Linux 4.18.10
[linux/fpc-iii.git] / mm / huge_memory.c
blob25346bd9936432c383b0e98218763bc9d3e27de5
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 static struct page *get_huge_zero_page(void)
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
92 static void put_huge_zero_page(void)
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
106 if (!get_huge_zero_page())
107 return NULL;
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
112 return READ_ONCE(huge_zero_page);
115 void mm_put_huge_zero_page(struct mm_struct *mm)
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
138 return 0;
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
163 ssize_t ret = count;
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
185 return ret;
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
203 unsigned long value;
204 int ret;
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
217 return count;
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
271 return count;
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 int err;
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
357 return 0;
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 return 0;
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
385 int err;
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
444 subsys_initcall(hugepage_init);
446 static int __init setup_transparent_hugepage(char *str)
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
484 static inline struct list_head *page_deferred_list(struct page *page)
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
490 void prep_transhuge_page(struct page *page)
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
521 addr += (off - addr) & (size - 1);
522 return addr;
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
545 gfp_t gfp)
547 struct vm_area_struct *vma = vmf->vma;
548 struct mem_cgroup *memcg;
549 pgtable_t pgtable;
550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 int ret = 0;
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 ret = VM_FAULT_OOM;
564 goto release;
567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
573 __SetPageUptodate(page);
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
577 goto unlock_release;
578 } else {
579 pmd_t entry;
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
589 spin_unlock(vmf->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 mm_inc_nr_ptes(vma->vm_mm);
607 spin_unlock(vmf->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
611 return 0;
612 unlock_release:
613 spin_unlock(vmf->ptl);
614 release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
632 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
636 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
637 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
638 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
639 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
640 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
641 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
642 __GFP_KSWAPD_RECLAIM);
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
646 return GFP_TRANSHUGE_LIGHT;
649 /* Caller must hold page table lock. */
650 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
651 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
652 struct page *zero_page)
654 pmd_t entry;
655 if (!pmd_none(*pmd))
656 return false;
657 entry = mk_pmd(zero_page, vma->vm_page_prot);
658 entry = pmd_mkhuge(entry);
659 if (pgtable)
660 pgtable_trans_huge_deposit(mm, pmd, pgtable);
661 set_pmd_at(mm, haddr, pmd, entry);
662 mm_inc_nr_ptes(mm);
663 return true;
666 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
668 struct vm_area_struct *vma = vmf->vma;
669 gfp_t gfp;
670 struct page *page;
671 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
673 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
674 return VM_FAULT_FALLBACK;
675 if (unlikely(anon_vma_prepare(vma)))
676 return VM_FAULT_OOM;
677 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
678 return VM_FAULT_OOM;
679 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
680 !mm_forbids_zeropage(vma->vm_mm) &&
681 transparent_hugepage_use_zero_page()) {
682 pgtable_t pgtable;
683 struct page *zero_page;
684 bool set;
685 int ret;
686 pgtable = pte_alloc_one(vma->vm_mm, haddr);
687 if (unlikely(!pgtable))
688 return VM_FAULT_OOM;
689 zero_page = mm_get_huge_zero_page(vma->vm_mm);
690 if (unlikely(!zero_page)) {
691 pte_free(vma->vm_mm, pgtable);
692 count_vm_event(THP_FAULT_FALLBACK);
693 return VM_FAULT_FALLBACK;
695 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
696 ret = 0;
697 set = false;
698 if (pmd_none(*vmf->pmd)) {
699 ret = check_stable_address_space(vma->vm_mm);
700 if (ret) {
701 spin_unlock(vmf->ptl);
702 } else if (userfaultfd_missing(vma)) {
703 spin_unlock(vmf->ptl);
704 ret = handle_userfault(vmf, VM_UFFD_MISSING);
705 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
706 } else {
707 set_huge_zero_page(pgtable, vma->vm_mm, vma,
708 haddr, vmf->pmd, zero_page);
709 spin_unlock(vmf->ptl);
710 set = true;
712 } else
713 spin_unlock(vmf->ptl);
714 if (!set)
715 pte_free(vma->vm_mm, pgtable);
716 return ret;
718 gfp = alloc_hugepage_direct_gfpmask(vma);
719 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
720 if (unlikely(!page)) {
721 count_vm_event(THP_FAULT_FALLBACK);
722 return VM_FAULT_FALLBACK;
724 prep_transhuge_page(page);
725 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
728 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
729 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
730 pgtable_t pgtable)
732 struct mm_struct *mm = vma->vm_mm;
733 pmd_t entry;
734 spinlock_t *ptl;
736 ptl = pmd_lock(mm, pmd);
737 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
738 if (pfn_t_devmap(pfn))
739 entry = pmd_mkdevmap(entry);
740 if (write) {
741 entry = pmd_mkyoung(pmd_mkdirty(entry));
742 entry = maybe_pmd_mkwrite(entry, vma);
745 if (pgtable) {
746 pgtable_trans_huge_deposit(mm, pmd, pgtable);
747 mm_inc_nr_ptes(mm);
750 set_pmd_at(mm, addr, pmd, entry);
751 update_mmu_cache_pmd(vma, addr, pmd);
752 spin_unlock(ptl);
755 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
756 pmd_t *pmd, pfn_t pfn, bool write)
758 pgprot_t pgprot = vma->vm_page_prot;
759 pgtable_t pgtable = NULL;
761 * If we had pmd_special, we could avoid all these restrictions,
762 * but we need to be consistent with PTEs and architectures that
763 * can't support a 'special' bit.
765 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
766 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
767 (VM_PFNMAP|VM_MIXEDMAP));
768 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
769 BUG_ON(!pfn_t_devmap(pfn));
771 if (addr < vma->vm_start || addr >= vma->vm_end)
772 return VM_FAULT_SIGBUS;
774 if (arch_needs_pgtable_deposit()) {
775 pgtable = pte_alloc_one(vma->vm_mm, addr);
776 if (!pgtable)
777 return VM_FAULT_OOM;
780 track_pfn_insert(vma, &pgprot, pfn);
782 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
783 return VM_FAULT_NOPAGE;
785 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
787 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
788 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
790 if (likely(vma->vm_flags & VM_WRITE))
791 pud = pud_mkwrite(pud);
792 return pud;
795 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
796 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
798 struct mm_struct *mm = vma->vm_mm;
799 pud_t entry;
800 spinlock_t *ptl;
802 ptl = pud_lock(mm, pud);
803 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
804 if (pfn_t_devmap(pfn))
805 entry = pud_mkdevmap(entry);
806 if (write) {
807 entry = pud_mkyoung(pud_mkdirty(entry));
808 entry = maybe_pud_mkwrite(entry, vma);
810 set_pud_at(mm, addr, pud, entry);
811 update_mmu_cache_pud(vma, addr, pud);
812 spin_unlock(ptl);
815 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
816 pud_t *pud, pfn_t pfn, bool write)
818 pgprot_t pgprot = vma->vm_page_prot;
820 * If we had pud_special, we could avoid all these restrictions,
821 * but we need to be consistent with PTEs and architectures that
822 * can't support a 'special' bit.
824 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
825 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
826 (VM_PFNMAP|VM_MIXEDMAP));
827 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
828 BUG_ON(!pfn_t_devmap(pfn));
830 if (addr < vma->vm_start || addr >= vma->vm_end)
831 return VM_FAULT_SIGBUS;
833 track_pfn_insert(vma, &pgprot, pfn);
835 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
836 return VM_FAULT_NOPAGE;
838 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
839 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
841 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
842 pmd_t *pmd, int flags)
844 pmd_t _pmd;
846 _pmd = pmd_mkyoung(*pmd);
847 if (flags & FOLL_WRITE)
848 _pmd = pmd_mkdirty(_pmd);
849 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
850 pmd, _pmd, flags & FOLL_WRITE))
851 update_mmu_cache_pmd(vma, addr, pmd);
854 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
855 pmd_t *pmd, int flags)
857 unsigned long pfn = pmd_pfn(*pmd);
858 struct mm_struct *mm = vma->vm_mm;
859 struct dev_pagemap *pgmap;
860 struct page *page;
862 assert_spin_locked(pmd_lockptr(mm, pmd));
865 * When we COW a devmap PMD entry, we split it into PTEs, so we should
866 * not be in this function with `flags & FOLL_COW` set.
868 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
870 if (flags & FOLL_WRITE && !pmd_write(*pmd))
871 return NULL;
873 if (pmd_present(*pmd) && pmd_devmap(*pmd))
874 /* pass */;
875 else
876 return NULL;
878 if (flags & FOLL_TOUCH)
879 touch_pmd(vma, addr, pmd, flags);
882 * device mapped pages can only be returned if the
883 * caller will manage the page reference count.
885 if (!(flags & FOLL_GET))
886 return ERR_PTR(-EEXIST);
888 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
889 pgmap = get_dev_pagemap(pfn, NULL);
890 if (!pgmap)
891 return ERR_PTR(-EFAULT);
892 page = pfn_to_page(pfn);
893 get_page(page);
894 put_dev_pagemap(pgmap);
896 return page;
899 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
901 struct vm_area_struct *vma)
903 spinlock_t *dst_ptl, *src_ptl;
904 struct page *src_page;
905 pmd_t pmd;
906 pgtable_t pgtable = NULL;
907 int ret = -ENOMEM;
909 /* Skip if can be re-fill on fault */
910 if (!vma_is_anonymous(vma))
911 return 0;
913 pgtable = pte_alloc_one(dst_mm, addr);
914 if (unlikely(!pgtable))
915 goto out;
917 dst_ptl = pmd_lock(dst_mm, dst_pmd);
918 src_ptl = pmd_lockptr(src_mm, src_pmd);
919 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
921 ret = -EAGAIN;
922 pmd = *src_pmd;
924 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
925 if (unlikely(is_swap_pmd(pmd))) {
926 swp_entry_t entry = pmd_to_swp_entry(pmd);
928 VM_BUG_ON(!is_pmd_migration_entry(pmd));
929 if (is_write_migration_entry(entry)) {
930 make_migration_entry_read(&entry);
931 pmd = swp_entry_to_pmd(entry);
932 if (pmd_swp_soft_dirty(*src_pmd))
933 pmd = pmd_swp_mksoft_dirty(pmd);
934 set_pmd_at(src_mm, addr, src_pmd, pmd);
936 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
937 mm_inc_nr_ptes(dst_mm);
938 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
939 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
940 ret = 0;
941 goto out_unlock;
943 #endif
945 if (unlikely(!pmd_trans_huge(pmd))) {
946 pte_free(dst_mm, pgtable);
947 goto out_unlock;
950 * When page table lock is held, the huge zero pmd should not be
951 * under splitting since we don't split the page itself, only pmd to
952 * a page table.
954 if (is_huge_zero_pmd(pmd)) {
955 struct page *zero_page;
957 * get_huge_zero_page() will never allocate a new page here,
958 * since we already have a zero page to copy. It just takes a
959 * reference.
961 zero_page = mm_get_huge_zero_page(dst_mm);
962 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
963 zero_page);
964 ret = 0;
965 goto out_unlock;
968 src_page = pmd_page(pmd);
969 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
970 get_page(src_page);
971 page_dup_rmap(src_page, true);
972 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
973 mm_inc_nr_ptes(dst_mm);
974 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
976 pmdp_set_wrprotect(src_mm, addr, src_pmd);
977 pmd = pmd_mkold(pmd_wrprotect(pmd));
978 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
980 ret = 0;
981 out_unlock:
982 spin_unlock(src_ptl);
983 spin_unlock(dst_ptl);
984 out:
985 return ret;
988 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
989 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
990 pud_t *pud, int flags)
992 pud_t _pud;
994 _pud = pud_mkyoung(*pud);
995 if (flags & FOLL_WRITE)
996 _pud = pud_mkdirty(_pud);
997 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
998 pud, _pud, flags & FOLL_WRITE))
999 update_mmu_cache_pud(vma, addr, pud);
1002 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1003 pud_t *pud, int flags)
1005 unsigned long pfn = pud_pfn(*pud);
1006 struct mm_struct *mm = vma->vm_mm;
1007 struct dev_pagemap *pgmap;
1008 struct page *page;
1010 assert_spin_locked(pud_lockptr(mm, pud));
1012 if (flags & FOLL_WRITE && !pud_write(*pud))
1013 return NULL;
1015 if (pud_present(*pud) && pud_devmap(*pud))
1016 /* pass */;
1017 else
1018 return NULL;
1020 if (flags & FOLL_TOUCH)
1021 touch_pud(vma, addr, pud, flags);
1024 * device mapped pages can only be returned if the
1025 * caller will manage the page reference count.
1027 if (!(flags & FOLL_GET))
1028 return ERR_PTR(-EEXIST);
1030 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1031 pgmap = get_dev_pagemap(pfn, NULL);
1032 if (!pgmap)
1033 return ERR_PTR(-EFAULT);
1034 page = pfn_to_page(pfn);
1035 get_page(page);
1036 put_dev_pagemap(pgmap);
1038 return page;
1041 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1042 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043 struct vm_area_struct *vma)
1045 spinlock_t *dst_ptl, *src_ptl;
1046 pud_t pud;
1047 int ret;
1049 dst_ptl = pud_lock(dst_mm, dst_pud);
1050 src_ptl = pud_lockptr(src_mm, src_pud);
1051 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1053 ret = -EAGAIN;
1054 pud = *src_pud;
1055 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1056 goto out_unlock;
1059 * When page table lock is held, the huge zero pud should not be
1060 * under splitting since we don't split the page itself, only pud to
1061 * a page table.
1063 if (is_huge_zero_pud(pud)) {
1064 /* No huge zero pud yet */
1067 pudp_set_wrprotect(src_mm, addr, src_pud);
1068 pud = pud_mkold(pud_wrprotect(pud));
1069 set_pud_at(dst_mm, addr, dst_pud, pud);
1071 ret = 0;
1072 out_unlock:
1073 spin_unlock(src_ptl);
1074 spin_unlock(dst_ptl);
1075 return ret;
1078 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1080 pud_t entry;
1081 unsigned long haddr;
1082 bool write = vmf->flags & FAULT_FLAG_WRITE;
1084 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1085 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1086 goto unlock;
1088 entry = pud_mkyoung(orig_pud);
1089 if (write)
1090 entry = pud_mkdirty(entry);
1091 haddr = vmf->address & HPAGE_PUD_MASK;
1092 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1093 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1095 unlock:
1096 spin_unlock(vmf->ptl);
1098 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1100 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1102 pmd_t entry;
1103 unsigned long haddr;
1104 bool write = vmf->flags & FAULT_FLAG_WRITE;
1106 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1107 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1108 goto unlock;
1110 entry = pmd_mkyoung(orig_pmd);
1111 if (write)
1112 entry = pmd_mkdirty(entry);
1113 haddr = vmf->address & HPAGE_PMD_MASK;
1114 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1115 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1117 unlock:
1118 spin_unlock(vmf->ptl);
1121 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1122 struct page *page)
1124 struct vm_area_struct *vma = vmf->vma;
1125 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1126 struct mem_cgroup *memcg;
1127 pgtable_t pgtable;
1128 pmd_t _pmd;
1129 int ret = 0, i;
1130 struct page **pages;
1131 unsigned long mmun_start; /* For mmu_notifiers */
1132 unsigned long mmun_end; /* For mmu_notifiers */
1134 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1135 GFP_KERNEL);
1136 if (unlikely(!pages)) {
1137 ret |= VM_FAULT_OOM;
1138 goto out;
1141 for (i = 0; i < HPAGE_PMD_NR; i++) {
1142 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1143 vmf->address, page_to_nid(page));
1144 if (unlikely(!pages[i] ||
1145 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1146 GFP_KERNEL, &memcg, false))) {
1147 if (pages[i])
1148 put_page(pages[i]);
1149 while (--i >= 0) {
1150 memcg = (void *)page_private(pages[i]);
1151 set_page_private(pages[i], 0);
1152 mem_cgroup_cancel_charge(pages[i], memcg,
1153 false);
1154 put_page(pages[i]);
1156 kfree(pages);
1157 ret |= VM_FAULT_OOM;
1158 goto out;
1160 set_page_private(pages[i], (unsigned long)memcg);
1163 for (i = 0; i < HPAGE_PMD_NR; i++) {
1164 copy_user_highpage(pages[i], page + i,
1165 haddr + PAGE_SIZE * i, vma);
1166 __SetPageUptodate(pages[i]);
1167 cond_resched();
1170 mmun_start = haddr;
1171 mmun_end = haddr + HPAGE_PMD_SIZE;
1172 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1174 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1175 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1176 goto out_free_pages;
1177 VM_BUG_ON_PAGE(!PageHead(page), page);
1180 * Leave pmd empty until pte is filled note we must notify here as
1181 * concurrent CPU thread might write to new page before the call to
1182 * mmu_notifier_invalidate_range_end() happens which can lead to a
1183 * device seeing memory write in different order than CPU.
1185 * See Documentation/vm/mmu_notifier.rst
1187 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1189 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1190 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1192 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1193 pte_t entry;
1194 entry = mk_pte(pages[i], vma->vm_page_prot);
1195 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1196 memcg = (void *)page_private(pages[i]);
1197 set_page_private(pages[i], 0);
1198 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1199 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1200 lru_cache_add_active_or_unevictable(pages[i], vma);
1201 vmf->pte = pte_offset_map(&_pmd, haddr);
1202 VM_BUG_ON(!pte_none(*vmf->pte));
1203 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1204 pte_unmap(vmf->pte);
1206 kfree(pages);
1208 smp_wmb(); /* make pte visible before pmd */
1209 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1210 page_remove_rmap(page, true);
1211 spin_unlock(vmf->ptl);
1214 * No need to double call mmu_notifier->invalidate_range() callback as
1215 * the above pmdp_huge_clear_flush_notify() did already call it.
1217 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1218 mmun_end);
1220 ret |= VM_FAULT_WRITE;
1221 put_page(page);
1223 out:
1224 return ret;
1226 out_free_pages:
1227 spin_unlock(vmf->ptl);
1228 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1229 for (i = 0; i < HPAGE_PMD_NR; i++) {
1230 memcg = (void *)page_private(pages[i]);
1231 set_page_private(pages[i], 0);
1232 mem_cgroup_cancel_charge(pages[i], memcg, false);
1233 put_page(pages[i]);
1235 kfree(pages);
1236 goto out;
1239 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1241 struct vm_area_struct *vma = vmf->vma;
1242 struct page *page = NULL, *new_page;
1243 struct mem_cgroup *memcg;
1244 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1245 unsigned long mmun_start; /* For mmu_notifiers */
1246 unsigned long mmun_end; /* For mmu_notifiers */
1247 gfp_t huge_gfp; /* for allocation and charge */
1248 int ret = 0;
1250 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1251 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1252 if (is_huge_zero_pmd(orig_pmd))
1253 goto alloc;
1254 spin_lock(vmf->ptl);
1255 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1256 goto out_unlock;
1258 page = pmd_page(orig_pmd);
1259 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1261 * We can only reuse the page if nobody else maps the huge page or it's
1262 * part.
1264 if (!trylock_page(page)) {
1265 get_page(page);
1266 spin_unlock(vmf->ptl);
1267 lock_page(page);
1268 spin_lock(vmf->ptl);
1269 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1270 unlock_page(page);
1271 put_page(page);
1272 goto out_unlock;
1274 put_page(page);
1276 if (reuse_swap_page(page, NULL)) {
1277 pmd_t entry;
1278 entry = pmd_mkyoung(orig_pmd);
1279 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1280 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1281 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1282 ret |= VM_FAULT_WRITE;
1283 unlock_page(page);
1284 goto out_unlock;
1286 unlock_page(page);
1287 get_page(page);
1288 spin_unlock(vmf->ptl);
1289 alloc:
1290 if (transparent_hugepage_enabled(vma) &&
1291 !transparent_hugepage_debug_cow()) {
1292 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1293 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1294 } else
1295 new_page = NULL;
1297 if (likely(new_page)) {
1298 prep_transhuge_page(new_page);
1299 } else {
1300 if (!page) {
1301 split_huge_pmd(vma, vmf->pmd, vmf->address);
1302 ret |= VM_FAULT_FALLBACK;
1303 } else {
1304 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1305 if (ret & VM_FAULT_OOM) {
1306 split_huge_pmd(vma, vmf->pmd, vmf->address);
1307 ret |= VM_FAULT_FALLBACK;
1309 put_page(page);
1311 count_vm_event(THP_FAULT_FALLBACK);
1312 goto out;
1315 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1316 huge_gfp, &memcg, true))) {
1317 put_page(new_page);
1318 split_huge_pmd(vma, vmf->pmd, vmf->address);
1319 if (page)
1320 put_page(page);
1321 ret |= VM_FAULT_FALLBACK;
1322 count_vm_event(THP_FAULT_FALLBACK);
1323 goto out;
1326 count_vm_event(THP_FAULT_ALLOC);
1328 if (!page)
1329 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1330 else
1331 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1332 __SetPageUptodate(new_page);
1334 mmun_start = haddr;
1335 mmun_end = haddr + HPAGE_PMD_SIZE;
1336 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1338 spin_lock(vmf->ptl);
1339 if (page)
1340 put_page(page);
1341 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1342 spin_unlock(vmf->ptl);
1343 mem_cgroup_cancel_charge(new_page, memcg, true);
1344 put_page(new_page);
1345 goto out_mn;
1346 } else {
1347 pmd_t entry;
1348 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1349 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1350 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1351 page_add_new_anon_rmap(new_page, vma, haddr, true);
1352 mem_cgroup_commit_charge(new_page, memcg, false, true);
1353 lru_cache_add_active_or_unevictable(new_page, vma);
1354 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1355 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1356 if (!page) {
1357 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1358 } else {
1359 VM_BUG_ON_PAGE(!PageHead(page), page);
1360 page_remove_rmap(page, true);
1361 put_page(page);
1363 ret |= VM_FAULT_WRITE;
1365 spin_unlock(vmf->ptl);
1366 out_mn:
1368 * No need to double call mmu_notifier->invalidate_range() callback as
1369 * the above pmdp_huge_clear_flush_notify() did already call it.
1371 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1372 mmun_end);
1373 out:
1374 return ret;
1375 out_unlock:
1376 spin_unlock(vmf->ptl);
1377 return ret;
1381 * FOLL_FORCE can write to even unwritable pmd's, but only
1382 * after we've gone through a COW cycle and they are dirty.
1384 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1386 return pmd_write(pmd) ||
1387 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1390 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1391 unsigned long addr,
1392 pmd_t *pmd,
1393 unsigned int flags)
1395 struct mm_struct *mm = vma->vm_mm;
1396 struct page *page = NULL;
1398 assert_spin_locked(pmd_lockptr(mm, pmd));
1400 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1401 goto out;
1403 /* Avoid dumping huge zero page */
1404 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1405 return ERR_PTR(-EFAULT);
1407 /* Full NUMA hinting faults to serialise migration in fault paths */
1408 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1409 goto out;
1411 page = pmd_page(*pmd);
1412 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1413 if (flags & FOLL_TOUCH)
1414 touch_pmd(vma, addr, pmd, flags);
1415 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1417 * We don't mlock() pte-mapped THPs. This way we can avoid
1418 * leaking mlocked pages into non-VM_LOCKED VMAs.
1420 * For anon THP:
1422 * In most cases the pmd is the only mapping of the page as we
1423 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1424 * writable private mappings in populate_vma_page_range().
1426 * The only scenario when we have the page shared here is if we
1427 * mlocking read-only mapping shared over fork(). We skip
1428 * mlocking such pages.
1430 * For file THP:
1432 * We can expect PageDoubleMap() to be stable under page lock:
1433 * for file pages we set it in page_add_file_rmap(), which
1434 * requires page to be locked.
1437 if (PageAnon(page) && compound_mapcount(page) != 1)
1438 goto skip_mlock;
1439 if (PageDoubleMap(page) || !page->mapping)
1440 goto skip_mlock;
1441 if (!trylock_page(page))
1442 goto skip_mlock;
1443 lru_add_drain();
1444 if (page->mapping && !PageDoubleMap(page))
1445 mlock_vma_page(page);
1446 unlock_page(page);
1448 skip_mlock:
1449 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1450 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1451 if (flags & FOLL_GET)
1452 get_page(page);
1454 out:
1455 return page;
1458 /* NUMA hinting page fault entry point for trans huge pmds */
1459 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1461 struct vm_area_struct *vma = vmf->vma;
1462 struct anon_vma *anon_vma = NULL;
1463 struct page *page;
1464 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1465 int page_nid = -1, this_nid = numa_node_id();
1466 int target_nid, last_cpupid = -1;
1467 bool page_locked;
1468 bool migrated = false;
1469 bool was_writable;
1470 int flags = 0;
1472 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1473 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1474 goto out_unlock;
1477 * If there are potential migrations, wait for completion and retry
1478 * without disrupting NUMA hinting information. Do not relock and
1479 * check_same as the page may no longer be mapped.
1481 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1482 page = pmd_page(*vmf->pmd);
1483 if (!get_page_unless_zero(page))
1484 goto out_unlock;
1485 spin_unlock(vmf->ptl);
1486 wait_on_page_locked(page);
1487 put_page(page);
1488 goto out;
1491 page = pmd_page(pmd);
1492 BUG_ON(is_huge_zero_page(page));
1493 page_nid = page_to_nid(page);
1494 last_cpupid = page_cpupid_last(page);
1495 count_vm_numa_event(NUMA_HINT_FAULTS);
1496 if (page_nid == this_nid) {
1497 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1498 flags |= TNF_FAULT_LOCAL;
1501 /* See similar comment in do_numa_page for explanation */
1502 if (!pmd_savedwrite(pmd))
1503 flags |= TNF_NO_GROUP;
1506 * Acquire the page lock to serialise THP migrations but avoid dropping
1507 * page_table_lock if at all possible
1509 page_locked = trylock_page(page);
1510 target_nid = mpol_misplaced(page, vma, haddr);
1511 if (target_nid == -1) {
1512 /* If the page was locked, there are no parallel migrations */
1513 if (page_locked)
1514 goto clear_pmdnuma;
1517 /* Migration could have started since the pmd_trans_migrating check */
1518 if (!page_locked) {
1519 page_nid = -1;
1520 if (!get_page_unless_zero(page))
1521 goto out_unlock;
1522 spin_unlock(vmf->ptl);
1523 wait_on_page_locked(page);
1524 put_page(page);
1525 goto out;
1529 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1530 * to serialises splits
1532 get_page(page);
1533 spin_unlock(vmf->ptl);
1534 anon_vma = page_lock_anon_vma_read(page);
1536 /* Confirm the PMD did not change while page_table_lock was released */
1537 spin_lock(vmf->ptl);
1538 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1539 unlock_page(page);
1540 put_page(page);
1541 page_nid = -1;
1542 goto out_unlock;
1545 /* Bail if we fail to protect against THP splits for any reason */
1546 if (unlikely(!anon_vma)) {
1547 put_page(page);
1548 page_nid = -1;
1549 goto clear_pmdnuma;
1553 * Since we took the NUMA fault, we must have observed the !accessible
1554 * bit. Make sure all other CPUs agree with that, to avoid them
1555 * modifying the page we're about to migrate.
1557 * Must be done under PTL such that we'll observe the relevant
1558 * inc_tlb_flush_pending().
1560 * We are not sure a pending tlb flush here is for a huge page
1561 * mapping or not. Hence use the tlb range variant
1563 if (mm_tlb_flush_pending(vma->vm_mm))
1564 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1567 * Migrate the THP to the requested node, returns with page unlocked
1568 * and access rights restored.
1570 spin_unlock(vmf->ptl);
1572 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1573 vmf->pmd, pmd, vmf->address, page, target_nid);
1574 if (migrated) {
1575 flags |= TNF_MIGRATED;
1576 page_nid = target_nid;
1577 } else
1578 flags |= TNF_MIGRATE_FAIL;
1580 goto out;
1581 clear_pmdnuma:
1582 BUG_ON(!PageLocked(page));
1583 was_writable = pmd_savedwrite(pmd);
1584 pmd = pmd_modify(pmd, vma->vm_page_prot);
1585 pmd = pmd_mkyoung(pmd);
1586 if (was_writable)
1587 pmd = pmd_mkwrite(pmd);
1588 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1589 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1590 unlock_page(page);
1591 out_unlock:
1592 spin_unlock(vmf->ptl);
1594 out:
1595 if (anon_vma)
1596 page_unlock_anon_vma_read(anon_vma);
1598 if (page_nid != -1)
1599 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1600 flags);
1602 return 0;
1606 * Return true if we do MADV_FREE successfully on entire pmd page.
1607 * Otherwise, return false.
1609 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1610 pmd_t *pmd, unsigned long addr, unsigned long next)
1612 spinlock_t *ptl;
1613 pmd_t orig_pmd;
1614 struct page *page;
1615 struct mm_struct *mm = tlb->mm;
1616 bool ret = false;
1618 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1620 ptl = pmd_trans_huge_lock(pmd, vma);
1621 if (!ptl)
1622 goto out_unlocked;
1624 orig_pmd = *pmd;
1625 if (is_huge_zero_pmd(orig_pmd))
1626 goto out;
1628 if (unlikely(!pmd_present(orig_pmd))) {
1629 VM_BUG_ON(thp_migration_supported() &&
1630 !is_pmd_migration_entry(orig_pmd));
1631 goto out;
1634 page = pmd_page(orig_pmd);
1636 * If other processes are mapping this page, we couldn't discard
1637 * the page unless they all do MADV_FREE so let's skip the page.
1639 if (page_mapcount(page) != 1)
1640 goto out;
1642 if (!trylock_page(page))
1643 goto out;
1646 * If user want to discard part-pages of THP, split it so MADV_FREE
1647 * will deactivate only them.
1649 if (next - addr != HPAGE_PMD_SIZE) {
1650 get_page(page);
1651 spin_unlock(ptl);
1652 split_huge_page(page);
1653 unlock_page(page);
1654 put_page(page);
1655 goto out_unlocked;
1658 if (PageDirty(page))
1659 ClearPageDirty(page);
1660 unlock_page(page);
1662 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1663 pmdp_invalidate(vma, addr, pmd);
1664 orig_pmd = pmd_mkold(orig_pmd);
1665 orig_pmd = pmd_mkclean(orig_pmd);
1667 set_pmd_at(mm, addr, pmd, orig_pmd);
1668 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1671 mark_page_lazyfree(page);
1672 ret = true;
1673 out:
1674 spin_unlock(ptl);
1675 out_unlocked:
1676 return ret;
1679 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1681 pgtable_t pgtable;
1683 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1684 pte_free(mm, pgtable);
1685 mm_dec_nr_ptes(mm);
1688 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1689 pmd_t *pmd, unsigned long addr)
1691 pmd_t orig_pmd;
1692 spinlock_t *ptl;
1694 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1696 ptl = __pmd_trans_huge_lock(pmd, vma);
1697 if (!ptl)
1698 return 0;
1700 * For architectures like ppc64 we look at deposited pgtable
1701 * when calling pmdp_huge_get_and_clear. So do the
1702 * pgtable_trans_huge_withdraw after finishing pmdp related
1703 * operations.
1705 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1706 tlb->fullmm);
1707 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1708 if (vma_is_dax(vma)) {
1709 if (arch_needs_pgtable_deposit())
1710 zap_deposited_table(tlb->mm, pmd);
1711 spin_unlock(ptl);
1712 if (is_huge_zero_pmd(orig_pmd))
1713 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1714 } else if (is_huge_zero_pmd(orig_pmd)) {
1715 zap_deposited_table(tlb->mm, pmd);
1716 spin_unlock(ptl);
1717 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1718 } else {
1719 struct page *page = NULL;
1720 int flush_needed = 1;
1722 if (pmd_present(orig_pmd)) {
1723 page = pmd_page(orig_pmd);
1724 page_remove_rmap(page, true);
1725 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1726 VM_BUG_ON_PAGE(!PageHead(page), page);
1727 } else if (thp_migration_supported()) {
1728 swp_entry_t entry;
1730 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1731 entry = pmd_to_swp_entry(orig_pmd);
1732 page = pfn_to_page(swp_offset(entry));
1733 flush_needed = 0;
1734 } else
1735 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1737 if (PageAnon(page)) {
1738 zap_deposited_table(tlb->mm, pmd);
1739 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1740 } else {
1741 if (arch_needs_pgtable_deposit())
1742 zap_deposited_table(tlb->mm, pmd);
1743 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1746 spin_unlock(ptl);
1747 if (flush_needed)
1748 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1750 return 1;
1753 #ifndef pmd_move_must_withdraw
1754 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1755 spinlock_t *old_pmd_ptl,
1756 struct vm_area_struct *vma)
1759 * With split pmd lock we also need to move preallocated
1760 * PTE page table if new_pmd is on different PMD page table.
1762 * We also don't deposit and withdraw tables for file pages.
1764 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1766 #endif
1768 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1770 #ifdef CONFIG_MEM_SOFT_DIRTY
1771 if (unlikely(is_pmd_migration_entry(pmd)))
1772 pmd = pmd_swp_mksoft_dirty(pmd);
1773 else if (pmd_present(pmd))
1774 pmd = pmd_mksoft_dirty(pmd);
1775 #endif
1776 return pmd;
1779 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1780 unsigned long new_addr, unsigned long old_end,
1781 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1783 spinlock_t *old_ptl, *new_ptl;
1784 pmd_t pmd;
1785 struct mm_struct *mm = vma->vm_mm;
1786 bool force_flush = false;
1788 if ((old_addr & ~HPAGE_PMD_MASK) ||
1789 (new_addr & ~HPAGE_PMD_MASK) ||
1790 old_end - old_addr < HPAGE_PMD_SIZE)
1791 return false;
1794 * The destination pmd shouldn't be established, free_pgtables()
1795 * should have release it.
1797 if (WARN_ON(!pmd_none(*new_pmd))) {
1798 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1799 return false;
1803 * We don't have to worry about the ordering of src and dst
1804 * ptlocks because exclusive mmap_sem prevents deadlock.
1806 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1807 if (old_ptl) {
1808 new_ptl = pmd_lockptr(mm, new_pmd);
1809 if (new_ptl != old_ptl)
1810 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1811 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1812 if (pmd_present(pmd) && pmd_dirty(pmd))
1813 force_flush = true;
1814 VM_BUG_ON(!pmd_none(*new_pmd));
1816 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1817 pgtable_t pgtable;
1818 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1819 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1821 pmd = move_soft_dirty_pmd(pmd);
1822 set_pmd_at(mm, new_addr, new_pmd, pmd);
1823 if (new_ptl != old_ptl)
1824 spin_unlock(new_ptl);
1825 if (force_flush)
1826 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1827 else
1828 *need_flush = true;
1829 spin_unlock(old_ptl);
1830 return true;
1832 return false;
1836 * Returns
1837 * - 0 if PMD could not be locked
1838 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1839 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1841 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1842 unsigned long addr, pgprot_t newprot, int prot_numa)
1844 struct mm_struct *mm = vma->vm_mm;
1845 spinlock_t *ptl;
1846 pmd_t entry;
1847 bool preserve_write;
1848 int ret;
1850 ptl = __pmd_trans_huge_lock(pmd, vma);
1851 if (!ptl)
1852 return 0;
1854 preserve_write = prot_numa && pmd_write(*pmd);
1855 ret = 1;
1857 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1858 if (is_swap_pmd(*pmd)) {
1859 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1861 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1862 if (is_write_migration_entry(entry)) {
1863 pmd_t newpmd;
1865 * A protection check is difficult so
1866 * just be safe and disable write
1868 make_migration_entry_read(&entry);
1869 newpmd = swp_entry_to_pmd(entry);
1870 if (pmd_swp_soft_dirty(*pmd))
1871 newpmd = pmd_swp_mksoft_dirty(newpmd);
1872 set_pmd_at(mm, addr, pmd, newpmd);
1874 goto unlock;
1876 #endif
1879 * Avoid trapping faults against the zero page. The read-only
1880 * data is likely to be read-cached on the local CPU and
1881 * local/remote hits to the zero page are not interesting.
1883 if (prot_numa && is_huge_zero_pmd(*pmd))
1884 goto unlock;
1886 if (prot_numa && pmd_protnone(*pmd))
1887 goto unlock;
1890 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1891 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1892 * which is also under down_read(mmap_sem):
1894 * CPU0: CPU1:
1895 * change_huge_pmd(prot_numa=1)
1896 * pmdp_huge_get_and_clear_notify()
1897 * madvise_dontneed()
1898 * zap_pmd_range()
1899 * pmd_trans_huge(*pmd) == 0 (without ptl)
1900 * // skip the pmd
1901 * set_pmd_at();
1902 * // pmd is re-established
1904 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1905 * which may break userspace.
1907 * pmdp_invalidate() is required to make sure we don't miss
1908 * dirty/young flags set by hardware.
1910 entry = pmdp_invalidate(vma, addr, pmd);
1912 entry = pmd_modify(entry, newprot);
1913 if (preserve_write)
1914 entry = pmd_mk_savedwrite(entry);
1915 ret = HPAGE_PMD_NR;
1916 set_pmd_at(mm, addr, pmd, entry);
1917 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1918 unlock:
1919 spin_unlock(ptl);
1920 return ret;
1924 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1926 * Note that if it returns page table lock pointer, this routine returns without
1927 * unlocking page table lock. So callers must unlock it.
1929 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1931 spinlock_t *ptl;
1932 ptl = pmd_lock(vma->vm_mm, pmd);
1933 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1934 pmd_devmap(*pmd)))
1935 return ptl;
1936 spin_unlock(ptl);
1937 return NULL;
1941 * Returns true if a given pud maps a thp, false otherwise.
1943 * Note that if it returns true, this routine returns without unlocking page
1944 * table lock. So callers must unlock it.
1946 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1948 spinlock_t *ptl;
1950 ptl = pud_lock(vma->vm_mm, pud);
1951 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1952 return ptl;
1953 spin_unlock(ptl);
1954 return NULL;
1957 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1958 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1959 pud_t *pud, unsigned long addr)
1961 pud_t orig_pud;
1962 spinlock_t *ptl;
1964 ptl = __pud_trans_huge_lock(pud, vma);
1965 if (!ptl)
1966 return 0;
1968 * For architectures like ppc64 we look at deposited pgtable
1969 * when calling pudp_huge_get_and_clear. So do the
1970 * pgtable_trans_huge_withdraw after finishing pudp related
1971 * operations.
1973 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1974 tlb->fullmm);
1975 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1976 if (vma_is_dax(vma)) {
1977 spin_unlock(ptl);
1978 /* No zero page support yet */
1979 } else {
1980 /* No support for anonymous PUD pages yet */
1981 BUG();
1983 return 1;
1986 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1987 unsigned long haddr)
1989 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1990 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1991 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1992 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1994 count_vm_event(THP_SPLIT_PUD);
1996 pudp_huge_clear_flush_notify(vma, haddr, pud);
1999 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2000 unsigned long address)
2002 spinlock_t *ptl;
2003 struct mm_struct *mm = vma->vm_mm;
2004 unsigned long haddr = address & HPAGE_PUD_MASK;
2006 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2007 ptl = pud_lock(mm, pud);
2008 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2009 goto out;
2010 __split_huge_pud_locked(vma, pud, haddr);
2012 out:
2013 spin_unlock(ptl);
2015 * No need to double call mmu_notifier->invalidate_range() callback as
2016 * the above pudp_huge_clear_flush_notify() did already call it.
2018 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2019 HPAGE_PUD_SIZE);
2021 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2023 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2024 unsigned long haddr, pmd_t *pmd)
2026 struct mm_struct *mm = vma->vm_mm;
2027 pgtable_t pgtable;
2028 pmd_t _pmd;
2029 int i;
2032 * Leave pmd empty until pte is filled note that it is fine to delay
2033 * notification until mmu_notifier_invalidate_range_end() as we are
2034 * replacing a zero pmd write protected page with a zero pte write
2035 * protected page.
2037 * See Documentation/vm/mmu_notifier.rst
2039 pmdp_huge_clear_flush(vma, haddr, pmd);
2041 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2042 pmd_populate(mm, &_pmd, pgtable);
2044 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2045 pte_t *pte, entry;
2046 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2047 entry = pte_mkspecial(entry);
2048 pte = pte_offset_map(&_pmd, haddr);
2049 VM_BUG_ON(!pte_none(*pte));
2050 set_pte_at(mm, haddr, pte, entry);
2051 pte_unmap(pte);
2053 smp_wmb(); /* make pte visible before pmd */
2054 pmd_populate(mm, pmd, pgtable);
2057 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2058 unsigned long haddr, bool freeze)
2060 struct mm_struct *mm = vma->vm_mm;
2061 struct page *page;
2062 pgtable_t pgtable;
2063 pmd_t old_pmd, _pmd;
2064 bool young, write, soft_dirty, pmd_migration = false;
2065 unsigned long addr;
2066 int i;
2068 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2069 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2070 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2071 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2072 && !pmd_devmap(*pmd));
2074 count_vm_event(THP_SPLIT_PMD);
2076 if (!vma_is_anonymous(vma)) {
2077 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2079 * We are going to unmap this huge page. So
2080 * just go ahead and zap it
2082 if (arch_needs_pgtable_deposit())
2083 zap_deposited_table(mm, pmd);
2084 if (vma_is_dax(vma))
2085 return;
2086 page = pmd_page(_pmd);
2087 if (!PageDirty(page) && pmd_dirty(_pmd))
2088 set_page_dirty(page);
2089 if (!PageReferenced(page) && pmd_young(_pmd))
2090 SetPageReferenced(page);
2091 page_remove_rmap(page, true);
2092 put_page(page);
2093 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2094 return;
2095 } else if (is_huge_zero_pmd(*pmd)) {
2097 * FIXME: Do we want to invalidate secondary mmu by calling
2098 * mmu_notifier_invalidate_range() see comments below inside
2099 * __split_huge_pmd() ?
2101 * We are going from a zero huge page write protected to zero
2102 * small page also write protected so it does not seems useful
2103 * to invalidate secondary mmu at this time.
2105 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2109 * Up to this point the pmd is present and huge and userland has the
2110 * whole access to the hugepage during the split (which happens in
2111 * place). If we overwrite the pmd with the not-huge version pointing
2112 * to the pte here (which of course we could if all CPUs were bug
2113 * free), userland could trigger a small page size TLB miss on the
2114 * small sized TLB while the hugepage TLB entry is still established in
2115 * the huge TLB. Some CPU doesn't like that.
2116 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2117 * 383 on page 93. Intel should be safe but is also warns that it's
2118 * only safe if the permission and cache attributes of the two entries
2119 * loaded in the two TLB is identical (which should be the case here).
2120 * But it is generally safer to never allow small and huge TLB entries
2121 * for the same virtual address to be loaded simultaneously. So instead
2122 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2123 * current pmd notpresent (atomically because here the pmd_trans_huge
2124 * must remain set at all times on the pmd until the split is complete
2125 * for this pmd), then we flush the SMP TLB and finally we write the
2126 * non-huge version of the pmd entry with pmd_populate.
2128 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2131 pmd_migration = is_pmd_migration_entry(old_pmd);
2132 if (pmd_migration) {
2133 swp_entry_t entry;
2135 entry = pmd_to_swp_entry(old_pmd);
2136 page = pfn_to_page(swp_offset(entry));
2137 } else
2138 #endif
2139 page = pmd_page(old_pmd);
2140 VM_BUG_ON_PAGE(!page_count(page), page);
2141 page_ref_add(page, HPAGE_PMD_NR - 1);
2142 if (pmd_dirty(old_pmd))
2143 SetPageDirty(page);
2144 write = pmd_write(old_pmd);
2145 young = pmd_young(old_pmd);
2146 soft_dirty = pmd_soft_dirty(old_pmd);
2149 * Withdraw the table only after we mark the pmd entry invalid.
2150 * This's critical for some architectures (Power).
2152 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2153 pmd_populate(mm, &_pmd, pgtable);
2155 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2156 pte_t entry, *pte;
2158 * Note that NUMA hinting access restrictions are not
2159 * transferred to avoid any possibility of altering
2160 * permissions across VMAs.
2162 if (freeze || pmd_migration) {
2163 swp_entry_t swp_entry;
2164 swp_entry = make_migration_entry(page + i, write);
2165 entry = swp_entry_to_pte(swp_entry);
2166 if (soft_dirty)
2167 entry = pte_swp_mksoft_dirty(entry);
2168 } else {
2169 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2170 entry = maybe_mkwrite(entry, vma);
2171 if (!write)
2172 entry = pte_wrprotect(entry);
2173 if (!young)
2174 entry = pte_mkold(entry);
2175 if (soft_dirty)
2176 entry = pte_mksoft_dirty(entry);
2178 pte = pte_offset_map(&_pmd, addr);
2179 BUG_ON(!pte_none(*pte));
2180 set_pte_at(mm, addr, pte, entry);
2181 atomic_inc(&page[i]._mapcount);
2182 pte_unmap(pte);
2186 * Set PG_double_map before dropping compound_mapcount to avoid
2187 * false-negative page_mapped().
2189 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2190 for (i = 0; i < HPAGE_PMD_NR; i++)
2191 atomic_inc(&page[i]._mapcount);
2194 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2195 /* Last compound_mapcount is gone. */
2196 __dec_node_page_state(page, NR_ANON_THPS);
2197 if (TestClearPageDoubleMap(page)) {
2198 /* No need in mapcount reference anymore */
2199 for (i = 0; i < HPAGE_PMD_NR; i++)
2200 atomic_dec(&page[i]._mapcount);
2204 smp_wmb(); /* make pte visible before pmd */
2205 pmd_populate(mm, pmd, pgtable);
2207 if (freeze) {
2208 for (i = 0; i < HPAGE_PMD_NR; i++) {
2209 page_remove_rmap(page + i, false);
2210 put_page(page + i);
2215 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2216 unsigned long address, bool freeze, struct page *page)
2218 spinlock_t *ptl;
2219 struct mm_struct *mm = vma->vm_mm;
2220 unsigned long haddr = address & HPAGE_PMD_MASK;
2222 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2223 ptl = pmd_lock(mm, pmd);
2226 * If caller asks to setup a migration entries, we need a page to check
2227 * pmd against. Otherwise we can end up replacing wrong page.
2229 VM_BUG_ON(freeze && !page);
2230 if (page && page != pmd_page(*pmd))
2231 goto out;
2233 if (pmd_trans_huge(*pmd)) {
2234 page = pmd_page(*pmd);
2235 if (PageMlocked(page))
2236 clear_page_mlock(page);
2237 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2238 goto out;
2239 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2240 out:
2241 spin_unlock(ptl);
2243 * No need to double call mmu_notifier->invalidate_range() callback.
2244 * They are 3 cases to consider inside __split_huge_pmd_locked():
2245 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2246 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2247 * fault will trigger a flush_notify before pointing to a new page
2248 * (it is fine if the secondary mmu keeps pointing to the old zero
2249 * page in the meantime)
2250 * 3) Split a huge pmd into pte pointing to the same page. No need
2251 * to invalidate secondary tlb entry they are all still valid.
2252 * any further changes to individual pte will notify. So no need
2253 * to call mmu_notifier->invalidate_range()
2255 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2256 HPAGE_PMD_SIZE);
2259 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2260 bool freeze, struct page *page)
2262 pgd_t *pgd;
2263 p4d_t *p4d;
2264 pud_t *pud;
2265 pmd_t *pmd;
2267 pgd = pgd_offset(vma->vm_mm, address);
2268 if (!pgd_present(*pgd))
2269 return;
2271 p4d = p4d_offset(pgd, address);
2272 if (!p4d_present(*p4d))
2273 return;
2275 pud = pud_offset(p4d, address);
2276 if (!pud_present(*pud))
2277 return;
2279 pmd = pmd_offset(pud, address);
2281 __split_huge_pmd(vma, pmd, address, freeze, page);
2284 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2285 unsigned long start,
2286 unsigned long end,
2287 long adjust_next)
2290 * If the new start address isn't hpage aligned and it could
2291 * previously contain an hugepage: check if we need to split
2292 * an huge pmd.
2294 if (start & ~HPAGE_PMD_MASK &&
2295 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2296 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2297 split_huge_pmd_address(vma, start, false, NULL);
2300 * If the new end address isn't hpage aligned and it could
2301 * previously contain an hugepage: check if we need to split
2302 * an huge pmd.
2304 if (end & ~HPAGE_PMD_MASK &&
2305 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2306 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2307 split_huge_pmd_address(vma, end, false, NULL);
2310 * If we're also updating the vma->vm_next->vm_start, if the new
2311 * vm_next->vm_start isn't page aligned and it could previously
2312 * contain an hugepage: check if we need to split an huge pmd.
2314 if (adjust_next > 0) {
2315 struct vm_area_struct *next = vma->vm_next;
2316 unsigned long nstart = next->vm_start;
2317 nstart += adjust_next << PAGE_SHIFT;
2318 if (nstart & ~HPAGE_PMD_MASK &&
2319 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2320 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2321 split_huge_pmd_address(next, nstart, false, NULL);
2325 static void freeze_page(struct page *page)
2327 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2328 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2329 bool unmap_success;
2331 VM_BUG_ON_PAGE(!PageHead(page), page);
2333 if (PageAnon(page))
2334 ttu_flags |= TTU_SPLIT_FREEZE;
2336 unmap_success = try_to_unmap(page, ttu_flags);
2337 VM_BUG_ON_PAGE(!unmap_success, page);
2340 static void unfreeze_page(struct page *page)
2342 int i;
2343 if (PageTransHuge(page)) {
2344 remove_migration_ptes(page, page, true);
2345 } else {
2346 for (i = 0; i < HPAGE_PMD_NR; i++)
2347 remove_migration_ptes(page + i, page + i, true);
2351 static void __split_huge_page_tail(struct page *head, int tail,
2352 struct lruvec *lruvec, struct list_head *list)
2354 struct page *page_tail = head + tail;
2356 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2359 * Clone page flags before unfreezing refcount.
2361 * After successful get_page_unless_zero() might follow flags change,
2362 * for exmaple lock_page() which set PG_waiters.
2364 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2365 page_tail->flags |= (head->flags &
2366 ((1L << PG_referenced) |
2367 (1L << PG_swapbacked) |
2368 (1L << PG_swapcache) |
2369 (1L << PG_mlocked) |
2370 (1L << PG_uptodate) |
2371 (1L << PG_active) |
2372 (1L << PG_locked) |
2373 (1L << PG_unevictable) |
2374 (1L << PG_dirty)));
2376 /* Page flags must be visible before we make the page non-compound. */
2377 smp_wmb();
2380 * Clear PageTail before unfreezing page refcount.
2382 * After successful get_page_unless_zero() might follow put_page()
2383 * which needs correct compound_head().
2385 clear_compound_head(page_tail);
2387 /* Finally unfreeze refcount. Additional reference from page cache. */
2388 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2389 PageSwapCache(head)));
2391 if (page_is_young(head))
2392 set_page_young(page_tail);
2393 if (page_is_idle(head))
2394 set_page_idle(page_tail);
2396 /* ->mapping in first tail page is compound_mapcount */
2397 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2398 page_tail);
2399 page_tail->mapping = head->mapping;
2401 page_tail->index = head->index + tail;
2402 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2405 * always add to the tail because some iterators expect new
2406 * pages to show after the currently processed elements - e.g.
2407 * migrate_pages
2409 lru_add_page_tail(head, page_tail, lruvec, list);
2412 static void __split_huge_page(struct page *page, struct list_head *list,
2413 unsigned long flags)
2415 struct page *head = compound_head(page);
2416 struct zone *zone = page_zone(head);
2417 struct lruvec *lruvec;
2418 pgoff_t end = -1;
2419 int i;
2421 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423 /* complete memcg works before add pages to LRU */
2424 mem_cgroup_split_huge_fixup(head);
2426 if (!PageAnon(page))
2427 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2430 __split_huge_page_tail(head, i, lruvec, list);
2431 /* Some pages can be beyond i_size: drop them from page cache */
2432 if (head[i].index >= end) {
2433 ClearPageDirty(head + i);
2434 __delete_from_page_cache(head + i, NULL);
2435 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2436 shmem_uncharge(head->mapping->host, 1);
2437 put_page(head + i);
2441 ClearPageCompound(head);
2442 /* See comment in __split_huge_page_tail() */
2443 if (PageAnon(head)) {
2444 /* Additional pin to radix tree of swap cache */
2445 if (PageSwapCache(head))
2446 page_ref_add(head, 2);
2447 else
2448 page_ref_inc(head);
2449 } else {
2450 /* Additional pin to radix tree */
2451 page_ref_add(head, 2);
2452 xa_unlock(&head->mapping->i_pages);
2455 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457 unfreeze_page(head);
2459 for (i = 0; i < HPAGE_PMD_NR; i++) {
2460 struct page *subpage = head + i;
2461 if (subpage == page)
2462 continue;
2463 unlock_page(subpage);
2466 * Subpages may be freed if there wasn't any mapping
2467 * like if add_to_swap() is running on a lru page that
2468 * had its mapping zapped. And freeing these pages
2469 * requires taking the lru_lock so we do the put_page
2470 * of the tail pages after the split is complete.
2472 put_page(subpage);
2476 int total_mapcount(struct page *page)
2478 int i, compound, ret;
2480 VM_BUG_ON_PAGE(PageTail(page), page);
2482 if (likely(!PageCompound(page)))
2483 return atomic_read(&page->_mapcount) + 1;
2485 compound = compound_mapcount(page);
2486 if (PageHuge(page))
2487 return compound;
2488 ret = compound;
2489 for (i = 0; i < HPAGE_PMD_NR; i++)
2490 ret += atomic_read(&page[i]._mapcount) + 1;
2491 /* File pages has compound_mapcount included in _mapcount */
2492 if (!PageAnon(page))
2493 return ret - compound * HPAGE_PMD_NR;
2494 if (PageDoubleMap(page))
2495 ret -= HPAGE_PMD_NR;
2496 return ret;
2500 * This calculates accurately how many mappings a transparent hugepage
2501 * has (unlike page_mapcount() which isn't fully accurate). This full
2502 * accuracy is primarily needed to know if copy-on-write faults can
2503 * reuse the page and change the mapping to read-write instead of
2504 * copying them. At the same time this returns the total_mapcount too.
2506 * The function returns the highest mapcount any one of the subpages
2507 * has. If the return value is one, even if different processes are
2508 * mapping different subpages of the transparent hugepage, they can
2509 * all reuse it, because each process is reusing a different subpage.
2511 * The total_mapcount is instead counting all virtual mappings of the
2512 * subpages. If the total_mapcount is equal to "one", it tells the
2513 * caller all mappings belong to the same "mm" and in turn the
2514 * anon_vma of the transparent hugepage can become the vma->anon_vma
2515 * local one as no other process may be mapping any of the subpages.
2517 * It would be more accurate to replace page_mapcount() with
2518 * page_trans_huge_mapcount(), however we only use
2519 * page_trans_huge_mapcount() in the copy-on-write faults where we
2520 * need full accuracy to avoid breaking page pinning, because
2521 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525 int i, ret, _total_mapcount, mapcount;
2527 /* hugetlbfs shouldn't call it */
2528 VM_BUG_ON_PAGE(PageHuge(page), page);
2530 if (likely(!PageTransCompound(page))) {
2531 mapcount = atomic_read(&page->_mapcount) + 1;
2532 if (total_mapcount)
2533 *total_mapcount = mapcount;
2534 return mapcount;
2537 page = compound_head(page);
2539 _total_mapcount = ret = 0;
2540 for (i = 0; i < HPAGE_PMD_NR; i++) {
2541 mapcount = atomic_read(&page[i]._mapcount) + 1;
2542 ret = max(ret, mapcount);
2543 _total_mapcount += mapcount;
2545 if (PageDoubleMap(page)) {
2546 ret -= 1;
2547 _total_mapcount -= HPAGE_PMD_NR;
2549 mapcount = compound_mapcount(page);
2550 ret += mapcount;
2551 _total_mapcount += mapcount;
2552 if (total_mapcount)
2553 *total_mapcount = _total_mapcount;
2554 return ret;
2557 /* Racy check whether the huge page can be split */
2558 bool can_split_huge_page(struct page *page, int *pextra_pins)
2560 int extra_pins;
2562 /* Additional pins from radix tree */
2563 if (PageAnon(page))
2564 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2565 else
2566 extra_pins = HPAGE_PMD_NR;
2567 if (pextra_pins)
2568 *pextra_pins = extra_pins;
2569 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2573 * This function splits huge page into normal pages. @page can point to any
2574 * subpage of huge page to split. Split doesn't change the position of @page.
2576 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2577 * The huge page must be locked.
2579 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 * Both head page and tail pages will inherit mapping, flags, and so on from
2582 * the hugepage.
2584 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2585 * they are not mapped.
2587 * Returns 0 if the hugepage is split successfully.
2588 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2589 * us.
2591 int split_huge_page_to_list(struct page *page, struct list_head *list)
2593 struct page *head = compound_head(page);
2594 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2595 struct anon_vma *anon_vma = NULL;
2596 struct address_space *mapping = NULL;
2597 int count, mapcount, extra_pins, ret;
2598 bool mlocked;
2599 unsigned long flags;
2601 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2602 VM_BUG_ON_PAGE(!PageLocked(page), page);
2603 VM_BUG_ON_PAGE(!PageCompound(page), page);
2605 if (PageWriteback(page))
2606 return -EBUSY;
2608 if (PageAnon(head)) {
2610 * The caller does not necessarily hold an mmap_sem that would
2611 * prevent the anon_vma disappearing so we first we take a
2612 * reference to it and then lock the anon_vma for write. This
2613 * is similar to page_lock_anon_vma_read except the write lock
2614 * is taken to serialise against parallel split or collapse
2615 * operations.
2617 anon_vma = page_get_anon_vma(head);
2618 if (!anon_vma) {
2619 ret = -EBUSY;
2620 goto out;
2622 mapping = NULL;
2623 anon_vma_lock_write(anon_vma);
2624 } else {
2625 mapping = head->mapping;
2627 /* Truncated ? */
2628 if (!mapping) {
2629 ret = -EBUSY;
2630 goto out;
2633 anon_vma = NULL;
2634 i_mmap_lock_read(mapping);
2638 * Racy check if we can split the page, before freeze_page() will
2639 * split PMDs
2641 if (!can_split_huge_page(head, &extra_pins)) {
2642 ret = -EBUSY;
2643 goto out_unlock;
2646 mlocked = PageMlocked(page);
2647 freeze_page(head);
2648 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2651 if (mlocked)
2652 lru_add_drain();
2654 /* prevent PageLRU to go away from under us, and freeze lru stats */
2655 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657 if (mapping) {
2658 void **pslot;
2660 xa_lock(&mapping->i_pages);
2661 pslot = radix_tree_lookup_slot(&mapping->i_pages,
2662 page_index(head));
2664 * Check if the head page is present in radix tree.
2665 * We assume all tail are present too, if head is there.
2667 if (radix_tree_deref_slot_protected(pslot,
2668 &mapping->i_pages.xa_lock) != head)
2669 goto fail;
2672 /* Prevent deferred_split_scan() touching ->_refcount */
2673 spin_lock(&pgdata->split_queue_lock);
2674 count = page_count(head);
2675 mapcount = total_mapcount(head);
2676 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2677 if (!list_empty(page_deferred_list(head))) {
2678 pgdata->split_queue_len--;
2679 list_del(page_deferred_list(head));
2681 if (mapping)
2682 __dec_node_page_state(page, NR_SHMEM_THPS);
2683 spin_unlock(&pgdata->split_queue_lock);
2684 __split_huge_page(page, list, flags);
2685 if (PageSwapCache(head)) {
2686 swp_entry_t entry = { .val = page_private(head) };
2688 ret = split_swap_cluster(entry);
2689 } else
2690 ret = 0;
2691 } else {
2692 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2693 pr_alert("total_mapcount: %u, page_count(): %u\n",
2694 mapcount, count);
2695 if (PageTail(page))
2696 dump_page(head, NULL);
2697 dump_page(page, "total_mapcount(head) > 0");
2698 BUG();
2700 spin_unlock(&pgdata->split_queue_lock);
2701 fail: if (mapping)
2702 xa_unlock(&mapping->i_pages);
2703 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2704 unfreeze_page(head);
2705 ret = -EBUSY;
2708 out_unlock:
2709 if (anon_vma) {
2710 anon_vma_unlock_write(anon_vma);
2711 put_anon_vma(anon_vma);
2713 if (mapping)
2714 i_mmap_unlock_read(mapping);
2715 out:
2716 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2717 return ret;
2720 void free_transhuge_page(struct page *page)
2722 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2723 unsigned long flags;
2725 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2726 if (!list_empty(page_deferred_list(page))) {
2727 pgdata->split_queue_len--;
2728 list_del(page_deferred_list(page));
2730 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2731 free_compound_page(page);
2734 void deferred_split_huge_page(struct page *page)
2736 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2737 unsigned long flags;
2739 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2742 if (list_empty(page_deferred_list(page))) {
2743 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2744 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2745 pgdata->split_queue_len++;
2747 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2750 static unsigned long deferred_split_count(struct shrinker *shrink,
2751 struct shrink_control *sc)
2753 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2754 return READ_ONCE(pgdata->split_queue_len);
2757 static unsigned long deferred_split_scan(struct shrinker *shrink,
2758 struct shrink_control *sc)
2760 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2761 unsigned long flags;
2762 LIST_HEAD(list), *pos, *next;
2763 struct page *page;
2764 int split = 0;
2766 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2767 /* Take pin on all head pages to avoid freeing them under us */
2768 list_for_each_safe(pos, next, &pgdata->split_queue) {
2769 page = list_entry((void *)pos, struct page, mapping);
2770 page = compound_head(page);
2771 if (get_page_unless_zero(page)) {
2772 list_move(page_deferred_list(page), &list);
2773 } else {
2774 /* We lost race with put_compound_page() */
2775 list_del_init(page_deferred_list(page));
2776 pgdata->split_queue_len--;
2778 if (!--sc->nr_to_scan)
2779 break;
2781 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783 list_for_each_safe(pos, next, &list) {
2784 page = list_entry((void *)pos, struct page, mapping);
2785 if (!trylock_page(page))
2786 goto next;
2787 /* split_huge_page() removes page from list on success */
2788 if (!split_huge_page(page))
2789 split++;
2790 unlock_page(page);
2791 next:
2792 put_page(page);
2795 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2796 list_splice_tail(&list, &pgdata->split_queue);
2797 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2800 * Stop shrinker if we didn't split any page, but the queue is empty.
2801 * This can happen if pages were freed under us.
2803 if (!split && list_empty(&pgdata->split_queue))
2804 return SHRINK_STOP;
2805 return split;
2808 static struct shrinker deferred_split_shrinker = {
2809 .count_objects = deferred_split_count,
2810 .scan_objects = deferred_split_scan,
2811 .seeks = DEFAULT_SEEKS,
2812 .flags = SHRINKER_NUMA_AWARE,
2815 #ifdef CONFIG_DEBUG_FS
2816 static int split_huge_pages_set(void *data, u64 val)
2818 struct zone *zone;
2819 struct page *page;
2820 unsigned long pfn, max_zone_pfn;
2821 unsigned long total = 0, split = 0;
2823 if (val != 1)
2824 return -EINVAL;
2826 for_each_populated_zone(zone) {
2827 max_zone_pfn = zone_end_pfn(zone);
2828 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2829 if (!pfn_valid(pfn))
2830 continue;
2832 page = pfn_to_page(pfn);
2833 if (!get_page_unless_zero(page))
2834 continue;
2836 if (zone != page_zone(page))
2837 goto next;
2839 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2840 goto next;
2842 total++;
2843 lock_page(page);
2844 if (!split_huge_page(page))
2845 split++;
2846 unlock_page(page);
2847 next:
2848 put_page(page);
2852 pr_info("%lu of %lu THP split\n", split, total);
2854 return 0;
2856 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2857 "%llu\n");
2859 static int __init split_huge_pages_debugfs(void)
2861 void *ret;
2863 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2864 &split_huge_pages_fops);
2865 if (!ret)
2866 pr_warn("Failed to create split_huge_pages in debugfs");
2867 return 0;
2869 late_initcall(split_huge_pages_debugfs);
2870 #endif
2872 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2873 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2874 struct page *page)
2876 struct vm_area_struct *vma = pvmw->vma;
2877 struct mm_struct *mm = vma->vm_mm;
2878 unsigned long address = pvmw->address;
2879 pmd_t pmdval;
2880 swp_entry_t entry;
2881 pmd_t pmdswp;
2883 if (!(pvmw->pmd && !pvmw->pte))
2884 return;
2886 mmu_notifier_invalidate_range_start(mm, address,
2887 address + HPAGE_PMD_SIZE);
2889 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2890 pmdval = *pvmw->pmd;
2891 pmdp_invalidate(vma, address, pvmw->pmd);
2892 if (pmd_dirty(pmdval))
2893 set_page_dirty(page);
2894 entry = make_migration_entry(page, pmd_write(pmdval));
2895 pmdswp = swp_entry_to_pmd(entry);
2896 if (pmd_soft_dirty(pmdval))
2897 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2898 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2899 page_remove_rmap(page, true);
2900 put_page(page);
2902 mmu_notifier_invalidate_range_end(mm, address,
2903 address + HPAGE_PMD_SIZE);
2906 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2908 struct vm_area_struct *vma = pvmw->vma;
2909 struct mm_struct *mm = vma->vm_mm;
2910 unsigned long address = pvmw->address;
2911 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2912 pmd_t pmde;
2913 swp_entry_t entry;
2915 if (!(pvmw->pmd && !pvmw->pte))
2916 return;
2918 entry = pmd_to_swp_entry(*pvmw->pmd);
2919 get_page(new);
2920 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2921 if (pmd_swp_soft_dirty(*pvmw->pmd))
2922 pmde = pmd_mksoft_dirty(pmde);
2923 if (is_write_migration_entry(entry))
2924 pmde = maybe_pmd_mkwrite(pmde, vma);
2926 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2927 if (PageAnon(new))
2928 page_add_anon_rmap(new, vma, mmun_start, true);
2929 else
2930 page_add_file_rmap(new, true);
2931 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2932 if (vma->vm_flags & VM_LOCKED)
2933 mlock_vma_page(new);
2934 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2936 #endif