2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 static struct vfsmount
*shm_mnt
;
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc
{
101 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
102 pgoff_t start
; /* start of range currently being fallocated */
103 pgoff_t next
; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages
/ 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
120 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
121 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
122 struct shmem_inode_info
*info
, pgoff_t index
);
123 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
124 struct page
**pagep
, enum sgp_type sgp
,
125 gfp_t gfp
, struct vm_area_struct
*vma
,
126 struct vm_fault
*vmf
, int *fault_type
);
128 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
129 struct page
**pagep
, enum sgp_type sgp
)
131 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
132 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
135 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
137 return sb
->s_fs_info
;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
148 return (flags
& VM_NORESERVE
) ?
149 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
152 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
154 if (!(flags
& VM_NORESERVE
))
155 vm_unacct_memory(VM_ACCT(size
));
158 static inline int shmem_reacct_size(unsigned long flags
,
159 loff_t oldsize
, loff_t newsize
)
161 if (!(flags
& VM_NORESERVE
)) {
162 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
163 return security_vm_enough_memory_mm(current
->mm
,
164 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
165 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
166 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 static inline int shmem_acct_block(unsigned long flags
, long pages
)
179 if (!(flags
& VM_NORESERVE
))
182 return security_vm_enough_memory_mm(current
->mm
,
183 pages
* VM_ACCT(PAGE_SIZE
));
186 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
188 if (flags
& VM_NORESERVE
)
189 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
192 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
194 struct shmem_inode_info
*info
= SHMEM_I(inode
);
195 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
197 if (shmem_acct_block(info
->flags
, pages
))
200 if (sbinfo
->max_blocks
) {
201 if (percpu_counter_compare(&sbinfo
->used_blocks
,
202 sbinfo
->max_blocks
- pages
) > 0)
204 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
210 shmem_unacct_blocks(info
->flags
, pages
);
214 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
216 struct shmem_inode_info
*info
= SHMEM_I(inode
);
217 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
219 if (sbinfo
->max_blocks
)
220 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
221 shmem_unacct_blocks(info
->flags
, pages
);
224 static const struct super_operations shmem_ops
;
225 static const struct address_space_operations shmem_aops
;
226 static const struct file_operations shmem_file_operations
;
227 static const struct inode_operations shmem_inode_operations
;
228 static const struct inode_operations shmem_dir_inode_operations
;
229 static const struct inode_operations shmem_special_inode_operations
;
230 static const struct vm_operations_struct shmem_vm_ops
;
231 static struct file_system_type shmem_fs_type
;
233 bool vma_is_shmem(struct vm_area_struct
*vma
)
235 return vma
->vm_ops
== &shmem_vm_ops
;
238 static LIST_HEAD(shmem_swaplist
);
239 static DEFINE_MUTEX(shmem_swaplist_mutex
);
241 static int shmem_reserve_inode(struct super_block
*sb
)
243 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
244 if (sbinfo
->max_inodes
) {
245 spin_lock(&sbinfo
->stat_lock
);
246 if (!sbinfo
->free_inodes
) {
247 spin_unlock(&sbinfo
->stat_lock
);
250 sbinfo
->free_inodes
--;
251 spin_unlock(&sbinfo
->stat_lock
);
256 static void shmem_free_inode(struct super_block
*sb
)
258 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
259 if (sbinfo
->max_inodes
) {
260 spin_lock(&sbinfo
->stat_lock
);
261 sbinfo
->free_inodes
++;
262 spin_unlock(&sbinfo
->stat_lock
);
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 * It has to be called with the spinlock held.
278 static void shmem_recalc_inode(struct inode
*inode
)
280 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
285 info
->alloced
-= freed
;
286 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
287 shmem_inode_unacct_blocks(inode
, freed
);
291 bool shmem_charge(struct inode
*inode
, long pages
)
293 struct shmem_inode_info
*info
= SHMEM_I(inode
);
296 if (!shmem_inode_acct_block(inode
, pages
))
299 spin_lock_irqsave(&info
->lock
, flags
);
300 info
->alloced
+= pages
;
301 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
302 shmem_recalc_inode(inode
);
303 spin_unlock_irqrestore(&info
->lock
, flags
);
304 inode
->i_mapping
->nrpages
+= pages
;
309 void shmem_uncharge(struct inode
*inode
, long pages
)
311 struct shmem_inode_info
*info
= SHMEM_I(inode
);
314 spin_lock_irqsave(&info
->lock
, flags
);
315 info
->alloced
-= pages
;
316 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
317 shmem_recalc_inode(inode
);
318 spin_unlock_irqrestore(&info
->lock
, flags
);
320 shmem_inode_unacct_blocks(inode
, pages
);
324 * Replace item expected in radix tree by a new item, while holding tree lock.
326 static int shmem_radix_tree_replace(struct address_space
*mapping
,
327 pgoff_t index
, void *expected
, void *replacement
)
329 struct radix_tree_node
*node
;
333 VM_BUG_ON(!expected
);
334 VM_BUG_ON(!replacement
);
335 item
= __radix_tree_lookup(&mapping
->i_pages
, index
, &node
, &pslot
);
338 if (item
!= expected
)
340 __radix_tree_replace(&mapping
->i_pages
, node
, pslot
,
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
352 static bool shmem_confirm_swap(struct address_space
*mapping
,
353 pgoff_t index
, swp_entry_t swap
)
358 item
= radix_tree_lookup(&mapping
->i_pages
, index
);
360 return item
== swp_to_radix_entry(swap
);
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
367 * disables huge pages for the mount;
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
374 * only allocate huge pages if requested with fadvise()/madvise();
377 #define SHMEM_HUGE_NEVER 0
378 #define SHMEM_HUGE_ALWAYS 1
379 #define SHMEM_HUGE_WITHIN_SIZE 2
380 #define SHMEM_HUGE_ADVISE 3
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
387 * disables huge on shm_mnt and all mounts, for emergency use;
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
392 #define SHMEM_HUGE_DENY (-1)
393 #define SHMEM_HUGE_FORCE (-2)
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
398 static int shmem_huge __read_mostly
;
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str
)
403 if (!strcmp(str
, "never"))
404 return SHMEM_HUGE_NEVER
;
405 if (!strcmp(str
, "always"))
406 return SHMEM_HUGE_ALWAYS
;
407 if (!strcmp(str
, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE
;
409 if (!strcmp(str
, "advise"))
410 return SHMEM_HUGE_ADVISE
;
411 if (!strcmp(str
, "deny"))
412 return SHMEM_HUGE_DENY
;
413 if (!strcmp(str
, "force"))
414 return SHMEM_HUGE_FORCE
;
418 static const char *shmem_format_huge(int huge
)
421 case SHMEM_HUGE_NEVER
:
423 case SHMEM_HUGE_ALWAYS
:
425 case SHMEM_HUGE_WITHIN_SIZE
:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE
:
429 case SHMEM_HUGE_DENY
:
431 case SHMEM_HUGE_FORCE
:
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
441 struct shrink_control
*sc
, unsigned long nr_to_split
)
443 LIST_HEAD(list
), *pos
, *next
;
444 LIST_HEAD(to_remove
);
446 struct shmem_inode_info
*info
;
448 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
449 int removed
= 0, split
= 0;
451 if (list_empty(&sbinfo
->shrinklist
))
454 spin_lock(&sbinfo
->shrinklist_lock
);
455 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
456 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
459 inode
= igrab(&info
->vfs_inode
);
461 /* inode is about to be evicted */
463 list_del_init(&info
->shrinklist
);
468 /* Check if there's anything to gain */
469 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
470 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
471 list_move(&info
->shrinklist
, &to_remove
);
476 list_move(&info
->shrinklist
, &list
);
481 spin_unlock(&sbinfo
->shrinklist_lock
);
483 list_for_each_safe(pos
, next
, &to_remove
) {
484 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
485 inode
= &info
->vfs_inode
;
486 list_del_init(&info
->shrinklist
);
490 list_for_each_safe(pos
, next
, &list
) {
493 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
494 inode
= &info
->vfs_inode
;
496 if (nr_to_split
&& split
>= nr_to_split
)
499 page
= find_get_page(inode
->i_mapping
,
500 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
504 /* No huge page at the end of the file: nothing to split */
505 if (!PageTransHuge(page
)) {
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
514 * Waiting for the lock may lead to deadlock in the
517 if (!trylock_page(page
)) {
522 ret
= split_huge_page(page
);
526 /* If split failed leave the inode on the list */
532 list_del_init(&info
->shrinklist
);
538 spin_lock(&sbinfo
->shrinklist_lock
);
539 list_splice_tail(&list
, &sbinfo
->shrinklist
);
540 sbinfo
->shrinklist_len
-= removed
;
541 spin_unlock(&sbinfo
->shrinklist_lock
);
546 static long shmem_unused_huge_scan(struct super_block
*sb
,
547 struct shrink_control
*sc
)
549 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
551 if (!READ_ONCE(sbinfo
->shrinklist_len
))
554 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
557 static long shmem_unused_huge_count(struct super_block
*sb
,
558 struct shrink_control
*sc
)
560 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
561 return READ_ONCE(sbinfo
->shrinklist_len
);
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 #define shmem_huge SHMEM_HUGE_DENY
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
568 struct shrink_control
*sc
, unsigned long nr_to_split
)
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
574 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
576 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
577 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
578 shmem_huge
!= SHMEM_HUGE_DENY
)
584 * Like add_to_page_cache_locked, but error if expected item has gone.
586 static int shmem_add_to_page_cache(struct page
*page
,
587 struct address_space
*mapping
,
588 pgoff_t index
, void *expected
)
590 int error
, nr
= hpage_nr_pages(page
);
592 VM_BUG_ON_PAGE(PageTail(page
), page
);
593 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
594 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
595 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
596 VM_BUG_ON(expected
&& PageTransHuge(page
));
598 page_ref_add(page
, nr
);
599 page
->mapping
= mapping
;
602 xa_lock_irq(&mapping
->i_pages
);
603 if (PageTransHuge(page
)) {
604 void __rcu
**results
;
609 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
,
610 &results
, &idx
, index
, 1) &&
611 idx
< index
+ HPAGE_PMD_NR
) {
616 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
617 error
= radix_tree_insert(&mapping
->i_pages
,
618 index
+ i
, page
+ i
);
621 count_vm_event(THP_FILE_ALLOC
);
623 } else if (!expected
) {
624 error
= radix_tree_insert(&mapping
->i_pages
, index
, page
);
626 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
631 mapping
->nrpages
+= nr
;
632 if (PageTransHuge(page
))
633 __inc_node_page_state(page
, NR_SHMEM_THPS
);
634 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
635 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
636 xa_unlock_irq(&mapping
->i_pages
);
638 page
->mapping
= NULL
;
639 xa_unlock_irq(&mapping
->i_pages
);
640 page_ref_sub(page
, nr
);
646 * Like delete_from_page_cache, but substitutes swap for page.
648 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
650 struct address_space
*mapping
= page
->mapping
;
653 VM_BUG_ON_PAGE(PageCompound(page
), page
);
655 xa_lock_irq(&mapping
->i_pages
);
656 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
657 page
->mapping
= NULL
;
659 __dec_node_page_state(page
, NR_FILE_PAGES
);
660 __dec_node_page_state(page
, NR_SHMEM
);
661 xa_unlock_irq(&mapping
->i_pages
);
667 * Remove swap entry from radix tree, free the swap and its page cache.
669 static int shmem_free_swap(struct address_space
*mapping
,
670 pgoff_t index
, void *radswap
)
674 xa_lock_irq(&mapping
->i_pages
);
675 old
= radix_tree_delete_item(&mapping
->i_pages
, index
, radswap
);
676 xa_unlock_irq(&mapping
->i_pages
);
679 free_swap_and_cache(radix_to_swp_entry(radswap
));
684 * Determine (in bytes) how many of the shmem object's pages mapped by the
685 * given offsets are swapped out.
687 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
688 * as long as the inode doesn't go away and racy results are not a problem.
690 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
691 pgoff_t start
, pgoff_t end
)
693 struct radix_tree_iter iter
;
696 unsigned long swapped
= 0;
700 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
701 if (iter
.index
>= end
)
704 page
= radix_tree_deref_slot(slot
);
706 if (radix_tree_deref_retry(page
)) {
707 slot
= radix_tree_iter_retry(&iter
);
711 if (radix_tree_exceptional_entry(page
))
714 if (need_resched()) {
715 slot
= radix_tree_iter_resume(slot
, &iter
);
722 return swapped
<< PAGE_SHIFT
;
726 * Determine (in bytes) how many of the shmem object's pages mapped by the
727 * given vma is swapped out.
729 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
730 * as long as the inode doesn't go away and racy results are not a problem.
732 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
734 struct inode
*inode
= file_inode(vma
->vm_file
);
735 struct shmem_inode_info
*info
= SHMEM_I(inode
);
736 struct address_space
*mapping
= inode
->i_mapping
;
737 unsigned long swapped
;
739 /* Be careful as we don't hold info->lock */
740 swapped
= READ_ONCE(info
->swapped
);
743 * The easier cases are when the shmem object has nothing in swap, or
744 * the vma maps it whole. Then we can simply use the stats that we
750 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
751 return swapped
<< PAGE_SHIFT
;
753 /* Here comes the more involved part */
754 return shmem_partial_swap_usage(mapping
,
755 linear_page_index(vma
, vma
->vm_start
),
756 linear_page_index(vma
, vma
->vm_end
));
760 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
762 void shmem_unlock_mapping(struct address_space
*mapping
)
765 pgoff_t indices
[PAGEVEC_SIZE
];
770 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
772 while (!mapping_unevictable(mapping
)) {
774 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
775 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
777 pvec
.nr
= find_get_entries(mapping
, index
,
778 PAGEVEC_SIZE
, pvec
.pages
, indices
);
781 index
= indices
[pvec
.nr
- 1] + 1;
782 pagevec_remove_exceptionals(&pvec
);
783 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
784 pagevec_release(&pvec
);
790 * Remove range of pages and swap entries from radix tree, and free them.
791 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
793 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
796 struct address_space
*mapping
= inode
->i_mapping
;
797 struct shmem_inode_info
*info
= SHMEM_I(inode
);
798 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
799 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
800 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
801 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
803 pgoff_t indices
[PAGEVEC_SIZE
];
804 long nr_swaps_freed
= 0;
809 end
= -1; /* unsigned, so actually very big */
813 while (index
< end
) {
814 pvec
.nr
= find_get_entries(mapping
, index
,
815 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
816 pvec
.pages
, indices
);
819 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
820 struct page
*page
= pvec
.pages
[i
];
826 if (radix_tree_exceptional_entry(page
)) {
829 nr_swaps_freed
+= !shmem_free_swap(mapping
,
834 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
836 if (!trylock_page(page
))
839 if (PageTransTail(page
)) {
840 /* Middle of THP: zero out the page */
841 clear_highpage(page
);
844 } else if (PageTransHuge(page
)) {
845 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
847 * Range ends in the middle of THP:
850 clear_highpage(page
);
854 index
+= HPAGE_PMD_NR
- 1;
855 i
+= HPAGE_PMD_NR
- 1;
858 if (!unfalloc
|| !PageUptodate(page
)) {
859 VM_BUG_ON_PAGE(PageTail(page
), page
);
860 if (page_mapping(page
) == mapping
) {
861 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
862 truncate_inode_page(mapping
, page
);
867 pagevec_remove_exceptionals(&pvec
);
868 pagevec_release(&pvec
);
874 struct page
*page
= NULL
;
875 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
877 unsigned int top
= PAGE_SIZE
;
882 zero_user_segment(page
, partial_start
, top
);
883 set_page_dirty(page
);
889 struct page
*page
= NULL
;
890 shmem_getpage(inode
, end
, &page
, SGP_READ
);
892 zero_user_segment(page
, 0, partial_end
);
893 set_page_dirty(page
);
902 while (index
< end
) {
905 pvec
.nr
= find_get_entries(mapping
, index
,
906 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
907 pvec
.pages
, indices
);
909 /* If all gone or hole-punch or unfalloc, we're done */
910 if (index
== start
|| end
!= -1)
912 /* But if truncating, restart to make sure all gone */
916 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
917 struct page
*page
= pvec
.pages
[i
];
923 if (radix_tree_exceptional_entry(page
)) {
926 if (shmem_free_swap(mapping
, index
, page
)) {
927 /* Swap was replaced by page: retry */
937 if (PageTransTail(page
)) {
938 /* Middle of THP: zero out the page */
939 clear_highpage(page
);
942 * Partial thp truncate due 'start' in middle
943 * of THP: don't need to look on these pages
944 * again on !pvec.nr restart.
946 if (index
!= round_down(end
, HPAGE_PMD_NR
))
949 } else if (PageTransHuge(page
)) {
950 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
952 * Range ends in the middle of THP:
955 clear_highpage(page
);
959 index
+= HPAGE_PMD_NR
- 1;
960 i
+= HPAGE_PMD_NR
- 1;
963 if (!unfalloc
|| !PageUptodate(page
)) {
964 VM_BUG_ON_PAGE(PageTail(page
), page
);
965 if (page_mapping(page
) == mapping
) {
966 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
967 truncate_inode_page(mapping
, page
);
969 /* Page was replaced by swap: retry */
977 pagevec_remove_exceptionals(&pvec
);
978 pagevec_release(&pvec
);
982 spin_lock_irq(&info
->lock
);
983 info
->swapped
-= nr_swaps_freed
;
984 shmem_recalc_inode(inode
);
985 spin_unlock_irq(&info
->lock
);
988 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
990 shmem_undo_range(inode
, lstart
, lend
, false);
991 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
993 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
995 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
996 u32 request_mask
, unsigned int query_flags
)
998 struct inode
*inode
= path
->dentry
->d_inode
;
999 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1000 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
1002 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
1003 spin_lock_irq(&info
->lock
);
1004 shmem_recalc_inode(inode
);
1005 spin_unlock_irq(&info
->lock
);
1007 generic_fillattr(inode
, stat
);
1009 if (is_huge_enabled(sb_info
))
1010 stat
->blksize
= HPAGE_PMD_SIZE
;
1015 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1017 struct inode
*inode
= d_inode(dentry
);
1018 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1019 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1022 error
= setattr_prepare(dentry
, attr
);
1026 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1027 loff_t oldsize
= inode
->i_size
;
1028 loff_t newsize
= attr
->ia_size
;
1030 /* protected by i_mutex */
1031 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1032 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1035 if (newsize
!= oldsize
) {
1036 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1040 i_size_write(inode
, newsize
);
1041 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1043 if (newsize
<= oldsize
) {
1044 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1045 if (oldsize
> holebegin
)
1046 unmap_mapping_range(inode
->i_mapping
,
1049 shmem_truncate_range(inode
,
1050 newsize
, (loff_t
)-1);
1051 /* unmap again to remove racily COWed private pages */
1052 if (oldsize
> holebegin
)
1053 unmap_mapping_range(inode
->i_mapping
,
1057 * Part of the huge page can be beyond i_size: subject
1058 * to shrink under memory pressure.
1060 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1061 spin_lock(&sbinfo
->shrinklist_lock
);
1063 * _careful to defend against unlocked access to
1064 * ->shrink_list in shmem_unused_huge_shrink()
1066 if (list_empty_careful(&info
->shrinklist
)) {
1067 list_add_tail(&info
->shrinklist
,
1068 &sbinfo
->shrinklist
);
1069 sbinfo
->shrinklist_len
++;
1071 spin_unlock(&sbinfo
->shrinklist_lock
);
1076 setattr_copy(inode
, attr
);
1077 if (attr
->ia_valid
& ATTR_MODE
)
1078 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1082 static void shmem_evict_inode(struct inode
*inode
)
1084 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1085 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1087 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1088 shmem_unacct_size(info
->flags
, inode
->i_size
);
1090 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1091 if (!list_empty(&info
->shrinklist
)) {
1092 spin_lock(&sbinfo
->shrinklist_lock
);
1093 if (!list_empty(&info
->shrinklist
)) {
1094 list_del_init(&info
->shrinklist
);
1095 sbinfo
->shrinklist_len
--;
1097 spin_unlock(&sbinfo
->shrinklist_lock
);
1099 if (!list_empty(&info
->swaplist
)) {
1100 mutex_lock(&shmem_swaplist_mutex
);
1101 list_del_init(&info
->swaplist
);
1102 mutex_unlock(&shmem_swaplist_mutex
);
1106 simple_xattrs_free(&info
->xattrs
);
1107 WARN_ON(inode
->i_blocks
);
1108 shmem_free_inode(inode
->i_sb
);
1112 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1114 struct radix_tree_iter iter
;
1116 unsigned long found
= -1;
1117 unsigned int checked
= 0;
1120 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1121 void *entry
= radix_tree_deref_slot(slot
);
1123 if (radix_tree_deref_retry(entry
)) {
1124 slot
= radix_tree_iter_retry(&iter
);
1127 if (entry
== item
) {
1132 if ((checked
% 4096) != 0)
1134 slot
= radix_tree_iter_resume(slot
, &iter
);
1143 * If swap found in inode, free it and move page from swapcache to filecache.
1145 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1146 swp_entry_t swap
, struct page
**pagep
)
1148 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1154 radswap
= swp_to_radix_entry(swap
);
1155 index
= find_swap_entry(&mapping
->i_pages
, radswap
);
1157 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1160 * Move _head_ to start search for next from here.
1161 * But be careful: shmem_evict_inode checks list_empty without taking
1162 * mutex, and there's an instant in list_move_tail when info->swaplist
1163 * would appear empty, if it were the only one on shmem_swaplist.
1165 if (shmem_swaplist
.next
!= &info
->swaplist
)
1166 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1168 gfp
= mapping_gfp_mask(mapping
);
1169 if (shmem_should_replace_page(*pagep
, gfp
)) {
1170 mutex_unlock(&shmem_swaplist_mutex
);
1171 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1172 mutex_lock(&shmem_swaplist_mutex
);
1174 * We needed to drop mutex to make that restrictive page
1175 * allocation, but the inode might have been freed while we
1176 * dropped it: although a racing shmem_evict_inode() cannot
1177 * complete without emptying the radix_tree, our page lock
1178 * on this swapcache page is not enough to prevent that -
1179 * free_swap_and_cache() of our swap entry will only
1180 * trylock_page(), removing swap from radix_tree whatever.
1182 * We must not proceed to shmem_add_to_page_cache() if the
1183 * inode has been freed, but of course we cannot rely on
1184 * inode or mapping or info to check that. However, we can
1185 * safely check if our swap entry is still in use (and here
1186 * it can't have got reused for another page): if it's still
1187 * in use, then the inode cannot have been freed yet, and we
1188 * can safely proceed (if it's no longer in use, that tells
1189 * nothing about the inode, but we don't need to unuse swap).
1191 if (!page_swapcount(*pagep
))
1196 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1197 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1198 * beneath us (pagelock doesn't help until the page is in pagecache).
1201 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1203 if (error
!= -ENOMEM
) {
1205 * Truncation and eviction use free_swap_and_cache(), which
1206 * only does trylock page: if we raced, best clean up here.
1208 delete_from_swap_cache(*pagep
);
1209 set_page_dirty(*pagep
);
1211 spin_lock_irq(&info
->lock
);
1213 spin_unlock_irq(&info
->lock
);
1221 * Search through swapped inodes to find and replace swap by page.
1223 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1225 struct list_head
*this, *next
;
1226 struct shmem_inode_info
*info
;
1227 struct mem_cgroup
*memcg
;
1231 * There's a faint possibility that swap page was replaced before
1232 * caller locked it: caller will come back later with the right page.
1234 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1238 * Charge page using GFP_KERNEL while we can wait, before taking
1239 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1240 * Charged back to the user (not to caller) when swap account is used.
1242 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1246 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1249 mutex_lock(&shmem_swaplist_mutex
);
1250 list_for_each_safe(this, next
, &shmem_swaplist
) {
1251 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1253 error
= shmem_unuse_inode(info
, swap
, &page
);
1255 list_del_init(&info
->swaplist
);
1257 if (error
!= -EAGAIN
)
1259 /* found nothing in this: move on to search the next */
1261 mutex_unlock(&shmem_swaplist_mutex
);
1264 if (error
!= -ENOMEM
)
1266 mem_cgroup_cancel_charge(page
, memcg
, false);
1268 mem_cgroup_commit_charge(page
, memcg
, true, false);
1276 * Move the page from the page cache to the swap cache.
1278 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1280 struct shmem_inode_info
*info
;
1281 struct address_space
*mapping
;
1282 struct inode
*inode
;
1286 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1287 BUG_ON(!PageLocked(page
));
1288 mapping
= page
->mapping
;
1289 index
= page
->index
;
1290 inode
= mapping
->host
;
1291 info
= SHMEM_I(inode
);
1292 if (info
->flags
& VM_LOCKED
)
1294 if (!total_swap_pages
)
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1304 if (!wbc
->for_reclaim
) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1320 if (!PageUptodate(page
)) {
1321 if (inode
->i_private
) {
1322 struct shmem_falloc
*shmem_falloc
;
1323 spin_lock(&inode
->i_lock
);
1324 shmem_falloc
= inode
->i_private
;
1326 !shmem_falloc
->waitq
&&
1327 index
>= shmem_falloc
->start
&&
1328 index
< shmem_falloc
->next
)
1329 shmem_falloc
->nr_unswapped
++;
1331 shmem_falloc
= NULL
;
1332 spin_unlock(&inode
->i_lock
);
1336 clear_highpage(page
);
1337 flush_dcache_page(page
);
1338 SetPageUptodate(page
);
1341 swap
= get_swap_page(page
);
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
1349 * the inode from eviction. But don't unlock the mutex until
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
1353 mutex_lock(&shmem_swaplist_mutex
);
1354 if (list_empty(&info
->swaplist
))
1355 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1357 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1358 spin_lock_irq(&info
->lock
);
1359 shmem_recalc_inode(inode
);
1361 spin_unlock_irq(&info
->lock
);
1363 swap_shmem_alloc(swap
);
1364 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1366 mutex_unlock(&shmem_swaplist_mutex
);
1367 BUG_ON(page_mapped(page
));
1368 swap_writepage(page
, wbc
);
1372 mutex_unlock(&shmem_swaplist_mutex
);
1373 put_swap_page(page
, swap
);
1375 set_page_dirty(page
);
1376 if (wbc
->for_reclaim
)
1377 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1387 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1388 return; /* show nothing */
1390 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1392 seq_printf(seq
, ",mpol=%s", buffer
);
1395 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1397 struct mempolicy
*mpol
= NULL
;
1399 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1400 mpol
= sbinfo
->mpol
;
1402 spin_unlock(&sbinfo
->stat_lock
);
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1410 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1416 #define vm_policy vm_private_data
1419 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1420 struct shmem_inode_info
*info
, pgoff_t index
)
1422 /* Create a pseudo vma that just contains the policy */
1423 memset(vma
, 0, sizeof(*vma
));
1424 vma_init(vma
, NULL
);
1425 /* Bias interleave by inode number to distribute better across nodes */
1426 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1427 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1430 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1432 /* Drop reference taken by mpol_shared_policy_lookup() */
1433 mpol_cond_put(vma
->vm_policy
);
1436 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1437 struct shmem_inode_info
*info
, pgoff_t index
)
1439 struct vm_area_struct pvma
;
1441 struct vm_fault vmf
;
1443 shmem_pseudo_vma_init(&pvma
, info
, index
);
1446 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1447 shmem_pseudo_vma_destroy(&pvma
);
1452 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1453 struct shmem_inode_info
*info
, pgoff_t index
)
1455 struct vm_area_struct pvma
;
1456 struct inode
*inode
= &info
->vfs_inode
;
1457 struct address_space
*mapping
= inode
->i_mapping
;
1458 pgoff_t idx
, hindex
;
1459 void __rcu
**results
;
1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1465 hindex
= round_down(index
, HPAGE_PMD_NR
);
1467 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
, &results
, &idx
,
1468 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1474 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1475 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1476 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1477 shmem_pseudo_vma_destroy(&pvma
);
1479 prep_transhuge_page(page
);
1483 static struct page
*shmem_alloc_page(gfp_t gfp
,
1484 struct shmem_inode_info
*info
, pgoff_t index
)
1486 struct vm_area_struct pvma
;
1489 shmem_pseudo_vma_init(&pvma
, info
, index
);
1490 page
= alloc_page_vma(gfp
, &pvma
, 0);
1491 shmem_pseudo_vma_destroy(&pvma
);
1496 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1497 struct inode
*inode
,
1498 pgoff_t index
, bool huge
)
1500 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1505 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1507 nr
= huge
? HPAGE_PMD_NR
: 1;
1509 if (!shmem_inode_acct_block(inode
, nr
))
1513 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1515 page
= shmem_alloc_page(gfp
, info
, index
);
1517 __SetPageLocked(page
);
1518 __SetPageSwapBacked(page
);
1523 shmem_inode_unacct_blocks(inode
, nr
);
1525 return ERR_PTR(err
);
1529 * When a page is moved from swapcache to shmem filecache (either by the
1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532 * ignorance of the mapping it belongs to. If that mapping has special
1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534 * we may need to copy to a suitable page before moving to filecache.
1536 * In a future release, this may well be extended to respect cpuset and
1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538 * but for now it is a simple matter of zone.
1540 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1542 return page_zonenum(page
) > gfp_zone(gfp
);
1545 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1546 struct shmem_inode_info
*info
, pgoff_t index
)
1548 struct page
*oldpage
, *newpage
;
1549 struct address_space
*swap_mapping
;
1554 swap_index
= page_private(oldpage
);
1555 swap_mapping
= page_mapping(oldpage
);
1558 * We have arrived here because our zones are constrained, so don't
1559 * limit chance of success by further cpuset and node constraints.
1561 gfp
&= ~GFP_CONSTRAINT_MASK
;
1562 newpage
= shmem_alloc_page(gfp
, info
, index
);
1567 copy_highpage(newpage
, oldpage
);
1568 flush_dcache_page(newpage
);
1570 __SetPageLocked(newpage
);
1571 __SetPageSwapBacked(newpage
);
1572 SetPageUptodate(newpage
);
1573 set_page_private(newpage
, swap_index
);
1574 SetPageSwapCache(newpage
);
1577 * Our caller will very soon move newpage out of swapcache, but it's
1578 * a nice clean interface for us to replace oldpage by newpage there.
1580 xa_lock_irq(&swap_mapping
->i_pages
);
1581 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1584 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1585 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1587 xa_unlock_irq(&swap_mapping
->i_pages
);
1589 if (unlikely(error
)) {
1591 * Is this possible? I think not, now that our callers check
1592 * both PageSwapCache and page_private after getting page lock;
1593 * but be defensive. Reverse old to newpage for clear and free.
1597 mem_cgroup_migrate(oldpage
, newpage
);
1598 lru_cache_add_anon(newpage
);
1602 ClearPageSwapCache(oldpage
);
1603 set_page_private(oldpage
, 0);
1605 unlock_page(oldpage
);
1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1614 * If we allocate a new one we do not mark it dirty. That's up to the
1615 * vm. If we swap it in we mark it dirty since we also free the swap
1616 * entry since a page cannot live in both the swap and page cache.
1618 * fault_mm and fault_type are only supplied by shmem_fault:
1619 * otherwise they are NULL.
1621 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1622 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1623 struct vm_area_struct
*vma
, struct vm_fault
*vmf
, int *fault_type
)
1625 struct address_space
*mapping
= inode
->i_mapping
;
1626 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1627 struct shmem_sb_info
*sbinfo
;
1628 struct mm_struct
*charge_mm
;
1629 struct mem_cgroup
*memcg
;
1632 enum sgp_type sgp_huge
= sgp
;
1633 pgoff_t hindex
= index
;
1638 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1640 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1644 page
= find_lock_entry(mapping
, index
);
1645 if (radix_tree_exceptional_entry(page
)) {
1646 swap
= radix_to_swp_entry(page
);
1650 if (sgp
<= SGP_CACHE
&&
1651 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1656 if (page
&& sgp
== SGP_WRITE
)
1657 mark_page_accessed(page
);
1659 /* fallocated page? */
1660 if (page
&& !PageUptodate(page
)) {
1661 if (sgp
!= SGP_READ
)
1667 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1673 * Fast cache lookup did not find it:
1674 * bring it back from swap or allocate.
1676 sbinfo
= SHMEM_SB(inode
->i_sb
);
1677 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1680 /* Look it up and read it in.. */
1681 page
= lookup_swap_cache(swap
, NULL
, 0);
1683 /* Or update major stats only when swapin succeeds?? */
1685 *fault_type
|= VM_FAULT_MAJOR
;
1686 count_vm_event(PGMAJFAULT
);
1687 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1689 /* Here we actually start the io */
1690 page
= shmem_swapin(swap
, gfp
, info
, index
);
1697 /* We have to do this with page locked to prevent races */
1699 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1700 !shmem_confirm_swap(mapping
, index
, swap
)) {
1701 error
= -EEXIST
; /* try again */
1704 if (!PageUptodate(page
)) {
1708 wait_on_page_writeback(page
);
1710 if (shmem_should_replace_page(page
, gfp
)) {
1711 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1716 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1719 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1720 swp_to_radix_entry(swap
));
1722 * We already confirmed swap under page lock, and make
1723 * no memory allocation here, so usually no possibility
1724 * of error; but free_swap_and_cache() only trylocks a
1725 * page, so it is just possible that the entry has been
1726 * truncated or holepunched since swap was confirmed.
1727 * shmem_undo_range() will have done some of the
1728 * unaccounting, now delete_from_swap_cache() will do
1730 * Reset swap.val? No, leave it so "failed" goes back to
1731 * "repeat": reading a hole and writing should succeed.
1734 mem_cgroup_cancel_charge(page
, memcg
, false);
1735 delete_from_swap_cache(page
);
1741 mem_cgroup_commit_charge(page
, memcg
, true, false);
1743 spin_lock_irq(&info
->lock
);
1745 shmem_recalc_inode(inode
);
1746 spin_unlock_irq(&info
->lock
);
1748 if (sgp
== SGP_WRITE
)
1749 mark_page_accessed(page
);
1751 delete_from_swap_cache(page
);
1752 set_page_dirty(page
);
1756 if (vma
&& userfaultfd_missing(vma
)) {
1757 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1761 /* shmem_symlink() */
1762 if (mapping
->a_ops
!= &shmem_aops
)
1764 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1766 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1768 switch (sbinfo
->huge
) {
1771 case SHMEM_HUGE_NEVER
:
1773 case SHMEM_HUGE_WITHIN_SIZE
:
1774 off
= round_up(index
, HPAGE_PMD_NR
);
1775 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1776 if (i_size
>= HPAGE_PMD_SIZE
&&
1777 i_size
>> PAGE_SHIFT
>= off
)
1780 case SHMEM_HUGE_ADVISE
:
1781 if (sgp_huge
== SGP_HUGE
)
1783 /* TODO: implement fadvise() hints */
1788 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1790 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1795 error
= PTR_ERR(page
);
1797 if (error
!= -ENOSPC
)
1800 * Try to reclaim some spece by splitting a huge page
1801 * beyond i_size on the filesystem.
1805 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1806 if (ret
== SHRINK_STOP
)
1814 if (PageTransHuge(page
))
1815 hindex
= round_down(index
, HPAGE_PMD_NR
);
1819 if (sgp
== SGP_WRITE
)
1820 __SetPageReferenced(page
);
1822 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1823 PageTransHuge(page
));
1826 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1827 compound_order(page
));
1829 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1831 radix_tree_preload_end();
1834 mem_cgroup_cancel_charge(page
, memcg
,
1835 PageTransHuge(page
));
1838 mem_cgroup_commit_charge(page
, memcg
, false,
1839 PageTransHuge(page
));
1840 lru_cache_add_anon(page
);
1842 spin_lock_irq(&info
->lock
);
1843 info
->alloced
+= 1 << compound_order(page
);
1844 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1845 shmem_recalc_inode(inode
);
1846 spin_unlock_irq(&info
->lock
);
1849 if (PageTransHuge(page
) &&
1850 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1851 hindex
+ HPAGE_PMD_NR
- 1) {
1853 * Part of the huge page is beyond i_size: subject
1854 * to shrink under memory pressure.
1856 spin_lock(&sbinfo
->shrinklist_lock
);
1858 * _careful to defend against unlocked access to
1859 * ->shrink_list in shmem_unused_huge_shrink()
1861 if (list_empty_careful(&info
->shrinklist
)) {
1862 list_add_tail(&info
->shrinklist
,
1863 &sbinfo
->shrinklist
);
1864 sbinfo
->shrinklist_len
++;
1866 spin_unlock(&sbinfo
->shrinklist_lock
);
1870 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1872 if (sgp
== SGP_FALLOC
)
1876 * Let SGP_WRITE caller clear ends if write does not fill page;
1877 * but SGP_FALLOC on a page fallocated earlier must initialize
1878 * it now, lest undo on failure cancel our earlier guarantee.
1880 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1881 struct page
*head
= compound_head(page
);
1884 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1885 clear_highpage(head
+ i
);
1886 flush_dcache_page(head
+ i
);
1888 SetPageUptodate(head
);
1892 /* Perhaps the file has been truncated since we checked */
1893 if (sgp
<= SGP_CACHE
&&
1894 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1896 ClearPageDirty(page
);
1897 delete_from_page_cache(page
);
1898 spin_lock_irq(&info
->lock
);
1899 shmem_recalc_inode(inode
);
1900 spin_unlock_irq(&info
->lock
);
1905 *pagep
= page
+ index
- hindex
;
1912 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1914 if (PageTransHuge(page
)) {
1920 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1927 if (error
== -ENOSPC
&& !once
++) {
1928 spin_lock_irq(&info
->lock
);
1929 shmem_recalc_inode(inode
);
1930 spin_unlock_irq(&info
->lock
);
1933 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1939 * This is like autoremove_wake_function, but it removes the wait queue
1940 * entry unconditionally - even if something else had already woken the
1943 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1945 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1946 list_del_init(&wait
->entry
);
1950 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1952 struct vm_area_struct
*vma
= vmf
->vma
;
1953 struct inode
*inode
= file_inode(vma
->vm_file
);
1954 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1957 vm_fault_t ret
= VM_FAULT_LOCKED
;
1960 * Trinity finds that probing a hole which tmpfs is punching can
1961 * prevent the hole-punch from ever completing: which in turn
1962 * locks writers out with its hold on i_mutex. So refrain from
1963 * faulting pages into the hole while it's being punched. Although
1964 * shmem_undo_range() does remove the additions, it may be unable to
1965 * keep up, as each new page needs its own unmap_mapping_range() call,
1966 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1968 * It does not matter if we sometimes reach this check just before the
1969 * hole-punch begins, so that one fault then races with the punch:
1970 * we just need to make racing faults a rare case.
1972 * The implementation below would be much simpler if we just used a
1973 * standard mutex or completion: but we cannot take i_mutex in fault,
1974 * and bloating every shmem inode for this unlikely case would be sad.
1976 if (unlikely(inode
->i_private
)) {
1977 struct shmem_falloc
*shmem_falloc
;
1979 spin_lock(&inode
->i_lock
);
1980 shmem_falloc
= inode
->i_private
;
1982 shmem_falloc
->waitq
&&
1983 vmf
->pgoff
>= shmem_falloc
->start
&&
1984 vmf
->pgoff
< shmem_falloc
->next
) {
1985 wait_queue_head_t
*shmem_falloc_waitq
;
1986 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1988 ret
= VM_FAULT_NOPAGE
;
1989 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1990 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1991 /* It's polite to up mmap_sem if we can */
1992 up_read(&vma
->vm_mm
->mmap_sem
);
1993 ret
= VM_FAULT_RETRY
;
1996 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1997 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1998 TASK_UNINTERRUPTIBLE
);
1999 spin_unlock(&inode
->i_lock
);
2003 * shmem_falloc_waitq points into the shmem_fallocate()
2004 * stack of the hole-punching task: shmem_falloc_waitq
2005 * is usually invalid by the time we reach here, but
2006 * finish_wait() does not dereference it in that case;
2007 * though i_lock needed lest racing with wake_up_all().
2009 spin_lock(&inode
->i_lock
);
2010 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
2011 spin_unlock(&inode
->i_lock
);
2014 spin_unlock(&inode
->i_lock
);
2019 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2020 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2022 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2025 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2026 gfp
, vma
, vmf
, &ret
);
2028 return vmf_error(err
);
2032 unsigned long shmem_get_unmapped_area(struct file
*file
,
2033 unsigned long uaddr
, unsigned long len
,
2034 unsigned long pgoff
, unsigned long flags
)
2036 unsigned long (*get_area
)(struct file
*,
2037 unsigned long, unsigned long, unsigned long, unsigned long);
2039 unsigned long offset
;
2040 unsigned long inflated_len
;
2041 unsigned long inflated_addr
;
2042 unsigned long inflated_offset
;
2044 if (len
> TASK_SIZE
)
2047 get_area
= current
->mm
->get_unmapped_area
;
2048 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2050 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2052 if (IS_ERR_VALUE(addr
))
2054 if (addr
& ~PAGE_MASK
)
2056 if (addr
> TASK_SIZE
- len
)
2059 if (shmem_huge
== SHMEM_HUGE_DENY
)
2061 if (len
< HPAGE_PMD_SIZE
)
2063 if (flags
& MAP_FIXED
)
2066 * Our priority is to support MAP_SHARED mapped hugely;
2067 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2068 * But if caller specified an address hint, respect that as before.
2073 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2074 struct super_block
*sb
;
2077 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2078 sb
= file_inode(file
)->i_sb
;
2081 * Called directly from mm/mmap.c, or drivers/char/mem.c
2082 * for "/dev/zero", to create a shared anonymous object.
2084 if (IS_ERR(shm_mnt
))
2086 sb
= shm_mnt
->mnt_sb
;
2088 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2092 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2093 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2095 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2098 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2099 if (inflated_len
> TASK_SIZE
)
2101 if (inflated_len
< len
)
2104 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2105 if (IS_ERR_VALUE(inflated_addr
))
2107 if (inflated_addr
& ~PAGE_MASK
)
2110 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2111 inflated_addr
+= offset
- inflated_offset
;
2112 if (inflated_offset
> offset
)
2113 inflated_addr
+= HPAGE_PMD_SIZE
;
2115 if (inflated_addr
> TASK_SIZE
- len
)
2117 return inflated_addr
;
2121 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2123 struct inode
*inode
= file_inode(vma
->vm_file
);
2124 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2127 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2130 struct inode
*inode
= file_inode(vma
->vm_file
);
2133 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2134 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2138 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2140 struct inode
*inode
= file_inode(file
);
2141 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2142 int retval
= -ENOMEM
;
2144 spin_lock_irq(&info
->lock
);
2145 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2146 if (!user_shm_lock(inode
->i_size
, user
))
2148 info
->flags
|= VM_LOCKED
;
2149 mapping_set_unevictable(file
->f_mapping
);
2151 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2152 user_shm_unlock(inode
->i_size
, user
);
2153 info
->flags
&= ~VM_LOCKED
;
2154 mapping_clear_unevictable(file
->f_mapping
);
2159 spin_unlock_irq(&info
->lock
);
2163 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2165 file_accessed(file
);
2166 vma
->vm_ops
= &shmem_vm_ops
;
2167 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2168 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2169 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2170 khugepaged_enter(vma
, vma
->vm_flags
);
2175 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2176 umode_t mode
, dev_t dev
, unsigned long flags
)
2178 struct inode
*inode
;
2179 struct shmem_inode_info
*info
;
2180 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2182 if (shmem_reserve_inode(sb
))
2185 inode
= new_inode(sb
);
2187 inode
->i_ino
= get_next_ino();
2188 inode_init_owner(inode
, dir
, mode
);
2189 inode
->i_blocks
= 0;
2190 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2191 inode
->i_generation
= get_seconds();
2192 info
= SHMEM_I(inode
);
2193 memset(info
, 0, (char *)inode
- (char *)info
);
2194 spin_lock_init(&info
->lock
);
2195 info
->seals
= F_SEAL_SEAL
;
2196 info
->flags
= flags
& VM_NORESERVE
;
2197 INIT_LIST_HEAD(&info
->shrinklist
);
2198 INIT_LIST_HEAD(&info
->swaplist
);
2199 simple_xattrs_init(&info
->xattrs
);
2200 cache_no_acl(inode
);
2202 switch (mode
& S_IFMT
) {
2204 inode
->i_op
= &shmem_special_inode_operations
;
2205 init_special_inode(inode
, mode
, dev
);
2208 inode
->i_mapping
->a_ops
= &shmem_aops
;
2209 inode
->i_op
= &shmem_inode_operations
;
2210 inode
->i_fop
= &shmem_file_operations
;
2211 mpol_shared_policy_init(&info
->policy
,
2212 shmem_get_sbmpol(sbinfo
));
2216 /* Some things misbehave if size == 0 on a directory */
2217 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2218 inode
->i_op
= &shmem_dir_inode_operations
;
2219 inode
->i_fop
= &simple_dir_operations
;
2223 * Must not load anything in the rbtree,
2224 * mpol_free_shared_policy will not be called.
2226 mpol_shared_policy_init(&info
->policy
, NULL
);
2230 shmem_free_inode(sb
);
2234 bool shmem_mapping(struct address_space
*mapping
)
2236 return mapping
->a_ops
== &shmem_aops
;
2239 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2241 struct vm_area_struct
*dst_vma
,
2242 unsigned long dst_addr
,
2243 unsigned long src_addr
,
2245 struct page
**pagep
)
2247 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2248 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2249 struct address_space
*mapping
= inode
->i_mapping
;
2250 gfp_t gfp
= mapping_gfp_mask(mapping
);
2251 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2252 struct mem_cgroup
*memcg
;
2256 pte_t _dst_pte
, *dst_pte
;
2260 if (!shmem_inode_acct_block(inode
, 1))
2264 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2266 goto out_unacct_blocks
;
2268 if (!zeropage
) { /* mcopy_atomic */
2269 page_kaddr
= kmap_atomic(page
);
2270 ret
= copy_from_user(page_kaddr
,
2271 (const void __user
*)src_addr
,
2273 kunmap_atomic(page_kaddr
);
2275 /* fallback to copy_from_user outside mmap_sem */
2276 if (unlikely(ret
)) {
2278 shmem_inode_unacct_blocks(inode
, 1);
2279 /* don't free the page */
2282 } else { /* mfill_zeropage_atomic */
2283 clear_highpage(page
);
2290 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2291 __SetPageLocked(page
);
2292 __SetPageSwapBacked(page
);
2293 __SetPageUptodate(page
);
2295 ret
= mem_cgroup_try_charge(page
, dst_mm
, gfp
, &memcg
, false);
2299 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2301 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2302 radix_tree_preload_end();
2305 goto out_release_uncharge
;
2307 mem_cgroup_commit_charge(page
, memcg
, false, false);
2309 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2310 if (dst_vma
->vm_flags
& VM_WRITE
)
2311 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2314 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2315 if (!pte_none(*dst_pte
))
2316 goto out_release_uncharge_unlock
;
2318 lru_cache_add_anon(page
);
2320 spin_lock(&info
->lock
);
2322 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2323 shmem_recalc_inode(inode
);
2324 spin_unlock(&info
->lock
);
2326 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2327 page_add_file_rmap(page
, false);
2328 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2330 /* No need to invalidate - it was non-present before */
2331 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2333 pte_unmap_unlock(dst_pte
, ptl
);
2337 out_release_uncharge_unlock
:
2338 pte_unmap_unlock(dst_pte
, ptl
);
2339 out_release_uncharge
:
2340 mem_cgroup_cancel_charge(page
, memcg
, false);
2345 shmem_inode_unacct_blocks(inode
, 1);
2349 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2351 struct vm_area_struct
*dst_vma
,
2352 unsigned long dst_addr
,
2353 unsigned long src_addr
,
2354 struct page
**pagep
)
2356 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2357 dst_addr
, src_addr
, false, pagep
);
2360 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2362 struct vm_area_struct
*dst_vma
,
2363 unsigned long dst_addr
)
2365 struct page
*page
= NULL
;
2367 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2368 dst_addr
, 0, true, &page
);
2372 static const struct inode_operations shmem_symlink_inode_operations
;
2373 static const struct inode_operations shmem_short_symlink_operations
;
2375 #ifdef CONFIG_TMPFS_XATTR
2376 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2378 #define shmem_initxattrs NULL
2382 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2383 loff_t pos
, unsigned len
, unsigned flags
,
2384 struct page
**pagep
, void **fsdata
)
2386 struct inode
*inode
= mapping
->host
;
2387 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2388 pgoff_t index
= pos
>> PAGE_SHIFT
;
2390 /* i_mutex is held by caller */
2391 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2392 if (info
->seals
& F_SEAL_WRITE
)
2394 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2398 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2402 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2403 loff_t pos
, unsigned len
, unsigned copied
,
2404 struct page
*page
, void *fsdata
)
2406 struct inode
*inode
= mapping
->host
;
2408 if (pos
+ copied
> inode
->i_size
)
2409 i_size_write(inode
, pos
+ copied
);
2411 if (!PageUptodate(page
)) {
2412 struct page
*head
= compound_head(page
);
2413 if (PageTransCompound(page
)) {
2416 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2417 if (head
+ i
== page
)
2419 clear_highpage(head
+ i
);
2420 flush_dcache_page(head
+ i
);
2423 if (copied
< PAGE_SIZE
) {
2424 unsigned from
= pos
& (PAGE_SIZE
- 1);
2425 zero_user_segments(page
, 0, from
,
2426 from
+ copied
, PAGE_SIZE
);
2428 SetPageUptodate(head
);
2430 set_page_dirty(page
);
2437 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2439 struct file
*file
= iocb
->ki_filp
;
2440 struct inode
*inode
= file_inode(file
);
2441 struct address_space
*mapping
= inode
->i_mapping
;
2443 unsigned long offset
;
2444 enum sgp_type sgp
= SGP_READ
;
2447 loff_t
*ppos
= &iocb
->ki_pos
;
2450 * Might this read be for a stacking filesystem? Then when reading
2451 * holes of a sparse file, we actually need to allocate those pages,
2452 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2454 if (!iter_is_iovec(to
))
2457 index
= *ppos
>> PAGE_SHIFT
;
2458 offset
= *ppos
& ~PAGE_MASK
;
2461 struct page
*page
= NULL
;
2463 unsigned long nr
, ret
;
2464 loff_t i_size
= i_size_read(inode
);
2466 end_index
= i_size
>> PAGE_SHIFT
;
2467 if (index
> end_index
)
2469 if (index
== end_index
) {
2470 nr
= i_size
& ~PAGE_MASK
;
2475 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2477 if (error
== -EINVAL
)
2482 if (sgp
== SGP_CACHE
)
2483 set_page_dirty(page
);
2488 * We must evaluate after, since reads (unlike writes)
2489 * are called without i_mutex protection against truncate
2492 i_size
= i_size_read(inode
);
2493 end_index
= i_size
>> PAGE_SHIFT
;
2494 if (index
== end_index
) {
2495 nr
= i_size
& ~PAGE_MASK
;
2506 * If users can be writing to this page using arbitrary
2507 * virtual addresses, take care about potential aliasing
2508 * before reading the page on the kernel side.
2510 if (mapping_writably_mapped(mapping
))
2511 flush_dcache_page(page
);
2513 * Mark the page accessed if we read the beginning.
2516 mark_page_accessed(page
);
2518 page
= ZERO_PAGE(0);
2523 * Ok, we have the page, and it's up-to-date, so
2524 * now we can copy it to user space...
2526 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2529 index
+= offset
>> PAGE_SHIFT
;
2530 offset
&= ~PAGE_MASK
;
2533 if (!iov_iter_count(to
))
2542 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2543 file_accessed(file
);
2544 return retval
? retval
: error
;
2548 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2550 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2551 pgoff_t index
, pgoff_t end
, int whence
)
2554 struct pagevec pvec
;
2555 pgoff_t indices
[PAGEVEC_SIZE
];
2559 pagevec_init(&pvec
);
2560 pvec
.nr
= 1; /* start small: we may be there already */
2562 pvec
.nr
= find_get_entries(mapping
, index
,
2563 pvec
.nr
, pvec
.pages
, indices
);
2565 if (whence
== SEEK_DATA
)
2569 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2570 if (index
< indices
[i
]) {
2571 if (whence
== SEEK_HOLE
) {
2577 page
= pvec
.pages
[i
];
2578 if (page
&& !radix_tree_exceptional_entry(page
)) {
2579 if (!PageUptodate(page
))
2583 (page
&& whence
== SEEK_DATA
) ||
2584 (!page
&& whence
== SEEK_HOLE
)) {
2589 pagevec_remove_exceptionals(&pvec
);
2590 pagevec_release(&pvec
);
2591 pvec
.nr
= PAGEVEC_SIZE
;
2597 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2599 struct address_space
*mapping
= file
->f_mapping
;
2600 struct inode
*inode
= mapping
->host
;
2604 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2605 return generic_file_llseek_size(file
, offset
, whence
,
2606 MAX_LFS_FILESIZE
, i_size_read(inode
));
2608 /* We're holding i_mutex so we can access i_size directly */
2612 else if (offset
>= inode
->i_size
)
2615 start
= offset
>> PAGE_SHIFT
;
2616 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2617 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2618 new_offset
<<= PAGE_SHIFT
;
2619 if (new_offset
> offset
) {
2620 if (new_offset
< inode
->i_size
)
2621 offset
= new_offset
;
2622 else if (whence
== SEEK_DATA
)
2625 offset
= inode
->i_size
;
2630 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2631 inode_unlock(inode
);
2635 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2638 struct inode
*inode
= file_inode(file
);
2639 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2640 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2641 struct shmem_falloc shmem_falloc
;
2642 pgoff_t start
, index
, end
;
2645 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2650 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2651 struct address_space
*mapping
= file
->f_mapping
;
2652 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2653 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2654 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2656 /* protected by i_mutex */
2657 if (info
->seals
& F_SEAL_WRITE
) {
2662 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2663 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2664 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2665 spin_lock(&inode
->i_lock
);
2666 inode
->i_private
= &shmem_falloc
;
2667 spin_unlock(&inode
->i_lock
);
2669 if ((u64
)unmap_end
> (u64
)unmap_start
)
2670 unmap_mapping_range(mapping
, unmap_start
,
2671 1 + unmap_end
- unmap_start
, 0);
2672 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2673 /* No need to unmap again: hole-punching leaves COWed pages */
2675 spin_lock(&inode
->i_lock
);
2676 inode
->i_private
= NULL
;
2677 wake_up_all(&shmem_falloc_waitq
);
2678 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2679 spin_unlock(&inode
->i_lock
);
2684 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2685 error
= inode_newsize_ok(inode
, offset
+ len
);
2689 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2694 start
= offset
>> PAGE_SHIFT
;
2695 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2696 /* Try to avoid a swapstorm if len is impossible to satisfy */
2697 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2702 shmem_falloc
.waitq
= NULL
;
2703 shmem_falloc
.start
= start
;
2704 shmem_falloc
.next
= start
;
2705 shmem_falloc
.nr_falloced
= 0;
2706 shmem_falloc
.nr_unswapped
= 0;
2707 spin_lock(&inode
->i_lock
);
2708 inode
->i_private
= &shmem_falloc
;
2709 spin_unlock(&inode
->i_lock
);
2711 for (index
= start
; index
< end
; index
++) {
2715 * Good, the fallocate(2) manpage permits EINTR: we may have
2716 * been interrupted because we are using up too much memory.
2718 if (signal_pending(current
))
2720 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2723 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2725 /* Remove the !PageUptodate pages we added */
2726 if (index
> start
) {
2727 shmem_undo_range(inode
,
2728 (loff_t
)start
<< PAGE_SHIFT
,
2729 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2735 * Inform shmem_writepage() how far we have reached.
2736 * No need for lock or barrier: we have the page lock.
2738 shmem_falloc
.next
++;
2739 if (!PageUptodate(page
))
2740 shmem_falloc
.nr_falloced
++;
2743 * If !PageUptodate, leave it that way so that freeable pages
2744 * can be recognized if we need to rollback on error later.
2745 * But set_page_dirty so that memory pressure will swap rather
2746 * than free the pages we are allocating (and SGP_CACHE pages
2747 * might still be clean: we now need to mark those dirty too).
2749 set_page_dirty(page
);
2755 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2756 i_size_write(inode
, offset
+ len
);
2757 inode
->i_ctime
= current_time(inode
);
2759 spin_lock(&inode
->i_lock
);
2760 inode
->i_private
= NULL
;
2761 spin_unlock(&inode
->i_lock
);
2763 inode_unlock(inode
);
2767 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2769 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2771 buf
->f_type
= TMPFS_MAGIC
;
2772 buf
->f_bsize
= PAGE_SIZE
;
2773 buf
->f_namelen
= NAME_MAX
;
2774 if (sbinfo
->max_blocks
) {
2775 buf
->f_blocks
= sbinfo
->max_blocks
;
2777 buf
->f_bfree
= sbinfo
->max_blocks
-
2778 percpu_counter_sum(&sbinfo
->used_blocks
);
2780 if (sbinfo
->max_inodes
) {
2781 buf
->f_files
= sbinfo
->max_inodes
;
2782 buf
->f_ffree
= sbinfo
->free_inodes
;
2784 /* else leave those fields 0 like simple_statfs */
2789 * File creation. Allocate an inode, and we're done..
2792 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2794 struct inode
*inode
;
2795 int error
= -ENOSPC
;
2797 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2799 error
= simple_acl_create(dir
, inode
);
2802 error
= security_inode_init_security(inode
, dir
,
2804 shmem_initxattrs
, NULL
);
2805 if (error
&& error
!= -EOPNOTSUPP
)
2809 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2810 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2811 d_instantiate(dentry
, inode
);
2812 dget(dentry
); /* Extra count - pin the dentry in core */
2821 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2823 struct inode
*inode
;
2824 int error
= -ENOSPC
;
2826 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2828 error
= security_inode_init_security(inode
, dir
,
2830 shmem_initxattrs
, NULL
);
2831 if (error
&& error
!= -EOPNOTSUPP
)
2833 error
= simple_acl_create(dir
, inode
);
2836 d_tmpfile(dentry
, inode
);
2844 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2848 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2854 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2857 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2863 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2865 struct inode
*inode
= d_inode(old_dentry
);
2869 * No ordinary (disk based) filesystem counts links as inodes;
2870 * but each new link needs a new dentry, pinning lowmem, and
2871 * tmpfs dentries cannot be pruned until they are unlinked.
2873 ret
= shmem_reserve_inode(inode
->i_sb
);
2877 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2878 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2880 ihold(inode
); /* New dentry reference */
2881 dget(dentry
); /* Extra pinning count for the created dentry */
2882 d_instantiate(dentry
, inode
);
2887 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2889 struct inode
*inode
= d_inode(dentry
);
2891 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2892 shmem_free_inode(inode
->i_sb
);
2894 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2895 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2897 dput(dentry
); /* Undo the count from "create" - this does all the work */
2901 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2903 if (!simple_empty(dentry
))
2906 drop_nlink(d_inode(dentry
));
2908 return shmem_unlink(dir
, dentry
);
2911 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2913 bool old_is_dir
= d_is_dir(old_dentry
);
2914 bool new_is_dir
= d_is_dir(new_dentry
);
2916 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2918 drop_nlink(old_dir
);
2921 drop_nlink(new_dir
);
2925 old_dir
->i_ctime
= old_dir
->i_mtime
=
2926 new_dir
->i_ctime
= new_dir
->i_mtime
=
2927 d_inode(old_dentry
)->i_ctime
=
2928 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2933 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2935 struct dentry
*whiteout
;
2938 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2942 error
= shmem_mknod(old_dir
, whiteout
,
2943 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2949 * Cheat and hash the whiteout while the old dentry is still in
2950 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2952 * d_lookup() will consistently find one of them at this point,
2953 * not sure which one, but that isn't even important.
2960 * The VFS layer already does all the dentry stuff for rename,
2961 * we just have to decrement the usage count for the target if
2962 * it exists so that the VFS layer correctly free's it when it
2965 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2967 struct inode
*inode
= d_inode(old_dentry
);
2968 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2970 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2973 if (flags
& RENAME_EXCHANGE
)
2974 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2976 if (!simple_empty(new_dentry
))
2979 if (flags
& RENAME_WHITEOUT
) {
2982 error
= shmem_whiteout(old_dir
, old_dentry
);
2987 if (d_really_is_positive(new_dentry
)) {
2988 (void) shmem_unlink(new_dir
, new_dentry
);
2989 if (they_are_dirs
) {
2990 drop_nlink(d_inode(new_dentry
));
2991 drop_nlink(old_dir
);
2993 } else if (they_are_dirs
) {
2994 drop_nlink(old_dir
);
2998 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2999 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3000 old_dir
->i_ctime
= old_dir
->i_mtime
=
3001 new_dir
->i_ctime
= new_dir
->i_mtime
=
3002 inode
->i_ctime
= current_time(old_dir
);
3006 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3010 struct inode
*inode
;
3013 len
= strlen(symname
) + 1;
3014 if (len
> PAGE_SIZE
)
3015 return -ENAMETOOLONG
;
3017 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3022 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3023 shmem_initxattrs
, NULL
);
3025 if (error
!= -EOPNOTSUPP
) {
3032 inode
->i_size
= len
-1;
3033 if (len
<= SHORT_SYMLINK_LEN
) {
3034 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3035 if (!inode
->i_link
) {
3039 inode
->i_op
= &shmem_short_symlink_operations
;
3041 inode_nohighmem(inode
);
3042 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3047 inode
->i_mapping
->a_ops
= &shmem_aops
;
3048 inode
->i_op
= &shmem_symlink_inode_operations
;
3049 memcpy(page_address(page
), symname
, len
);
3050 SetPageUptodate(page
);
3051 set_page_dirty(page
);
3055 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3056 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3057 d_instantiate(dentry
, inode
);
3062 static void shmem_put_link(void *arg
)
3064 mark_page_accessed(arg
);
3068 static const char *shmem_get_link(struct dentry
*dentry
,
3069 struct inode
*inode
,
3070 struct delayed_call
*done
)
3072 struct page
*page
= NULL
;
3075 page
= find_get_page(inode
->i_mapping
, 0);
3077 return ERR_PTR(-ECHILD
);
3078 if (!PageUptodate(page
)) {
3080 return ERR_PTR(-ECHILD
);
3083 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3085 return ERR_PTR(error
);
3088 set_delayed_call(done
, shmem_put_link
, page
);
3089 return page_address(page
);
3092 #ifdef CONFIG_TMPFS_XATTR
3094 * Superblocks without xattr inode operations may get some security.* xattr
3095 * support from the LSM "for free". As soon as we have any other xattrs
3096 * like ACLs, we also need to implement the security.* handlers at
3097 * filesystem level, though.
3101 * Callback for security_inode_init_security() for acquiring xattrs.
3103 static int shmem_initxattrs(struct inode
*inode
,
3104 const struct xattr
*xattr_array
,
3107 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3108 const struct xattr
*xattr
;
3109 struct simple_xattr
*new_xattr
;
3112 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3113 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3117 len
= strlen(xattr
->name
) + 1;
3118 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3120 if (!new_xattr
->name
) {
3125 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3126 XATTR_SECURITY_PREFIX_LEN
);
3127 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3130 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3136 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3137 struct dentry
*unused
, struct inode
*inode
,
3138 const char *name
, void *buffer
, size_t size
)
3140 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3142 name
= xattr_full_name(handler
, name
);
3143 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3146 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3147 struct dentry
*unused
, struct inode
*inode
,
3148 const char *name
, const void *value
,
3149 size_t size
, int flags
)
3151 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3153 name
= xattr_full_name(handler
, name
);
3154 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3157 static const struct xattr_handler shmem_security_xattr_handler
= {
3158 .prefix
= XATTR_SECURITY_PREFIX
,
3159 .get
= shmem_xattr_handler_get
,
3160 .set
= shmem_xattr_handler_set
,
3163 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3164 .prefix
= XATTR_TRUSTED_PREFIX
,
3165 .get
= shmem_xattr_handler_get
,
3166 .set
= shmem_xattr_handler_set
,
3169 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3170 #ifdef CONFIG_TMPFS_POSIX_ACL
3171 &posix_acl_access_xattr_handler
,
3172 &posix_acl_default_xattr_handler
,
3174 &shmem_security_xattr_handler
,
3175 &shmem_trusted_xattr_handler
,
3179 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3181 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3182 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3184 #endif /* CONFIG_TMPFS_XATTR */
3186 static const struct inode_operations shmem_short_symlink_operations
= {
3187 .get_link
= simple_get_link
,
3188 #ifdef CONFIG_TMPFS_XATTR
3189 .listxattr
= shmem_listxattr
,
3193 static const struct inode_operations shmem_symlink_inode_operations
= {
3194 .get_link
= shmem_get_link
,
3195 #ifdef CONFIG_TMPFS_XATTR
3196 .listxattr
= shmem_listxattr
,
3200 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3202 return ERR_PTR(-ESTALE
);
3205 static int shmem_match(struct inode
*ino
, void *vfh
)
3209 inum
= (inum
<< 32) | fh
[1];
3210 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3213 /* Find any alias of inode, but prefer a hashed alias */
3214 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3216 struct dentry
*alias
= d_find_alias(inode
);
3218 return alias
?: d_find_any_alias(inode
);
3222 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3223 struct fid
*fid
, int fh_len
, int fh_type
)
3225 struct inode
*inode
;
3226 struct dentry
*dentry
= NULL
;
3233 inum
= (inum
<< 32) | fid
->raw
[1];
3235 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3236 shmem_match
, fid
->raw
);
3238 dentry
= shmem_find_alias(inode
);
3245 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3246 struct inode
*parent
)
3250 return FILEID_INVALID
;
3253 if (inode_unhashed(inode
)) {
3254 /* Unfortunately insert_inode_hash is not idempotent,
3255 * so as we hash inodes here rather than at creation
3256 * time, we need a lock to ensure we only try
3259 static DEFINE_SPINLOCK(lock
);
3261 if (inode_unhashed(inode
))
3262 __insert_inode_hash(inode
,
3263 inode
->i_ino
+ inode
->i_generation
);
3267 fh
[0] = inode
->i_generation
;
3268 fh
[1] = inode
->i_ino
;
3269 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3275 static const struct export_operations shmem_export_ops
= {
3276 .get_parent
= shmem_get_parent
,
3277 .encode_fh
= shmem_encode_fh
,
3278 .fh_to_dentry
= shmem_fh_to_dentry
,
3281 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3284 char *this_char
, *value
, *rest
;
3285 struct mempolicy
*mpol
= NULL
;
3289 while (options
!= NULL
) {
3290 this_char
= options
;
3293 * NUL-terminate this option: unfortunately,
3294 * mount options form a comma-separated list,
3295 * but mpol's nodelist may also contain commas.
3297 options
= strchr(options
, ',');
3298 if (options
== NULL
)
3301 if (!isdigit(*options
)) {
3308 if ((value
= strchr(this_char
,'=')) != NULL
) {
3311 pr_err("tmpfs: No value for mount option '%s'\n",
3316 if (!strcmp(this_char
,"size")) {
3317 unsigned long long size
;
3318 size
= memparse(value
,&rest
);
3320 size
<<= PAGE_SHIFT
;
3321 size
*= totalram_pages
;
3327 sbinfo
->max_blocks
=
3328 DIV_ROUND_UP(size
, PAGE_SIZE
);
3329 } else if (!strcmp(this_char
,"nr_blocks")) {
3330 sbinfo
->max_blocks
= memparse(value
, &rest
);
3333 } else if (!strcmp(this_char
,"nr_inodes")) {
3334 sbinfo
->max_inodes
= memparse(value
, &rest
);
3337 } else if (!strcmp(this_char
,"mode")) {
3340 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3343 } else if (!strcmp(this_char
,"uid")) {
3346 uid
= simple_strtoul(value
, &rest
, 0);
3349 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3350 if (!uid_valid(sbinfo
->uid
))
3352 } else if (!strcmp(this_char
,"gid")) {
3355 gid
= simple_strtoul(value
, &rest
, 0);
3358 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3359 if (!gid_valid(sbinfo
->gid
))
3361 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3362 } else if (!strcmp(this_char
, "huge")) {
3364 huge
= shmem_parse_huge(value
);
3367 if (!has_transparent_hugepage() &&
3368 huge
!= SHMEM_HUGE_NEVER
)
3370 sbinfo
->huge
= huge
;
3373 } else if (!strcmp(this_char
,"mpol")) {
3376 if (mpol_parse_str(value
, &mpol
))
3380 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3384 sbinfo
->mpol
= mpol
;
3388 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3396 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3398 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3399 struct shmem_sb_info config
= *sbinfo
;
3400 unsigned long inodes
;
3401 int error
= -EINVAL
;
3404 if (shmem_parse_options(data
, &config
, true))
3407 spin_lock(&sbinfo
->stat_lock
);
3408 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3409 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3411 if (config
.max_inodes
< inodes
)
3414 * Those tests disallow limited->unlimited while any are in use;
3415 * but we must separately disallow unlimited->limited, because
3416 * in that case we have no record of how much is already in use.
3418 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3420 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3424 sbinfo
->huge
= config
.huge
;
3425 sbinfo
->max_blocks
= config
.max_blocks
;
3426 sbinfo
->max_inodes
= config
.max_inodes
;
3427 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3430 * Preserve previous mempolicy unless mpol remount option was specified.
3433 mpol_put(sbinfo
->mpol
);
3434 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3437 spin_unlock(&sbinfo
->stat_lock
);
3441 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3443 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3445 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3446 seq_printf(seq
, ",size=%luk",
3447 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3448 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3449 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3450 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3451 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3452 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3453 seq_printf(seq
, ",uid=%u",
3454 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3455 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3456 seq_printf(seq
, ",gid=%u",
3457 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3458 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3459 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3461 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3463 shmem_show_mpol(seq
, sbinfo
->mpol
);
3467 #endif /* CONFIG_TMPFS */
3469 static void shmem_put_super(struct super_block
*sb
)
3471 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3473 percpu_counter_destroy(&sbinfo
->used_blocks
);
3474 mpol_put(sbinfo
->mpol
);
3476 sb
->s_fs_info
= NULL
;
3479 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3481 struct inode
*inode
;
3482 struct shmem_sb_info
*sbinfo
;
3485 /* Round up to L1_CACHE_BYTES to resist false sharing */
3486 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3487 L1_CACHE_BYTES
), GFP_KERNEL
);
3491 sbinfo
->mode
= 0777 | S_ISVTX
;
3492 sbinfo
->uid
= current_fsuid();
3493 sbinfo
->gid
= current_fsgid();
3494 sb
->s_fs_info
= sbinfo
;
3498 * Per default we only allow half of the physical ram per
3499 * tmpfs instance, limiting inodes to one per page of lowmem;
3500 * but the internal instance is left unlimited.
3502 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3503 sbinfo
->max_blocks
= shmem_default_max_blocks();
3504 sbinfo
->max_inodes
= shmem_default_max_inodes();
3505 if (shmem_parse_options(data
, sbinfo
, false)) {
3510 sb
->s_flags
|= SB_NOUSER
;
3512 sb
->s_export_op
= &shmem_export_ops
;
3513 sb
->s_flags
|= SB_NOSEC
;
3515 sb
->s_flags
|= SB_NOUSER
;
3518 spin_lock_init(&sbinfo
->stat_lock
);
3519 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3521 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3522 spin_lock_init(&sbinfo
->shrinklist_lock
);
3523 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3525 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3526 sb
->s_blocksize
= PAGE_SIZE
;
3527 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3528 sb
->s_magic
= TMPFS_MAGIC
;
3529 sb
->s_op
= &shmem_ops
;
3530 sb
->s_time_gran
= 1;
3531 #ifdef CONFIG_TMPFS_XATTR
3532 sb
->s_xattr
= shmem_xattr_handlers
;
3534 #ifdef CONFIG_TMPFS_POSIX_ACL
3535 sb
->s_flags
|= SB_POSIXACL
;
3537 uuid_gen(&sb
->s_uuid
);
3539 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3542 inode
->i_uid
= sbinfo
->uid
;
3543 inode
->i_gid
= sbinfo
->gid
;
3544 sb
->s_root
= d_make_root(inode
);
3550 shmem_put_super(sb
);
3554 static struct kmem_cache
*shmem_inode_cachep
;
3556 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3558 struct shmem_inode_info
*info
;
3559 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3562 return &info
->vfs_inode
;
3565 static void shmem_destroy_callback(struct rcu_head
*head
)
3567 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3568 if (S_ISLNK(inode
->i_mode
))
3569 kfree(inode
->i_link
);
3570 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3573 static void shmem_destroy_inode(struct inode
*inode
)
3575 if (S_ISREG(inode
->i_mode
))
3576 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3577 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3580 static void shmem_init_inode(void *foo
)
3582 struct shmem_inode_info
*info
= foo
;
3583 inode_init_once(&info
->vfs_inode
);
3586 static void shmem_init_inodecache(void)
3588 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3589 sizeof(struct shmem_inode_info
),
3590 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3593 static void shmem_destroy_inodecache(void)
3595 kmem_cache_destroy(shmem_inode_cachep
);
3598 static const struct address_space_operations shmem_aops
= {
3599 .writepage
= shmem_writepage
,
3600 .set_page_dirty
= __set_page_dirty_no_writeback
,
3602 .write_begin
= shmem_write_begin
,
3603 .write_end
= shmem_write_end
,
3605 #ifdef CONFIG_MIGRATION
3606 .migratepage
= migrate_page
,
3608 .error_remove_page
= generic_error_remove_page
,
3611 static const struct file_operations shmem_file_operations
= {
3613 .get_unmapped_area
= shmem_get_unmapped_area
,
3615 .llseek
= shmem_file_llseek
,
3616 .read_iter
= shmem_file_read_iter
,
3617 .write_iter
= generic_file_write_iter
,
3618 .fsync
= noop_fsync
,
3619 .splice_read
= generic_file_splice_read
,
3620 .splice_write
= iter_file_splice_write
,
3621 .fallocate
= shmem_fallocate
,
3625 static const struct inode_operations shmem_inode_operations
= {
3626 .getattr
= shmem_getattr
,
3627 .setattr
= shmem_setattr
,
3628 #ifdef CONFIG_TMPFS_XATTR
3629 .listxattr
= shmem_listxattr
,
3630 .set_acl
= simple_set_acl
,
3634 static const struct inode_operations shmem_dir_inode_operations
= {
3636 .create
= shmem_create
,
3637 .lookup
= simple_lookup
,
3639 .unlink
= shmem_unlink
,
3640 .symlink
= shmem_symlink
,
3641 .mkdir
= shmem_mkdir
,
3642 .rmdir
= shmem_rmdir
,
3643 .mknod
= shmem_mknod
,
3644 .rename
= shmem_rename2
,
3645 .tmpfile
= shmem_tmpfile
,
3647 #ifdef CONFIG_TMPFS_XATTR
3648 .listxattr
= shmem_listxattr
,
3650 #ifdef CONFIG_TMPFS_POSIX_ACL
3651 .setattr
= shmem_setattr
,
3652 .set_acl
= simple_set_acl
,
3656 static const struct inode_operations shmem_special_inode_operations
= {
3657 #ifdef CONFIG_TMPFS_XATTR
3658 .listxattr
= shmem_listxattr
,
3660 #ifdef CONFIG_TMPFS_POSIX_ACL
3661 .setattr
= shmem_setattr
,
3662 .set_acl
= simple_set_acl
,
3666 static const struct super_operations shmem_ops
= {
3667 .alloc_inode
= shmem_alloc_inode
,
3668 .destroy_inode
= shmem_destroy_inode
,
3670 .statfs
= shmem_statfs
,
3671 .remount_fs
= shmem_remount_fs
,
3672 .show_options
= shmem_show_options
,
3674 .evict_inode
= shmem_evict_inode
,
3675 .drop_inode
= generic_delete_inode
,
3676 .put_super
= shmem_put_super
,
3677 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3678 .nr_cached_objects
= shmem_unused_huge_count
,
3679 .free_cached_objects
= shmem_unused_huge_scan
,
3683 static const struct vm_operations_struct shmem_vm_ops
= {
3684 .fault
= shmem_fault
,
3685 .map_pages
= filemap_map_pages
,
3687 .set_policy
= shmem_set_policy
,
3688 .get_policy
= shmem_get_policy
,
3692 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3693 int flags
, const char *dev_name
, void *data
)
3695 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3698 static struct file_system_type shmem_fs_type
= {
3699 .owner
= THIS_MODULE
,
3701 .mount
= shmem_mount
,
3702 .kill_sb
= kill_litter_super
,
3703 .fs_flags
= FS_USERNS_MOUNT
,
3706 int __init
shmem_init(void)
3710 /* If rootfs called this, don't re-init */
3711 if (shmem_inode_cachep
)
3714 shmem_init_inodecache();
3716 error
= register_filesystem(&shmem_fs_type
);
3718 pr_err("Could not register tmpfs\n");
3722 shm_mnt
= kern_mount(&shmem_fs_type
);
3723 if (IS_ERR(shm_mnt
)) {
3724 error
= PTR_ERR(shm_mnt
);
3725 pr_err("Could not kern_mount tmpfs\n");
3729 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3730 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3731 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3733 shmem_huge
= 0; /* just in case it was patched */
3738 unregister_filesystem(&shmem_fs_type
);
3740 shmem_destroy_inodecache();
3741 shm_mnt
= ERR_PTR(error
);
3745 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3746 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3747 struct kobj_attribute
*attr
, char *buf
)
3751 SHMEM_HUGE_WITHIN_SIZE
,
3759 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3760 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3762 count
+= sprintf(buf
+ count
, fmt
,
3763 shmem_format_huge(values
[i
]));
3765 buf
[count
- 1] = '\n';
3769 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3770 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3775 if (count
+ 1 > sizeof(tmp
))
3777 memcpy(tmp
, buf
, count
);
3779 if (count
&& tmp
[count
- 1] == '\n')
3780 tmp
[count
- 1] = '\0';
3782 huge
= shmem_parse_huge(tmp
);
3783 if (huge
== -EINVAL
)
3785 if (!has_transparent_hugepage() &&
3786 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3790 if (shmem_huge
> SHMEM_HUGE_DENY
)
3791 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3795 struct kobj_attribute shmem_enabled_attr
=
3796 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3797 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3799 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3800 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3802 struct inode
*inode
= file_inode(vma
->vm_file
);
3803 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3807 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3809 if (shmem_huge
== SHMEM_HUGE_DENY
)
3811 switch (sbinfo
->huge
) {
3812 case SHMEM_HUGE_NEVER
:
3814 case SHMEM_HUGE_ALWAYS
:
3816 case SHMEM_HUGE_WITHIN_SIZE
:
3817 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3818 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3819 if (i_size
>= HPAGE_PMD_SIZE
&&
3820 i_size
>> PAGE_SHIFT
>= off
)
3823 case SHMEM_HUGE_ADVISE
:
3824 /* TODO: implement fadvise() hints */
3825 return (vma
->vm_flags
& VM_HUGEPAGE
);
3831 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3833 #else /* !CONFIG_SHMEM */
3836 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3838 * This is intended for small system where the benefits of the full
3839 * shmem code (swap-backed and resource-limited) are outweighed by
3840 * their complexity. On systems without swap this code should be
3841 * effectively equivalent, but much lighter weight.
3844 static struct file_system_type shmem_fs_type
= {
3846 .mount
= ramfs_mount
,
3847 .kill_sb
= kill_litter_super
,
3848 .fs_flags
= FS_USERNS_MOUNT
,
3851 int __init
shmem_init(void)
3853 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3855 shm_mnt
= kern_mount(&shmem_fs_type
);
3856 BUG_ON(IS_ERR(shm_mnt
));
3861 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3866 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3871 void shmem_unlock_mapping(struct address_space
*mapping
)
3876 unsigned long shmem_get_unmapped_area(struct file
*file
,
3877 unsigned long addr
, unsigned long len
,
3878 unsigned long pgoff
, unsigned long flags
)
3880 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3884 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3886 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3888 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3890 #define shmem_vm_ops generic_file_vm_ops
3891 #define shmem_file_operations ramfs_file_operations
3892 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3893 #define shmem_acct_size(flags, size) 0
3894 #define shmem_unacct_size(flags, size) do {} while (0)
3896 #endif /* CONFIG_SHMEM */
3900 static const struct dentry_operations anon_ops
= {
3901 .d_dname
= simple_dname
3904 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3905 unsigned long flags
, unsigned int i_flags
)
3908 struct inode
*inode
;
3910 struct super_block
*sb
;
3914 return ERR_CAST(mnt
);
3916 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3917 return ERR_PTR(-EINVAL
);
3919 if (shmem_acct_size(flags
, size
))
3920 return ERR_PTR(-ENOMEM
);
3922 res
= ERR_PTR(-ENOMEM
);
3924 this.len
= strlen(name
);
3925 this.hash
= 0; /* will go */
3927 path
.mnt
= mntget(mnt
);
3928 path
.dentry
= d_alloc_pseudo(sb
, &this);
3931 d_set_d_op(path
.dentry
, &anon_ops
);
3933 res
= ERR_PTR(-ENOSPC
);
3934 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| 0777, 0, flags
);
3938 inode
->i_flags
|= i_flags
;
3939 d_instantiate(path
.dentry
, inode
);
3940 inode
->i_size
= size
;
3941 clear_nlink(inode
); /* It is unlinked */
3942 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3946 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3947 &shmem_file_operations
);
3954 shmem_unacct_size(flags
, size
);
3961 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3962 * kernel internal. There will be NO LSM permission checks against the
3963 * underlying inode. So users of this interface must do LSM checks at a
3964 * higher layer. The users are the big_key and shm implementations. LSM
3965 * checks are provided at the key or shm level rather than the inode.
3966 * @name: name for dentry (to be seen in /proc/<pid>/maps
3967 * @size: size to be set for the file
3968 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3970 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3972 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
3976 * shmem_file_setup - get an unlinked file living in tmpfs
3977 * @name: name for dentry (to be seen in /proc/<pid>/maps
3978 * @size: size to be set for the file
3979 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3981 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3983 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
3985 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3988 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3989 * @mnt: the tmpfs mount where the file will be created
3990 * @name: name for dentry (to be seen in /proc/<pid>/maps
3991 * @size: size to be set for the file
3992 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3994 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
3995 loff_t size
, unsigned long flags
)
3997 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
3999 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
4002 * shmem_zero_setup - setup a shared anonymous mapping
4003 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4005 int shmem_zero_setup(struct vm_area_struct
*vma
)
4008 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4011 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4012 * between XFS directory reading and selinux: since this file is only
4013 * accessible to the user through its mapping, use S_PRIVATE flag to
4014 * bypass file security, in the same way as shmem_kernel_file_setup().
4016 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
4018 return PTR_ERR(file
);
4022 vma
->vm_file
= file
;
4023 vma
->vm_ops
= &shmem_vm_ops
;
4025 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4026 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4027 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4028 khugepaged_enter(vma
, vma
->vm_flags
);
4035 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4036 * @mapping: the page's address_space
4037 * @index: the page index
4038 * @gfp: the page allocator flags to use if allocating
4040 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4041 * with any new page allocations done using the specified allocation flags.
4042 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4043 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4044 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4046 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4047 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4049 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4050 pgoff_t index
, gfp_t gfp
)
4053 struct inode
*inode
= mapping
->host
;
4057 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4058 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4059 gfp
, NULL
, NULL
, NULL
);
4061 page
= ERR_PTR(error
);
4067 * The tiny !SHMEM case uses ramfs without swap
4069 return read_cache_page_gfp(mapping
, index
, gfp
);
4072 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);