2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 static struct page
*get_huge_zero_page(void)
67 struct page
*zero_page
;
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
70 return READ_ONCE(huge_zero_page
);
72 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
78 count_vm_event(THP_ZERO_PAGE_ALLOC
);
80 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
82 __free_pages(zero_page
, compound_order(zero_page
));
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount
, 2);
89 return READ_ONCE(huge_zero_page
);
92 static void put_huge_zero_page(void)
95 * Counter should never go to zero here. Only shrinker can put
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
101 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
103 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
104 return READ_ONCE(huge_zero_page
);
106 if (!get_huge_zero_page())
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
110 put_huge_zero_page();
112 return READ_ONCE(huge_zero_page
);
115 void mm_put_huge_zero_page(struct mm_struct
*mm
)
117 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
118 put_huge_zero_page();
121 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
122 struct shrink_control
*sc
)
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
129 struct shrink_control
*sc
)
131 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
132 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
133 BUG_ON(zero_page
== NULL
);
134 __free_pages(zero_page
, compound_order(zero_page
));
141 static struct shrinker huge_zero_page_shrinker
= {
142 .count_objects
= shrink_huge_zero_page_count
,
143 .scan_objects
= shrink_huge_zero_page_scan
,
144 .seeks
= DEFAULT_SEEKS
,
148 static ssize_t
enabled_show(struct kobject
*kobj
,
149 struct kobj_attribute
*attr
, char *buf
)
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
152 return sprintf(buf
, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
154 return sprintf(buf
, "always [madvise] never\n");
156 return sprintf(buf
, "always madvise [never]\n");
159 static ssize_t
enabled_store(struct kobject
*kobj
,
160 struct kobj_attribute
*attr
,
161 const char *buf
, size_t count
)
165 if (!memcmp("always", buf
,
166 min(sizeof("always")-1, count
))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
169 } else if (!memcmp("madvise", buf
,
170 min(sizeof("madvise")-1, count
))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
173 } else if (!memcmp("never", buf
,
174 min(sizeof("never")-1, count
))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
181 int err
= start_stop_khugepaged();
187 static struct kobj_attribute enabled_attr
=
188 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
190 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
191 struct kobj_attribute
*attr
, char *buf
,
192 enum transparent_hugepage_flag flag
)
194 return sprintf(buf
, "%d\n",
195 !!test_bit(flag
, &transparent_hugepage_flags
));
198 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
199 struct kobj_attribute
*attr
,
200 const char *buf
, size_t count
,
201 enum transparent_hugepage_flag flag
)
206 ret
= kstrtoul(buf
, 10, &value
);
213 set_bit(flag
, &transparent_hugepage_flags
);
215 clear_bit(flag
, &transparent_hugepage_flags
);
220 static ssize_t
defrag_show(struct kobject
*kobj
,
221 struct kobj_attribute
*attr
, char *buf
)
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
224 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
226 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
228 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
230 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
234 static ssize_t
defrag_store(struct kobject
*kobj
,
235 struct kobj_attribute
*attr
,
236 const char *buf
, size_t count
)
238 if (!memcmp("always", buf
,
239 min(sizeof("always")-1, count
))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
244 } else if (!memcmp("defer+madvise", buf
,
245 min(sizeof("defer+madvise")-1, count
))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
250 } else if (!memcmp("defer", buf
,
251 min(sizeof("defer")-1, count
))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
256 } else if (!memcmp("madvise", buf
,
257 min(sizeof("madvise")-1, count
))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
262 } else if (!memcmp("never", buf
,
263 min(sizeof("never")-1, count
))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
273 static struct kobj_attribute defrag_attr
=
274 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
276 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
277 struct kobj_attribute
*attr
, char *buf
)
279 return single_hugepage_flag_show(kobj
, attr
, buf
,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
282 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
283 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
285 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
288 static struct kobj_attribute use_zero_page_attr
=
289 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
291 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
292 struct kobj_attribute
*attr
, char *buf
)
294 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
296 static struct kobj_attribute hpage_pmd_size_attr
=
297 __ATTR_RO(hpage_pmd_size
);
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t
debug_cow_show(struct kobject
*kobj
,
301 struct kobj_attribute
*attr
, char *buf
)
303 return single_hugepage_flag_show(kobj
, attr
, buf
,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
306 static ssize_t
debug_cow_store(struct kobject
*kobj
,
307 struct kobj_attribute
*attr
,
308 const char *buf
, size_t count
)
310 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
313 static struct kobj_attribute debug_cow_attr
=
314 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
315 #endif /* CONFIG_DEBUG_VM */
317 static struct attribute
*hugepage_attr
[] = {
320 &use_zero_page_attr
.attr
,
321 &hpage_pmd_size_attr
.attr
,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr
.attr
,
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr
.attr
,
331 static const struct attribute_group hugepage_attr_group
= {
332 .attrs
= hugepage_attr
,
335 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
339 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
340 if (unlikely(!*hugepage_kobj
)) {
341 pr_err("failed to create transparent hugepage kobject\n");
345 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
347 pr_err("failed to register transparent hugepage group\n");
351 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group
;
360 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
362 kobject_put(*hugepage_kobj
);
366 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
368 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
369 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
370 kobject_put(hugepage_kobj
);
373 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
378 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
381 #endif /* CONFIG_SYSFS */
383 static int __init
hugepage_init(void)
386 struct kobject
*hugepage_kobj
;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags
= 0;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
403 err
= hugepage_init_sysfs(&hugepage_kobj
);
407 err
= khugepaged_init();
411 err
= register_shrinker(&huge_zero_page_shrinker
);
413 goto err_hzp_shrinker
;
414 err
= register_shrinker(&deferred_split_shrinker
);
416 goto err_split_shrinker
;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
))) {
424 transparent_hugepage_flags
= 0;
428 err
= start_stop_khugepaged();
434 unregister_shrinker(&deferred_split_shrinker
);
436 unregister_shrinker(&huge_zero_page_shrinker
);
438 khugepaged_destroy();
440 hugepage_exit_sysfs(hugepage_kobj
);
444 subsys_initcall(hugepage_init
);
446 static int __init
setup_transparent_hugepage(char *str
)
451 if (!strcmp(str
, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
453 &transparent_hugepage_flags
);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
455 &transparent_hugepage_flags
);
457 } else if (!strcmp(str
, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
459 &transparent_hugepage_flags
);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
461 &transparent_hugepage_flags
);
463 } else if (!strcmp(str
, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
465 &transparent_hugepage_flags
);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
467 &transparent_hugepage_flags
);
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
475 __setup("transparent_hugepage=", setup_transparent_hugepage
);
477 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
479 if (likely(vma
->vm_flags
& VM_WRITE
))
480 pmd
= pmd_mkwrite(pmd
);
484 static inline struct list_head
*page_deferred_list(struct page
*page
)
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page
[2].deferred_list
;
490 void prep_transhuge_page(struct page
*page
)
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
497 INIT_LIST_HEAD(page_deferred_list(page
));
498 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
501 unsigned long __thp_get_unmapped_area(struct file
*filp
, unsigned long len
,
502 loff_t off
, unsigned long flags
, unsigned long size
)
505 loff_t off_end
= off
+ len
;
506 loff_t off_align
= round_up(off
, size
);
507 unsigned long len_pad
;
509 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
512 len_pad
= len
+ size
;
513 if (len_pad
< len
|| (off
+ len_pad
) < off
)
516 addr
= current
->mm
->get_unmapped_area(filp
, 0, len_pad
,
517 off
>> PAGE_SHIFT
, flags
);
518 if (IS_ERR_VALUE(addr
))
521 addr
+= (off
- addr
) & (size
- 1);
525 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
526 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
528 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
532 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
535 addr
= __thp_get_unmapped_area(filp
, len
, off
, flags
, PMD_SIZE
);
540 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
544 static int __do_huge_pmd_anonymous_page(struct vm_fault
*vmf
, struct page
*page
,
547 struct vm_area_struct
*vma
= vmf
->vma
;
548 struct mem_cgroup
*memcg
;
550 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
553 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
555 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
557 count_vm_event(THP_FAULT_FALLBACK
);
558 return VM_FAULT_FALLBACK
;
561 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
562 if (unlikely(!pgtable
)) {
567 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
573 __SetPageUptodate(page
);
575 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
576 if (unlikely(!pmd_none(*vmf
->pmd
))) {
581 ret
= check_stable_address_space(vma
->vm_mm
);
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma
)) {
589 spin_unlock(vmf
->ptl
);
590 mem_cgroup_cancel_charge(page
, memcg
, true);
592 pte_free(vma
->vm_mm
, pgtable
);
593 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
594 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
598 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
599 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
600 page_add_new_anon_rmap(page
, vma
, haddr
, true);
601 mem_cgroup_commit_charge(page
, memcg
, false, true);
602 lru_cache_add_active_or_unevictable(page
, vma
);
603 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
604 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
605 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
606 mm_inc_nr_ptes(vma
->vm_mm
);
607 spin_unlock(vmf
->ptl
);
608 count_vm_event(THP_FAULT_ALLOC
);
613 spin_unlock(vmf
->ptl
);
616 pte_free(vma
->vm_mm
, pgtable
);
617 mem_cgroup_cancel_charge(page
, memcg
, true);
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
630 * never: never stall for any thp allocation
632 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
634 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
636 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
637 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
638 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
639 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
640 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
641 return GFP_TRANSHUGE_LIGHT
| (vma_madvised
? __GFP_DIRECT_RECLAIM
:
642 __GFP_KSWAPD_RECLAIM
);
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
644 return GFP_TRANSHUGE_LIGHT
| (vma_madvised
? __GFP_DIRECT_RECLAIM
:
646 return GFP_TRANSHUGE_LIGHT
;
649 /* Caller must hold page table lock. */
650 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
651 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
652 struct page
*zero_page
)
657 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
658 entry
= pmd_mkhuge(entry
);
660 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
661 set_pmd_at(mm
, haddr
, pmd
, entry
);
666 int do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
668 struct vm_area_struct
*vma
= vmf
->vma
;
671 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
673 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
674 return VM_FAULT_FALLBACK
;
675 if (unlikely(anon_vma_prepare(vma
)))
677 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
679 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
680 !mm_forbids_zeropage(vma
->vm_mm
) &&
681 transparent_hugepage_use_zero_page()) {
683 struct page
*zero_page
;
686 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
687 if (unlikely(!pgtable
))
689 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
690 if (unlikely(!zero_page
)) {
691 pte_free(vma
->vm_mm
, pgtable
);
692 count_vm_event(THP_FAULT_FALLBACK
);
693 return VM_FAULT_FALLBACK
;
695 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
698 if (pmd_none(*vmf
->pmd
)) {
699 ret
= check_stable_address_space(vma
->vm_mm
);
701 spin_unlock(vmf
->ptl
);
702 } else if (userfaultfd_missing(vma
)) {
703 spin_unlock(vmf
->ptl
);
704 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
705 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
707 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
708 haddr
, vmf
->pmd
, zero_page
);
709 spin_unlock(vmf
->ptl
);
713 spin_unlock(vmf
->ptl
);
715 pte_free(vma
->vm_mm
, pgtable
);
718 gfp
= alloc_hugepage_direct_gfpmask(vma
);
719 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
720 if (unlikely(!page
)) {
721 count_vm_event(THP_FAULT_FALLBACK
);
722 return VM_FAULT_FALLBACK
;
724 prep_transhuge_page(page
);
725 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
728 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
729 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
732 struct mm_struct
*mm
= vma
->vm_mm
;
736 ptl
= pmd_lock(mm
, pmd
);
737 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
738 if (pfn_t_devmap(pfn
))
739 entry
= pmd_mkdevmap(entry
);
741 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
742 entry
= maybe_pmd_mkwrite(entry
, vma
);
746 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
750 set_pmd_at(mm
, addr
, pmd
, entry
);
751 update_mmu_cache_pmd(vma
, addr
, pmd
);
755 int vmf_insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
756 pmd_t
*pmd
, pfn_t pfn
, bool write
)
758 pgprot_t pgprot
= vma
->vm_page_prot
;
759 pgtable_t pgtable
= NULL
;
761 * If we had pmd_special, we could avoid all these restrictions,
762 * but we need to be consistent with PTEs and architectures that
763 * can't support a 'special' bit.
765 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
766 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
767 (VM_PFNMAP
|VM_MIXEDMAP
));
768 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
769 BUG_ON(!pfn_t_devmap(pfn
));
771 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
772 return VM_FAULT_SIGBUS
;
774 if (arch_needs_pgtable_deposit()) {
775 pgtable
= pte_alloc_one(vma
->vm_mm
, addr
);
780 track_pfn_insert(vma
, &pgprot
, pfn
);
782 insert_pfn_pmd(vma
, addr
, pmd
, pfn
, pgprot
, write
, pgtable
);
783 return VM_FAULT_NOPAGE
;
785 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
787 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
788 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
790 if (likely(vma
->vm_flags
& VM_WRITE
))
791 pud
= pud_mkwrite(pud
);
795 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
796 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
798 struct mm_struct
*mm
= vma
->vm_mm
;
802 ptl
= pud_lock(mm
, pud
);
803 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
804 if (pfn_t_devmap(pfn
))
805 entry
= pud_mkdevmap(entry
);
807 entry
= pud_mkyoung(pud_mkdirty(entry
));
808 entry
= maybe_pud_mkwrite(entry
, vma
);
810 set_pud_at(mm
, addr
, pud
, entry
);
811 update_mmu_cache_pud(vma
, addr
, pud
);
815 int vmf_insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
816 pud_t
*pud
, pfn_t pfn
, bool write
)
818 pgprot_t pgprot
= vma
->vm_page_prot
;
820 * If we had pud_special, we could avoid all these restrictions,
821 * but we need to be consistent with PTEs and architectures that
822 * can't support a 'special' bit.
824 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
825 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
826 (VM_PFNMAP
|VM_MIXEDMAP
));
827 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
828 BUG_ON(!pfn_t_devmap(pfn
));
830 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
831 return VM_FAULT_SIGBUS
;
833 track_pfn_insert(vma
, &pgprot
, pfn
);
835 insert_pfn_pud(vma
, addr
, pud
, pfn
, pgprot
, write
);
836 return VM_FAULT_NOPAGE
;
838 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud
);
839 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
841 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
842 pmd_t
*pmd
, int flags
)
846 _pmd
= pmd_mkyoung(*pmd
);
847 if (flags
& FOLL_WRITE
)
848 _pmd
= pmd_mkdirty(_pmd
);
849 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
850 pmd
, _pmd
, flags
& FOLL_WRITE
))
851 update_mmu_cache_pmd(vma
, addr
, pmd
);
854 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
855 pmd_t
*pmd
, int flags
)
857 unsigned long pfn
= pmd_pfn(*pmd
);
858 struct mm_struct
*mm
= vma
->vm_mm
;
859 struct dev_pagemap
*pgmap
;
862 assert_spin_locked(pmd_lockptr(mm
, pmd
));
865 * When we COW a devmap PMD entry, we split it into PTEs, so we should
866 * not be in this function with `flags & FOLL_COW` set.
868 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
870 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
873 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
878 if (flags
& FOLL_TOUCH
)
879 touch_pmd(vma
, addr
, pmd
, flags
);
882 * device mapped pages can only be returned if the
883 * caller will manage the page reference count.
885 if (!(flags
& FOLL_GET
))
886 return ERR_PTR(-EEXIST
);
888 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
889 pgmap
= get_dev_pagemap(pfn
, NULL
);
891 return ERR_PTR(-EFAULT
);
892 page
= pfn_to_page(pfn
);
894 put_dev_pagemap(pgmap
);
899 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
900 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
901 struct vm_area_struct
*vma
)
903 spinlock_t
*dst_ptl
, *src_ptl
;
904 struct page
*src_page
;
906 pgtable_t pgtable
= NULL
;
909 /* Skip if can be re-fill on fault */
910 if (!vma_is_anonymous(vma
))
913 pgtable
= pte_alloc_one(dst_mm
, addr
);
914 if (unlikely(!pgtable
))
917 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
918 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
919 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
924 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
925 if (unlikely(is_swap_pmd(pmd
))) {
926 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
928 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
929 if (is_write_migration_entry(entry
)) {
930 make_migration_entry_read(&entry
);
931 pmd
= swp_entry_to_pmd(entry
);
932 if (pmd_swp_soft_dirty(*src_pmd
))
933 pmd
= pmd_swp_mksoft_dirty(pmd
);
934 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
936 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
937 mm_inc_nr_ptes(dst_mm
);
938 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
939 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
945 if (unlikely(!pmd_trans_huge(pmd
))) {
946 pte_free(dst_mm
, pgtable
);
950 * When page table lock is held, the huge zero pmd should not be
951 * under splitting since we don't split the page itself, only pmd to
954 if (is_huge_zero_pmd(pmd
)) {
955 struct page
*zero_page
;
957 * get_huge_zero_page() will never allocate a new page here,
958 * since we already have a zero page to copy. It just takes a
961 zero_page
= mm_get_huge_zero_page(dst_mm
);
962 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
968 src_page
= pmd_page(pmd
);
969 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
971 page_dup_rmap(src_page
, true);
972 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
973 mm_inc_nr_ptes(dst_mm
);
974 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
976 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
977 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
978 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
982 spin_unlock(src_ptl
);
983 spin_unlock(dst_ptl
);
988 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
989 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
990 pud_t
*pud
, int flags
)
994 _pud
= pud_mkyoung(*pud
);
995 if (flags
& FOLL_WRITE
)
996 _pud
= pud_mkdirty(_pud
);
997 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
998 pud
, _pud
, flags
& FOLL_WRITE
))
999 update_mmu_cache_pud(vma
, addr
, pud
);
1002 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1003 pud_t
*pud
, int flags
)
1005 unsigned long pfn
= pud_pfn(*pud
);
1006 struct mm_struct
*mm
= vma
->vm_mm
;
1007 struct dev_pagemap
*pgmap
;
1010 assert_spin_locked(pud_lockptr(mm
, pud
));
1012 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1015 if (pud_present(*pud
) && pud_devmap(*pud
))
1020 if (flags
& FOLL_TOUCH
)
1021 touch_pud(vma
, addr
, pud
, flags
);
1024 * device mapped pages can only be returned if the
1025 * caller will manage the page reference count.
1027 if (!(flags
& FOLL_GET
))
1028 return ERR_PTR(-EEXIST
);
1030 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1031 pgmap
= get_dev_pagemap(pfn
, NULL
);
1033 return ERR_PTR(-EFAULT
);
1034 page
= pfn_to_page(pfn
);
1036 put_dev_pagemap(pgmap
);
1041 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1042 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1043 struct vm_area_struct
*vma
)
1045 spinlock_t
*dst_ptl
, *src_ptl
;
1049 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1050 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1051 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1055 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1059 * When page table lock is held, the huge zero pud should not be
1060 * under splitting since we don't split the page itself, only pud to
1063 if (is_huge_zero_pud(pud
)) {
1064 /* No huge zero pud yet */
1067 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1068 pud
= pud_mkold(pud_wrprotect(pud
));
1069 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1073 spin_unlock(src_ptl
);
1074 spin_unlock(dst_ptl
);
1078 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1081 unsigned long haddr
;
1082 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1084 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1085 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1088 entry
= pud_mkyoung(orig_pud
);
1090 entry
= pud_mkdirty(entry
);
1091 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1092 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1093 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1096 spin_unlock(vmf
->ptl
);
1098 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1100 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1103 unsigned long haddr
;
1104 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1106 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1107 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1110 entry
= pmd_mkyoung(orig_pmd
);
1112 entry
= pmd_mkdirty(entry
);
1113 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1114 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1115 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1118 spin_unlock(vmf
->ptl
);
1121 static int do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
, pmd_t orig_pmd
,
1124 struct vm_area_struct
*vma
= vmf
->vma
;
1125 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1126 struct mem_cgroup
*memcg
;
1130 struct page
**pages
;
1131 unsigned long mmun_start
; /* For mmu_notifiers */
1132 unsigned long mmun_end
; /* For mmu_notifiers */
1134 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1136 if (unlikely(!pages
)) {
1137 ret
|= VM_FAULT_OOM
;
1141 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1142 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1143 vmf
->address
, page_to_nid(page
));
1144 if (unlikely(!pages
[i
] ||
1145 mem_cgroup_try_charge(pages
[i
], vma
->vm_mm
,
1146 GFP_KERNEL
, &memcg
, false))) {
1150 memcg
= (void *)page_private(pages
[i
]);
1151 set_page_private(pages
[i
], 0);
1152 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1157 ret
|= VM_FAULT_OOM
;
1160 set_page_private(pages
[i
], (unsigned long)memcg
);
1163 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1164 copy_user_highpage(pages
[i
], page
+ i
,
1165 haddr
+ PAGE_SIZE
* i
, vma
);
1166 __SetPageUptodate(pages
[i
]);
1171 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1172 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
1174 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1175 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1176 goto out_free_pages
;
1177 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1180 * Leave pmd empty until pte is filled note we must notify here as
1181 * concurrent CPU thread might write to new page before the call to
1182 * mmu_notifier_invalidate_range_end() happens which can lead to a
1183 * device seeing memory write in different order than CPU.
1185 * See Documentation/vm/mmu_notifier.rst
1187 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1189 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1190 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1192 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1194 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1195 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1196 memcg
= (void *)page_private(pages
[i
]);
1197 set_page_private(pages
[i
], 0);
1198 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1199 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1200 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1201 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1202 VM_BUG_ON(!pte_none(*vmf
->pte
));
1203 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1204 pte_unmap(vmf
->pte
);
1208 smp_wmb(); /* make pte visible before pmd */
1209 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1210 page_remove_rmap(page
, true);
1211 spin_unlock(vmf
->ptl
);
1214 * No need to double call mmu_notifier->invalidate_range() callback as
1215 * the above pmdp_huge_clear_flush_notify() did already call it.
1217 mmu_notifier_invalidate_range_only_end(vma
->vm_mm
, mmun_start
,
1220 ret
|= VM_FAULT_WRITE
;
1227 spin_unlock(vmf
->ptl
);
1228 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
1229 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1230 memcg
= (void *)page_private(pages
[i
]);
1231 set_page_private(pages
[i
], 0);
1232 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1239 int do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1241 struct vm_area_struct
*vma
= vmf
->vma
;
1242 struct page
*page
= NULL
, *new_page
;
1243 struct mem_cgroup
*memcg
;
1244 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1245 unsigned long mmun_start
; /* For mmu_notifiers */
1246 unsigned long mmun_end
; /* For mmu_notifiers */
1247 gfp_t huge_gfp
; /* for allocation and charge */
1250 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1251 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1252 if (is_huge_zero_pmd(orig_pmd
))
1254 spin_lock(vmf
->ptl
);
1255 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1258 page
= pmd_page(orig_pmd
);
1259 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1261 * We can only reuse the page if nobody else maps the huge page or it's
1264 if (!trylock_page(page
)) {
1266 spin_unlock(vmf
->ptl
);
1268 spin_lock(vmf
->ptl
);
1269 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1276 if (reuse_swap_page(page
, NULL
)) {
1278 entry
= pmd_mkyoung(orig_pmd
);
1279 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1280 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1281 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1282 ret
|= VM_FAULT_WRITE
;
1288 spin_unlock(vmf
->ptl
);
1290 if (transparent_hugepage_enabled(vma
) &&
1291 !transparent_hugepage_debug_cow()) {
1292 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1293 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1297 if (likely(new_page
)) {
1298 prep_transhuge_page(new_page
);
1301 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1302 ret
|= VM_FAULT_FALLBACK
;
1304 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1305 if (ret
& VM_FAULT_OOM
) {
1306 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1307 ret
|= VM_FAULT_FALLBACK
;
1311 count_vm_event(THP_FAULT_FALLBACK
);
1315 if (unlikely(mem_cgroup_try_charge(new_page
, vma
->vm_mm
,
1316 huge_gfp
, &memcg
, true))) {
1318 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1321 ret
|= VM_FAULT_FALLBACK
;
1322 count_vm_event(THP_FAULT_FALLBACK
);
1326 count_vm_event(THP_FAULT_ALLOC
);
1329 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1331 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1332 __SetPageUptodate(new_page
);
1335 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1336 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
1338 spin_lock(vmf
->ptl
);
1341 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1342 spin_unlock(vmf
->ptl
);
1343 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1348 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1349 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1350 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1351 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1352 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1353 lru_cache_add_active_or_unevictable(new_page
, vma
);
1354 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1355 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1357 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1359 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1360 page_remove_rmap(page
, true);
1363 ret
|= VM_FAULT_WRITE
;
1365 spin_unlock(vmf
->ptl
);
1368 * No need to double call mmu_notifier->invalidate_range() callback as
1369 * the above pmdp_huge_clear_flush_notify() did already call it.
1371 mmu_notifier_invalidate_range_only_end(vma
->vm_mm
, mmun_start
,
1376 spin_unlock(vmf
->ptl
);
1381 * FOLL_FORCE can write to even unwritable pmd's, but only
1382 * after we've gone through a COW cycle and they are dirty.
1384 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1386 return pmd_write(pmd
) ||
1387 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1390 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1395 struct mm_struct
*mm
= vma
->vm_mm
;
1396 struct page
*page
= NULL
;
1398 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1400 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1403 /* Avoid dumping huge zero page */
1404 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1405 return ERR_PTR(-EFAULT
);
1407 /* Full NUMA hinting faults to serialise migration in fault paths */
1408 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1411 page
= pmd_page(*pmd
);
1412 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1413 if (flags
& FOLL_TOUCH
)
1414 touch_pmd(vma
, addr
, pmd
, flags
);
1415 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1417 * We don't mlock() pte-mapped THPs. This way we can avoid
1418 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422 * In most cases the pmd is the only mapping of the page as we
1423 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1424 * writable private mappings in populate_vma_page_range().
1426 * The only scenario when we have the page shared here is if we
1427 * mlocking read-only mapping shared over fork(). We skip
1428 * mlocking such pages.
1432 * We can expect PageDoubleMap() to be stable under page lock:
1433 * for file pages we set it in page_add_file_rmap(), which
1434 * requires page to be locked.
1437 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1439 if (PageDoubleMap(page
) || !page
->mapping
)
1441 if (!trylock_page(page
))
1444 if (page
->mapping
&& !PageDoubleMap(page
))
1445 mlock_vma_page(page
);
1449 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1450 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1451 if (flags
& FOLL_GET
)
1458 /* NUMA hinting page fault entry point for trans huge pmds */
1459 int do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1461 struct vm_area_struct
*vma
= vmf
->vma
;
1462 struct anon_vma
*anon_vma
= NULL
;
1464 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1465 int page_nid
= -1, this_nid
= numa_node_id();
1466 int target_nid
, last_cpupid
= -1;
1468 bool migrated
= false;
1472 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1473 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1477 * If there are potential migrations, wait for completion and retry
1478 * without disrupting NUMA hinting information. Do not relock and
1479 * check_same as the page may no longer be mapped.
1481 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1482 page
= pmd_page(*vmf
->pmd
);
1483 if (!get_page_unless_zero(page
))
1485 spin_unlock(vmf
->ptl
);
1486 wait_on_page_locked(page
);
1491 page
= pmd_page(pmd
);
1492 BUG_ON(is_huge_zero_page(page
));
1493 page_nid
= page_to_nid(page
);
1494 last_cpupid
= page_cpupid_last(page
);
1495 count_vm_numa_event(NUMA_HINT_FAULTS
);
1496 if (page_nid
== this_nid
) {
1497 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1498 flags
|= TNF_FAULT_LOCAL
;
1501 /* See similar comment in do_numa_page for explanation */
1502 if (!pmd_savedwrite(pmd
))
1503 flags
|= TNF_NO_GROUP
;
1506 * Acquire the page lock to serialise THP migrations but avoid dropping
1507 * page_table_lock if at all possible
1509 page_locked
= trylock_page(page
);
1510 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1511 if (target_nid
== -1) {
1512 /* If the page was locked, there are no parallel migrations */
1517 /* Migration could have started since the pmd_trans_migrating check */
1520 if (!get_page_unless_zero(page
))
1522 spin_unlock(vmf
->ptl
);
1523 wait_on_page_locked(page
);
1529 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1530 * to serialises splits
1533 spin_unlock(vmf
->ptl
);
1534 anon_vma
= page_lock_anon_vma_read(page
);
1536 /* Confirm the PMD did not change while page_table_lock was released */
1537 spin_lock(vmf
->ptl
);
1538 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1545 /* Bail if we fail to protect against THP splits for any reason */
1546 if (unlikely(!anon_vma
)) {
1553 * Since we took the NUMA fault, we must have observed the !accessible
1554 * bit. Make sure all other CPUs agree with that, to avoid them
1555 * modifying the page we're about to migrate.
1557 * Must be done under PTL such that we'll observe the relevant
1558 * inc_tlb_flush_pending().
1560 * We are not sure a pending tlb flush here is for a huge page
1561 * mapping or not. Hence use the tlb range variant
1563 if (mm_tlb_flush_pending(vma
->vm_mm
))
1564 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1567 * Migrate the THP to the requested node, returns with page unlocked
1568 * and access rights restored.
1570 spin_unlock(vmf
->ptl
);
1572 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1573 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1575 flags
|= TNF_MIGRATED
;
1576 page_nid
= target_nid
;
1578 flags
|= TNF_MIGRATE_FAIL
;
1582 BUG_ON(!PageLocked(page
));
1583 was_writable
= pmd_savedwrite(pmd
);
1584 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1585 pmd
= pmd_mkyoung(pmd
);
1587 pmd
= pmd_mkwrite(pmd
);
1588 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1589 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1592 spin_unlock(vmf
->ptl
);
1596 page_unlock_anon_vma_read(anon_vma
);
1599 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1606 * Return true if we do MADV_FREE successfully on entire pmd page.
1607 * Otherwise, return false.
1609 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1610 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1615 struct mm_struct
*mm
= tlb
->mm
;
1618 tlb_remove_check_page_size_change(tlb
, HPAGE_PMD_SIZE
);
1620 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1625 if (is_huge_zero_pmd(orig_pmd
))
1628 if (unlikely(!pmd_present(orig_pmd
))) {
1629 VM_BUG_ON(thp_migration_supported() &&
1630 !is_pmd_migration_entry(orig_pmd
));
1634 page
= pmd_page(orig_pmd
);
1636 * If other processes are mapping this page, we couldn't discard
1637 * the page unless they all do MADV_FREE so let's skip the page.
1639 if (page_mapcount(page
) != 1)
1642 if (!trylock_page(page
))
1646 * If user want to discard part-pages of THP, split it so MADV_FREE
1647 * will deactivate only them.
1649 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1652 split_huge_page(page
);
1658 if (PageDirty(page
))
1659 ClearPageDirty(page
);
1662 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1663 pmdp_invalidate(vma
, addr
, pmd
);
1664 orig_pmd
= pmd_mkold(orig_pmd
);
1665 orig_pmd
= pmd_mkclean(orig_pmd
);
1667 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1668 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1671 mark_page_lazyfree(page
);
1679 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1683 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1684 pte_free(mm
, pgtable
);
1688 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1689 pmd_t
*pmd
, unsigned long addr
)
1694 tlb_remove_check_page_size_change(tlb
, HPAGE_PMD_SIZE
);
1696 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1700 * For architectures like ppc64 we look at deposited pgtable
1701 * when calling pmdp_huge_get_and_clear. So do the
1702 * pgtable_trans_huge_withdraw after finishing pmdp related
1705 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1707 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1708 if (vma_is_dax(vma
)) {
1709 if (arch_needs_pgtable_deposit())
1710 zap_deposited_table(tlb
->mm
, pmd
);
1712 if (is_huge_zero_pmd(orig_pmd
))
1713 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1714 } else if (is_huge_zero_pmd(orig_pmd
)) {
1715 zap_deposited_table(tlb
->mm
, pmd
);
1717 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1719 struct page
*page
= NULL
;
1720 int flush_needed
= 1;
1722 if (pmd_present(orig_pmd
)) {
1723 page
= pmd_page(orig_pmd
);
1724 page_remove_rmap(page
, true);
1725 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1726 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1727 } else if (thp_migration_supported()) {
1730 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1731 entry
= pmd_to_swp_entry(orig_pmd
);
1732 page
= pfn_to_page(swp_offset(entry
));
1735 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1737 if (PageAnon(page
)) {
1738 zap_deposited_table(tlb
->mm
, pmd
);
1739 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1741 if (arch_needs_pgtable_deposit())
1742 zap_deposited_table(tlb
->mm
, pmd
);
1743 add_mm_counter(tlb
->mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
1748 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1753 #ifndef pmd_move_must_withdraw
1754 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1755 spinlock_t
*old_pmd_ptl
,
1756 struct vm_area_struct
*vma
)
1759 * With split pmd lock we also need to move preallocated
1760 * PTE page table if new_pmd is on different PMD page table.
1762 * We also don't deposit and withdraw tables for file pages.
1764 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1768 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1770 #ifdef CONFIG_MEM_SOFT_DIRTY
1771 if (unlikely(is_pmd_migration_entry(pmd
)))
1772 pmd
= pmd_swp_mksoft_dirty(pmd
);
1773 else if (pmd_present(pmd
))
1774 pmd
= pmd_mksoft_dirty(pmd
);
1779 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1780 unsigned long new_addr
, unsigned long old_end
,
1781 pmd_t
*old_pmd
, pmd_t
*new_pmd
, bool *need_flush
)
1783 spinlock_t
*old_ptl
, *new_ptl
;
1785 struct mm_struct
*mm
= vma
->vm_mm
;
1786 bool force_flush
= false;
1788 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1789 (new_addr
& ~HPAGE_PMD_MASK
) ||
1790 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1794 * The destination pmd shouldn't be established, free_pgtables()
1795 * should have release it.
1797 if (WARN_ON(!pmd_none(*new_pmd
))) {
1798 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1803 * We don't have to worry about the ordering of src and dst
1804 * ptlocks because exclusive mmap_sem prevents deadlock.
1806 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1808 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1809 if (new_ptl
!= old_ptl
)
1810 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1811 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1812 if (pmd_present(pmd
) && pmd_dirty(pmd
))
1814 VM_BUG_ON(!pmd_none(*new_pmd
));
1816 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1818 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1819 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1821 pmd
= move_soft_dirty_pmd(pmd
);
1822 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1823 if (new_ptl
!= old_ptl
)
1824 spin_unlock(new_ptl
);
1826 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1829 spin_unlock(old_ptl
);
1837 * - 0 if PMD could not be locked
1838 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1839 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1841 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1842 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1844 struct mm_struct
*mm
= vma
->vm_mm
;
1847 bool preserve_write
;
1850 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1854 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1857 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1858 if (is_swap_pmd(*pmd
)) {
1859 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1861 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1862 if (is_write_migration_entry(entry
)) {
1865 * A protection check is difficult so
1866 * just be safe and disable write
1868 make_migration_entry_read(&entry
);
1869 newpmd
= swp_entry_to_pmd(entry
);
1870 if (pmd_swp_soft_dirty(*pmd
))
1871 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1872 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1879 * Avoid trapping faults against the zero page. The read-only
1880 * data is likely to be read-cached on the local CPU and
1881 * local/remote hits to the zero page are not interesting.
1883 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1886 if (prot_numa
&& pmd_protnone(*pmd
))
1890 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1891 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1892 * which is also under down_read(mmap_sem):
1895 * change_huge_pmd(prot_numa=1)
1896 * pmdp_huge_get_and_clear_notify()
1897 * madvise_dontneed()
1899 * pmd_trans_huge(*pmd) == 0 (without ptl)
1902 * // pmd is re-established
1904 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1905 * which may break userspace.
1907 * pmdp_invalidate() is required to make sure we don't miss
1908 * dirty/young flags set by hardware.
1910 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1912 entry
= pmd_modify(entry
, newprot
);
1914 entry
= pmd_mk_savedwrite(entry
);
1916 set_pmd_at(mm
, addr
, pmd
, entry
);
1917 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
1924 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1926 * Note that if it returns page table lock pointer, this routine returns without
1927 * unlocking page table lock. So callers must unlock it.
1929 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1932 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1933 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
1941 * Returns true if a given pud maps a thp, false otherwise.
1943 * Note that if it returns true, this routine returns without unlocking page
1944 * table lock. So callers must unlock it.
1946 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
1950 ptl
= pud_lock(vma
->vm_mm
, pud
);
1951 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
1957 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1958 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1959 pud_t
*pud
, unsigned long addr
)
1964 ptl
= __pud_trans_huge_lock(pud
, vma
);
1968 * For architectures like ppc64 we look at deposited pgtable
1969 * when calling pudp_huge_get_and_clear. So do the
1970 * pgtable_trans_huge_withdraw after finishing pudp related
1973 orig_pud
= pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
,
1975 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
1976 if (vma_is_dax(vma
)) {
1978 /* No zero page support yet */
1980 /* No support for anonymous PUD pages yet */
1986 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
1987 unsigned long haddr
)
1989 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
1990 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
1991 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
1992 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
1994 count_vm_event(THP_SPLIT_PUD
);
1996 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
1999 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2000 unsigned long address
)
2003 struct mm_struct
*mm
= vma
->vm_mm
;
2004 unsigned long haddr
= address
& HPAGE_PUD_MASK
;
2006 mmu_notifier_invalidate_range_start(mm
, haddr
, haddr
+ HPAGE_PUD_SIZE
);
2007 ptl
= pud_lock(mm
, pud
);
2008 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2010 __split_huge_pud_locked(vma
, pud
, haddr
);
2015 * No need to double call mmu_notifier->invalidate_range() callback as
2016 * the above pudp_huge_clear_flush_notify() did already call it.
2018 mmu_notifier_invalidate_range_only_end(mm
, haddr
, haddr
+
2021 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2023 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2024 unsigned long haddr
, pmd_t
*pmd
)
2026 struct mm_struct
*mm
= vma
->vm_mm
;
2032 * Leave pmd empty until pte is filled note that it is fine to delay
2033 * notification until mmu_notifier_invalidate_range_end() as we are
2034 * replacing a zero pmd write protected page with a zero pte write
2037 * See Documentation/vm/mmu_notifier.rst
2039 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2041 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2042 pmd_populate(mm
, &_pmd
, pgtable
);
2044 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2046 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2047 entry
= pte_mkspecial(entry
);
2048 pte
= pte_offset_map(&_pmd
, haddr
);
2049 VM_BUG_ON(!pte_none(*pte
));
2050 set_pte_at(mm
, haddr
, pte
, entry
);
2053 smp_wmb(); /* make pte visible before pmd */
2054 pmd_populate(mm
, pmd
, pgtable
);
2057 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2058 unsigned long haddr
, bool freeze
)
2060 struct mm_struct
*mm
= vma
->vm_mm
;
2063 pmd_t old_pmd
, _pmd
;
2064 bool young
, write
, soft_dirty
, pmd_migration
= false;
2068 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2069 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2070 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2071 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2072 && !pmd_devmap(*pmd
));
2074 count_vm_event(THP_SPLIT_PMD
);
2076 if (!vma_is_anonymous(vma
)) {
2077 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2079 * We are going to unmap this huge page. So
2080 * just go ahead and zap it
2082 if (arch_needs_pgtable_deposit())
2083 zap_deposited_table(mm
, pmd
);
2084 if (vma_is_dax(vma
))
2086 page
= pmd_page(_pmd
);
2087 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2088 set_page_dirty(page
);
2089 if (!PageReferenced(page
) && pmd_young(_pmd
))
2090 SetPageReferenced(page
);
2091 page_remove_rmap(page
, true);
2093 add_mm_counter(mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
2095 } else if (is_huge_zero_pmd(*pmd
)) {
2097 * FIXME: Do we want to invalidate secondary mmu by calling
2098 * mmu_notifier_invalidate_range() see comments below inside
2099 * __split_huge_pmd() ?
2101 * We are going from a zero huge page write protected to zero
2102 * small page also write protected so it does not seems useful
2103 * to invalidate secondary mmu at this time.
2105 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2109 * Up to this point the pmd is present and huge and userland has the
2110 * whole access to the hugepage during the split (which happens in
2111 * place). If we overwrite the pmd with the not-huge version pointing
2112 * to the pte here (which of course we could if all CPUs were bug
2113 * free), userland could trigger a small page size TLB miss on the
2114 * small sized TLB while the hugepage TLB entry is still established in
2115 * the huge TLB. Some CPU doesn't like that.
2116 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2117 * 383 on page 93. Intel should be safe but is also warns that it's
2118 * only safe if the permission and cache attributes of the two entries
2119 * loaded in the two TLB is identical (which should be the case here).
2120 * But it is generally safer to never allow small and huge TLB entries
2121 * for the same virtual address to be loaded simultaneously. So instead
2122 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2123 * current pmd notpresent (atomically because here the pmd_trans_huge
2124 * must remain set at all times on the pmd until the split is complete
2125 * for this pmd), then we flush the SMP TLB and finally we write the
2126 * non-huge version of the pmd entry with pmd_populate.
2128 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2130 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2131 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2132 if (pmd_migration
) {
2135 entry
= pmd_to_swp_entry(old_pmd
);
2136 page
= pfn_to_page(swp_offset(entry
));
2139 page
= pmd_page(old_pmd
);
2140 VM_BUG_ON_PAGE(!page_count(page
), page
);
2141 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2142 if (pmd_dirty(old_pmd
))
2144 write
= pmd_write(old_pmd
);
2145 young
= pmd_young(old_pmd
);
2146 soft_dirty
= pmd_soft_dirty(old_pmd
);
2149 * Withdraw the table only after we mark the pmd entry invalid.
2150 * This's critical for some architectures (Power).
2152 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2153 pmd_populate(mm
, &_pmd
, pgtable
);
2155 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2158 * Note that NUMA hinting access restrictions are not
2159 * transferred to avoid any possibility of altering
2160 * permissions across VMAs.
2162 if (freeze
|| pmd_migration
) {
2163 swp_entry_t swp_entry
;
2164 swp_entry
= make_migration_entry(page
+ i
, write
);
2165 entry
= swp_entry_to_pte(swp_entry
);
2167 entry
= pte_swp_mksoft_dirty(entry
);
2169 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2170 entry
= maybe_mkwrite(entry
, vma
);
2172 entry
= pte_wrprotect(entry
);
2174 entry
= pte_mkold(entry
);
2176 entry
= pte_mksoft_dirty(entry
);
2178 pte
= pte_offset_map(&_pmd
, addr
);
2179 BUG_ON(!pte_none(*pte
));
2180 set_pte_at(mm
, addr
, pte
, entry
);
2181 atomic_inc(&page
[i
]._mapcount
);
2186 * Set PG_double_map before dropping compound_mapcount to avoid
2187 * false-negative page_mapped().
2189 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2190 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2191 atomic_inc(&page
[i
]._mapcount
);
2194 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2195 /* Last compound_mapcount is gone. */
2196 __dec_node_page_state(page
, NR_ANON_THPS
);
2197 if (TestClearPageDoubleMap(page
)) {
2198 /* No need in mapcount reference anymore */
2199 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2200 atomic_dec(&page
[i
]._mapcount
);
2204 smp_wmb(); /* make pte visible before pmd */
2205 pmd_populate(mm
, pmd
, pgtable
);
2208 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2209 page_remove_rmap(page
+ i
, false);
2215 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2216 unsigned long address
, bool freeze
, struct page
*page
)
2219 struct mm_struct
*mm
= vma
->vm_mm
;
2220 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
2222 mmu_notifier_invalidate_range_start(mm
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
2223 ptl
= pmd_lock(mm
, pmd
);
2226 * If caller asks to setup a migration entries, we need a page to check
2227 * pmd against. Otherwise we can end up replacing wrong page.
2229 VM_BUG_ON(freeze
&& !page
);
2230 if (page
&& page
!= pmd_page(*pmd
))
2233 if (pmd_trans_huge(*pmd
)) {
2234 page
= pmd_page(*pmd
);
2235 if (PageMlocked(page
))
2236 clear_page_mlock(page
);
2237 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2239 __split_huge_pmd_locked(vma
, pmd
, haddr
, freeze
);
2243 * No need to double call mmu_notifier->invalidate_range() callback.
2244 * They are 3 cases to consider inside __split_huge_pmd_locked():
2245 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2246 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2247 * fault will trigger a flush_notify before pointing to a new page
2248 * (it is fine if the secondary mmu keeps pointing to the old zero
2249 * page in the meantime)
2250 * 3) Split a huge pmd into pte pointing to the same page. No need
2251 * to invalidate secondary tlb entry they are all still valid.
2252 * any further changes to individual pte will notify. So no need
2253 * to call mmu_notifier->invalidate_range()
2255 mmu_notifier_invalidate_range_only_end(mm
, haddr
, haddr
+
2259 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2260 bool freeze
, struct page
*page
)
2267 pgd
= pgd_offset(vma
->vm_mm
, address
);
2268 if (!pgd_present(*pgd
))
2271 p4d
= p4d_offset(pgd
, address
);
2272 if (!p4d_present(*p4d
))
2275 pud
= pud_offset(p4d
, address
);
2276 if (!pud_present(*pud
))
2279 pmd
= pmd_offset(pud
, address
);
2281 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2284 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2285 unsigned long start
,
2290 * If the new start address isn't hpage aligned and it could
2291 * previously contain an hugepage: check if we need to split
2294 if (start
& ~HPAGE_PMD_MASK
&&
2295 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2296 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2297 split_huge_pmd_address(vma
, start
, false, NULL
);
2300 * If the new end address isn't hpage aligned and it could
2301 * previously contain an hugepage: check if we need to split
2304 if (end
& ~HPAGE_PMD_MASK
&&
2305 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2306 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2307 split_huge_pmd_address(vma
, end
, false, NULL
);
2310 * If we're also updating the vma->vm_next->vm_start, if the new
2311 * vm_next->vm_start isn't page aligned and it could previously
2312 * contain an hugepage: check if we need to split an huge pmd.
2314 if (adjust_next
> 0) {
2315 struct vm_area_struct
*next
= vma
->vm_next
;
2316 unsigned long nstart
= next
->vm_start
;
2317 nstart
+= adjust_next
<< PAGE_SHIFT
;
2318 if (nstart
& ~HPAGE_PMD_MASK
&&
2319 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2320 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2321 split_huge_pmd_address(next
, nstart
, false, NULL
);
2325 static void freeze_page(struct page
*page
)
2327 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2328 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2331 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2334 ttu_flags
|= TTU_SPLIT_FREEZE
;
2336 unmap_success
= try_to_unmap(page
, ttu_flags
);
2337 VM_BUG_ON_PAGE(!unmap_success
, page
);
2340 static void unfreeze_page(struct page
*page
)
2343 if (PageTransHuge(page
)) {
2344 remove_migration_ptes(page
, page
, true);
2346 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2347 remove_migration_ptes(page
+ i
, page
+ i
, true);
2351 static void __split_huge_page_tail(struct page
*head
, int tail
,
2352 struct lruvec
*lruvec
, struct list_head
*list
)
2354 struct page
*page_tail
= head
+ tail
;
2356 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2359 * Clone page flags before unfreezing refcount.
2361 * After successful get_page_unless_zero() might follow flags change,
2362 * for exmaple lock_page() which set PG_waiters.
2364 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2365 page_tail
->flags
|= (head
->flags
&
2366 ((1L << PG_referenced
) |
2367 (1L << PG_swapbacked
) |
2368 (1L << PG_swapcache
) |
2369 (1L << PG_mlocked
) |
2370 (1L << PG_uptodate
) |
2373 (1L << PG_unevictable
) |
2376 /* Page flags must be visible before we make the page non-compound. */
2380 * Clear PageTail before unfreezing page refcount.
2382 * After successful get_page_unless_zero() might follow put_page()
2383 * which needs correct compound_head().
2385 clear_compound_head(page_tail
);
2387 /* Finally unfreeze refcount. Additional reference from page cache. */
2388 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2389 PageSwapCache(head
)));
2391 if (page_is_young(head
))
2392 set_page_young(page_tail
);
2393 if (page_is_idle(head
))
2394 set_page_idle(page_tail
);
2396 /* ->mapping in first tail page is compound_mapcount */
2397 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2399 page_tail
->mapping
= head
->mapping
;
2401 page_tail
->index
= head
->index
+ tail
;
2402 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2405 * always add to the tail because some iterators expect new
2406 * pages to show after the currently processed elements - e.g.
2409 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2412 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2413 unsigned long flags
)
2415 struct page
*head
= compound_head(page
);
2416 struct zone
*zone
= page_zone(head
);
2417 struct lruvec
*lruvec
;
2421 lruvec
= mem_cgroup_page_lruvec(head
, zone
->zone_pgdat
);
2423 /* complete memcg works before add pages to LRU */
2424 mem_cgroup_split_huge_fixup(head
);
2426 if (!PageAnon(page
))
2427 end
= DIV_ROUND_UP(i_size_read(head
->mapping
->host
), PAGE_SIZE
);
2429 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2430 __split_huge_page_tail(head
, i
, lruvec
, list
);
2431 /* Some pages can be beyond i_size: drop them from page cache */
2432 if (head
[i
].index
>= end
) {
2433 ClearPageDirty(head
+ i
);
2434 __delete_from_page_cache(head
+ i
, NULL
);
2435 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2436 shmem_uncharge(head
->mapping
->host
, 1);
2441 ClearPageCompound(head
);
2442 /* See comment in __split_huge_page_tail() */
2443 if (PageAnon(head
)) {
2444 /* Additional pin to radix tree of swap cache */
2445 if (PageSwapCache(head
))
2446 page_ref_add(head
, 2);
2450 /* Additional pin to radix tree */
2451 page_ref_add(head
, 2);
2452 xa_unlock(&head
->mapping
->i_pages
);
2455 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
2457 unfreeze_page(head
);
2459 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2460 struct page
*subpage
= head
+ i
;
2461 if (subpage
== page
)
2463 unlock_page(subpage
);
2466 * Subpages may be freed if there wasn't any mapping
2467 * like if add_to_swap() is running on a lru page that
2468 * had its mapping zapped. And freeing these pages
2469 * requires taking the lru_lock so we do the put_page
2470 * of the tail pages after the split is complete.
2476 int total_mapcount(struct page
*page
)
2478 int i
, compound
, ret
;
2480 VM_BUG_ON_PAGE(PageTail(page
), page
);
2482 if (likely(!PageCompound(page
)))
2483 return atomic_read(&page
->_mapcount
) + 1;
2485 compound
= compound_mapcount(page
);
2489 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2490 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2491 /* File pages has compound_mapcount included in _mapcount */
2492 if (!PageAnon(page
))
2493 return ret
- compound
* HPAGE_PMD_NR
;
2494 if (PageDoubleMap(page
))
2495 ret
-= HPAGE_PMD_NR
;
2500 * This calculates accurately how many mappings a transparent hugepage
2501 * has (unlike page_mapcount() which isn't fully accurate). This full
2502 * accuracy is primarily needed to know if copy-on-write faults can
2503 * reuse the page and change the mapping to read-write instead of
2504 * copying them. At the same time this returns the total_mapcount too.
2506 * The function returns the highest mapcount any one of the subpages
2507 * has. If the return value is one, even if different processes are
2508 * mapping different subpages of the transparent hugepage, they can
2509 * all reuse it, because each process is reusing a different subpage.
2511 * The total_mapcount is instead counting all virtual mappings of the
2512 * subpages. If the total_mapcount is equal to "one", it tells the
2513 * caller all mappings belong to the same "mm" and in turn the
2514 * anon_vma of the transparent hugepage can become the vma->anon_vma
2515 * local one as no other process may be mapping any of the subpages.
2517 * It would be more accurate to replace page_mapcount() with
2518 * page_trans_huge_mapcount(), however we only use
2519 * page_trans_huge_mapcount() in the copy-on-write faults where we
2520 * need full accuracy to avoid breaking page pinning, because
2521 * page_trans_huge_mapcount() is slower than page_mapcount().
2523 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2525 int i
, ret
, _total_mapcount
, mapcount
;
2527 /* hugetlbfs shouldn't call it */
2528 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2530 if (likely(!PageTransCompound(page
))) {
2531 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2533 *total_mapcount
= mapcount
;
2537 page
= compound_head(page
);
2539 _total_mapcount
= ret
= 0;
2540 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2541 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2542 ret
= max(ret
, mapcount
);
2543 _total_mapcount
+= mapcount
;
2545 if (PageDoubleMap(page
)) {
2547 _total_mapcount
-= HPAGE_PMD_NR
;
2549 mapcount
= compound_mapcount(page
);
2551 _total_mapcount
+= mapcount
;
2553 *total_mapcount
= _total_mapcount
;
2557 /* Racy check whether the huge page can be split */
2558 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2562 /* Additional pins from radix tree */
2564 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2566 extra_pins
= HPAGE_PMD_NR
;
2568 *pextra_pins
= extra_pins
;
2569 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2573 * This function splits huge page into normal pages. @page can point to any
2574 * subpage of huge page to split. Split doesn't change the position of @page.
2576 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2577 * The huge page must be locked.
2579 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581 * Both head page and tail pages will inherit mapping, flags, and so on from
2584 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2585 * they are not mapped.
2587 * Returns 0 if the hugepage is split successfully.
2588 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2591 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2593 struct page
*head
= compound_head(page
);
2594 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2595 struct anon_vma
*anon_vma
= NULL
;
2596 struct address_space
*mapping
= NULL
;
2597 int count
, mapcount
, extra_pins
, ret
;
2599 unsigned long flags
;
2601 VM_BUG_ON_PAGE(is_huge_zero_page(page
), page
);
2602 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2603 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2605 if (PageWriteback(page
))
2608 if (PageAnon(head
)) {
2610 * The caller does not necessarily hold an mmap_sem that would
2611 * prevent the anon_vma disappearing so we first we take a
2612 * reference to it and then lock the anon_vma for write. This
2613 * is similar to page_lock_anon_vma_read except the write lock
2614 * is taken to serialise against parallel split or collapse
2617 anon_vma
= page_get_anon_vma(head
);
2623 anon_vma_lock_write(anon_vma
);
2625 mapping
= head
->mapping
;
2634 i_mmap_lock_read(mapping
);
2638 * Racy check if we can split the page, before freeze_page() will
2641 if (!can_split_huge_page(head
, &extra_pins
)) {
2646 mlocked
= PageMlocked(page
);
2648 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2650 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2654 /* prevent PageLRU to go away from under us, and freeze lru stats */
2655 spin_lock_irqsave(zone_lru_lock(page_zone(head
)), flags
);
2660 xa_lock(&mapping
->i_pages
);
2661 pslot
= radix_tree_lookup_slot(&mapping
->i_pages
,
2664 * Check if the head page is present in radix tree.
2665 * We assume all tail are present too, if head is there.
2667 if (radix_tree_deref_slot_protected(pslot
,
2668 &mapping
->i_pages
.xa_lock
) != head
)
2672 /* Prevent deferred_split_scan() touching ->_refcount */
2673 spin_lock(&pgdata
->split_queue_lock
);
2674 count
= page_count(head
);
2675 mapcount
= total_mapcount(head
);
2676 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2677 if (!list_empty(page_deferred_list(head
))) {
2678 pgdata
->split_queue_len
--;
2679 list_del(page_deferred_list(head
));
2682 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2683 spin_unlock(&pgdata
->split_queue_lock
);
2684 __split_huge_page(page
, list
, flags
);
2685 if (PageSwapCache(head
)) {
2686 swp_entry_t entry
= { .val
= page_private(head
) };
2688 ret
= split_swap_cluster(entry
);
2692 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2693 pr_alert("total_mapcount: %u, page_count(): %u\n",
2696 dump_page(head
, NULL
);
2697 dump_page(page
, "total_mapcount(head) > 0");
2700 spin_unlock(&pgdata
->split_queue_lock
);
2702 xa_unlock(&mapping
->i_pages
);
2703 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
2704 unfreeze_page(head
);
2710 anon_vma_unlock_write(anon_vma
);
2711 put_anon_vma(anon_vma
);
2714 i_mmap_unlock_read(mapping
);
2716 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2720 void free_transhuge_page(struct page
*page
)
2722 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2723 unsigned long flags
;
2725 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2726 if (!list_empty(page_deferred_list(page
))) {
2727 pgdata
->split_queue_len
--;
2728 list_del(page_deferred_list(page
));
2730 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2731 free_compound_page(page
);
2734 void deferred_split_huge_page(struct page
*page
)
2736 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2737 unsigned long flags
;
2739 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2741 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2742 if (list_empty(page_deferred_list(page
))) {
2743 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2744 list_add_tail(page_deferred_list(page
), &pgdata
->split_queue
);
2745 pgdata
->split_queue_len
++;
2747 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2750 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2751 struct shrink_control
*sc
)
2753 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2754 return READ_ONCE(pgdata
->split_queue_len
);
2757 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2758 struct shrink_control
*sc
)
2760 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2761 unsigned long flags
;
2762 LIST_HEAD(list
), *pos
, *next
;
2766 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2767 /* Take pin on all head pages to avoid freeing them under us */
2768 list_for_each_safe(pos
, next
, &pgdata
->split_queue
) {
2769 page
= list_entry((void *)pos
, struct page
, mapping
);
2770 page
= compound_head(page
);
2771 if (get_page_unless_zero(page
)) {
2772 list_move(page_deferred_list(page
), &list
);
2774 /* We lost race with put_compound_page() */
2775 list_del_init(page_deferred_list(page
));
2776 pgdata
->split_queue_len
--;
2778 if (!--sc
->nr_to_scan
)
2781 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2783 list_for_each_safe(pos
, next
, &list
) {
2784 page
= list_entry((void *)pos
, struct page
, mapping
);
2785 if (!trylock_page(page
))
2787 /* split_huge_page() removes page from list on success */
2788 if (!split_huge_page(page
))
2795 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2796 list_splice_tail(&list
, &pgdata
->split_queue
);
2797 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2800 * Stop shrinker if we didn't split any page, but the queue is empty.
2801 * This can happen if pages were freed under us.
2803 if (!split
&& list_empty(&pgdata
->split_queue
))
2808 static struct shrinker deferred_split_shrinker
= {
2809 .count_objects
= deferred_split_count
,
2810 .scan_objects
= deferred_split_scan
,
2811 .seeks
= DEFAULT_SEEKS
,
2812 .flags
= SHRINKER_NUMA_AWARE
,
2815 #ifdef CONFIG_DEBUG_FS
2816 static int split_huge_pages_set(void *data
, u64 val
)
2820 unsigned long pfn
, max_zone_pfn
;
2821 unsigned long total
= 0, split
= 0;
2826 for_each_populated_zone(zone
) {
2827 max_zone_pfn
= zone_end_pfn(zone
);
2828 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2829 if (!pfn_valid(pfn
))
2832 page
= pfn_to_page(pfn
);
2833 if (!get_page_unless_zero(page
))
2836 if (zone
!= page_zone(page
))
2839 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2844 if (!split_huge_page(page
))
2852 pr_info("%lu of %lu THP split\n", split
, total
);
2856 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2859 static int __init
split_huge_pages_debugfs(void)
2863 ret
= debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2864 &split_huge_pages_fops
);
2866 pr_warn("Failed to create split_huge_pages in debugfs");
2869 late_initcall(split_huge_pages_debugfs
);
2872 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2873 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
2876 struct vm_area_struct
*vma
= pvmw
->vma
;
2877 struct mm_struct
*mm
= vma
->vm_mm
;
2878 unsigned long address
= pvmw
->address
;
2883 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2886 mmu_notifier_invalidate_range_start(mm
, address
,
2887 address
+ HPAGE_PMD_SIZE
);
2889 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
2890 pmdval
= *pvmw
->pmd
;
2891 pmdp_invalidate(vma
, address
, pvmw
->pmd
);
2892 if (pmd_dirty(pmdval
))
2893 set_page_dirty(page
);
2894 entry
= make_migration_entry(page
, pmd_write(pmdval
));
2895 pmdswp
= swp_entry_to_pmd(entry
);
2896 if (pmd_soft_dirty(pmdval
))
2897 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
2898 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
2899 page_remove_rmap(page
, true);
2902 mmu_notifier_invalidate_range_end(mm
, address
,
2903 address
+ HPAGE_PMD_SIZE
);
2906 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
2908 struct vm_area_struct
*vma
= pvmw
->vma
;
2909 struct mm_struct
*mm
= vma
->vm_mm
;
2910 unsigned long address
= pvmw
->address
;
2911 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2915 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2918 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
2920 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
2921 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
2922 pmde
= pmd_mksoft_dirty(pmde
);
2923 if (is_write_migration_entry(entry
))
2924 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
2926 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
2928 page_add_anon_rmap(new, vma
, mmun_start
, true);
2930 page_add_file_rmap(new, true);
2931 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
2932 if (vma
->vm_flags
& VM_LOCKED
)
2933 mlock_vma_page(new);
2934 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);