
> old_total
);
4581 btrfs_set_super_total_bytes(super_copy
,
4582 round_down(old_total
- diff
, fs_info
->sectorsize
));
4583 mutex_unlock(&fs_info
->chunk_mutex
);
4585 /* Now btrfs_update_device() will change the on-disk size. */
4586 ret
= btrfs_update_device(trans
, device
);
4587 btrfs_end_transaction(trans
);
4589 btrfs_free_path(path
);
4591 mutex_lock(&fs_info
->chunk_mutex
);
4592 btrfs_device_set_total_bytes(device
, old_size
);
4593 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4594 device
->fs_devices
->total_rw_bytes
+= diff
;
4595 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4596 mutex_unlock(&fs_info
->chunk_mutex
);
4601 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4602 struct btrfs_key
*key
,
4603 struct btrfs_chunk
*chunk
, int item_size
)
4605 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4606 struct btrfs_disk_key disk_key
;
4610 mutex_lock(&fs_info
->chunk_mutex
);
4611 array_size
= btrfs_super_sys_array_size(super_copy
);
4612 if (array_size
+ item_size
+ sizeof(disk_key
)
4613 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4614 mutex_unlock(&fs_info
->chunk_mutex
);
4618 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4619 btrfs_cpu_key_to_disk(&disk_key
, key
);
4620 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4621 ptr
+= sizeof(disk_key
);
4622 memcpy(ptr
, chunk
, item_size
);
4623 item_size
+= sizeof(disk_key
);
4624 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4625 mutex_unlock(&fs_info
->chunk_mutex
);
4631 * sort the devices in descending order by max_avail, total_avail
4633 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4635 const struct btrfs_device_info
*di_a
= a
;
4636 const struct btrfs_device_info
*di_b
= b
;
4638 if (di_a
->max_avail
> di_b
->max_avail
)
4640 if (di_a
->max_avail
< di_b
->max_avail
)
4642 if (di_a
->total_avail
> di_b
->total_avail
)
4644 if (di_a
->total_avail
< di_b
->total_avail
)
4649 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4651 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4654 btrfs_set_fs_incompat(info
, RAID56
);
4657 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
4658 - sizeof(struct btrfs_chunk)) \
4659 / sizeof(struct btrfs_stripe) + 1)
4661 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4662 - 2 * sizeof(struct btrfs_disk_key) \
4663 - 2 * sizeof(struct btrfs_chunk)) \
4664 / sizeof(struct btrfs_stripe) + 1)
4666 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4667 u64 start
, u64 type
)
4669 struct btrfs_fs_info
*info
= trans
->fs_info
;
4670 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4671 struct btrfs_device
*device
;
4672 struct map_lookup
*map
= NULL
;
4673 struct extent_map_tree
*em_tree
;
4674 struct extent_map
*em
;
4675 struct btrfs_device_info
*devices_info
= NULL
;
4677 int num_stripes
; /* total number of stripes to allocate */
4678 int data_stripes
; /* number of stripes that count for
4680 int sub_stripes
; /* sub_stripes info for map */
4681 int dev_stripes
; /* stripes per dev */
4682 int devs_max
; /* max devs to use */
4683 int devs_min
; /* min devs needed */
4684 int devs_increment
; /* ndevs has to be a multiple of this */
4685 int ncopies
; /* how many copies to data has */
4687 u64 max_stripe_size
;
4696 BUG_ON(!alloc_profile_is_valid(type
, 0));
4698 if (list_empty(&fs_devices
->alloc_list
)) {
4699 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4700 btrfs_debug(info
, "%s: no writable device", __func__
);
4704 index
= btrfs_bg_flags_to_raid_index(type
);
4706 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4707 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4708 devs_max
= btrfs_raid_array
[index
].devs_max
;
4709 devs_min
= btrfs_raid_array
[index
].devs_min
;
4710 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4711 ncopies
= btrfs_raid_array
[index
].ncopies
;
4713 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4714 max_stripe_size
= SZ_1G
;
4715 max_chunk_size
= 10 * max_stripe_size
;
4717 devs_max
= BTRFS_MAX_DEVS(info
);
4718 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4719 /* for larger filesystems, use larger metadata chunks */
4720 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4721 max_stripe_size
= SZ_1G
;
4723 max_stripe_size
= SZ_256M
;
4724 max_chunk_size
= max_stripe_size
;
4726 devs_max
= BTRFS_MAX_DEVS(info
);
4727 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4728 max_stripe_size
= SZ_32M
;
4729 max_chunk_size
= 2 * max_stripe_size
;
4731 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4733 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4738 /* we don't want a chunk larger than 10% of writeable space */
4739 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4742 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4748 * in the first pass through the devices list, we gather information
4749 * about the available holes on each device.
4752 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4756 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4758 "BTRFS: read-only device in alloc_list\n");
4762 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4763 &device
->dev_state
) ||
4764 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4767 if (device
->total_bytes
> device
->bytes_used
)
4768 total_avail
= device
->total_bytes
- device
->bytes_used
;
4772 /* If there is no space on this device, skip it. */
4773 if (total_avail
== 0)
4776 ret
= find_free_dev_extent(trans
, device
,
4777 max_stripe_size
* dev_stripes
,
4778 &dev_offset
, &max_avail
);
4779 if (ret
&& ret
!= -ENOSPC
)
4783 max_avail
= max_stripe_size
* dev_stripes
;
4785 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
) {
4786 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4788 "%s: devid %llu has no free space, have=%llu want=%u",
4789 __func__
, device
->devid
, max_avail
,
4790 BTRFS_STRIPE_LEN
* dev_stripes
);
4794 if (ndevs
== fs_devices
->rw_devices
) {
4795 WARN(1, "%s: found more than %llu devices\n",
4796 __func__
, fs_devices
->rw_devices
);
4799 devices_info
[ndevs
].dev_offset
= dev_offset
;
4800 devices_info
[ndevs
].max_avail
= max_avail
;
4801 devices_info
[ndevs
].total_avail
= total_avail
;
4802 devices_info
[ndevs
].dev
= device
;
4807 * now sort the devices by hole size / available space
4809 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4810 btrfs_cmp_device_info
, NULL
);
4812 /* round down to number of usable stripes */
4813 ndevs
= round_down(ndevs
, devs_increment
);
4815 if (ndevs
< devs_min
) {
4817 if (btrfs_test_opt(info
, ENOSPC_DEBUG
)) {
4819 "%s: not enough devices with free space: have=%d minimum required=%d",
4820 __func__
, ndevs
, devs_min
);
4825 ndevs
= min(ndevs
, devs_max
);
4828 * The primary goal is to maximize the number of stripes, so use as
4829 * many devices as possible, even if the stripes are not maximum sized.
4831 * The DUP profile stores more than one stripe per device, the
4832 * max_avail is the total size so we have to adjust.
4834 stripe_size
= div_u64(devices_info
[ndevs
- 1].max_avail
, dev_stripes
);
4835 num_stripes
= ndevs
* dev_stripes
;
4838 * this will have to be fixed for RAID1 and RAID10 over
4841 data_stripes
= num_stripes
/ ncopies
;
4843 if (type
& BTRFS_BLOCK_GROUP_RAID5
)
4844 data_stripes
= num_stripes
- 1;
4846 if (type
& BTRFS_BLOCK_GROUP_RAID6
)
4847 data_stripes
= num_stripes
- 2;
4850 * Use the number of data stripes to figure out how big this chunk
4851 * is really going to be in terms of logical address space,
4852 * and compare that answer with the max chunk size
4854 if (stripe_size
* data_stripes
> max_chunk_size
) {
4855 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4857 /* bump the answer up to a 16MB boundary */
4858 stripe_size
= round_up(stripe_size
, SZ_16M
);
4861 * But don't go higher than the limits we found while searching
4864 stripe_size
= min(devices_info
[ndevs
- 1].max_avail
,
4868 /* align to BTRFS_STRIPE_LEN */
4869 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
4871 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4876 map
->num_stripes
= num_stripes
;
4878 for (i
= 0; i
< ndevs
; ++i
) {
4879 for (j
= 0; j
< dev_stripes
; ++j
) {
4880 int s
= i
* dev_stripes
+ j
;
4881 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4882 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4886 map
->stripe_len
= BTRFS_STRIPE_LEN
;
4887 map
->io_align
= BTRFS_STRIPE_LEN
;
4888 map
->io_width
= BTRFS_STRIPE_LEN
;
4890 map
->sub_stripes
= sub_stripes
;
4892 num_bytes
= stripe_size
* data_stripes
;
4894 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4896 em
= alloc_extent_map();
4902 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4903 em
->map_lookup
= map
;
4905 em
->len
= num_bytes
;
4906 em
->block_start
= 0;
4907 em
->block_len
= em
->len
;
4908 em
->orig_block_len
= stripe_size
;
4910 em_tree
= &info
->mapping_tree
.map_tree
;
4911 write_lock(&em_tree
->lock
);
4912 ret
= add_extent_mapping(em_tree
, em
, 0);
4914 write_unlock(&em_tree
->lock
);
4915 free_extent_map(em
);
4919 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4920 refcount_inc(&em
->refs
);
4921 write_unlock(&em_tree
->lock
);
4923 ret
= btrfs_make_block_group(trans
, info
, 0, type
, start
, num_bytes
);
4925 goto error_del_extent
;
4927 for (i
= 0; i
< map
->num_stripes
; i
++) {
4928 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4929 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4932 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
4934 free_extent_map(em
);
4935 check_raid56_incompat_flag(info
, type
);
4937 kfree(devices_info
);
4941 write_lock(&em_tree
->lock
);
4942 remove_extent_mapping(em_tree
, em
);
4943 write_unlock(&em_tree
->lock
);
4945 /* One for our allocation */
4946 free_extent_map(em
);
4947 /* One for the tree reference */
4948 free_extent_map(em
);
4949 /* One for the pending_chunks list reference */
4950 free_extent_map(em
);
4952 kfree(devices_info
);
4956 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4957 struct btrfs_fs_info
*fs_info
,
4958 u64 chunk_offset
, u64 chunk_size
)
4960 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4961 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4962 struct btrfs_key key
;
4963 struct btrfs_device
*device
;
4964 struct btrfs_chunk
*chunk
;
4965 struct btrfs_stripe
*stripe
;
4966 struct extent_map
*em
;
4967 struct map_lookup
*map
;
4974 em
= get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
4978 map
= em
->map_lookup
;
4979 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4980 stripe_size
= em
->orig_block_len
;
4982 chunk
= kzalloc(item_size
, GFP_NOFS
);
4989 * Take the device list mutex to prevent races with the final phase of
4990 * a device replace operation that replaces the device object associated
4991 * with the map's stripes, because the device object's id can change
4992 * at any time during that final phase of the device replace operation
4993 * (dev-replace.c:btrfs_dev_replace_finishing()).
4995 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4996 for (i
= 0; i
< map
->num_stripes
; i
++) {
4997 device
= map
->stripes
[i
].dev
;
4998 dev_offset
= map
->stripes
[i
].physical
;
5000 ret
= btrfs_update_device(trans
, device
);
5003 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
5004 dev_offset
, stripe_size
);
5009 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5013 stripe
= &chunk
->stripe
;
5014 for (i
= 0; i
< map
->num_stripes
; i
++) {
5015 device
= map
->stripes
[i
].dev
;
5016 dev_offset
= map
->stripes
[i
].physical
;
5018 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
5019 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
5020 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5023 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5025 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5026 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5027 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5028 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5029 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5030 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5031 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5032 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5033 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5035 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5036 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5037 key
.offset
= chunk_offset
;
5039 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5040 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5042 * TODO: Cleanup of inserted chunk root in case of
5045 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5050 free_extent_map(em
);
5055 * Chunk allocation falls into two parts. The first part does works
5056 * that make the new allocated chunk useable, but not do any operation
5057 * that modifies the chunk tree. The second part does the works that
5058 * require modifying the chunk tree. This division is important for the
5059 * bootstrap process of adding storage to a seed btrfs.
5061 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5062 struct btrfs_fs_info
*fs_info
, u64 type
)
5066 lockdep_assert_held(&fs_info
->chunk_mutex
);
5067 chunk_offset
= find_next_chunk(fs_info
);
5068 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5071 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5072 struct btrfs_fs_info
*fs_info
)
5075 u64 sys_chunk_offset
;
5079 chunk_offset
= find_next_chunk(fs_info
);
5080 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5081 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5085 sys_chunk_offset
= find_next_chunk(fs_info
);
5086 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5087 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5091 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5095 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5096 BTRFS_BLOCK_GROUP_RAID10
|
5097 BTRFS_BLOCK_GROUP_RAID5
|
5098 BTRFS_BLOCK_GROUP_DUP
)) {
5100 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5109 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5111 struct extent_map
*em
;
5112 struct map_lookup
*map
;
5117 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
5121 map
= em
->map_lookup
;
5122 for (i
= 0; i
< map
->num_stripes
; i
++) {
5123 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5124 &map
->stripes
[i
].dev
->dev_state
)) {
5128 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5129 &map
->stripes
[i
].dev
->dev_state
)) {
5136 * If the number of missing devices is larger than max errors,
5137 * we can not write the data into that chunk successfully, so
5140 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5143 free_extent_map(em
);
5147 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5149 extent_map_tree_init(&tree
->map_tree
);
5152 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5154 struct extent_map
*em
;
5157 write_lock(&tree
->map_tree
.lock
);
5158 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5160 remove_extent_mapping(&tree
->map_tree
, em
);
5161 write_unlock(&tree
->map_tree
.lock
);
5165 free_extent_map(em
);
5166 /* once for the tree */
5167 free_extent_map(em
);
5171 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5173 struct extent_map
*em
;
5174 struct map_lookup
*map
;
5177 em
= get_chunk_map(fs_info
, logical
, len
);
5180 * We could return errors for these cases, but that could get
5181 * ugly and we'd probably do the same thing which is just not do
5182 * anything else and exit, so return 1 so the callers don't try
5183 * to use other copies.
5187 map
= em
->map_lookup
;
5188 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5189 ret
= map
->num_stripes
;
5190 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5191 ret
= map
->sub_stripes
;
5192 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5194 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5196 * There could be two corrupted data stripes, we need
5197 * to loop retry in order to rebuild the correct data.
5199 * Fail a stripe at a time on every retry except the
5200 * stripe under reconstruction.
5202 ret
= map
->num_stripes
;
5205 free_extent_map(em
);
5207 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
5208 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5209 fs_info
->dev_replace
.tgtdev
)
5211 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
5216 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5219 struct extent_map
*em
;
5220 struct map_lookup
*map
;
5221 unsigned long len
= fs_info
->sectorsize
;
5223 em
= get_chunk_map(fs_info
, logical
, len
);
5225 if (!WARN_ON(IS_ERR(em
))) {
5226 map
= em
->map_lookup
;
5227 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5228 len
= map
->stripe_len
* nr_data_stripes(map
);
5229 free_extent_map(em
);
5234 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5236 struct extent_map
*em
;
5237 struct map_lookup
*map
;
5240 em
= get_chunk_map(fs_info
, logical
, len
);
5242 if(!WARN_ON(IS_ERR(em
))) {
5243 map
= em
->map_lookup
;
5244 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5246 free_extent_map(em
);
5251 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5252 struct map_lookup
*map
, int first
,
5253 int dev_replace_is_ongoing
)
5257 int preferred_mirror
;
5259 struct btrfs_device
*srcdev
;
5262 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)));
5264 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5265 num_stripes
= map
->sub_stripes
;
5267 num_stripes
= map
->num_stripes
;
5269 preferred_mirror
= first
+ current
->pid
% num_stripes
;
5271 if (dev_replace_is_ongoing
&&
5272 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5273 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5274 srcdev
= fs_info
->dev_replace
.srcdev
;
5279 * try to avoid the drive that is the source drive for a
5280 * dev-replace procedure, only choose it if no other non-missing
5281 * mirror is available
5283 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5284 if (map
->stripes
[preferred_mirror
].dev
->bdev
&&
5285 (tolerance
|| map
->stripes
[preferred_mirror
].dev
!= srcdev
))
5286 return preferred_mirror
;
5287 for (i
= first
; i
< first
+ num_stripes
; i
++) {
5288 if (map
->stripes
[i
].dev
->bdev
&&
5289 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5294 /* we couldn't find one that doesn't fail. Just return something
5295 * and the io error handling code will clean up eventually
5297 return preferred_mirror
;
5300 static inline int parity_smaller(u64 a
, u64 b
)
5305 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5306 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5308 struct btrfs_bio_stripe s
;
5315 for (i
= 0; i
< num_stripes
- 1; i
++) {
5316 if (parity_smaller(bbio
->raid_map
[i
],
5317 bbio
->raid_map
[i
+1])) {
5318 s
= bbio
->stripes
[i
];
5319 l
= bbio
->raid_map
[i
];
5320 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5321 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5322 bbio
->stripes
[i
+1] = s
;
5323 bbio
->raid_map
[i
+1] = l
;
5331 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5333 struct btrfs_bio
*bbio
= kzalloc(
5334 /* the size of the btrfs_bio */
5335 sizeof(struct btrfs_bio
) +
5336 /* plus the variable array for the stripes */
5337 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5338 /* plus the variable array for the tgt dev */
5339 sizeof(int) * (real_stripes
) +
5341 * plus the raid_map, which includes both the tgt dev
5344 sizeof(u64
) * (total_stripes
),
5345 GFP_NOFS
|__GFP_NOFAIL
);
5347 atomic_set(&bbio
->error
, 0);
5348 refcount_set(&bbio
->refs
, 1);
5353 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5355 WARN_ON(!refcount_read(&bbio
->refs
));
5356 refcount_inc(&bbio
->refs
);
5359 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5363 if (refcount_dec_and_test(&bbio
->refs
))
5367 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5369 * Please note that, discard won't be sent to target device of device
5372 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5373 u64 logical
, u64 length
,
5374 struct btrfs_bio
**bbio_ret
)
5376 struct extent_map
*em
;
5377 struct map_lookup
*map
;
5378 struct btrfs_bio
*bbio
;
5382 u64 stripe_end_offset
;
5389 u32 sub_stripes
= 0;
5390 u64 stripes_per_dev
= 0;
5391 u32 remaining_stripes
= 0;
5392 u32 last_stripe
= 0;
5396 /* discard always return a bbio */
5399 em
= get_chunk_map(fs_info
, logical
, length
);
5403 map
= em
->map_lookup
;
5404 /* we don't discard raid56 yet */
5405 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5410 offset
= logical
- em
->start
;
5411 length
= min_t(u64
, em
->len
- offset
, length
);
5413 stripe_len
= map
->stripe_len
;
5415 * stripe_nr counts the total number of stripes we have to stride
5416 * to get to this block
5418 stripe_nr
= div64_u64(offset
, stripe_len
);
5420 /* stripe_offset is the offset of this block in its stripe */
5421 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5423 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5424 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5425 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5426 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5429 * after this, stripe_nr is the number of stripes on this
5430 * device we have to walk to find the data, and stripe_index is
5431 * the number of our device in the stripe array
5435 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5436 BTRFS_BLOCK_GROUP_RAID10
)) {
5437 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5440 sub_stripes
= map
->sub_stripes
;
5442 factor
= map
->num_stripes
/ sub_stripes
;
5443 num_stripes
= min_t(u64
, map
->num_stripes
,
5444 sub_stripes
* stripe_cnt
);
5445 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5446 stripe_index
*= sub_stripes
;
5447 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5448 &remaining_stripes
);
5449 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5450 last_stripe
*= sub_stripes
;
5451 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5452 BTRFS_BLOCK_GROUP_DUP
)) {
5453 num_stripes
= map
->num_stripes
;
5455 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5459 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5465 for (i
= 0; i
< num_stripes
; i
++) {
5466 bbio
->stripes
[i
].physical
=
5467 map
->stripes
[stripe_index
].physical
+
5468 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5469 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5471 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5472 BTRFS_BLOCK_GROUP_RAID10
)) {
5473 bbio
->stripes
[i
].length
= stripes_per_dev
*
5476 if (i
/ sub_stripes
< remaining_stripes
)
5477 bbio
->stripes
[i
].length
+=
5481 * Special for the first stripe and
5484 * |-------|...|-------|
5488 if (i
< sub_stripes
)
5489 bbio
->stripes
[i
].length
-=
5492 if (stripe_index
>= last_stripe
&&
5493 stripe_index
<= (last_stripe
+
5495 bbio
->stripes
[i
].length
-=
5498 if (i
== sub_stripes
- 1)
5501 bbio
->stripes
[i
].length
= length
;
5505 if (stripe_index
== map
->num_stripes
) {
5512 bbio
->map_type
= map
->type
;
5513 bbio
->num_stripes
= num_stripes
;
5515 free_extent_map(em
);
5520 * In dev-replace case, for repair case (that's the only case where the mirror
5521 * is selected explicitly when calling btrfs_map_block), blocks left of the
5522 * left cursor can also be read from the target drive.
5524 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5526 * For READ, it also needs to be supported using the same mirror number.
5528 * If the requested block is not left of the left cursor, EIO is returned. This
5529 * can happen because btrfs_num_copies() returns one more in the dev-replace
5532 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5533 u64 logical
, u64 length
,
5534 u64 srcdev_devid
, int *mirror_num
,
5537 struct btrfs_bio
*bbio
= NULL
;
5539 int index_srcdev
= 0;
5541 u64 physical_of_found
= 0;
5545 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5546 logical
, &length
, &bbio
, 0, 0);
5548 ASSERT(bbio
== NULL
);
5552 num_stripes
= bbio
->num_stripes
;
5553 if (*mirror_num
> num_stripes
) {
5555 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5556 * that means that the requested area is not left of the left
5559 btrfs_put_bbio(bbio
);
5564 * process the rest of the function using the mirror_num of the source
5565 * drive. Therefore look it up first. At the end, patch the device
5566 * pointer to the one of the target drive.
5568 for (i
= 0; i
< num_stripes
; i
++) {
5569 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5573 * In case of DUP, in order to keep it simple, only add the
5574 * mirror with the lowest physical address
5577 physical_of_found
<= bbio
->stripes
[i
].physical
)
5582 physical_of_found
= bbio
->stripes
[i
].physical
;
5585 btrfs_put_bbio(bbio
);
5591 *mirror_num
= index_srcdev
+ 1;
5592 *physical
= physical_of_found
;
5596 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5597 struct btrfs_bio
**bbio_ret
,
5598 struct btrfs_dev_replace
*dev_replace
,
5599 int *num_stripes_ret
, int *max_errors_ret
)
5601 struct btrfs_bio
*bbio
= *bbio_ret
;
5602 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5603 int tgtdev_indexes
= 0;
5604 int num_stripes
= *num_stripes_ret
;
5605 int max_errors
= *max_errors_ret
;
5608 if (op
== BTRFS_MAP_WRITE
) {
5609 int index_where_to_add
;
5612 * duplicate the write operations while the dev replace
5613 * procedure is running. Since the copying of the old disk to
5614 * the new disk takes place at run time while the filesystem is
5615 * mounted writable, the regular write operations to the old
5616 * disk have to be duplicated to go to the new disk as well.
5618 * Note that device->missing is handled by the caller, and that
5619 * the write to the old disk is already set up in the stripes
5622 index_where_to_add
= num_stripes
;
5623 for (i
= 0; i
< num_stripes
; i
++) {
5624 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5625 /* write to new disk, too */
5626 struct btrfs_bio_stripe
*new =
5627 bbio
->stripes
+ index_where_to_add
;
5628 struct btrfs_bio_stripe
*old
=
5631 new->physical
= old
->physical
;
5632 new->length
= old
->length
;
5633 new->dev
= dev_replace
->tgtdev
;
5634 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5635 index_where_to_add
++;
5640 num_stripes
= index_where_to_add
;
5641 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5642 int index_srcdev
= 0;
5644 u64 physical_of_found
= 0;
5647 * During the dev-replace procedure, the target drive can also
5648 * be used to read data in case it is needed to repair a corrupt
5649 * block elsewhere. This is possible if the requested area is
5650 * left of the left cursor. In this area, the target drive is a
5651 * full copy of the source drive.
5653 for (i
= 0; i
< num_stripes
; i
++) {
5654 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5656 * In case of DUP, in order to keep it simple,
5657 * only add the mirror with the lowest physical
5661 physical_of_found
<=
5662 bbio
->stripes
[i
].physical
)
5666 physical_of_found
= bbio
->stripes
[i
].physical
;
5670 struct btrfs_bio_stripe
*tgtdev_stripe
=
5671 bbio
->stripes
+ num_stripes
;
5673 tgtdev_stripe
->physical
= physical_of_found
;
5674 tgtdev_stripe
->length
=
5675 bbio
->stripes
[index_srcdev
].length
;
5676 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5677 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5684 *num_stripes_ret
= num_stripes
;
5685 *max_errors_ret
= max_errors
;
5686 bbio
->num_tgtdevs
= tgtdev_indexes
;
5690 static bool need_full_stripe(enum btrfs_map_op op
)
5692 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5695 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5696 enum btrfs_map_op op
,
5697 u64 logical
, u64
*length
,
5698 struct btrfs_bio
**bbio_ret
,
5699 int mirror_num
, int need_raid_map
)
5701 struct extent_map
*em
;
5702 struct map_lookup
*map
;
5712 int tgtdev_indexes
= 0;
5713 struct btrfs_bio
*bbio
= NULL
;
5714 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5715 int dev_replace_is_ongoing
= 0;
5716 int num_alloc_stripes
;
5717 int patch_the_first_stripe_for_dev_replace
= 0;
5718 u64 physical_to_patch_in_first_stripe
= 0;
5719 u64 raid56_full_stripe_start
= (u64
)-1;
5721 if (op
== BTRFS_MAP_DISCARD
)
5722 return __btrfs_map_block_for_discard(fs_info
, logical
,
5725 em
= get_chunk_map(fs_info
, logical
, *length
);
5729 map
= em
->map_lookup
;
5730 offset
= logical
- em
->start
;
5732 stripe_len
= map
->stripe_len
;
5735 * stripe_nr counts the total number of stripes we have to stride
5736 * to get to this block
5738 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5740 stripe_offset
= stripe_nr
* stripe_len
;
5741 if (offset
< stripe_offset
) {
5743 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5744 stripe_offset
, offset
, em
->start
, logical
,
5746 free_extent_map(em
);
5750 /* stripe_offset is the offset of this block in its stripe*/
5751 stripe_offset
= offset
- stripe_offset
;
5753 /* if we're here for raid56, we need to know the stripe aligned start */
5754 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5755 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5756 raid56_full_stripe_start
= offset
;
5758 /* allow a write of a full stripe, but make sure we don't
5759 * allow straddling of stripes
5761 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5763 raid56_full_stripe_start
*= full_stripe_len
;
5766 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5768 /* For writes to RAID[56], allow a full stripeset across all disks.
5769 For other RAID types and for RAID[56] reads, just allow a single
5770 stripe (on a single disk). */
5771 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5772 (op
== BTRFS_MAP_WRITE
)) {
5773 max_len
= stripe_len
* nr_data_stripes(map
) -
5774 (offset
- raid56_full_stripe_start
);
5776 /* we limit the length of each bio to what fits in a stripe */
5777 max_len
= stripe_len
- stripe_offset
;
5779 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5781 *length
= em
->len
- offset
;
5784 /* This is for when we're called from btrfs_merge_bio_hook() and all
5785 it cares about is the length */
5789 btrfs_dev_replace_read_lock(dev_replace
);
5790 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5791 if (!dev_replace_is_ongoing
)
5792 btrfs_dev_replace_read_unlock(dev_replace
);
5794 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5796 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5797 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5798 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5799 dev_replace
->srcdev
->devid
,
5801 &physical_to_patch_in_first_stripe
);
5805 patch_the_first_stripe_for_dev_replace
= 1;
5806 } else if (mirror_num
> map
->num_stripes
) {
5812 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5813 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5815 if (!need_full_stripe(op
))
5817 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5818 if (need_full_stripe(op
))
5819 num_stripes
= map
->num_stripes
;
5820 else if (mirror_num
)
5821 stripe_index
= mirror_num
- 1;
5823 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5824 dev_replace_is_ongoing
);
5825 mirror_num
= stripe_index
+ 1;
5828 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5829 if (need_full_stripe(op
)) {
5830 num_stripes
= map
->num_stripes
;
5831 } else if (mirror_num
) {
5832 stripe_index
= mirror_num
- 1;
5837 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5838 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5840 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5841 stripe_index
*= map
->sub_stripes
;
5843 if (need_full_stripe(op
))
5844 num_stripes
= map
->sub_stripes
;
5845 else if (mirror_num
)
5846 stripe_index
+= mirror_num
- 1;
5848 int old_stripe_index
= stripe_index
;
5849 stripe_index
= find_live_mirror(fs_info
, map
,
5851 dev_replace_is_ongoing
);
5852 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5855 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5856 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
5857 /* push stripe_nr back to the start of the full stripe */
5858 stripe_nr
= div64_u64(raid56_full_stripe_start
,
5859 stripe_len
* nr_data_stripes(map
));
5861 /* RAID[56] write or recovery. Return all stripes */
5862 num_stripes
= map
->num_stripes
;
5863 max_errors
= nr_parity_stripes(map
);
5865 *length
= map
->stripe_len
;
5870 * Mirror #0 or #1 means the original data block.
5871 * Mirror #2 is RAID5 parity block.
5872 * Mirror #3 is RAID6 Q block.
5874 stripe_nr
= div_u64_rem(stripe_nr
,
5875 nr_data_stripes(map
), &stripe_index
);
5877 stripe_index
= nr_data_stripes(map
) +
5880 /* We distribute the parity blocks across stripes */
5881 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5883 if (!need_full_stripe(op
) && mirror_num
<= 1)
5888 * after this, stripe_nr is the number of stripes on this
5889 * device we have to walk to find the data, and stripe_index is
5890 * the number of our device in the stripe array
5892 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5894 mirror_num
= stripe_index
+ 1;
5896 if (stripe_index
>= map
->num_stripes
) {
5898 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5899 stripe_index
, map
->num_stripes
);
5904 num_alloc_stripes
= num_stripes
;
5905 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
5906 if (op
== BTRFS_MAP_WRITE
)
5907 num_alloc_stripes
<<= 1;
5908 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5909 num_alloc_stripes
++;
5910 tgtdev_indexes
= num_stripes
;
5913 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5918 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
5919 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5921 /* build raid_map */
5922 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
5923 (need_full_stripe(op
) || mirror_num
> 1)) {
5927 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5928 sizeof(struct btrfs_bio_stripe
) *
5930 sizeof(int) * tgtdev_indexes
);
5932 /* Work out the disk rotation on this stripe-set */
5933 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5935 /* Fill in the logical address of each stripe */
5936 tmp
= stripe_nr
* nr_data_stripes(map
);
5937 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5938 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5939 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5941 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5942 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5943 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5948 for (i
= 0; i
< num_stripes
; i
++) {
5949 bbio
->stripes
[i
].physical
=
5950 map
->stripes
[stripe_index
].physical
+
5952 stripe_nr
* map
->stripe_len
;
5953 bbio
->stripes
[i
].dev
=
5954 map
->stripes
[stripe_index
].dev
;
5958 if (need_full_stripe(op
))
5959 max_errors
= btrfs_chunk_max_errors(map
);
5962 sort_parity_stripes(bbio
, num_stripes
);
5964 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
5965 need_full_stripe(op
)) {
5966 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
5971 bbio
->map_type
= map
->type
;
5972 bbio
->num_stripes
= num_stripes
;
5973 bbio
->max_errors
= max_errors
;
5974 bbio
->mirror_num
= mirror_num
;
5977 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5978 * mirror_num == num_stripes + 1 && dev_replace target drive is
5979 * available as a mirror
5981 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5982 WARN_ON(num_stripes
> 1);
5983 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5984 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5985 bbio
->mirror_num
= map
->num_stripes
+ 1;
5988 if (dev_replace_is_ongoing
) {
5989 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5990 btrfs_dev_replace_read_unlock(dev_replace
);
5992 free_extent_map(em
);
5996 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5997 u64 logical
, u64
*length
,
5998 struct btrfs_bio
**bbio_ret
, int mirror_num
)
6000 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
6004 /* For Scrub/replace */
6005 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6006 u64 logical
, u64
*length
,
6007 struct btrfs_bio
**bbio_ret
)
6009 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
6012 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
, u64 chunk_start
,
6013 u64 physical
, u64
**logical
, int *naddrs
, int *stripe_len
)
6015 struct extent_map
*em
;
6016 struct map_lookup
*map
;
6024 em
= get_chunk_map(fs_info
, chunk_start
, 1);
6028 map
= em
->map_lookup
;
6030 rmap_len
= map
->stripe_len
;
6032 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
6033 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
6034 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
6035 length
= div_u64(length
, map
->num_stripes
);
6036 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6037 length
= div_u64(length
, nr_data_stripes(map
));
6038 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
6041 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
6042 BUG_ON(!buf
); /* -ENOMEM */
6044 for (i
= 0; i
< map
->num_stripes
; i
++) {
6045 if (map
->stripes
[i
].physical
> physical
||
6046 map
->stripes
[i
].physical
+ length
<= physical
)
6049 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6050 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6052 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6053 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6054 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6055 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6056 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6057 } /* else if RAID[56], multiply by nr_data_stripes().
6058 * Alternatively, just use rmap_len below instead of
6059 * map->stripe_len */
6061 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6062 WARN_ON(nr
>= map
->num_stripes
);
6063 for (j
= 0; j
< nr
; j
++) {
6064 if (buf
[j
] == bytenr
)
6068 WARN_ON(nr
>= map
->num_stripes
);
6075 *stripe_len
= rmap_len
;
6077 free_extent_map(em
);
6081 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6083 bio
->bi_private
= bbio
->private;
6084 bio
->bi_end_io
= bbio
->end_io
;
6087 btrfs_put_bbio(bbio
);
6090 static void btrfs_end_bio(struct bio
*bio
)
6092 struct btrfs_bio
*bbio
= bio
->bi_private
;
6093 int is_orig_bio
= 0;
6095 if (bio
->bi_status
) {
6096 atomic_inc(&bbio
->error
);
6097 if (bio
->bi_status
== BLK_STS_IOERR
||
6098 bio
->bi_status
== BLK_STS_TARGET
) {
6099 unsigned int stripe_index
=
6100 btrfs_io_bio(bio
)->stripe_index
;
6101 struct btrfs_device
*dev
;
6103 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6104 dev
= bbio
->stripes
[stripe_index
].dev
;
6106 if (bio_op(bio
) == REQ_OP_WRITE
)
6107 btrfs_dev_stat_inc_and_print(dev
,
6108 BTRFS_DEV_STAT_WRITE_ERRS
);
6110 btrfs_dev_stat_inc_and_print(dev
,
6111 BTRFS_DEV_STAT_READ_ERRS
);
6112 if (bio
->bi_opf
& REQ_PREFLUSH
)
6113 btrfs_dev_stat_inc_and_print(dev
,
6114 BTRFS_DEV_STAT_FLUSH_ERRS
);
6119 if (bio
== bbio
->orig_bio
)
6122 btrfs_bio_counter_dec(bbio
->fs_info
);
6124 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6127 bio
= bbio
->orig_bio
;
6130 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6131 /* only send an error to the higher layers if it is
6132 * beyond the tolerance of the btrfs bio
6134 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6135 bio
->bi_status
= BLK_STS_IOERR
;
6138 * this bio is actually up to date, we didn't
6139 * go over the max number of errors
6141 bio
->bi_status
= BLK_STS_OK
;
6144 btrfs_end_bbio(bbio
, bio
);
6145 } else if (!is_orig_bio
) {
6151 * see run_scheduled_bios for a description of why bios are collected for
6154 * This will add one bio to the pending list for a device and make sure
6155 * the work struct is scheduled.
6157 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6160 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6161 int should_queue
= 1;
6162 struct btrfs_pending_bios
*pending_bios
;
6164 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
) ||
6170 /* don't bother with additional async steps for reads, right now */
6171 if (bio_op(bio
) == REQ_OP_READ
) {
6172 btrfsic_submit_bio(bio
);
6176 WARN_ON(bio
->bi_next
);
6177 bio
->bi_next
= NULL
;
6179 spin_lock(&device
->io_lock
);
6180 if (op_is_sync(bio
->bi_opf
))
6181 pending_bios
= &device
->pending_sync_bios
;
6183 pending_bios
= &device
->pending_bios
;
6185 if (pending_bios
->tail
)
6186 pending_bios
->tail
->bi_next
= bio
;
6188 pending_bios
->tail
= bio
;
6189 if (!pending_bios
->head
)
6190 pending_bios
->head
= bio
;
6191 if (device
->running_pending
)
6194 spin_unlock(&device
->io_lock
);
6197 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6200 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6201 u64 physical
, int dev_nr
, int async
)
6203 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6204 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6206 bio
->bi_private
= bbio
;
6207 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6208 bio
->bi_end_io
= btrfs_end_bio
;
6209 bio
->bi_iter
.bi_sector
= physical
>> 9;
6212 struct rcu_string
*name
;
6215 name
= rcu_dereference(dev
->name
);
6216 btrfs_debug(fs_info
,
6217 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6218 bio_op(bio
), bio
->bi_opf
,
6219 (u64
)bio
->bi_iter
.bi_sector
,
6220 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6221 bio
->bi_iter
.bi_size
);
6225 bio_set_dev(bio
, dev
->bdev
);
6227 btrfs_bio_counter_inc_noblocked(fs_info
);
6230 btrfs_schedule_bio(dev
, bio
);
6232 btrfsic_submit_bio(bio
);
6235 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6237 atomic_inc(&bbio
->error
);
6238 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6239 /* Should be the original bio. */
6240 WARN_ON(bio
!= bbio
->orig_bio
);
6242 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6243 bio
->bi_iter
.bi_sector
= logical
>> 9;
6244 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6245 bio
->bi_status
= BLK_STS_IOERR
;
6247 bio
->bi_status
= BLK_STS_OK
;
6248 btrfs_end_bbio(bbio
, bio
);
6252 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6253 int mirror_num
, int async_submit
)
6255 struct btrfs_device
*dev
;
6256 struct bio
*first_bio
= bio
;
6257 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6263 struct btrfs_bio
*bbio
= NULL
;
6265 length
= bio
->bi_iter
.bi_size
;
6266 map_length
= length
;
6268 btrfs_bio_counter_inc_blocked(fs_info
);
6269 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6270 &map_length
, &bbio
, mirror_num
, 1);
6272 btrfs_bio_counter_dec(fs_info
);
6273 return errno_to_blk_status(ret
);
6276 total_devs
= bbio
->num_stripes
;
6277 bbio
->orig_bio
= first_bio
;
6278 bbio
->private = first_bio
->bi_private
;
6279 bbio
->end_io
= first_bio
->bi_end_io
;
6280 bbio
->fs_info
= fs_info
;
6281 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6283 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6284 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6285 /* In this case, map_length has been set to the length of
6286 a single stripe; not the whole write */
6287 if (bio_op(bio
) == REQ_OP_WRITE
) {
6288 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6291 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6292 map_length
, mirror_num
, 1);
6295 btrfs_bio_counter_dec(fs_info
);
6296 return errno_to_blk_status(ret
);
6299 if (map_length
< length
) {
6301 "mapping failed logical %llu bio len %llu len %llu",
6302 logical
, length
, map_length
);
6306 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6307 dev
= bbio
->stripes
[dev_nr
].dev
;
6308 if (!dev
|| !dev
->bdev
||
6309 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6310 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6311 bbio_error(bbio
, first_bio
, logical
);
6315 if (dev_nr
< total_devs
- 1)
6316 bio
= btrfs_bio_clone(first_bio
);
6320 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6321 dev_nr
, async_submit
);
6323 btrfs_bio_counter_dec(fs_info
);
6327 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6330 struct btrfs_device
*device
;
6331 struct btrfs_fs_devices
*cur_devices
;
6333 cur_devices
= fs_info
->fs_devices
;
6334 while (cur_devices
) {
6336 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
)) {
6337 device
= find_device(cur_devices
, devid
, uuid
);
6341 cur_devices
= cur_devices
->seed
;
6346 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6347 u64 devid
, u8
*dev_uuid
)
6349 struct btrfs_device
*device
;
6351 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6355 list_add(&device
->dev_list
, &fs_devices
->devices
);
6356 device
->fs_devices
= fs_devices
;
6357 fs_devices
->num_devices
++;
6359 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6360 fs_devices
->missing_devices
++;
6366 * btrfs_alloc_device - allocate struct btrfs_device
6367 * @fs_info: used only for generating a new devid, can be NULL if
6368 * devid is provided (i.e. @devid != NULL).
6369 * @devid: a pointer to devid for this device. If NULL a new devid
6371 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6374 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6375 * on error. Returned struct is not linked onto any lists and must be
6376 * destroyed with btrfs_free_device.
6378 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6382 struct btrfs_device
*dev
;
6385 if (WARN_ON(!devid
&& !fs_info
))
6386 return ERR_PTR(-EINVAL
);
6388 dev
= __alloc_device();
6397 ret
= find_next_devid(fs_info
, &tmp
);
6399 btrfs_free_device(dev
);
6400 return ERR_PTR(ret
);
6406 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6408 generate_random_uuid(dev
->uuid
);
6410 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6411 pending_bios_fn
, NULL
, NULL
);
6416 /* Return -EIO if any error, otherwise return 0. */
6417 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6418 struct extent_buffer
*leaf
,
6419 struct btrfs_chunk
*chunk
, u64 logical
)
6427 length
= btrfs_chunk_length(leaf
, chunk
);
6428 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6429 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6430 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6431 type
= btrfs_chunk_type(leaf
, chunk
);
6434 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6438 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6439 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6442 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6443 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6444 btrfs_chunk_sector_size(leaf
, chunk
));
6447 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6448 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6451 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6452 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6456 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6458 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6459 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6460 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6461 btrfs_chunk_type(leaf
, chunk
));
6464 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6465 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6466 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6467 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6468 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6469 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6470 num_stripes
!= 1)) {
6472 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6473 num_stripes
, sub_stripes
,
6474 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6481 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6482 u64 devid
, u8
*uuid
, bool error
)
6485 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6488 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6492 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6493 struct extent_buffer
*leaf
,
6494 struct btrfs_chunk
*chunk
)
6496 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6497 struct map_lookup
*map
;
6498 struct extent_map
*em
;
6502 u8 uuid
[BTRFS_UUID_SIZE
];
6507 logical
= key
->offset
;
6508 length
= btrfs_chunk_length(leaf
, chunk
);
6509 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6511 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6515 read_lock(&map_tree
->map_tree
.lock
);
6516 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6517 read_unlock(&map_tree
->map_tree
.lock
);
6519 /* already mapped? */
6520 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6521 free_extent_map(em
);
6524 free_extent_map(em
);
6527 em
= alloc_extent_map();
6530 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6532 free_extent_map(em
);
6536 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6537 em
->map_lookup
= map
;
6538 em
->start
= logical
;
6541 em
->block_start
= 0;
6542 em
->block_len
= em
->len
;
6544 map
->num_stripes
= num_stripes
;
6545 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6546 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6547 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6548 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6549 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6550 for (i
= 0; i
< num_stripes
; i
++) {
6551 map
->stripes
[i
].physical
=
6552 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6553 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6554 read_extent_buffer(leaf
, uuid
, (unsigned long)
6555 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6557 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6559 if (!map
->stripes
[i
].dev
&&
6560 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6561 free_extent_map(em
);
6562 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6565 if (!map
->stripes
[i
].dev
) {
6566 map
->stripes
[i
].dev
=
6567 add_missing_dev(fs_info
->fs_devices
, devid
,
6569 if (IS_ERR(map
->stripes
[i
].dev
)) {
6570 free_extent_map(em
);
6572 "failed to init missing dev %llu: %ld",
6573 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6574 return PTR_ERR(map
->stripes
[i
].dev
);
6576 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6578 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6579 &(map
->stripes
[i
].dev
->dev_state
));
6583 write_lock(&map_tree
->map_tree
.lock
);
6584 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6585 write_unlock(&map_tree
->map_tree
.lock
);
6588 "failed to add chunk map, start=%llu len=%llu: %d",
6589 em
->start
, em
->len
, ret
);
6591 free_extent_map(em
);
6596 static void fill_device_from_item(struct extent_buffer
*leaf
,
6597 struct btrfs_dev_item
*dev_item
,
6598 struct btrfs_device
*device
)
6602 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6603 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6604 device
->total_bytes
= device
->disk_total_bytes
;
6605 device
->commit_total_bytes
= device
->disk_total_bytes
;
6606 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6607 device
->commit_bytes_used
= device
->bytes_used
;
6608 device
->type
= btrfs_device_type(leaf
, dev_item
);
6609 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6610 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6611 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6612 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6613 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6615 ptr
= btrfs_device_uuid(dev_item
);
6616 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6619 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6622 struct btrfs_fs_devices
*fs_devices
;
6625 lockdep_assert_held(&uuid_mutex
);
6628 fs_devices
= fs_info
->fs_devices
->seed
;
6629 while (fs_devices
) {
6630 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6633 fs_devices
= fs_devices
->seed
;
6636 fs_devices
= find_fsid(fsid
);
6638 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6639 return ERR_PTR(-ENOENT
);
6641 fs_devices
= alloc_fs_devices(fsid
);
6642 if (IS_ERR(fs_devices
))
6645 fs_devices
->seeding
= 1;
6646 fs_devices
->opened
= 1;
6650 fs_devices
= clone_fs_devices(fs_devices
);
6651 if (IS_ERR(fs_devices
))
6654 ret
= open_fs_devices(fs_devices
, FMODE_READ
, fs_info
->bdev_holder
);
6656 free_fs_devices(fs_devices
);
6657 fs_devices
= ERR_PTR(ret
);
6661 if (!fs_devices
->seeding
) {
6662 close_fs_devices(fs_devices
);
6663 free_fs_devices(fs_devices
);
6664 fs_devices
= ERR_PTR(-EINVAL
);
6668 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6669 fs_info
->fs_devices
->seed
= fs_devices
;
6674 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6675 struct extent_buffer
*leaf
,
6676 struct btrfs_dev_item
*dev_item
)
6678 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6679 struct btrfs_device
*device
;
6682 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6683 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6685 devid
= btrfs_device_id(leaf
, dev_item
);
6686 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6688 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6691 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
)) {
6692 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6693 if (IS_ERR(fs_devices
))
6694 return PTR_ERR(fs_devices
);
6697 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6699 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6700 btrfs_report_missing_device(fs_info
, devid
,
6705 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6706 if (IS_ERR(device
)) {
6708 "failed to add missing dev %llu: %ld",
6709 devid
, PTR_ERR(device
));
6710 return PTR_ERR(device
);
6712 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6714 if (!device
->bdev
) {
6715 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6716 btrfs_report_missing_device(fs_info
,
6717 devid
, dev_uuid
, true);
6720 btrfs_report_missing_device(fs_info
, devid
,
6724 if (!device
->bdev
&&
6725 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6727 * this happens when a device that was properly setup
6728 * in the device info lists suddenly goes bad.
6729 * device->bdev is NULL, and so we have to set
6730 * device->missing to one here
6732 device
->fs_devices
->missing_devices
++;
6733 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6736 /* Move the device to its own fs_devices */
6737 if (device
->fs_devices
!= fs_devices
) {
6738 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6739 &device
->dev_state
));
6741 list_move(&device
->dev_list
, &fs_devices
->devices
);
6742 device
->fs_devices
->num_devices
--;
6743 fs_devices
->num_devices
++;
6745 device
->fs_devices
->missing_devices
--;
6746 fs_devices
->missing_devices
++;
6748 device
->fs_devices
= fs_devices
;
6752 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6753 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6754 if (device
->generation
!=
6755 btrfs_device_generation(leaf
, dev_item
))
6759 fill_device_from_item(leaf
, dev_item
, device
);
6760 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6761 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6762 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6763 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6764 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6765 &fs_info
->free_chunk_space
);
6771 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6773 struct btrfs_root
*root
= fs_info
->tree_root
;
6774 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6775 struct extent_buffer
*sb
;
6776 struct btrfs_disk_key
*disk_key
;
6777 struct btrfs_chunk
*chunk
;
6779 unsigned long sb_array_offset
;
6786 struct btrfs_key key
;
6788 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6790 * This will create extent buffer of nodesize, superblock size is
6791 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6792 * overallocate but we can keep it as-is, only the first page is used.
6794 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6797 set_extent_buffer_uptodate(sb
);
6798 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6800 * The sb extent buffer is artificial and just used to read the system array.
6801 * set_extent_buffer_uptodate() call does not properly mark all it's
6802 * pages up-to-date when the page is larger: extent does not cover the
6803 * whole page and consequently check_page_uptodate does not find all
6804 * the page's extents up-to-date (the hole beyond sb),
6805 * write_extent_buffer then triggers a WARN_ON.
6807 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6808 * but sb spans only this function. Add an explicit SetPageUptodate call
6809 * to silence the warning eg. on PowerPC 64.
6811 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6812 SetPageUptodate(sb
->pages
[0]);
6814 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6815 array_size
= btrfs_super_sys_array_size(super_copy
);
6817 array_ptr
= super_copy
->sys_chunk_array
;
6818 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6821 while (cur_offset
< array_size
) {
6822 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6823 len
= sizeof(*disk_key
);
6824 if (cur_offset
+ len
> array_size
)
6825 goto out_short_read
;
6827 btrfs_disk_key_to_cpu(&key
, disk_key
);
6830 sb_array_offset
+= len
;
6833 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6834 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6836 * At least one btrfs_chunk with one stripe must be
6837 * present, exact stripe count check comes afterwards
6839 len
= btrfs_chunk_item_size(1);
6840 if (cur_offset
+ len
> array_size
)
6841 goto out_short_read
;
6843 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6846 "invalid number of stripes %u in sys_array at offset %u",
6847 num_stripes
, cur_offset
);
6852 type
= btrfs_chunk_type(sb
, chunk
);
6853 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6855 "invalid chunk type %llu in sys_array at offset %u",
6861 len
= btrfs_chunk_item_size(num_stripes
);
6862 if (cur_offset
+ len
> array_size
)
6863 goto out_short_read
;
6865 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6870 "unexpected item type %u in sys_array at offset %u",
6871 (u32
)key
.type
, cur_offset
);
6876 sb_array_offset
+= len
;
6879 clear_extent_buffer_uptodate(sb
);
6880 free_extent_buffer_stale(sb
);
6884 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6886 clear_extent_buffer_uptodate(sb
);
6887 free_extent_buffer_stale(sb
);
6892 * Check if all chunks in the fs are OK for read-write degraded mount
6894 * If the @failing_dev is specified, it's accounted as missing.
6896 * Return true if all chunks meet the minimal RW mount requirements.
6897 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6899 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
6900 struct btrfs_device
*failing_dev
)
6902 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6903 struct extent_map
*em
;
6907 read_lock(&map_tree
->map_tree
.lock
);
6908 em
= lookup_extent_mapping(&map_tree
->map_tree
, 0, (u64
)-1);
6909 read_unlock(&map_tree
->map_tree
.lock
);
6910 /* No chunk at all? Return false anyway */
6916 struct map_lookup
*map
;
6921 map
= em
->map_lookup
;
6923 btrfs_get_num_tolerated_disk_barrier_failures(
6925 for (i
= 0; i
< map
->num_stripes
; i
++) {
6926 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
6928 if (!dev
|| !dev
->bdev
||
6929 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
6930 dev
->last_flush_error
)
6932 else if (failing_dev
&& failing_dev
== dev
)
6935 if (missing
> max_tolerated
) {
6938 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6939 em
->start
, missing
, max_tolerated
);
6940 free_extent_map(em
);
6944 next_start
= extent_map_end(em
);
6945 free_extent_map(em
);
6947 read_lock(&map_tree
->map_tree
.lock
);
6948 em
= lookup_extent_mapping(&map_tree
->map_tree
, next_start
,
6949 (u64
)(-1) - next_start
);
6950 read_unlock(&map_tree
->map_tree
.lock
);
6956 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6958 struct btrfs_root
*root
= fs_info
->chunk_root
;
6959 struct btrfs_path
*path
;
6960 struct extent_buffer
*leaf
;
6961 struct btrfs_key key
;
6962 struct btrfs_key found_key
;
6967 path
= btrfs_alloc_path();
6972 * uuid_mutex is needed only if we are mounting a sprout FS
6973 * otherwise we don't need it.
6975 mutex_lock(&uuid_mutex
);
6976 mutex_lock(&fs_info
->chunk_mutex
);
6979 * Read all device items, and then all the chunk items. All
6980 * device items are found before any chunk item (their object id
6981 * is smaller than the lowest possible object id for a chunk
6982 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6984 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6987 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6991 leaf
= path
->nodes
[0];
6992 slot
= path
->slots
[0];
6993 if (slot
>= btrfs_header_nritems(leaf
)) {
6994 ret
= btrfs_next_leaf(root
, path
);
7001 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7002 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
7003 struct btrfs_dev_item
*dev_item
;
7004 dev_item
= btrfs_item_ptr(leaf
, slot
,
7005 struct btrfs_dev_item
);
7006 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
7010 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7011 struct btrfs_chunk
*chunk
;
7012 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
7013 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
7021 * After loading chunk tree, we've got all device information,
7022 * do another round of validation checks.
7024 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7026 "super_num_devices %llu mismatch with num_devices %llu found here",
7027 btrfs_super_num_devices(fs_info
->super_copy
),
7032 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7033 fs_info
->fs_devices
->total_rw_bytes
) {
7035 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7036 btrfs_super_total_bytes(fs_info
->super_copy
),
7037 fs_info
->fs_devices
->total_rw_bytes
);
7043 mutex_unlock(&fs_info
->chunk_mutex
);
7044 mutex_unlock(&uuid_mutex
);
7046 btrfs_free_path(path
);
7050 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7052 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7053 struct btrfs_device
*device
;
7055 while (fs_devices
) {
7056 mutex_lock(&fs_devices
->device_list_mutex
);
7057 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7058 device
->fs_info
= fs_info
;
7059 mutex_unlock(&fs_devices
->device_list_mutex
);
7061 fs_devices
= fs_devices
->seed
;
7065 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
7069 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7070 btrfs_dev_stat_reset(dev
, i
);
7073 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7075 struct btrfs_key key
;
7076 struct btrfs_key found_key
;
7077 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7078 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7079 struct extent_buffer
*eb
;
7082 struct btrfs_device
*device
;
7083 struct btrfs_path
*path
= NULL
;
7086 path
= btrfs_alloc_path();
7092 mutex_lock(&fs_devices
->device_list_mutex
);
7093 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7095 struct btrfs_dev_stats_item
*ptr
;
7097 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7098 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7099 key
.offset
= device
->devid
;
7100 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7102 __btrfs_reset_dev_stats(device
);
7103 device
->dev_stats_valid
= 1;
7104 btrfs_release_path(path
);
7107 slot
= path
->slots
[0];
7108 eb
= path
->nodes
[0];
7109 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
7110 item_size
= btrfs_item_size_nr(eb
, slot
);
7112 ptr
= btrfs_item_ptr(eb
, slot
,
7113 struct btrfs_dev_stats_item
);
7115 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7116 if (item_size
>= (1 + i
) * sizeof(__le64
))
7117 btrfs_dev_stat_set(device
, i
,
7118 btrfs_dev_stats_value(eb
, ptr
, i
));
7120 btrfs_dev_stat_reset(device
, i
);
7123 device
->dev_stats_valid
= 1;
7124 btrfs_dev_stat_print_on_load(device
);
7125 btrfs_release_path(path
);
7127 mutex_unlock(&fs_devices
->device_list_mutex
);
7130 btrfs_free_path(path
);
7131 return ret
< 0 ? ret
: 0;
7134 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7135 struct btrfs_fs_info
*fs_info
,
7136 struct btrfs_device
*device
)
7138 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7139 struct btrfs_path
*path
;
7140 struct btrfs_key key
;
7141 struct extent_buffer
*eb
;
7142 struct btrfs_dev_stats_item
*ptr
;
7146 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7147 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7148 key
.offset
= device
->devid
;
7150 path
= btrfs_alloc_path();
7153 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7155 btrfs_warn_in_rcu(fs_info
,
7156 "error %d while searching for dev_stats item for device %s",
7157 ret
, rcu_str_deref(device
->name
));
7162 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7163 /* need to delete old one and insert a new one */
7164 ret
= btrfs_del_item(trans
, dev_root
, path
);
7166 btrfs_warn_in_rcu(fs_info
,
7167 "delete too small dev_stats item for device %s failed %d",
7168 rcu_str_deref(device
->name
), ret
);
7175 /* need to insert a new item */
7176 btrfs_release_path(path
);
7177 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7178 &key
, sizeof(*ptr
));
7180 btrfs_warn_in_rcu(fs_info
,
7181 "insert dev_stats item for device %s failed %d",
7182 rcu_str_deref(device
->name
), ret
);
7187 eb
= path
->nodes
[0];
7188 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7189 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7190 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7191 btrfs_dev_stat_read(device
, i
));
7192 btrfs_mark_buffer_dirty(eb
);
7195 btrfs_free_path(path
);
7200 * called from commit_transaction. Writes all changed device stats to disk.
7202 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7203 struct btrfs_fs_info
*fs_info
)
7205 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7206 struct btrfs_device
*device
;
7210 mutex_lock(&fs_devices
->device_list_mutex
);
7211 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7212 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7213 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7218 * There is a LOAD-LOAD control dependency between the value of
7219 * dev_stats_ccnt and updating the on-disk values which requires
7220 * reading the in-memory counters. Such control dependencies
7221 * require explicit read memory barriers.
7223 * This memory barriers pairs with smp_mb__before_atomic in
7224 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7225 * barrier implied by atomic_xchg in
7226 * btrfs_dev_stats_read_and_reset
7230 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7232 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7234 mutex_unlock(&fs_devices
->device_list_mutex
);
7239 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7241 btrfs_dev_stat_inc(dev
, index
);
7242 btrfs_dev_stat_print_on_error(dev
);
7245 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7247 if (!dev
->dev_stats_valid
)
7249 btrfs_err_rl_in_rcu(dev
->fs_info
,
7250 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7251 rcu_str_deref(dev
->name
),
7252 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7253 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7254 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7255 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7256 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7259 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7263 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7264 if (btrfs_dev_stat_read(dev
, i
) != 0)
7266 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7267 return; /* all values == 0, suppress message */
7269 btrfs_info_in_rcu(dev
->fs_info
,
7270 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7271 rcu_str_deref(dev
->name
),
7272 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7273 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7274 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7275 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7276 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7279 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7280 struct btrfs_ioctl_get_dev_stats
*stats
)
7282 struct btrfs_device
*dev
;
7283 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7286 mutex_lock(&fs_devices
->device_list_mutex
);
7287 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7288 mutex_unlock(&fs_devices
->device_list_mutex
);
7291 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7293 } else if (!dev
->dev_stats_valid
) {
7294 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7296 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7297 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7298 if (stats
->nr_items
> i
)
7300 btrfs_dev_stat_read_and_reset(dev
, i
);
7302 btrfs_dev_stat_reset(dev
, i
);
7305 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7306 if (stats
->nr_items
> i
)
7307 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7309 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7310 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7314 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7316 struct buffer_head
*bh
;
7317 struct btrfs_super_block
*disk_super
;
7323 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7326 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7329 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7331 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7332 set_buffer_dirty(bh
);
7333 sync_dirty_buffer(bh
);
7337 /* Notify udev that device has changed */
7338 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7340 /* Update ctime/mtime for device path for libblkid */
7341 update_dev_time(device_path
);
7345 * Update the size of all devices, which is used for writing out the
7348 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7350 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7351 struct btrfs_device
*curr
, *next
;
7353 if (list_empty(&fs_devices
->resized_devices
))
7356 mutex_lock(&fs_devices
->device_list_mutex
);
7357 mutex_lock(&fs_info
->chunk_mutex
);
7358 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7360 list_del_init(&curr
->resized_list
);
7361 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7363 mutex_unlock(&fs_info
->chunk_mutex
);
7364 mutex_unlock(&fs_devices
->device_list_mutex
);
7367 /* Must be invoked during the transaction commit */
7368 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction
*trans
)
7370 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7371 struct extent_map
*em
;
7372 struct map_lookup
*map
;
7373 struct btrfs_device
*dev
;
7376 if (list_empty(&trans
->pending_chunks
))
7379 /* In order to kick the device replace finish process */
7380 mutex_lock(&fs_info
->chunk_mutex
);
7381 list_for_each_entry(em
, &trans
->pending_chunks
, list
) {
7382 map
= em
->map_lookup
;
7384 for (i
= 0; i
< map
->num_stripes
; i
++) {
7385 dev
= map
->stripes
[i
].dev
;
7386 dev
->commit_bytes_used
= dev
->bytes_used
;
7389 mutex_unlock(&fs_info
->chunk_mutex
);
7392 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7394 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7395 while (fs_devices
) {
7396 fs_devices
->fs_info
= fs_info
;
7397 fs_devices
= fs_devices
->seed
;
7401 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7403 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7404 while (fs_devices
) {
7405 fs_devices
->fs_info
= NULL
;
7406 fs_devices
= fs_devices
->seed
;