Linux 4.18.10
[linux/fpc-iii.git] / mm / shmem.c
blob41b9bbf24e16b49db1da4be286fe7310941ad542
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 static struct vfsmount *shm_mnt;
43 #ifdef CONFIG_SHMEM
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
84 #include "internal.h"
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages / 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 #endif
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp,
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
128 int shmem_getpage(struct inode *inode, pgoff_t index,
129 struct page **pagep, enum sgp_type sgp)
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 return sb->s_fs_info;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 return (flags & VM_NORESERVE) ?
149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 if (!(flags & VM_NORESERVE))
155 vm_unacct_memory(VM_ACCT(size));
158 static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 return 0;
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 static inline int shmem_acct_block(unsigned long flags, long pages)
179 if (!(flags & VM_NORESERVE))
180 return 0;
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
186 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 if (flags & VM_NORESERVE)
189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
192 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 if (shmem_acct_block(info->flags, pages))
198 return false;
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
207 return true;
209 unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
214 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
224 static const struct super_operations shmem_ops;
225 static const struct address_space_operations shmem_aops;
226 static const struct file_operations shmem_file_operations;
227 static const struct inode_operations shmem_inode_operations;
228 static const struct inode_operations shmem_dir_inode_operations;
229 static const struct inode_operations shmem_special_inode_operations;
230 static const struct vm_operations_struct shmem_vm_ops;
231 static struct file_system_type shmem_fs_type;
233 bool vma_is_shmem(struct vm_area_struct *vma)
235 return vma->vm_ops == &shmem_vm_ops;
238 static LIST_HEAD(shmem_swaplist);
239 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 static int shmem_reserve_inode(struct super_block *sb)
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
253 return 0;
256 static void shmem_free_inode(struct super_block *sb)
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 * It has to be called with the spinlock held.
278 static void shmem_recalc_inode(struct inode *inode)
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
287 shmem_inode_unacct_blocks(inode, freed);
291 bool shmem_charge(struct inode *inode, long pages)
293 struct shmem_inode_info *info = SHMEM_I(inode);
294 unsigned long flags;
296 if (!shmem_inode_acct_block(inode, pages))
297 return false;
299 spin_lock_irqsave(&info->lock, flags);
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
303 spin_unlock_irqrestore(&info->lock, flags);
304 inode->i_mapping->nrpages += pages;
306 return true;
309 void shmem_uncharge(struct inode *inode, long pages)
311 struct shmem_inode_info *info = SHMEM_I(inode);
312 unsigned long flags;
314 spin_lock_irqsave(&info->lock, flags);
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
318 spin_unlock_irqrestore(&info->lock, flags);
320 shmem_inode_unacct_blocks(inode, pages);
324 * Replace item expected in radix tree by a new item, while holding tree lock.
326 static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
329 struct radix_tree_node *node;
330 void __rcu **pslot;
331 void *item;
333 VM_BUG_ON(!expected);
334 VM_BUG_ON(!replacement);
335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
336 if (!item)
337 return -ENOENT;
338 if (item != expected)
339 return -ENOENT;
340 __radix_tree_replace(&mapping->i_pages, node, pslot,
341 replacement, NULL);
342 return 0;
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
352 static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
355 void *item;
357 rcu_read_lock();
358 item = radix_tree_lookup(&mapping->i_pages, index);
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
377 #define SHMEM_HUGE_NEVER 0
378 #define SHMEM_HUGE_ALWAYS 1
379 #define SHMEM_HUGE_WITHIN_SIZE 2
380 #define SHMEM_HUGE_ADVISE 3
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
392 #define SHMEM_HUGE_DENY (-1)
393 #define SHMEM_HUGE_FORCE (-2)
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
398 static int shmem_huge __read_mostly;
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str)
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
418 static const char *shmem_format_huge(int huge)
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
438 #endif
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
443 LIST_HEAD(list), *pos, *next;
444 LIST_HEAD(to_remove);
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
471 list_move(&info->shrinklist, &to_remove);
472 removed++;
473 goto next;
476 list_move(&info->shrinklist, &list);
477 next:
478 if (!--batch)
479 break;
481 spin_unlock(&sbinfo->shrinklist_lock);
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
490 list_for_each_safe(pos, next, &list) {
491 int ret;
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
499 page = find_get_page(inode->i_mapping,
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
504 /* No huge page at the end of the file: nothing to split */
505 if (!PageTransHuge(page)) {
506 put_page(page);
507 goto drop;
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
530 split++;
531 drop:
532 list_del_init(&info->shrinklist);
533 removed++;
534 leave:
535 iput(inode);
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
543 return split;
546 static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
557 static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 #define shmem_huge SHMEM_HUGE_DENY
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
570 return 0;
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
574 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
576 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
577 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
578 shmem_huge != SHMEM_HUGE_DENY)
579 return true;
580 return false;
584 * Like add_to_page_cache_locked, but error if expected item has gone.
586 static int shmem_add_to_page_cache(struct page *page,
587 struct address_space *mapping,
588 pgoff_t index, void *expected)
590 int error, nr = hpage_nr_pages(page);
592 VM_BUG_ON_PAGE(PageTail(page), page);
593 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
594 VM_BUG_ON_PAGE(!PageLocked(page), page);
595 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
596 VM_BUG_ON(expected && PageTransHuge(page));
598 page_ref_add(page, nr);
599 page->mapping = mapping;
600 page->index = index;
602 xa_lock_irq(&mapping->i_pages);
603 if (PageTransHuge(page)) {
604 void __rcu **results;
605 pgoff_t idx;
606 int i;
608 error = 0;
609 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
610 &results, &idx, index, 1) &&
611 idx < index + HPAGE_PMD_NR) {
612 error = -EEXIST;
615 if (!error) {
616 for (i = 0; i < HPAGE_PMD_NR; i++) {
617 error = radix_tree_insert(&mapping->i_pages,
618 index + i, page + i);
619 VM_BUG_ON(error);
621 count_vm_event(THP_FILE_ALLOC);
623 } else if (!expected) {
624 error = radix_tree_insert(&mapping->i_pages, index, page);
625 } else {
626 error = shmem_radix_tree_replace(mapping, index, expected,
627 page);
630 if (!error) {
631 mapping->nrpages += nr;
632 if (PageTransHuge(page))
633 __inc_node_page_state(page, NR_SHMEM_THPS);
634 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
635 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
636 xa_unlock_irq(&mapping->i_pages);
637 } else {
638 page->mapping = NULL;
639 xa_unlock_irq(&mapping->i_pages);
640 page_ref_sub(page, nr);
642 return error;
646 * Like delete_from_page_cache, but substitutes swap for page.
648 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
650 struct address_space *mapping = page->mapping;
651 int error;
653 VM_BUG_ON_PAGE(PageCompound(page), page);
655 xa_lock_irq(&mapping->i_pages);
656 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
657 page->mapping = NULL;
658 mapping->nrpages--;
659 __dec_node_page_state(page, NR_FILE_PAGES);
660 __dec_node_page_state(page, NR_SHMEM);
661 xa_unlock_irq(&mapping->i_pages);
662 put_page(page);
663 BUG_ON(error);
667 * Remove swap entry from radix tree, free the swap and its page cache.
669 static int shmem_free_swap(struct address_space *mapping,
670 pgoff_t index, void *radswap)
672 void *old;
674 xa_lock_irq(&mapping->i_pages);
675 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
676 xa_unlock_irq(&mapping->i_pages);
677 if (old != radswap)
678 return -ENOENT;
679 free_swap_and_cache(radix_to_swp_entry(radswap));
680 return 0;
684 * Determine (in bytes) how many of the shmem object's pages mapped by the
685 * given offsets are swapped out.
687 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
688 * as long as the inode doesn't go away and racy results are not a problem.
690 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
691 pgoff_t start, pgoff_t end)
693 struct radix_tree_iter iter;
694 void __rcu **slot;
695 struct page *page;
696 unsigned long swapped = 0;
698 rcu_read_lock();
700 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
701 if (iter.index >= end)
702 break;
704 page = radix_tree_deref_slot(slot);
706 if (radix_tree_deref_retry(page)) {
707 slot = radix_tree_iter_retry(&iter);
708 continue;
711 if (radix_tree_exceptional_entry(page))
712 swapped++;
714 if (need_resched()) {
715 slot = radix_tree_iter_resume(slot, &iter);
716 cond_resched_rcu();
720 rcu_read_unlock();
722 return swapped << PAGE_SHIFT;
726 * Determine (in bytes) how many of the shmem object's pages mapped by the
727 * given vma is swapped out.
729 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
730 * as long as the inode doesn't go away and racy results are not a problem.
732 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
734 struct inode *inode = file_inode(vma->vm_file);
735 struct shmem_inode_info *info = SHMEM_I(inode);
736 struct address_space *mapping = inode->i_mapping;
737 unsigned long swapped;
739 /* Be careful as we don't hold info->lock */
740 swapped = READ_ONCE(info->swapped);
743 * The easier cases are when the shmem object has nothing in swap, or
744 * the vma maps it whole. Then we can simply use the stats that we
745 * already track.
747 if (!swapped)
748 return 0;
750 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
751 return swapped << PAGE_SHIFT;
753 /* Here comes the more involved part */
754 return shmem_partial_swap_usage(mapping,
755 linear_page_index(vma, vma->vm_start),
756 linear_page_index(vma, vma->vm_end));
760 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
762 void shmem_unlock_mapping(struct address_space *mapping)
764 struct pagevec pvec;
765 pgoff_t indices[PAGEVEC_SIZE];
766 pgoff_t index = 0;
768 pagevec_init(&pvec);
770 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
772 while (!mapping_unevictable(mapping)) {
774 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
775 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
777 pvec.nr = find_get_entries(mapping, index,
778 PAGEVEC_SIZE, pvec.pages, indices);
779 if (!pvec.nr)
780 break;
781 index = indices[pvec.nr - 1] + 1;
782 pagevec_remove_exceptionals(&pvec);
783 check_move_unevictable_pages(pvec.pages, pvec.nr);
784 pagevec_release(&pvec);
785 cond_resched();
790 * Remove range of pages and swap entries from radix tree, and free them.
791 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
793 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
794 bool unfalloc)
796 struct address_space *mapping = inode->i_mapping;
797 struct shmem_inode_info *info = SHMEM_I(inode);
798 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
799 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
800 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
801 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
802 struct pagevec pvec;
803 pgoff_t indices[PAGEVEC_SIZE];
804 long nr_swaps_freed = 0;
805 pgoff_t index;
806 int i;
808 if (lend == -1)
809 end = -1; /* unsigned, so actually very big */
811 pagevec_init(&pvec);
812 index = start;
813 while (index < end) {
814 pvec.nr = find_get_entries(mapping, index,
815 min(end - index, (pgoff_t)PAGEVEC_SIZE),
816 pvec.pages, indices);
817 if (!pvec.nr)
818 break;
819 for (i = 0; i < pagevec_count(&pvec); i++) {
820 struct page *page = pvec.pages[i];
822 index = indices[i];
823 if (index >= end)
824 break;
826 if (radix_tree_exceptional_entry(page)) {
827 if (unfalloc)
828 continue;
829 nr_swaps_freed += !shmem_free_swap(mapping,
830 index, page);
831 continue;
834 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
836 if (!trylock_page(page))
837 continue;
839 if (PageTransTail(page)) {
840 /* Middle of THP: zero out the page */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 } else if (PageTransHuge(page)) {
845 if (index == round_down(end, HPAGE_PMD_NR)) {
847 * Range ends in the middle of THP:
848 * zero out the page
850 clear_highpage(page);
851 unlock_page(page);
852 continue;
854 index += HPAGE_PMD_NR - 1;
855 i += HPAGE_PMD_NR - 1;
858 if (!unfalloc || !PageUptodate(page)) {
859 VM_BUG_ON_PAGE(PageTail(page), page);
860 if (page_mapping(page) == mapping) {
861 VM_BUG_ON_PAGE(PageWriteback(page), page);
862 truncate_inode_page(mapping, page);
865 unlock_page(page);
867 pagevec_remove_exceptionals(&pvec);
868 pagevec_release(&pvec);
869 cond_resched();
870 index++;
873 if (partial_start) {
874 struct page *page = NULL;
875 shmem_getpage(inode, start - 1, &page, SGP_READ);
876 if (page) {
877 unsigned int top = PAGE_SIZE;
878 if (start > end) {
879 top = partial_end;
880 partial_end = 0;
882 zero_user_segment(page, partial_start, top);
883 set_page_dirty(page);
884 unlock_page(page);
885 put_page(page);
888 if (partial_end) {
889 struct page *page = NULL;
890 shmem_getpage(inode, end, &page, SGP_READ);
891 if (page) {
892 zero_user_segment(page, 0, partial_end);
893 set_page_dirty(page);
894 unlock_page(page);
895 put_page(page);
898 if (start >= end)
899 return;
901 index = start;
902 while (index < end) {
903 cond_resched();
905 pvec.nr = find_get_entries(mapping, index,
906 min(end - index, (pgoff_t)PAGEVEC_SIZE),
907 pvec.pages, indices);
908 if (!pvec.nr) {
909 /* If all gone or hole-punch or unfalloc, we're done */
910 if (index == start || end != -1)
911 break;
912 /* But if truncating, restart to make sure all gone */
913 index = start;
914 continue;
916 for (i = 0; i < pagevec_count(&pvec); i++) {
917 struct page *page = pvec.pages[i];
919 index = indices[i];
920 if (index >= end)
921 break;
923 if (radix_tree_exceptional_entry(page)) {
924 if (unfalloc)
925 continue;
926 if (shmem_free_swap(mapping, index, page)) {
927 /* Swap was replaced by page: retry */
928 index--;
929 break;
931 nr_swaps_freed++;
932 continue;
935 lock_page(page);
937 if (PageTransTail(page)) {
938 /* Middle of THP: zero out the page */
939 clear_highpage(page);
940 unlock_page(page);
942 * Partial thp truncate due 'start' in middle
943 * of THP: don't need to look on these pages
944 * again on !pvec.nr restart.
946 if (index != round_down(end, HPAGE_PMD_NR))
947 start++;
948 continue;
949 } else if (PageTransHuge(page)) {
950 if (index == round_down(end, HPAGE_PMD_NR)) {
952 * Range ends in the middle of THP:
953 * zero out the page
955 clear_highpage(page);
956 unlock_page(page);
957 continue;
959 index += HPAGE_PMD_NR - 1;
960 i += HPAGE_PMD_NR - 1;
963 if (!unfalloc || !PageUptodate(page)) {
964 VM_BUG_ON_PAGE(PageTail(page), page);
965 if (page_mapping(page) == mapping) {
966 VM_BUG_ON_PAGE(PageWriteback(page), page);
967 truncate_inode_page(mapping, page);
968 } else {
969 /* Page was replaced by swap: retry */
970 unlock_page(page);
971 index--;
972 break;
975 unlock_page(page);
977 pagevec_remove_exceptionals(&pvec);
978 pagevec_release(&pvec);
979 index++;
982 spin_lock_irq(&info->lock);
983 info->swapped -= nr_swaps_freed;
984 shmem_recalc_inode(inode);
985 spin_unlock_irq(&info->lock);
988 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
990 shmem_undo_range(inode, lstart, lend, false);
991 inode->i_ctime = inode->i_mtime = current_time(inode);
993 EXPORT_SYMBOL_GPL(shmem_truncate_range);
995 static int shmem_getattr(const struct path *path, struct kstat *stat,
996 u32 request_mask, unsigned int query_flags)
998 struct inode *inode = path->dentry->d_inode;
999 struct shmem_inode_info *info = SHMEM_I(inode);
1000 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1002 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1003 spin_lock_irq(&info->lock);
1004 shmem_recalc_inode(inode);
1005 spin_unlock_irq(&info->lock);
1007 generic_fillattr(inode, stat);
1009 if (is_huge_enabled(sb_info))
1010 stat->blksize = HPAGE_PMD_SIZE;
1012 return 0;
1015 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1017 struct inode *inode = d_inode(dentry);
1018 struct shmem_inode_info *info = SHMEM_I(inode);
1019 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1020 int error;
1022 error = setattr_prepare(dentry, attr);
1023 if (error)
1024 return error;
1026 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1027 loff_t oldsize = inode->i_size;
1028 loff_t newsize = attr->ia_size;
1030 /* protected by i_mutex */
1031 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1032 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1033 return -EPERM;
1035 if (newsize != oldsize) {
1036 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1037 oldsize, newsize);
1038 if (error)
1039 return error;
1040 i_size_write(inode, newsize);
1041 inode->i_ctime = inode->i_mtime = current_time(inode);
1043 if (newsize <= oldsize) {
1044 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1045 if (oldsize > holebegin)
1046 unmap_mapping_range(inode->i_mapping,
1047 holebegin, 0, 1);
1048 if (info->alloced)
1049 shmem_truncate_range(inode,
1050 newsize, (loff_t)-1);
1051 /* unmap again to remove racily COWed private pages */
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
1057 * Part of the huge page can be beyond i_size: subject
1058 * to shrink under memory pressure.
1060 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1061 spin_lock(&sbinfo->shrinklist_lock);
1063 * _careful to defend against unlocked access to
1064 * ->shrink_list in shmem_unused_huge_shrink()
1066 if (list_empty_careful(&info->shrinklist)) {
1067 list_add_tail(&info->shrinklist,
1068 &sbinfo->shrinklist);
1069 sbinfo->shrinklist_len++;
1071 spin_unlock(&sbinfo->shrinklist_lock);
1076 setattr_copy(inode, attr);
1077 if (attr->ia_valid & ATTR_MODE)
1078 error = posix_acl_chmod(inode, inode->i_mode);
1079 return error;
1082 static void shmem_evict_inode(struct inode *inode)
1084 struct shmem_inode_info *info = SHMEM_I(inode);
1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1087 if (inode->i_mapping->a_ops == &shmem_aops) {
1088 shmem_unacct_size(info->flags, inode->i_size);
1089 inode->i_size = 0;
1090 shmem_truncate_range(inode, 0, (loff_t)-1);
1091 if (!list_empty(&info->shrinklist)) {
1092 spin_lock(&sbinfo->shrinklist_lock);
1093 if (!list_empty(&info->shrinklist)) {
1094 list_del_init(&info->shrinklist);
1095 sbinfo->shrinklist_len--;
1097 spin_unlock(&sbinfo->shrinklist_lock);
1099 if (!list_empty(&info->swaplist)) {
1100 mutex_lock(&shmem_swaplist_mutex);
1101 list_del_init(&info->swaplist);
1102 mutex_unlock(&shmem_swaplist_mutex);
1106 simple_xattrs_free(&info->xattrs);
1107 WARN_ON(inode->i_blocks);
1108 shmem_free_inode(inode->i_sb);
1109 clear_inode(inode);
1112 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1114 struct radix_tree_iter iter;
1115 void __rcu **slot;
1116 unsigned long found = -1;
1117 unsigned int checked = 0;
1119 rcu_read_lock();
1120 radix_tree_for_each_slot(slot, root, &iter, 0) {
1121 void *entry = radix_tree_deref_slot(slot);
1123 if (radix_tree_deref_retry(entry)) {
1124 slot = radix_tree_iter_retry(&iter);
1125 continue;
1127 if (entry == item) {
1128 found = iter.index;
1129 break;
1131 checked++;
1132 if ((checked % 4096) != 0)
1133 continue;
1134 slot = radix_tree_iter_resume(slot, &iter);
1135 cond_resched_rcu();
1138 rcu_read_unlock();
1139 return found;
1143 * If swap found in inode, free it and move page from swapcache to filecache.
1145 static int shmem_unuse_inode(struct shmem_inode_info *info,
1146 swp_entry_t swap, struct page **pagep)
1148 struct address_space *mapping = info->vfs_inode.i_mapping;
1149 void *radswap;
1150 pgoff_t index;
1151 gfp_t gfp;
1152 int error = 0;
1154 radswap = swp_to_radix_entry(swap);
1155 index = find_swap_entry(&mapping->i_pages, radswap);
1156 if (index == -1)
1157 return -EAGAIN; /* tell shmem_unuse we found nothing */
1160 * Move _head_ to start search for next from here.
1161 * But be careful: shmem_evict_inode checks list_empty without taking
1162 * mutex, and there's an instant in list_move_tail when info->swaplist
1163 * would appear empty, if it were the only one on shmem_swaplist.
1165 if (shmem_swaplist.next != &info->swaplist)
1166 list_move_tail(&shmem_swaplist, &info->swaplist);
1168 gfp = mapping_gfp_mask(mapping);
1169 if (shmem_should_replace_page(*pagep, gfp)) {
1170 mutex_unlock(&shmem_swaplist_mutex);
1171 error = shmem_replace_page(pagep, gfp, info, index);
1172 mutex_lock(&shmem_swaplist_mutex);
1174 * We needed to drop mutex to make that restrictive page
1175 * allocation, but the inode might have been freed while we
1176 * dropped it: although a racing shmem_evict_inode() cannot
1177 * complete without emptying the radix_tree, our page lock
1178 * on this swapcache page is not enough to prevent that -
1179 * free_swap_and_cache() of our swap entry will only
1180 * trylock_page(), removing swap from radix_tree whatever.
1182 * We must not proceed to shmem_add_to_page_cache() if the
1183 * inode has been freed, but of course we cannot rely on
1184 * inode or mapping or info to check that. However, we can
1185 * safely check if our swap entry is still in use (and here
1186 * it can't have got reused for another page): if it's still
1187 * in use, then the inode cannot have been freed yet, and we
1188 * can safely proceed (if it's no longer in use, that tells
1189 * nothing about the inode, but we don't need to unuse swap).
1191 if (!page_swapcount(*pagep))
1192 error = -ENOENT;
1196 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1197 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1198 * beneath us (pagelock doesn't help until the page is in pagecache).
1200 if (!error)
1201 error = shmem_add_to_page_cache(*pagep, mapping, index,
1202 radswap);
1203 if (error != -ENOMEM) {
1205 * Truncation and eviction use free_swap_and_cache(), which
1206 * only does trylock page: if we raced, best clean up here.
1208 delete_from_swap_cache(*pagep);
1209 set_page_dirty(*pagep);
1210 if (!error) {
1211 spin_lock_irq(&info->lock);
1212 info->swapped--;
1213 spin_unlock_irq(&info->lock);
1214 swap_free(swap);
1217 return error;
1221 * Search through swapped inodes to find and replace swap by page.
1223 int shmem_unuse(swp_entry_t swap, struct page *page)
1225 struct list_head *this, *next;
1226 struct shmem_inode_info *info;
1227 struct mem_cgroup *memcg;
1228 int error = 0;
1231 * There's a faint possibility that swap page was replaced before
1232 * caller locked it: caller will come back later with the right page.
1234 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1235 goto out;
1238 * Charge page using GFP_KERNEL while we can wait, before taking
1239 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1240 * Charged back to the user (not to caller) when swap account is used.
1242 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1243 false);
1244 if (error)
1245 goto out;
1246 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1247 error = -EAGAIN;
1249 mutex_lock(&shmem_swaplist_mutex);
1250 list_for_each_safe(this, next, &shmem_swaplist) {
1251 info = list_entry(this, struct shmem_inode_info, swaplist);
1252 if (info->swapped)
1253 error = shmem_unuse_inode(info, swap, &page);
1254 else
1255 list_del_init(&info->swaplist);
1256 cond_resched();
1257 if (error != -EAGAIN)
1258 break;
1259 /* found nothing in this: move on to search the next */
1261 mutex_unlock(&shmem_swaplist_mutex);
1263 if (error) {
1264 if (error != -ENOMEM)
1265 error = 0;
1266 mem_cgroup_cancel_charge(page, memcg, false);
1267 } else
1268 mem_cgroup_commit_charge(page, memcg, true, false);
1269 out:
1270 unlock_page(page);
1271 put_page(page);
1272 return error;
1276 * Move the page from the page cache to the swap cache.
1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1280 struct shmem_inode_info *info;
1281 struct address_space *mapping;
1282 struct inode *inode;
1283 swp_entry_t swap;
1284 pgoff_t index;
1286 VM_BUG_ON_PAGE(PageCompound(page), page);
1287 BUG_ON(!PageLocked(page));
1288 mapping = page->mapping;
1289 index = page->index;
1290 inode = mapping->host;
1291 info = SHMEM_I(inode);
1292 if (info->flags & VM_LOCKED)
1293 goto redirty;
1294 if (!total_swap_pages)
1295 goto redirty;
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1302 * threads or sync.
1304 if (!wbc->for_reclaim) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1306 goto redirty;
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1320 if (!PageUptodate(page)) {
1321 if (inode->i_private) {
1322 struct shmem_falloc *shmem_falloc;
1323 spin_lock(&inode->i_lock);
1324 shmem_falloc = inode->i_private;
1325 if (shmem_falloc &&
1326 !shmem_falloc->waitq &&
1327 index >= shmem_falloc->start &&
1328 index < shmem_falloc->next)
1329 shmem_falloc->nr_unswapped++;
1330 else
1331 shmem_falloc = NULL;
1332 spin_unlock(&inode->i_lock);
1333 if (shmem_falloc)
1334 goto redirty;
1336 clear_highpage(page);
1337 flush_dcache_page(page);
1338 SetPageUptodate(page);
1341 swap = get_swap_page(page);
1342 if (!swap.val)
1343 goto redirty;
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
1349 * the inode from eviction. But don't unlock the mutex until
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
1353 mutex_lock(&shmem_swaplist_mutex);
1354 if (list_empty(&info->swaplist))
1355 list_add_tail(&info->swaplist, &shmem_swaplist);
1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1358 spin_lock_irq(&info->lock);
1359 shmem_recalc_inode(inode);
1360 info->swapped++;
1361 spin_unlock_irq(&info->lock);
1363 swap_shmem_alloc(swap);
1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1366 mutex_unlock(&shmem_swaplist_mutex);
1367 BUG_ON(page_mapped(page));
1368 swap_writepage(page, wbc);
1369 return 0;
1372 mutex_unlock(&shmem_swaplist_mutex);
1373 put_swap_page(page, swap);
1374 redirty:
1375 set_page_dirty(page);
1376 if (wbc->for_reclaim)
1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1378 unlock_page(page);
1379 return 0;
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1385 char buffer[64];
1387 if (!mpol || mpol->mode == MPOL_DEFAULT)
1388 return; /* show nothing */
1390 mpol_to_str(buffer, sizeof(buffer), mpol);
1392 seq_printf(seq, ",mpol=%s", buffer);
1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397 struct mempolicy *mpol = NULL;
1398 if (sbinfo->mpol) {
1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1400 mpol = sbinfo->mpol;
1401 mpol_get(mpol);
1402 spin_unlock(&sbinfo->stat_lock);
1404 return mpol;
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 return NULL;
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415 #ifndef CONFIG_NUMA
1416 #define vm_policy vm_private_data
1417 #endif
1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 struct shmem_inode_info *info, pgoff_t index)
1422 /* Create a pseudo vma that just contains the policy */
1423 memset(vma, 0, sizeof(*vma));
1424 vma_init(vma, NULL);
1425 /* Bias interleave by inode number to distribute better across nodes */
1426 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1427 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1432 /* Drop reference taken by mpol_shared_policy_lookup() */
1433 mpol_cond_put(vma->vm_policy);
1436 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437 struct shmem_inode_info *info, pgoff_t index)
1439 struct vm_area_struct pvma;
1440 struct page *page;
1441 struct vm_fault vmf;
1443 shmem_pseudo_vma_init(&pvma, info, index);
1444 vmf.vma = &pvma;
1445 vmf.address = 0;
1446 page = swap_cluster_readahead(swap, gfp, &vmf);
1447 shmem_pseudo_vma_destroy(&pvma);
1449 return page;
1452 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453 struct shmem_inode_info *info, pgoff_t index)
1455 struct vm_area_struct pvma;
1456 struct inode *inode = &info->vfs_inode;
1457 struct address_space *mapping = inode->i_mapping;
1458 pgoff_t idx, hindex;
1459 void __rcu **results;
1460 struct page *page;
1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463 return NULL;
1465 hindex = round_down(index, HPAGE_PMD_NR);
1466 rcu_read_lock();
1467 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1468 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469 rcu_read_unlock();
1470 return NULL;
1472 rcu_read_unlock();
1474 shmem_pseudo_vma_init(&pvma, info, hindex);
1475 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477 shmem_pseudo_vma_destroy(&pvma);
1478 if (page)
1479 prep_transhuge_page(page);
1480 return page;
1483 static struct page *shmem_alloc_page(gfp_t gfp,
1484 struct shmem_inode_info *info, pgoff_t index)
1486 struct vm_area_struct pvma;
1487 struct page *page;
1489 shmem_pseudo_vma_init(&pvma, info, index);
1490 page = alloc_page_vma(gfp, &pvma, 0);
1491 shmem_pseudo_vma_destroy(&pvma);
1493 return page;
1496 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1497 struct inode *inode,
1498 pgoff_t index, bool huge)
1500 struct shmem_inode_info *info = SHMEM_I(inode);
1501 struct page *page;
1502 int nr;
1503 int err = -ENOSPC;
1505 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1506 huge = false;
1507 nr = huge ? HPAGE_PMD_NR : 1;
1509 if (!shmem_inode_acct_block(inode, nr))
1510 goto failed;
1512 if (huge)
1513 page = shmem_alloc_hugepage(gfp, info, index);
1514 else
1515 page = shmem_alloc_page(gfp, info, index);
1516 if (page) {
1517 __SetPageLocked(page);
1518 __SetPageSwapBacked(page);
1519 return page;
1522 err = -ENOMEM;
1523 shmem_inode_unacct_blocks(inode, nr);
1524 failed:
1525 return ERR_PTR(err);
1529 * When a page is moved from swapcache to shmem filecache (either by the
1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532 * ignorance of the mapping it belongs to. If that mapping has special
1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534 * we may need to copy to a suitable page before moving to filecache.
1536 * In a future release, this may well be extended to respect cpuset and
1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538 * but for now it is a simple matter of zone.
1540 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1542 return page_zonenum(page) > gfp_zone(gfp);
1545 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546 struct shmem_inode_info *info, pgoff_t index)
1548 struct page *oldpage, *newpage;
1549 struct address_space *swap_mapping;
1550 pgoff_t swap_index;
1551 int error;
1553 oldpage = *pagep;
1554 swap_index = page_private(oldpage);
1555 swap_mapping = page_mapping(oldpage);
1558 * We have arrived here because our zones are constrained, so don't
1559 * limit chance of success by further cpuset and node constraints.
1561 gfp &= ~GFP_CONSTRAINT_MASK;
1562 newpage = shmem_alloc_page(gfp, info, index);
1563 if (!newpage)
1564 return -ENOMEM;
1566 get_page(newpage);
1567 copy_highpage(newpage, oldpage);
1568 flush_dcache_page(newpage);
1570 __SetPageLocked(newpage);
1571 __SetPageSwapBacked(newpage);
1572 SetPageUptodate(newpage);
1573 set_page_private(newpage, swap_index);
1574 SetPageSwapCache(newpage);
1577 * Our caller will very soon move newpage out of swapcache, but it's
1578 * a nice clean interface for us to replace oldpage by newpage there.
1580 xa_lock_irq(&swap_mapping->i_pages);
1581 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582 newpage);
1583 if (!error) {
1584 __inc_node_page_state(newpage, NR_FILE_PAGES);
1585 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1587 xa_unlock_irq(&swap_mapping->i_pages);
1589 if (unlikely(error)) {
1591 * Is this possible? I think not, now that our callers check
1592 * both PageSwapCache and page_private after getting page lock;
1593 * but be defensive. Reverse old to newpage for clear and free.
1595 oldpage = newpage;
1596 } else {
1597 mem_cgroup_migrate(oldpage, newpage);
1598 lru_cache_add_anon(newpage);
1599 *pagep = newpage;
1602 ClearPageSwapCache(oldpage);
1603 set_page_private(oldpage, 0);
1605 unlock_page(oldpage);
1606 put_page(oldpage);
1607 put_page(oldpage);
1608 return error;
1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1614 * If we allocate a new one we do not mark it dirty. That's up to the
1615 * vm. If we swap it in we mark it dirty since we also free the swap
1616 * entry since a page cannot live in both the swap and page cache.
1618 * fault_mm and fault_type are only supplied by shmem_fault:
1619 * otherwise they are NULL.
1621 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1622 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1623 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1625 struct address_space *mapping = inode->i_mapping;
1626 struct shmem_inode_info *info = SHMEM_I(inode);
1627 struct shmem_sb_info *sbinfo;
1628 struct mm_struct *charge_mm;
1629 struct mem_cgroup *memcg;
1630 struct page *page;
1631 swp_entry_t swap;
1632 enum sgp_type sgp_huge = sgp;
1633 pgoff_t hindex = index;
1634 int error;
1635 int once = 0;
1636 int alloced = 0;
1638 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1639 return -EFBIG;
1640 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1641 sgp = SGP_CACHE;
1642 repeat:
1643 swap.val = 0;
1644 page = find_lock_entry(mapping, index);
1645 if (radix_tree_exceptional_entry(page)) {
1646 swap = radix_to_swp_entry(page);
1647 page = NULL;
1650 if (sgp <= SGP_CACHE &&
1651 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1652 error = -EINVAL;
1653 goto unlock;
1656 if (page && sgp == SGP_WRITE)
1657 mark_page_accessed(page);
1659 /* fallocated page? */
1660 if (page && !PageUptodate(page)) {
1661 if (sgp != SGP_READ)
1662 goto clear;
1663 unlock_page(page);
1664 put_page(page);
1665 page = NULL;
1667 if (page || (sgp == SGP_READ && !swap.val)) {
1668 *pagep = page;
1669 return 0;
1673 * Fast cache lookup did not find it:
1674 * bring it back from swap or allocate.
1676 sbinfo = SHMEM_SB(inode->i_sb);
1677 charge_mm = vma ? vma->vm_mm : current->mm;
1679 if (swap.val) {
1680 /* Look it up and read it in.. */
1681 page = lookup_swap_cache(swap, NULL, 0);
1682 if (!page) {
1683 /* Or update major stats only when swapin succeeds?? */
1684 if (fault_type) {
1685 *fault_type |= VM_FAULT_MAJOR;
1686 count_vm_event(PGMAJFAULT);
1687 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1689 /* Here we actually start the io */
1690 page = shmem_swapin(swap, gfp, info, index);
1691 if (!page) {
1692 error = -ENOMEM;
1693 goto failed;
1697 /* We have to do this with page locked to prevent races */
1698 lock_page(page);
1699 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1700 !shmem_confirm_swap(mapping, index, swap)) {
1701 error = -EEXIST; /* try again */
1702 goto unlock;
1704 if (!PageUptodate(page)) {
1705 error = -EIO;
1706 goto failed;
1708 wait_on_page_writeback(page);
1710 if (shmem_should_replace_page(page, gfp)) {
1711 error = shmem_replace_page(&page, gfp, info, index);
1712 if (error)
1713 goto failed;
1716 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1717 false);
1718 if (!error) {
1719 error = shmem_add_to_page_cache(page, mapping, index,
1720 swp_to_radix_entry(swap));
1722 * We already confirmed swap under page lock, and make
1723 * no memory allocation here, so usually no possibility
1724 * of error; but free_swap_and_cache() only trylocks a
1725 * page, so it is just possible that the entry has been
1726 * truncated or holepunched since swap was confirmed.
1727 * shmem_undo_range() will have done some of the
1728 * unaccounting, now delete_from_swap_cache() will do
1729 * the rest.
1730 * Reset swap.val? No, leave it so "failed" goes back to
1731 * "repeat": reading a hole and writing should succeed.
1733 if (error) {
1734 mem_cgroup_cancel_charge(page, memcg, false);
1735 delete_from_swap_cache(page);
1738 if (error)
1739 goto failed;
1741 mem_cgroup_commit_charge(page, memcg, true, false);
1743 spin_lock_irq(&info->lock);
1744 info->swapped--;
1745 shmem_recalc_inode(inode);
1746 spin_unlock_irq(&info->lock);
1748 if (sgp == SGP_WRITE)
1749 mark_page_accessed(page);
1751 delete_from_swap_cache(page);
1752 set_page_dirty(page);
1753 swap_free(swap);
1755 } else {
1756 if (vma && userfaultfd_missing(vma)) {
1757 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1758 return 0;
1761 /* shmem_symlink() */
1762 if (mapping->a_ops != &shmem_aops)
1763 goto alloc_nohuge;
1764 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1765 goto alloc_nohuge;
1766 if (shmem_huge == SHMEM_HUGE_FORCE)
1767 goto alloc_huge;
1768 switch (sbinfo->huge) {
1769 loff_t i_size;
1770 pgoff_t off;
1771 case SHMEM_HUGE_NEVER:
1772 goto alloc_nohuge;
1773 case SHMEM_HUGE_WITHIN_SIZE:
1774 off = round_up(index, HPAGE_PMD_NR);
1775 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1776 if (i_size >= HPAGE_PMD_SIZE &&
1777 i_size >> PAGE_SHIFT >= off)
1778 goto alloc_huge;
1779 /* fallthrough */
1780 case SHMEM_HUGE_ADVISE:
1781 if (sgp_huge == SGP_HUGE)
1782 goto alloc_huge;
1783 /* TODO: implement fadvise() hints */
1784 goto alloc_nohuge;
1787 alloc_huge:
1788 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1789 if (IS_ERR(page)) {
1790 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1791 index, false);
1793 if (IS_ERR(page)) {
1794 int retry = 5;
1795 error = PTR_ERR(page);
1796 page = NULL;
1797 if (error != -ENOSPC)
1798 goto failed;
1800 * Try to reclaim some spece by splitting a huge page
1801 * beyond i_size on the filesystem.
1803 while (retry--) {
1804 int ret;
1805 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1806 if (ret == SHRINK_STOP)
1807 break;
1808 if (ret)
1809 goto alloc_nohuge;
1811 goto failed;
1814 if (PageTransHuge(page))
1815 hindex = round_down(index, HPAGE_PMD_NR);
1816 else
1817 hindex = index;
1819 if (sgp == SGP_WRITE)
1820 __SetPageReferenced(page);
1822 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1823 PageTransHuge(page));
1824 if (error)
1825 goto unacct;
1826 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1827 compound_order(page));
1828 if (!error) {
1829 error = shmem_add_to_page_cache(page, mapping, hindex,
1830 NULL);
1831 radix_tree_preload_end();
1833 if (error) {
1834 mem_cgroup_cancel_charge(page, memcg,
1835 PageTransHuge(page));
1836 goto unacct;
1838 mem_cgroup_commit_charge(page, memcg, false,
1839 PageTransHuge(page));
1840 lru_cache_add_anon(page);
1842 spin_lock_irq(&info->lock);
1843 info->alloced += 1 << compound_order(page);
1844 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1845 shmem_recalc_inode(inode);
1846 spin_unlock_irq(&info->lock);
1847 alloced = true;
1849 if (PageTransHuge(page) &&
1850 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1851 hindex + HPAGE_PMD_NR - 1) {
1853 * Part of the huge page is beyond i_size: subject
1854 * to shrink under memory pressure.
1856 spin_lock(&sbinfo->shrinklist_lock);
1858 * _careful to defend against unlocked access to
1859 * ->shrink_list in shmem_unused_huge_shrink()
1861 if (list_empty_careful(&info->shrinklist)) {
1862 list_add_tail(&info->shrinklist,
1863 &sbinfo->shrinklist);
1864 sbinfo->shrinklist_len++;
1866 spin_unlock(&sbinfo->shrinklist_lock);
1870 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1872 if (sgp == SGP_FALLOC)
1873 sgp = SGP_WRITE;
1874 clear:
1876 * Let SGP_WRITE caller clear ends if write does not fill page;
1877 * but SGP_FALLOC on a page fallocated earlier must initialize
1878 * it now, lest undo on failure cancel our earlier guarantee.
1880 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1881 struct page *head = compound_head(page);
1882 int i;
1884 for (i = 0; i < (1 << compound_order(head)); i++) {
1885 clear_highpage(head + i);
1886 flush_dcache_page(head + i);
1888 SetPageUptodate(head);
1892 /* Perhaps the file has been truncated since we checked */
1893 if (sgp <= SGP_CACHE &&
1894 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1895 if (alloced) {
1896 ClearPageDirty(page);
1897 delete_from_page_cache(page);
1898 spin_lock_irq(&info->lock);
1899 shmem_recalc_inode(inode);
1900 spin_unlock_irq(&info->lock);
1902 error = -EINVAL;
1903 goto unlock;
1905 *pagep = page + index - hindex;
1906 return 0;
1909 * Error recovery.
1911 unacct:
1912 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1914 if (PageTransHuge(page)) {
1915 unlock_page(page);
1916 put_page(page);
1917 goto alloc_nohuge;
1919 failed:
1920 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1921 error = -EEXIST;
1922 unlock:
1923 if (page) {
1924 unlock_page(page);
1925 put_page(page);
1927 if (error == -ENOSPC && !once++) {
1928 spin_lock_irq(&info->lock);
1929 shmem_recalc_inode(inode);
1930 spin_unlock_irq(&info->lock);
1931 goto repeat;
1933 if (error == -EEXIST) /* from above or from radix_tree_insert */
1934 goto repeat;
1935 return error;
1939 * This is like autoremove_wake_function, but it removes the wait queue
1940 * entry unconditionally - even if something else had already woken the
1941 * target.
1943 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1945 int ret = default_wake_function(wait, mode, sync, key);
1946 list_del_init(&wait->entry);
1947 return ret;
1950 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1952 struct vm_area_struct *vma = vmf->vma;
1953 struct inode *inode = file_inode(vma->vm_file);
1954 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1955 enum sgp_type sgp;
1956 int err;
1957 vm_fault_t ret = VM_FAULT_LOCKED;
1960 * Trinity finds that probing a hole which tmpfs is punching can
1961 * prevent the hole-punch from ever completing: which in turn
1962 * locks writers out with its hold on i_mutex. So refrain from
1963 * faulting pages into the hole while it's being punched. Although
1964 * shmem_undo_range() does remove the additions, it may be unable to
1965 * keep up, as each new page needs its own unmap_mapping_range() call,
1966 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1968 * It does not matter if we sometimes reach this check just before the
1969 * hole-punch begins, so that one fault then races with the punch:
1970 * we just need to make racing faults a rare case.
1972 * The implementation below would be much simpler if we just used a
1973 * standard mutex or completion: but we cannot take i_mutex in fault,
1974 * and bloating every shmem inode for this unlikely case would be sad.
1976 if (unlikely(inode->i_private)) {
1977 struct shmem_falloc *shmem_falloc;
1979 spin_lock(&inode->i_lock);
1980 shmem_falloc = inode->i_private;
1981 if (shmem_falloc &&
1982 shmem_falloc->waitq &&
1983 vmf->pgoff >= shmem_falloc->start &&
1984 vmf->pgoff < shmem_falloc->next) {
1985 wait_queue_head_t *shmem_falloc_waitq;
1986 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1988 ret = VM_FAULT_NOPAGE;
1989 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1990 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1991 /* It's polite to up mmap_sem if we can */
1992 up_read(&vma->vm_mm->mmap_sem);
1993 ret = VM_FAULT_RETRY;
1996 shmem_falloc_waitq = shmem_falloc->waitq;
1997 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1998 TASK_UNINTERRUPTIBLE);
1999 spin_unlock(&inode->i_lock);
2000 schedule();
2003 * shmem_falloc_waitq points into the shmem_fallocate()
2004 * stack of the hole-punching task: shmem_falloc_waitq
2005 * is usually invalid by the time we reach here, but
2006 * finish_wait() does not dereference it in that case;
2007 * though i_lock needed lest racing with wake_up_all().
2009 spin_lock(&inode->i_lock);
2010 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2011 spin_unlock(&inode->i_lock);
2012 return ret;
2014 spin_unlock(&inode->i_lock);
2017 sgp = SGP_CACHE;
2019 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2020 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2021 sgp = SGP_NOHUGE;
2022 else if (vma->vm_flags & VM_HUGEPAGE)
2023 sgp = SGP_HUGE;
2025 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2026 gfp, vma, vmf, &ret);
2027 if (err)
2028 return vmf_error(err);
2029 return ret;
2032 unsigned long shmem_get_unmapped_area(struct file *file,
2033 unsigned long uaddr, unsigned long len,
2034 unsigned long pgoff, unsigned long flags)
2036 unsigned long (*get_area)(struct file *,
2037 unsigned long, unsigned long, unsigned long, unsigned long);
2038 unsigned long addr;
2039 unsigned long offset;
2040 unsigned long inflated_len;
2041 unsigned long inflated_addr;
2042 unsigned long inflated_offset;
2044 if (len > TASK_SIZE)
2045 return -ENOMEM;
2047 get_area = current->mm->get_unmapped_area;
2048 addr = get_area(file, uaddr, len, pgoff, flags);
2050 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2051 return addr;
2052 if (IS_ERR_VALUE(addr))
2053 return addr;
2054 if (addr & ~PAGE_MASK)
2055 return addr;
2056 if (addr > TASK_SIZE - len)
2057 return addr;
2059 if (shmem_huge == SHMEM_HUGE_DENY)
2060 return addr;
2061 if (len < HPAGE_PMD_SIZE)
2062 return addr;
2063 if (flags & MAP_FIXED)
2064 return addr;
2066 * Our priority is to support MAP_SHARED mapped hugely;
2067 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2068 * But if caller specified an address hint, respect that as before.
2070 if (uaddr)
2071 return addr;
2073 if (shmem_huge != SHMEM_HUGE_FORCE) {
2074 struct super_block *sb;
2076 if (file) {
2077 VM_BUG_ON(file->f_op != &shmem_file_operations);
2078 sb = file_inode(file)->i_sb;
2079 } else {
2081 * Called directly from mm/mmap.c, or drivers/char/mem.c
2082 * for "/dev/zero", to create a shared anonymous object.
2084 if (IS_ERR(shm_mnt))
2085 return addr;
2086 sb = shm_mnt->mnt_sb;
2088 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2089 return addr;
2092 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2093 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2094 return addr;
2095 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2096 return addr;
2098 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2099 if (inflated_len > TASK_SIZE)
2100 return addr;
2101 if (inflated_len < len)
2102 return addr;
2104 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2105 if (IS_ERR_VALUE(inflated_addr))
2106 return addr;
2107 if (inflated_addr & ~PAGE_MASK)
2108 return addr;
2110 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2111 inflated_addr += offset - inflated_offset;
2112 if (inflated_offset > offset)
2113 inflated_addr += HPAGE_PMD_SIZE;
2115 if (inflated_addr > TASK_SIZE - len)
2116 return addr;
2117 return inflated_addr;
2120 #ifdef CONFIG_NUMA
2121 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2123 struct inode *inode = file_inode(vma->vm_file);
2124 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2127 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2128 unsigned long addr)
2130 struct inode *inode = file_inode(vma->vm_file);
2131 pgoff_t index;
2133 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2134 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2136 #endif
2138 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2140 struct inode *inode = file_inode(file);
2141 struct shmem_inode_info *info = SHMEM_I(inode);
2142 int retval = -ENOMEM;
2144 spin_lock_irq(&info->lock);
2145 if (lock && !(info->flags & VM_LOCKED)) {
2146 if (!user_shm_lock(inode->i_size, user))
2147 goto out_nomem;
2148 info->flags |= VM_LOCKED;
2149 mapping_set_unevictable(file->f_mapping);
2151 if (!lock && (info->flags & VM_LOCKED) && user) {
2152 user_shm_unlock(inode->i_size, user);
2153 info->flags &= ~VM_LOCKED;
2154 mapping_clear_unevictable(file->f_mapping);
2156 retval = 0;
2158 out_nomem:
2159 spin_unlock_irq(&info->lock);
2160 return retval;
2163 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2165 file_accessed(file);
2166 vma->vm_ops = &shmem_vm_ops;
2167 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2168 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2169 (vma->vm_end & HPAGE_PMD_MASK)) {
2170 khugepaged_enter(vma, vma->vm_flags);
2172 return 0;
2175 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2176 umode_t mode, dev_t dev, unsigned long flags)
2178 struct inode *inode;
2179 struct shmem_inode_info *info;
2180 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182 if (shmem_reserve_inode(sb))
2183 return NULL;
2185 inode = new_inode(sb);
2186 if (inode) {
2187 inode->i_ino = get_next_ino();
2188 inode_init_owner(inode, dir, mode);
2189 inode->i_blocks = 0;
2190 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2191 inode->i_generation = get_seconds();
2192 info = SHMEM_I(inode);
2193 memset(info, 0, (char *)inode - (char *)info);
2194 spin_lock_init(&info->lock);
2195 info->seals = F_SEAL_SEAL;
2196 info->flags = flags & VM_NORESERVE;
2197 INIT_LIST_HEAD(&info->shrinklist);
2198 INIT_LIST_HEAD(&info->swaplist);
2199 simple_xattrs_init(&info->xattrs);
2200 cache_no_acl(inode);
2202 switch (mode & S_IFMT) {
2203 default:
2204 inode->i_op = &shmem_special_inode_operations;
2205 init_special_inode(inode, mode, dev);
2206 break;
2207 case S_IFREG:
2208 inode->i_mapping->a_ops = &shmem_aops;
2209 inode->i_op = &shmem_inode_operations;
2210 inode->i_fop = &shmem_file_operations;
2211 mpol_shared_policy_init(&info->policy,
2212 shmem_get_sbmpol(sbinfo));
2213 break;
2214 case S_IFDIR:
2215 inc_nlink(inode);
2216 /* Some things misbehave if size == 0 on a directory */
2217 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2218 inode->i_op = &shmem_dir_inode_operations;
2219 inode->i_fop = &simple_dir_operations;
2220 break;
2221 case S_IFLNK:
2223 * Must not load anything in the rbtree,
2224 * mpol_free_shared_policy will not be called.
2226 mpol_shared_policy_init(&info->policy, NULL);
2227 break;
2229 } else
2230 shmem_free_inode(sb);
2231 return inode;
2234 bool shmem_mapping(struct address_space *mapping)
2236 return mapping->a_ops == &shmem_aops;
2239 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2240 pmd_t *dst_pmd,
2241 struct vm_area_struct *dst_vma,
2242 unsigned long dst_addr,
2243 unsigned long src_addr,
2244 bool zeropage,
2245 struct page **pagep)
2247 struct inode *inode = file_inode(dst_vma->vm_file);
2248 struct shmem_inode_info *info = SHMEM_I(inode);
2249 struct address_space *mapping = inode->i_mapping;
2250 gfp_t gfp = mapping_gfp_mask(mapping);
2251 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2252 struct mem_cgroup *memcg;
2253 spinlock_t *ptl;
2254 void *page_kaddr;
2255 struct page *page;
2256 pte_t _dst_pte, *dst_pte;
2257 int ret;
2259 ret = -ENOMEM;
2260 if (!shmem_inode_acct_block(inode, 1))
2261 goto out;
2263 if (!*pagep) {
2264 page = shmem_alloc_page(gfp, info, pgoff);
2265 if (!page)
2266 goto out_unacct_blocks;
2268 if (!zeropage) { /* mcopy_atomic */
2269 page_kaddr = kmap_atomic(page);
2270 ret = copy_from_user(page_kaddr,
2271 (const void __user *)src_addr,
2272 PAGE_SIZE);
2273 kunmap_atomic(page_kaddr);
2275 /* fallback to copy_from_user outside mmap_sem */
2276 if (unlikely(ret)) {
2277 *pagep = page;
2278 shmem_inode_unacct_blocks(inode, 1);
2279 /* don't free the page */
2280 return -EFAULT;
2282 } else { /* mfill_zeropage_atomic */
2283 clear_highpage(page);
2285 } else {
2286 page = *pagep;
2287 *pagep = NULL;
2290 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2291 __SetPageLocked(page);
2292 __SetPageSwapBacked(page);
2293 __SetPageUptodate(page);
2295 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2296 if (ret)
2297 goto out_release;
2299 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2300 if (!ret) {
2301 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2302 radix_tree_preload_end();
2304 if (ret)
2305 goto out_release_uncharge;
2307 mem_cgroup_commit_charge(page, memcg, false, false);
2309 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2310 if (dst_vma->vm_flags & VM_WRITE)
2311 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2313 ret = -EEXIST;
2314 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2315 if (!pte_none(*dst_pte))
2316 goto out_release_uncharge_unlock;
2318 lru_cache_add_anon(page);
2320 spin_lock(&info->lock);
2321 info->alloced++;
2322 inode->i_blocks += BLOCKS_PER_PAGE;
2323 shmem_recalc_inode(inode);
2324 spin_unlock(&info->lock);
2326 inc_mm_counter(dst_mm, mm_counter_file(page));
2327 page_add_file_rmap(page, false);
2328 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2330 /* No need to invalidate - it was non-present before */
2331 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2332 unlock_page(page);
2333 pte_unmap_unlock(dst_pte, ptl);
2334 ret = 0;
2335 out:
2336 return ret;
2337 out_release_uncharge_unlock:
2338 pte_unmap_unlock(dst_pte, ptl);
2339 out_release_uncharge:
2340 mem_cgroup_cancel_charge(page, memcg, false);
2341 out_release:
2342 unlock_page(page);
2343 put_page(page);
2344 out_unacct_blocks:
2345 shmem_inode_unacct_blocks(inode, 1);
2346 goto out;
2349 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2350 pmd_t *dst_pmd,
2351 struct vm_area_struct *dst_vma,
2352 unsigned long dst_addr,
2353 unsigned long src_addr,
2354 struct page **pagep)
2356 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2357 dst_addr, src_addr, false, pagep);
2360 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2361 pmd_t *dst_pmd,
2362 struct vm_area_struct *dst_vma,
2363 unsigned long dst_addr)
2365 struct page *page = NULL;
2367 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2368 dst_addr, 0, true, &page);
2371 #ifdef CONFIG_TMPFS
2372 static const struct inode_operations shmem_symlink_inode_operations;
2373 static const struct inode_operations shmem_short_symlink_operations;
2375 #ifdef CONFIG_TMPFS_XATTR
2376 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2377 #else
2378 #define shmem_initxattrs NULL
2379 #endif
2381 static int
2382 shmem_write_begin(struct file *file, struct address_space *mapping,
2383 loff_t pos, unsigned len, unsigned flags,
2384 struct page **pagep, void **fsdata)
2386 struct inode *inode = mapping->host;
2387 struct shmem_inode_info *info = SHMEM_I(inode);
2388 pgoff_t index = pos >> PAGE_SHIFT;
2390 /* i_mutex is held by caller */
2391 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2392 if (info->seals & F_SEAL_WRITE)
2393 return -EPERM;
2394 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2395 return -EPERM;
2398 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2401 static int
2402 shmem_write_end(struct file *file, struct address_space *mapping,
2403 loff_t pos, unsigned len, unsigned copied,
2404 struct page *page, void *fsdata)
2406 struct inode *inode = mapping->host;
2408 if (pos + copied > inode->i_size)
2409 i_size_write(inode, pos + copied);
2411 if (!PageUptodate(page)) {
2412 struct page *head = compound_head(page);
2413 if (PageTransCompound(page)) {
2414 int i;
2416 for (i = 0; i < HPAGE_PMD_NR; i++) {
2417 if (head + i == page)
2418 continue;
2419 clear_highpage(head + i);
2420 flush_dcache_page(head + i);
2423 if (copied < PAGE_SIZE) {
2424 unsigned from = pos & (PAGE_SIZE - 1);
2425 zero_user_segments(page, 0, from,
2426 from + copied, PAGE_SIZE);
2428 SetPageUptodate(head);
2430 set_page_dirty(page);
2431 unlock_page(page);
2432 put_page(page);
2434 return copied;
2437 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2439 struct file *file = iocb->ki_filp;
2440 struct inode *inode = file_inode(file);
2441 struct address_space *mapping = inode->i_mapping;
2442 pgoff_t index;
2443 unsigned long offset;
2444 enum sgp_type sgp = SGP_READ;
2445 int error = 0;
2446 ssize_t retval = 0;
2447 loff_t *ppos = &iocb->ki_pos;
2450 * Might this read be for a stacking filesystem? Then when reading
2451 * holes of a sparse file, we actually need to allocate those pages,
2452 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2454 if (!iter_is_iovec(to))
2455 sgp = SGP_CACHE;
2457 index = *ppos >> PAGE_SHIFT;
2458 offset = *ppos & ~PAGE_MASK;
2460 for (;;) {
2461 struct page *page = NULL;
2462 pgoff_t end_index;
2463 unsigned long nr, ret;
2464 loff_t i_size = i_size_read(inode);
2466 end_index = i_size >> PAGE_SHIFT;
2467 if (index > end_index)
2468 break;
2469 if (index == end_index) {
2470 nr = i_size & ~PAGE_MASK;
2471 if (nr <= offset)
2472 break;
2475 error = shmem_getpage(inode, index, &page, sgp);
2476 if (error) {
2477 if (error == -EINVAL)
2478 error = 0;
2479 break;
2481 if (page) {
2482 if (sgp == SGP_CACHE)
2483 set_page_dirty(page);
2484 unlock_page(page);
2488 * We must evaluate after, since reads (unlike writes)
2489 * are called without i_mutex protection against truncate
2491 nr = PAGE_SIZE;
2492 i_size = i_size_read(inode);
2493 end_index = i_size >> PAGE_SHIFT;
2494 if (index == end_index) {
2495 nr = i_size & ~PAGE_MASK;
2496 if (nr <= offset) {
2497 if (page)
2498 put_page(page);
2499 break;
2502 nr -= offset;
2504 if (page) {
2506 * If users can be writing to this page using arbitrary
2507 * virtual addresses, take care about potential aliasing
2508 * before reading the page on the kernel side.
2510 if (mapping_writably_mapped(mapping))
2511 flush_dcache_page(page);
2513 * Mark the page accessed if we read the beginning.
2515 if (!offset)
2516 mark_page_accessed(page);
2517 } else {
2518 page = ZERO_PAGE(0);
2519 get_page(page);
2523 * Ok, we have the page, and it's up-to-date, so
2524 * now we can copy it to user space...
2526 ret = copy_page_to_iter(page, offset, nr, to);
2527 retval += ret;
2528 offset += ret;
2529 index += offset >> PAGE_SHIFT;
2530 offset &= ~PAGE_MASK;
2532 put_page(page);
2533 if (!iov_iter_count(to))
2534 break;
2535 if (ret < nr) {
2536 error = -EFAULT;
2537 break;
2539 cond_resched();
2542 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2543 file_accessed(file);
2544 return retval ? retval : error;
2548 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2550 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2551 pgoff_t index, pgoff_t end, int whence)
2553 struct page *page;
2554 struct pagevec pvec;
2555 pgoff_t indices[PAGEVEC_SIZE];
2556 bool done = false;
2557 int i;
2559 pagevec_init(&pvec);
2560 pvec.nr = 1; /* start small: we may be there already */
2561 while (!done) {
2562 pvec.nr = find_get_entries(mapping, index,
2563 pvec.nr, pvec.pages, indices);
2564 if (!pvec.nr) {
2565 if (whence == SEEK_DATA)
2566 index = end;
2567 break;
2569 for (i = 0; i < pvec.nr; i++, index++) {
2570 if (index < indices[i]) {
2571 if (whence == SEEK_HOLE) {
2572 done = true;
2573 break;
2575 index = indices[i];
2577 page = pvec.pages[i];
2578 if (page && !radix_tree_exceptional_entry(page)) {
2579 if (!PageUptodate(page))
2580 page = NULL;
2582 if (index >= end ||
2583 (page && whence == SEEK_DATA) ||
2584 (!page && whence == SEEK_HOLE)) {
2585 done = true;
2586 break;
2589 pagevec_remove_exceptionals(&pvec);
2590 pagevec_release(&pvec);
2591 pvec.nr = PAGEVEC_SIZE;
2592 cond_resched();
2594 return index;
2597 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2599 struct address_space *mapping = file->f_mapping;
2600 struct inode *inode = mapping->host;
2601 pgoff_t start, end;
2602 loff_t new_offset;
2604 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2605 return generic_file_llseek_size(file, offset, whence,
2606 MAX_LFS_FILESIZE, i_size_read(inode));
2607 inode_lock(inode);
2608 /* We're holding i_mutex so we can access i_size directly */
2610 if (offset < 0)
2611 offset = -EINVAL;
2612 else if (offset >= inode->i_size)
2613 offset = -ENXIO;
2614 else {
2615 start = offset >> PAGE_SHIFT;
2616 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2617 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2618 new_offset <<= PAGE_SHIFT;
2619 if (new_offset > offset) {
2620 if (new_offset < inode->i_size)
2621 offset = new_offset;
2622 else if (whence == SEEK_DATA)
2623 offset = -ENXIO;
2624 else
2625 offset = inode->i_size;
2629 if (offset >= 0)
2630 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2631 inode_unlock(inode);
2632 return offset;
2635 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2636 loff_t len)
2638 struct inode *inode = file_inode(file);
2639 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2640 struct shmem_inode_info *info = SHMEM_I(inode);
2641 struct shmem_falloc shmem_falloc;
2642 pgoff_t start, index, end;
2643 int error;
2645 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2646 return -EOPNOTSUPP;
2648 inode_lock(inode);
2650 if (mode & FALLOC_FL_PUNCH_HOLE) {
2651 struct address_space *mapping = file->f_mapping;
2652 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2653 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2654 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2656 /* protected by i_mutex */
2657 if (info->seals & F_SEAL_WRITE) {
2658 error = -EPERM;
2659 goto out;
2662 shmem_falloc.waitq = &shmem_falloc_waitq;
2663 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2664 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2665 spin_lock(&inode->i_lock);
2666 inode->i_private = &shmem_falloc;
2667 spin_unlock(&inode->i_lock);
2669 if ((u64)unmap_end > (u64)unmap_start)
2670 unmap_mapping_range(mapping, unmap_start,
2671 1 + unmap_end - unmap_start, 0);
2672 shmem_truncate_range(inode, offset, offset + len - 1);
2673 /* No need to unmap again: hole-punching leaves COWed pages */
2675 spin_lock(&inode->i_lock);
2676 inode->i_private = NULL;
2677 wake_up_all(&shmem_falloc_waitq);
2678 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2679 spin_unlock(&inode->i_lock);
2680 error = 0;
2681 goto out;
2684 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2685 error = inode_newsize_ok(inode, offset + len);
2686 if (error)
2687 goto out;
2689 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2690 error = -EPERM;
2691 goto out;
2694 start = offset >> PAGE_SHIFT;
2695 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2696 /* Try to avoid a swapstorm if len is impossible to satisfy */
2697 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2698 error = -ENOSPC;
2699 goto out;
2702 shmem_falloc.waitq = NULL;
2703 shmem_falloc.start = start;
2704 shmem_falloc.next = start;
2705 shmem_falloc.nr_falloced = 0;
2706 shmem_falloc.nr_unswapped = 0;
2707 spin_lock(&inode->i_lock);
2708 inode->i_private = &shmem_falloc;
2709 spin_unlock(&inode->i_lock);
2711 for (index = start; index < end; index++) {
2712 struct page *page;
2715 * Good, the fallocate(2) manpage permits EINTR: we may have
2716 * been interrupted because we are using up too much memory.
2718 if (signal_pending(current))
2719 error = -EINTR;
2720 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2721 error = -ENOMEM;
2722 else
2723 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2724 if (error) {
2725 /* Remove the !PageUptodate pages we added */
2726 if (index > start) {
2727 shmem_undo_range(inode,
2728 (loff_t)start << PAGE_SHIFT,
2729 ((loff_t)index << PAGE_SHIFT) - 1, true);
2731 goto undone;
2735 * Inform shmem_writepage() how far we have reached.
2736 * No need for lock or barrier: we have the page lock.
2738 shmem_falloc.next++;
2739 if (!PageUptodate(page))
2740 shmem_falloc.nr_falloced++;
2743 * If !PageUptodate, leave it that way so that freeable pages
2744 * can be recognized if we need to rollback on error later.
2745 * But set_page_dirty so that memory pressure will swap rather
2746 * than free the pages we are allocating (and SGP_CACHE pages
2747 * might still be clean: we now need to mark those dirty too).
2749 set_page_dirty(page);
2750 unlock_page(page);
2751 put_page(page);
2752 cond_resched();
2755 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2756 i_size_write(inode, offset + len);
2757 inode->i_ctime = current_time(inode);
2758 undone:
2759 spin_lock(&inode->i_lock);
2760 inode->i_private = NULL;
2761 spin_unlock(&inode->i_lock);
2762 out:
2763 inode_unlock(inode);
2764 return error;
2767 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2769 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2771 buf->f_type = TMPFS_MAGIC;
2772 buf->f_bsize = PAGE_SIZE;
2773 buf->f_namelen = NAME_MAX;
2774 if (sbinfo->max_blocks) {
2775 buf->f_blocks = sbinfo->max_blocks;
2776 buf->f_bavail =
2777 buf->f_bfree = sbinfo->max_blocks -
2778 percpu_counter_sum(&sbinfo->used_blocks);
2780 if (sbinfo->max_inodes) {
2781 buf->f_files = sbinfo->max_inodes;
2782 buf->f_ffree = sbinfo->free_inodes;
2784 /* else leave those fields 0 like simple_statfs */
2785 return 0;
2789 * File creation. Allocate an inode, and we're done..
2791 static int
2792 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2794 struct inode *inode;
2795 int error = -ENOSPC;
2797 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2798 if (inode) {
2799 error = simple_acl_create(dir, inode);
2800 if (error)
2801 goto out_iput;
2802 error = security_inode_init_security(inode, dir,
2803 &dentry->d_name,
2804 shmem_initxattrs, NULL);
2805 if (error && error != -EOPNOTSUPP)
2806 goto out_iput;
2808 error = 0;
2809 dir->i_size += BOGO_DIRENT_SIZE;
2810 dir->i_ctime = dir->i_mtime = current_time(dir);
2811 d_instantiate(dentry, inode);
2812 dget(dentry); /* Extra count - pin the dentry in core */
2814 return error;
2815 out_iput:
2816 iput(inode);
2817 return error;
2820 static int
2821 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2823 struct inode *inode;
2824 int error = -ENOSPC;
2826 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2827 if (inode) {
2828 error = security_inode_init_security(inode, dir,
2829 NULL,
2830 shmem_initxattrs, NULL);
2831 if (error && error != -EOPNOTSUPP)
2832 goto out_iput;
2833 error = simple_acl_create(dir, inode);
2834 if (error)
2835 goto out_iput;
2836 d_tmpfile(dentry, inode);
2838 return error;
2839 out_iput:
2840 iput(inode);
2841 return error;
2844 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2846 int error;
2848 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2849 return error;
2850 inc_nlink(dir);
2851 return 0;
2854 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2855 bool excl)
2857 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2861 * Link a file..
2863 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2865 struct inode *inode = d_inode(old_dentry);
2866 int ret;
2869 * No ordinary (disk based) filesystem counts links as inodes;
2870 * but each new link needs a new dentry, pinning lowmem, and
2871 * tmpfs dentries cannot be pruned until they are unlinked.
2873 ret = shmem_reserve_inode(inode->i_sb);
2874 if (ret)
2875 goto out;
2877 dir->i_size += BOGO_DIRENT_SIZE;
2878 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2879 inc_nlink(inode);
2880 ihold(inode); /* New dentry reference */
2881 dget(dentry); /* Extra pinning count for the created dentry */
2882 d_instantiate(dentry, inode);
2883 out:
2884 return ret;
2887 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2889 struct inode *inode = d_inode(dentry);
2891 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2892 shmem_free_inode(inode->i_sb);
2894 dir->i_size -= BOGO_DIRENT_SIZE;
2895 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2896 drop_nlink(inode);
2897 dput(dentry); /* Undo the count from "create" - this does all the work */
2898 return 0;
2901 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2903 if (!simple_empty(dentry))
2904 return -ENOTEMPTY;
2906 drop_nlink(d_inode(dentry));
2907 drop_nlink(dir);
2908 return shmem_unlink(dir, dentry);
2911 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2913 bool old_is_dir = d_is_dir(old_dentry);
2914 bool new_is_dir = d_is_dir(new_dentry);
2916 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2917 if (old_is_dir) {
2918 drop_nlink(old_dir);
2919 inc_nlink(new_dir);
2920 } else {
2921 drop_nlink(new_dir);
2922 inc_nlink(old_dir);
2925 old_dir->i_ctime = old_dir->i_mtime =
2926 new_dir->i_ctime = new_dir->i_mtime =
2927 d_inode(old_dentry)->i_ctime =
2928 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2930 return 0;
2933 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2935 struct dentry *whiteout;
2936 int error;
2938 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2939 if (!whiteout)
2940 return -ENOMEM;
2942 error = shmem_mknod(old_dir, whiteout,
2943 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2944 dput(whiteout);
2945 if (error)
2946 return error;
2949 * Cheat and hash the whiteout while the old dentry is still in
2950 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2952 * d_lookup() will consistently find one of them at this point,
2953 * not sure which one, but that isn't even important.
2955 d_rehash(whiteout);
2956 return 0;
2960 * The VFS layer already does all the dentry stuff for rename,
2961 * we just have to decrement the usage count for the target if
2962 * it exists so that the VFS layer correctly free's it when it
2963 * gets overwritten.
2965 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2967 struct inode *inode = d_inode(old_dentry);
2968 int they_are_dirs = S_ISDIR(inode->i_mode);
2970 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2971 return -EINVAL;
2973 if (flags & RENAME_EXCHANGE)
2974 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2976 if (!simple_empty(new_dentry))
2977 return -ENOTEMPTY;
2979 if (flags & RENAME_WHITEOUT) {
2980 int error;
2982 error = shmem_whiteout(old_dir, old_dentry);
2983 if (error)
2984 return error;
2987 if (d_really_is_positive(new_dentry)) {
2988 (void) shmem_unlink(new_dir, new_dentry);
2989 if (they_are_dirs) {
2990 drop_nlink(d_inode(new_dentry));
2991 drop_nlink(old_dir);
2993 } else if (they_are_dirs) {
2994 drop_nlink(old_dir);
2995 inc_nlink(new_dir);
2998 old_dir->i_size -= BOGO_DIRENT_SIZE;
2999 new_dir->i_size += BOGO_DIRENT_SIZE;
3000 old_dir->i_ctime = old_dir->i_mtime =
3001 new_dir->i_ctime = new_dir->i_mtime =
3002 inode->i_ctime = current_time(old_dir);
3003 return 0;
3006 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3008 int error;
3009 int len;
3010 struct inode *inode;
3011 struct page *page;
3013 len = strlen(symname) + 1;
3014 if (len > PAGE_SIZE)
3015 return -ENAMETOOLONG;
3017 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3018 VM_NORESERVE);
3019 if (!inode)
3020 return -ENOSPC;
3022 error = security_inode_init_security(inode, dir, &dentry->d_name,
3023 shmem_initxattrs, NULL);
3024 if (error) {
3025 if (error != -EOPNOTSUPP) {
3026 iput(inode);
3027 return error;
3029 error = 0;
3032 inode->i_size = len-1;
3033 if (len <= SHORT_SYMLINK_LEN) {
3034 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3035 if (!inode->i_link) {
3036 iput(inode);
3037 return -ENOMEM;
3039 inode->i_op = &shmem_short_symlink_operations;
3040 } else {
3041 inode_nohighmem(inode);
3042 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3043 if (error) {
3044 iput(inode);
3045 return error;
3047 inode->i_mapping->a_ops = &shmem_aops;
3048 inode->i_op = &shmem_symlink_inode_operations;
3049 memcpy(page_address(page), symname, len);
3050 SetPageUptodate(page);
3051 set_page_dirty(page);
3052 unlock_page(page);
3053 put_page(page);
3055 dir->i_size += BOGO_DIRENT_SIZE;
3056 dir->i_ctime = dir->i_mtime = current_time(dir);
3057 d_instantiate(dentry, inode);
3058 dget(dentry);
3059 return 0;
3062 static void shmem_put_link(void *arg)
3064 mark_page_accessed(arg);
3065 put_page(arg);
3068 static const char *shmem_get_link(struct dentry *dentry,
3069 struct inode *inode,
3070 struct delayed_call *done)
3072 struct page *page = NULL;
3073 int error;
3074 if (!dentry) {
3075 page = find_get_page(inode->i_mapping, 0);
3076 if (!page)
3077 return ERR_PTR(-ECHILD);
3078 if (!PageUptodate(page)) {
3079 put_page(page);
3080 return ERR_PTR(-ECHILD);
3082 } else {
3083 error = shmem_getpage(inode, 0, &page, SGP_READ);
3084 if (error)
3085 return ERR_PTR(error);
3086 unlock_page(page);
3088 set_delayed_call(done, shmem_put_link, page);
3089 return page_address(page);
3092 #ifdef CONFIG_TMPFS_XATTR
3094 * Superblocks without xattr inode operations may get some security.* xattr
3095 * support from the LSM "for free". As soon as we have any other xattrs
3096 * like ACLs, we also need to implement the security.* handlers at
3097 * filesystem level, though.
3101 * Callback for security_inode_init_security() for acquiring xattrs.
3103 static int shmem_initxattrs(struct inode *inode,
3104 const struct xattr *xattr_array,
3105 void *fs_info)
3107 struct shmem_inode_info *info = SHMEM_I(inode);
3108 const struct xattr *xattr;
3109 struct simple_xattr *new_xattr;
3110 size_t len;
3112 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3113 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3114 if (!new_xattr)
3115 return -ENOMEM;
3117 len = strlen(xattr->name) + 1;
3118 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3119 GFP_KERNEL);
3120 if (!new_xattr->name) {
3121 kfree(new_xattr);
3122 return -ENOMEM;
3125 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3126 XATTR_SECURITY_PREFIX_LEN);
3127 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3128 xattr->name, len);
3130 simple_xattr_list_add(&info->xattrs, new_xattr);
3133 return 0;
3136 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3137 struct dentry *unused, struct inode *inode,
3138 const char *name, void *buffer, size_t size)
3140 struct shmem_inode_info *info = SHMEM_I(inode);
3142 name = xattr_full_name(handler, name);
3143 return simple_xattr_get(&info->xattrs, name, buffer, size);
3146 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3147 struct dentry *unused, struct inode *inode,
3148 const char *name, const void *value,
3149 size_t size, int flags)
3151 struct shmem_inode_info *info = SHMEM_I(inode);
3153 name = xattr_full_name(handler, name);
3154 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3157 static const struct xattr_handler shmem_security_xattr_handler = {
3158 .prefix = XATTR_SECURITY_PREFIX,
3159 .get = shmem_xattr_handler_get,
3160 .set = shmem_xattr_handler_set,
3163 static const struct xattr_handler shmem_trusted_xattr_handler = {
3164 .prefix = XATTR_TRUSTED_PREFIX,
3165 .get = shmem_xattr_handler_get,
3166 .set = shmem_xattr_handler_set,
3169 static const struct xattr_handler *shmem_xattr_handlers[] = {
3170 #ifdef CONFIG_TMPFS_POSIX_ACL
3171 &posix_acl_access_xattr_handler,
3172 &posix_acl_default_xattr_handler,
3173 #endif
3174 &shmem_security_xattr_handler,
3175 &shmem_trusted_xattr_handler,
3176 NULL
3179 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3181 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3182 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3184 #endif /* CONFIG_TMPFS_XATTR */
3186 static const struct inode_operations shmem_short_symlink_operations = {
3187 .get_link = simple_get_link,
3188 #ifdef CONFIG_TMPFS_XATTR
3189 .listxattr = shmem_listxattr,
3190 #endif
3193 static const struct inode_operations shmem_symlink_inode_operations = {
3194 .get_link = shmem_get_link,
3195 #ifdef CONFIG_TMPFS_XATTR
3196 .listxattr = shmem_listxattr,
3197 #endif
3200 static struct dentry *shmem_get_parent(struct dentry *child)
3202 return ERR_PTR(-ESTALE);
3205 static int shmem_match(struct inode *ino, void *vfh)
3207 __u32 *fh = vfh;
3208 __u64 inum = fh[2];
3209 inum = (inum << 32) | fh[1];
3210 return ino->i_ino == inum && fh[0] == ino->i_generation;
3213 /* Find any alias of inode, but prefer a hashed alias */
3214 static struct dentry *shmem_find_alias(struct inode *inode)
3216 struct dentry *alias = d_find_alias(inode);
3218 return alias ?: d_find_any_alias(inode);
3222 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3223 struct fid *fid, int fh_len, int fh_type)
3225 struct inode *inode;
3226 struct dentry *dentry = NULL;
3227 u64 inum;
3229 if (fh_len < 3)
3230 return NULL;
3232 inum = fid->raw[2];
3233 inum = (inum << 32) | fid->raw[1];
3235 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3236 shmem_match, fid->raw);
3237 if (inode) {
3238 dentry = shmem_find_alias(inode);
3239 iput(inode);
3242 return dentry;
3245 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3246 struct inode *parent)
3248 if (*len < 3) {
3249 *len = 3;
3250 return FILEID_INVALID;
3253 if (inode_unhashed(inode)) {
3254 /* Unfortunately insert_inode_hash is not idempotent,
3255 * so as we hash inodes here rather than at creation
3256 * time, we need a lock to ensure we only try
3257 * to do it once
3259 static DEFINE_SPINLOCK(lock);
3260 spin_lock(&lock);
3261 if (inode_unhashed(inode))
3262 __insert_inode_hash(inode,
3263 inode->i_ino + inode->i_generation);
3264 spin_unlock(&lock);
3267 fh[0] = inode->i_generation;
3268 fh[1] = inode->i_ino;
3269 fh[2] = ((__u64)inode->i_ino) >> 32;
3271 *len = 3;
3272 return 1;
3275 static const struct export_operations shmem_export_ops = {
3276 .get_parent = shmem_get_parent,
3277 .encode_fh = shmem_encode_fh,
3278 .fh_to_dentry = shmem_fh_to_dentry,
3281 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3282 bool remount)
3284 char *this_char, *value, *rest;
3285 struct mempolicy *mpol = NULL;
3286 uid_t uid;
3287 gid_t gid;
3289 while (options != NULL) {
3290 this_char = options;
3291 for (;;) {
3293 * NUL-terminate this option: unfortunately,
3294 * mount options form a comma-separated list,
3295 * but mpol's nodelist may also contain commas.
3297 options = strchr(options, ',');
3298 if (options == NULL)
3299 break;
3300 options++;
3301 if (!isdigit(*options)) {
3302 options[-1] = '\0';
3303 break;
3306 if (!*this_char)
3307 continue;
3308 if ((value = strchr(this_char,'=')) != NULL) {
3309 *value++ = 0;
3310 } else {
3311 pr_err("tmpfs: No value for mount option '%s'\n",
3312 this_char);
3313 goto error;
3316 if (!strcmp(this_char,"size")) {
3317 unsigned long long size;
3318 size = memparse(value,&rest);
3319 if (*rest == '%') {
3320 size <<= PAGE_SHIFT;
3321 size *= totalram_pages;
3322 do_div(size, 100);
3323 rest++;
3325 if (*rest)
3326 goto bad_val;
3327 sbinfo->max_blocks =
3328 DIV_ROUND_UP(size, PAGE_SIZE);
3329 } else if (!strcmp(this_char,"nr_blocks")) {
3330 sbinfo->max_blocks = memparse(value, &rest);
3331 if (*rest)
3332 goto bad_val;
3333 } else if (!strcmp(this_char,"nr_inodes")) {
3334 sbinfo->max_inodes = memparse(value, &rest);
3335 if (*rest)
3336 goto bad_val;
3337 } else if (!strcmp(this_char,"mode")) {
3338 if (remount)
3339 continue;
3340 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3341 if (*rest)
3342 goto bad_val;
3343 } else if (!strcmp(this_char,"uid")) {
3344 if (remount)
3345 continue;
3346 uid = simple_strtoul(value, &rest, 0);
3347 if (*rest)
3348 goto bad_val;
3349 sbinfo->uid = make_kuid(current_user_ns(), uid);
3350 if (!uid_valid(sbinfo->uid))
3351 goto bad_val;
3352 } else if (!strcmp(this_char,"gid")) {
3353 if (remount)
3354 continue;
3355 gid = simple_strtoul(value, &rest, 0);
3356 if (*rest)
3357 goto bad_val;
3358 sbinfo->gid = make_kgid(current_user_ns(), gid);
3359 if (!gid_valid(sbinfo->gid))
3360 goto bad_val;
3361 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3362 } else if (!strcmp(this_char, "huge")) {
3363 int huge;
3364 huge = shmem_parse_huge(value);
3365 if (huge < 0)
3366 goto bad_val;
3367 if (!has_transparent_hugepage() &&
3368 huge != SHMEM_HUGE_NEVER)
3369 goto bad_val;
3370 sbinfo->huge = huge;
3371 #endif
3372 #ifdef CONFIG_NUMA
3373 } else if (!strcmp(this_char,"mpol")) {
3374 mpol_put(mpol);
3375 mpol = NULL;
3376 if (mpol_parse_str(value, &mpol))
3377 goto bad_val;
3378 #endif
3379 } else {
3380 pr_err("tmpfs: Bad mount option %s\n", this_char);
3381 goto error;
3384 sbinfo->mpol = mpol;
3385 return 0;
3387 bad_val:
3388 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3389 value, this_char);
3390 error:
3391 mpol_put(mpol);
3392 return 1;
3396 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3399 struct shmem_sb_info config = *sbinfo;
3400 unsigned long inodes;
3401 int error = -EINVAL;
3403 config.mpol = NULL;
3404 if (shmem_parse_options(data, &config, true))
3405 return error;
3407 spin_lock(&sbinfo->stat_lock);
3408 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3409 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3410 goto out;
3411 if (config.max_inodes < inodes)
3412 goto out;
3414 * Those tests disallow limited->unlimited while any are in use;
3415 * but we must separately disallow unlimited->limited, because
3416 * in that case we have no record of how much is already in use.
3418 if (config.max_blocks && !sbinfo->max_blocks)
3419 goto out;
3420 if (config.max_inodes && !sbinfo->max_inodes)
3421 goto out;
3423 error = 0;
3424 sbinfo->huge = config.huge;
3425 sbinfo->max_blocks = config.max_blocks;
3426 sbinfo->max_inodes = config.max_inodes;
3427 sbinfo->free_inodes = config.max_inodes - inodes;
3430 * Preserve previous mempolicy unless mpol remount option was specified.
3432 if (config.mpol) {
3433 mpol_put(sbinfo->mpol);
3434 sbinfo->mpol = config.mpol; /* transfers initial ref */
3436 out:
3437 spin_unlock(&sbinfo->stat_lock);
3438 return error;
3441 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3443 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3445 if (sbinfo->max_blocks != shmem_default_max_blocks())
3446 seq_printf(seq, ",size=%luk",
3447 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3448 if (sbinfo->max_inodes != shmem_default_max_inodes())
3449 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3450 if (sbinfo->mode != (0777 | S_ISVTX))
3451 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3452 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3453 seq_printf(seq, ",uid=%u",
3454 from_kuid_munged(&init_user_ns, sbinfo->uid));
3455 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3456 seq_printf(seq, ",gid=%u",
3457 from_kgid_munged(&init_user_ns, sbinfo->gid));
3458 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3459 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3460 if (sbinfo->huge)
3461 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3462 #endif
3463 shmem_show_mpol(seq, sbinfo->mpol);
3464 return 0;
3467 #endif /* CONFIG_TMPFS */
3469 static void shmem_put_super(struct super_block *sb)
3471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3473 percpu_counter_destroy(&sbinfo->used_blocks);
3474 mpol_put(sbinfo->mpol);
3475 kfree(sbinfo);
3476 sb->s_fs_info = NULL;
3479 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3481 struct inode *inode;
3482 struct shmem_sb_info *sbinfo;
3483 int err = -ENOMEM;
3485 /* Round up to L1_CACHE_BYTES to resist false sharing */
3486 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3487 L1_CACHE_BYTES), GFP_KERNEL);
3488 if (!sbinfo)
3489 return -ENOMEM;
3491 sbinfo->mode = 0777 | S_ISVTX;
3492 sbinfo->uid = current_fsuid();
3493 sbinfo->gid = current_fsgid();
3494 sb->s_fs_info = sbinfo;
3496 #ifdef CONFIG_TMPFS
3498 * Per default we only allow half of the physical ram per
3499 * tmpfs instance, limiting inodes to one per page of lowmem;
3500 * but the internal instance is left unlimited.
3502 if (!(sb->s_flags & SB_KERNMOUNT)) {
3503 sbinfo->max_blocks = shmem_default_max_blocks();
3504 sbinfo->max_inodes = shmem_default_max_inodes();
3505 if (shmem_parse_options(data, sbinfo, false)) {
3506 err = -EINVAL;
3507 goto failed;
3509 } else {
3510 sb->s_flags |= SB_NOUSER;
3512 sb->s_export_op = &shmem_export_ops;
3513 sb->s_flags |= SB_NOSEC;
3514 #else
3515 sb->s_flags |= SB_NOUSER;
3516 #endif
3518 spin_lock_init(&sbinfo->stat_lock);
3519 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3520 goto failed;
3521 sbinfo->free_inodes = sbinfo->max_inodes;
3522 spin_lock_init(&sbinfo->shrinklist_lock);
3523 INIT_LIST_HEAD(&sbinfo->shrinklist);
3525 sb->s_maxbytes = MAX_LFS_FILESIZE;
3526 sb->s_blocksize = PAGE_SIZE;
3527 sb->s_blocksize_bits = PAGE_SHIFT;
3528 sb->s_magic = TMPFS_MAGIC;
3529 sb->s_op = &shmem_ops;
3530 sb->s_time_gran = 1;
3531 #ifdef CONFIG_TMPFS_XATTR
3532 sb->s_xattr = shmem_xattr_handlers;
3533 #endif
3534 #ifdef CONFIG_TMPFS_POSIX_ACL
3535 sb->s_flags |= SB_POSIXACL;
3536 #endif
3537 uuid_gen(&sb->s_uuid);
3539 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3540 if (!inode)
3541 goto failed;
3542 inode->i_uid = sbinfo->uid;
3543 inode->i_gid = sbinfo->gid;
3544 sb->s_root = d_make_root(inode);
3545 if (!sb->s_root)
3546 goto failed;
3547 return 0;
3549 failed:
3550 shmem_put_super(sb);
3551 return err;
3554 static struct kmem_cache *shmem_inode_cachep;
3556 static struct inode *shmem_alloc_inode(struct super_block *sb)
3558 struct shmem_inode_info *info;
3559 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3560 if (!info)
3561 return NULL;
3562 return &info->vfs_inode;
3565 static void shmem_destroy_callback(struct rcu_head *head)
3567 struct inode *inode = container_of(head, struct inode, i_rcu);
3568 if (S_ISLNK(inode->i_mode))
3569 kfree(inode->i_link);
3570 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3573 static void shmem_destroy_inode(struct inode *inode)
3575 if (S_ISREG(inode->i_mode))
3576 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3577 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3580 static void shmem_init_inode(void *foo)
3582 struct shmem_inode_info *info = foo;
3583 inode_init_once(&info->vfs_inode);
3586 static void shmem_init_inodecache(void)
3588 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3589 sizeof(struct shmem_inode_info),
3590 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3593 static void shmem_destroy_inodecache(void)
3595 kmem_cache_destroy(shmem_inode_cachep);
3598 static const struct address_space_operations shmem_aops = {
3599 .writepage = shmem_writepage,
3600 .set_page_dirty = __set_page_dirty_no_writeback,
3601 #ifdef CONFIG_TMPFS
3602 .write_begin = shmem_write_begin,
3603 .write_end = shmem_write_end,
3604 #endif
3605 #ifdef CONFIG_MIGRATION
3606 .migratepage = migrate_page,
3607 #endif
3608 .error_remove_page = generic_error_remove_page,
3611 static const struct file_operations shmem_file_operations = {
3612 .mmap = shmem_mmap,
3613 .get_unmapped_area = shmem_get_unmapped_area,
3614 #ifdef CONFIG_TMPFS
3615 .llseek = shmem_file_llseek,
3616 .read_iter = shmem_file_read_iter,
3617 .write_iter = generic_file_write_iter,
3618 .fsync = noop_fsync,
3619 .splice_read = generic_file_splice_read,
3620 .splice_write = iter_file_splice_write,
3621 .fallocate = shmem_fallocate,
3622 #endif
3625 static const struct inode_operations shmem_inode_operations = {
3626 .getattr = shmem_getattr,
3627 .setattr = shmem_setattr,
3628 #ifdef CONFIG_TMPFS_XATTR
3629 .listxattr = shmem_listxattr,
3630 .set_acl = simple_set_acl,
3631 #endif
3634 static const struct inode_operations shmem_dir_inode_operations = {
3635 #ifdef CONFIG_TMPFS
3636 .create = shmem_create,
3637 .lookup = simple_lookup,
3638 .link = shmem_link,
3639 .unlink = shmem_unlink,
3640 .symlink = shmem_symlink,
3641 .mkdir = shmem_mkdir,
3642 .rmdir = shmem_rmdir,
3643 .mknod = shmem_mknod,
3644 .rename = shmem_rename2,
3645 .tmpfile = shmem_tmpfile,
3646 #endif
3647 #ifdef CONFIG_TMPFS_XATTR
3648 .listxattr = shmem_listxattr,
3649 #endif
3650 #ifdef CONFIG_TMPFS_POSIX_ACL
3651 .setattr = shmem_setattr,
3652 .set_acl = simple_set_acl,
3653 #endif
3656 static const struct inode_operations shmem_special_inode_operations = {
3657 #ifdef CONFIG_TMPFS_XATTR
3658 .listxattr = shmem_listxattr,
3659 #endif
3660 #ifdef CONFIG_TMPFS_POSIX_ACL
3661 .setattr = shmem_setattr,
3662 .set_acl = simple_set_acl,
3663 #endif
3666 static const struct super_operations shmem_ops = {
3667 .alloc_inode = shmem_alloc_inode,
3668 .destroy_inode = shmem_destroy_inode,
3669 #ifdef CONFIG_TMPFS
3670 .statfs = shmem_statfs,
3671 .remount_fs = shmem_remount_fs,
3672 .show_options = shmem_show_options,
3673 #endif
3674 .evict_inode = shmem_evict_inode,
3675 .drop_inode = generic_delete_inode,
3676 .put_super = shmem_put_super,
3677 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3678 .nr_cached_objects = shmem_unused_huge_count,
3679 .free_cached_objects = shmem_unused_huge_scan,
3680 #endif
3683 static const struct vm_operations_struct shmem_vm_ops = {
3684 .fault = shmem_fault,
3685 .map_pages = filemap_map_pages,
3686 #ifdef CONFIG_NUMA
3687 .set_policy = shmem_set_policy,
3688 .get_policy = shmem_get_policy,
3689 #endif
3692 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3693 int flags, const char *dev_name, void *data)
3695 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3698 static struct file_system_type shmem_fs_type = {
3699 .owner = THIS_MODULE,
3700 .name = "tmpfs",
3701 .mount = shmem_mount,
3702 .kill_sb = kill_litter_super,
3703 .fs_flags = FS_USERNS_MOUNT,
3706 int __init shmem_init(void)
3708 int error;
3710 /* If rootfs called this, don't re-init */
3711 if (shmem_inode_cachep)
3712 return 0;
3714 shmem_init_inodecache();
3716 error = register_filesystem(&shmem_fs_type);
3717 if (error) {
3718 pr_err("Could not register tmpfs\n");
3719 goto out2;
3722 shm_mnt = kern_mount(&shmem_fs_type);
3723 if (IS_ERR(shm_mnt)) {
3724 error = PTR_ERR(shm_mnt);
3725 pr_err("Could not kern_mount tmpfs\n");
3726 goto out1;
3729 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3730 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3731 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3732 else
3733 shmem_huge = 0; /* just in case it was patched */
3734 #endif
3735 return 0;
3737 out1:
3738 unregister_filesystem(&shmem_fs_type);
3739 out2:
3740 shmem_destroy_inodecache();
3741 shm_mnt = ERR_PTR(error);
3742 return error;
3745 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3746 static ssize_t shmem_enabled_show(struct kobject *kobj,
3747 struct kobj_attribute *attr, char *buf)
3749 int values[] = {
3750 SHMEM_HUGE_ALWAYS,
3751 SHMEM_HUGE_WITHIN_SIZE,
3752 SHMEM_HUGE_ADVISE,
3753 SHMEM_HUGE_NEVER,
3754 SHMEM_HUGE_DENY,
3755 SHMEM_HUGE_FORCE,
3757 int i, count;
3759 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3760 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3762 count += sprintf(buf + count, fmt,
3763 shmem_format_huge(values[i]));
3765 buf[count - 1] = '\n';
3766 return count;
3769 static ssize_t shmem_enabled_store(struct kobject *kobj,
3770 struct kobj_attribute *attr, const char *buf, size_t count)
3772 char tmp[16];
3773 int huge;
3775 if (count + 1 > sizeof(tmp))
3776 return -EINVAL;
3777 memcpy(tmp, buf, count);
3778 tmp[count] = '\0';
3779 if (count && tmp[count - 1] == '\n')
3780 tmp[count - 1] = '\0';
3782 huge = shmem_parse_huge(tmp);
3783 if (huge == -EINVAL)
3784 return -EINVAL;
3785 if (!has_transparent_hugepage() &&
3786 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3787 return -EINVAL;
3789 shmem_huge = huge;
3790 if (shmem_huge > SHMEM_HUGE_DENY)
3791 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3792 return count;
3795 struct kobj_attribute shmem_enabled_attr =
3796 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3797 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3799 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3800 bool shmem_huge_enabled(struct vm_area_struct *vma)
3802 struct inode *inode = file_inode(vma->vm_file);
3803 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3804 loff_t i_size;
3805 pgoff_t off;
3807 if (shmem_huge == SHMEM_HUGE_FORCE)
3808 return true;
3809 if (shmem_huge == SHMEM_HUGE_DENY)
3810 return false;
3811 switch (sbinfo->huge) {
3812 case SHMEM_HUGE_NEVER:
3813 return false;
3814 case SHMEM_HUGE_ALWAYS:
3815 return true;
3816 case SHMEM_HUGE_WITHIN_SIZE:
3817 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3818 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3819 if (i_size >= HPAGE_PMD_SIZE &&
3820 i_size >> PAGE_SHIFT >= off)
3821 return true;
3822 /* fall through */
3823 case SHMEM_HUGE_ADVISE:
3824 /* TODO: implement fadvise() hints */
3825 return (vma->vm_flags & VM_HUGEPAGE);
3826 default:
3827 VM_BUG_ON(1);
3828 return false;
3831 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3833 #else /* !CONFIG_SHMEM */
3836 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3838 * This is intended for small system where the benefits of the full
3839 * shmem code (swap-backed and resource-limited) are outweighed by
3840 * their complexity. On systems without swap this code should be
3841 * effectively equivalent, but much lighter weight.
3844 static struct file_system_type shmem_fs_type = {
3845 .name = "tmpfs",
3846 .mount = ramfs_mount,
3847 .kill_sb = kill_litter_super,
3848 .fs_flags = FS_USERNS_MOUNT,
3851 int __init shmem_init(void)
3853 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3855 shm_mnt = kern_mount(&shmem_fs_type);
3856 BUG_ON(IS_ERR(shm_mnt));
3858 return 0;
3861 int shmem_unuse(swp_entry_t swap, struct page *page)
3863 return 0;
3866 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3868 return 0;
3871 void shmem_unlock_mapping(struct address_space *mapping)
3875 #ifdef CONFIG_MMU
3876 unsigned long shmem_get_unmapped_area(struct file *file,
3877 unsigned long addr, unsigned long len,
3878 unsigned long pgoff, unsigned long flags)
3880 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3882 #endif
3884 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3886 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3888 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3890 #define shmem_vm_ops generic_file_vm_ops
3891 #define shmem_file_operations ramfs_file_operations
3892 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3893 #define shmem_acct_size(flags, size) 0
3894 #define shmem_unacct_size(flags, size) do {} while (0)
3896 #endif /* CONFIG_SHMEM */
3898 /* common code */
3900 static const struct dentry_operations anon_ops = {
3901 .d_dname = simple_dname
3904 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3905 unsigned long flags, unsigned int i_flags)
3907 struct file *res;
3908 struct inode *inode;
3909 struct path path;
3910 struct super_block *sb;
3911 struct qstr this;
3913 if (IS_ERR(mnt))
3914 return ERR_CAST(mnt);
3916 if (size < 0 || size > MAX_LFS_FILESIZE)
3917 return ERR_PTR(-EINVAL);
3919 if (shmem_acct_size(flags, size))
3920 return ERR_PTR(-ENOMEM);
3922 res = ERR_PTR(-ENOMEM);
3923 this.name = name;
3924 this.len = strlen(name);
3925 this.hash = 0; /* will go */
3926 sb = mnt->mnt_sb;
3927 path.mnt = mntget(mnt);
3928 path.dentry = d_alloc_pseudo(sb, &this);
3929 if (!path.dentry)
3930 goto put_memory;
3931 d_set_d_op(path.dentry, &anon_ops);
3933 res = ERR_PTR(-ENOSPC);
3934 inode = shmem_get_inode(sb, NULL, S_IFREG | 0777, 0, flags);
3935 if (!inode)
3936 goto put_memory;
3938 inode->i_flags |= i_flags;
3939 d_instantiate(path.dentry, inode);
3940 inode->i_size = size;
3941 clear_nlink(inode); /* It is unlinked */
3942 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3943 if (IS_ERR(res))
3944 goto put_path;
3946 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3947 &shmem_file_operations);
3948 if (IS_ERR(res))
3949 goto put_path;
3951 return res;
3953 put_memory:
3954 shmem_unacct_size(flags, size);
3955 put_path:
3956 path_put(&path);
3957 return res;
3961 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3962 * kernel internal. There will be NO LSM permission checks against the
3963 * underlying inode. So users of this interface must do LSM checks at a
3964 * higher layer. The users are the big_key and shm implementations. LSM
3965 * checks are provided at the key or shm level rather than the inode.
3966 * @name: name for dentry (to be seen in /proc/<pid>/maps
3967 * @size: size to be set for the file
3968 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3970 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3972 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3976 * shmem_file_setup - get an unlinked file living in tmpfs
3977 * @name: name for dentry (to be seen in /proc/<pid>/maps
3978 * @size: size to be set for the file
3979 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3981 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3983 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3985 EXPORT_SYMBOL_GPL(shmem_file_setup);
3988 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3989 * @mnt: the tmpfs mount where the file will be created
3990 * @name: name for dentry (to be seen in /proc/<pid>/maps
3991 * @size: size to be set for the file
3992 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3994 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3995 loff_t size, unsigned long flags)
3997 return __shmem_file_setup(mnt, name, size, flags, 0);
3999 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4002 * shmem_zero_setup - setup a shared anonymous mapping
4003 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4005 int shmem_zero_setup(struct vm_area_struct *vma)
4007 struct file *file;
4008 loff_t size = vma->vm_end - vma->vm_start;
4011 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4012 * between XFS directory reading and selinux: since this file is only
4013 * accessible to the user through its mapping, use S_PRIVATE flag to
4014 * bypass file security, in the same way as shmem_kernel_file_setup().
4016 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4017 if (IS_ERR(file))
4018 return PTR_ERR(file);
4020 if (vma->vm_file)
4021 fput(vma->vm_file);
4022 vma->vm_file = file;
4023 vma->vm_ops = &shmem_vm_ops;
4025 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4026 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4027 (vma->vm_end & HPAGE_PMD_MASK)) {
4028 khugepaged_enter(vma, vma->vm_flags);
4031 return 0;
4035 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4036 * @mapping: the page's address_space
4037 * @index: the page index
4038 * @gfp: the page allocator flags to use if allocating
4040 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4041 * with any new page allocations done using the specified allocation flags.
4042 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4043 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4044 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4046 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4047 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4049 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4050 pgoff_t index, gfp_t gfp)
4052 #ifdef CONFIG_SHMEM
4053 struct inode *inode = mapping->host;
4054 struct page *page;
4055 int error;
4057 BUG_ON(mapping->a_ops != &shmem_aops);
4058 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4059 gfp, NULL, NULL, NULL);
4060 if (error)
4061 page = ERR_PTR(error);
4062 else
4063 unlock_page(page);
4064 return page;
4065 #else
4067 * The tiny !SHMEM case uses ramfs without swap
4069 return read_cache_page_gfp(mapping, index, gfp);
4070 #endif
4072 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);