1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
60 #include <net/tcp_memcontrol.h>
62 #include <asm/uaccess.h>
64 #include <trace/events/vmscan.h>
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
67 EXPORT_SYMBOL(mem_cgroup_subsys
);
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly
;
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata
= 1;
80 static int really_do_swap_account __initdata
= 0;
84 #define do_swap_account 0
89 * Statistics for memory cgroup.
91 enum mem_cgroup_stat_index
{
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
95 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE
, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP
, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS
,
103 static const char * const mem_cgroup_stat_names
[] = {
111 enum mem_cgroup_events_index
{
112 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS
,
119 static const char * const mem_cgroup_events_names
[] = {
126 static const char * const mem_cgroup_lru_names
[] = {
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
140 enum mem_cgroup_events_target
{
141 MEM_CGROUP_TARGET_THRESH
,
142 MEM_CGROUP_TARGET_SOFTLIMIT
,
143 MEM_CGROUP_TARGET_NUMAINFO
,
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
150 struct mem_cgroup_stat_cpu
{
151 long count
[MEM_CGROUP_STAT_NSTATS
];
152 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
153 unsigned long nr_page_events
;
154 unsigned long targets
[MEM_CGROUP_NTARGETS
];
157 struct mem_cgroup_reclaim_iter
{
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
162 struct mem_cgroup
*last_visited
;
163 unsigned long last_dead_count
;
165 /* scan generation, increased every round-trip */
166 unsigned int generation
;
170 * per-zone information in memory controller.
172 struct mem_cgroup_per_zone
{
173 struct lruvec lruvec
;
174 unsigned long lru_size
[NR_LRU_LISTS
];
176 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
178 struct rb_node tree_node
; /* RB tree node */
179 unsigned long long usage_in_excess
;/* Set to the value by which */
180 /* the soft limit is exceeded*/
182 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
183 /* use container_of */
186 struct mem_cgroup_per_node
{
187 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
190 struct mem_cgroup_lru_info
{
191 struct mem_cgroup_per_node
*nodeinfo
[0];
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
199 struct mem_cgroup_tree_per_zone
{
200 struct rb_root rb_root
;
204 struct mem_cgroup_tree_per_node
{
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
208 struct mem_cgroup_tree
{
209 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
212 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
214 struct mem_cgroup_threshold
{
215 struct eventfd_ctx
*eventfd
;
220 struct mem_cgroup_threshold_ary
{
221 /* An array index points to threshold just below or equal to usage. */
222 int current_threshold
;
223 /* Size of entries[] */
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries
[0];
229 struct mem_cgroup_thresholds
{
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary
*primary
;
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
237 struct mem_cgroup_threshold_ary
*spare
;
241 struct mem_cgroup_eventfd_list
{
242 struct list_head list
;
243 struct eventfd_ctx
*eventfd
;
246 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
247 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
261 struct cgroup_subsys_state css
;
263 * the counter to account for memory usage
265 struct res_counter res
;
267 /* vmpressure notifications */
268 struct vmpressure vmpressure
;
272 * the counter to account for mem+swap usage.
274 struct res_counter memsw
;
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
285 struct rcu_head rcu_freeing
;
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
290 struct work_struct work_freeing
;
294 * the counter to account for kernel memory usage.
296 struct res_counter kmem
;
298 * Should the accounting and control be hierarchical, per subtree?
301 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
309 /* OOM-Killer disable */
310 int oom_kill_disable
;
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum
;
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock
;
318 /* thresholds for memory usage. RCU-protected */
319 struct mem_cgroup_thresholds thresholds
;
321 /* thresholds for mem+swap usage. RCU-protected */
322 struct mem_cgroup_thresholds memsw_thresholds
;
324 /* For oom notifier event fd */
325 struct list_head oom_notify
;
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
331 unsigned long move_charge_at_immigrate
;
333 * set > 0 if pages under this cgroup are moving to other cgroup.
335 atomic_t moving_account
;
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock
;
341 struct mem_cgroup_stat_cpu __percpu
*stat
;
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
346 struct mem_cgroup_stat_cpu nocpu_base
;
347 spinlock_t pcp_counter_lock
;
350 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
351 struct tcp_memcontrol tcp_mem
;
353 #if defined(CONFIG_MEMCG_KMEM)
354 /* analogous to slab_common's slab_caches list. per-memcg */
355 struct list_head memcg_slab_caches
;
356 /* Not a spinlock, we can take a lot of time walking the list */
357 struct mutex slab_caches_mutex
;
358 /* Index in the kmem_cache->memcg_params->memcg_caches array */
362 int last_scanned_node
;
364 nodemask_t scan_nodes
;
365 atomic_t numainfo_events
;
366 atomic_t numainfo_updating
;
370 * Per cgroup active and inactive list, similar to the
371 * per zone LRU lists.
373 * WARNING: This has to be the last element of the struct. Don't
374 * add new fields after this point.
376 struct mem_cgroup_lru_info info
;
379 static size_t memcg_size(void)
381 return sizeof(struct mem_cgroup
) +
382 nr_node_ids
* sizeof(struct mem_cgroup_per_node
);
385 /* internal only representation about the status of kmem accounting. */
387 KMEM_ACCOUNTED_ACTIVE
= 0, /* accounted by this cgroup itself */
388 KMEM_ACCOUNTED_ACTIVATED
, /* static key enabled. */
389 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
392 /* We account when limit is on, but only after call sites are patched */
393 #define KMEM_ACCOUNTED_MASK \
394 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
396 #ifdef CONFIG_MEMCG_KMEM
397 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
399 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
402 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
404 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
407 static void memcg_kmem_set_activated(struct mem_cgroup
*memcg
)
409 set_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
412 static void memcg_kmem_clear_activated(struct mem_cgroup
*memcg
)
414 clear_bit(KMEM_ACCOUNTED_ACTIVATED
, &memcg
->kmem_account_flags
);
417 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
419 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
420 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
423 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
425 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
426 &memcg
->kmem_account_flags
);
430 /* Stuffs for move charges at task migration. */
432 * Types of charges to be moved. "move_charge_at_immitgrate" and
433 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
436 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
437 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
441 /* "mc" and its members are protected by cgroup_mutex */
442 static struct move_charge_struct
{
443 spinlock_t lock
; /* for from, to */
444 struct mem_cgroup
*from
;
445 struct mem_cgroup
*to
;
446 unsigned long immigrate_flags
;
447 unsigned long precharge
;
448 unsigned long moved_charge
;
449 unsigned long moved_swap
;
450 struct task_struct
*moving_task
; /* a task moving charges */
451 wait_queue_head_t waitq
; /* a waitq for other context */
453 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
454 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
457 static bool move_anon(void)
459 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
462 static bool move_file(void)
464 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
468 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469 * limit reclaim to prevent infinite loops, if they ever occur.
471 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
472 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
475 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
476 MEM_CGROUP_CHARGE_TYPE_ANON
,
477 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
478 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
482 /* for encoding cft->private value on file */
490 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
491 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
492 #define MEMFILE_ATTR(val) ((val) & 0xffff)
493 /* Used for OOM nofiier */
494 #define OOM_CONTROL (0)
497 * Reclaim flags for mem_cgroup_hierarchical_reclaim
499 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
500 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
502 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
505 * The memcg_create_mutex will be held whenever a new cgroup is created.
506 * As a consequence, any change that needs to protect against new child cgroups
507 * appearing has to hold it as well.
509 static DEFINE_MUTEX(memcg_create_mutex
);
511 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
512 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
515 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
517 return container_of(s
, struct mem_cgroup
, css
);
520 /* Some nice accessors for the vmpressure. */
521 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
524 memcg
= root_mem_cgroup
;
525 return &memcg
->vmpressure
;
528 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
530 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
533 struct vmpressure
*css_to_vmpressure(struct cgroup_subsys_state
*css
)
535 return &mem_cgroup_from_css(css
)->vmpressure
;
538 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
540 return (memcg
== root_mem_cgroup
);
543 /* Writing them here to avoid exposing memcg's inner layout */
544 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546 void sock_update_memcg(struct sock
*sk
)
548 if (mem_cgroup_sockets_enabled
) {
549 struct mem_cgroup
*memcg
;
550 struct cg_proto
*cg_proto
;
552 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
563 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
564 mem_cgroup_get(sk
->sk_cgrp
->memcg
);
569 memcg
= mem_cgroup_from_task(current
);
570 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
571 if (!mem_cgroup_is_root(memcg
) && memcg_proto_active(cg_proto
)) {
572 mem_cgroup_get(memcg
);
573 sk
->sk_cgrp
= cg_proto
;
578 EXPORT_SYMBOL(sock_update_memcg
);
580 void sock_release_memcg(struct sock
*sk
)
582 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
583 struct mem_cgroup
*memcg
;
584 WARN_ON(!sk
->sk_cgrp
->memcg
);
585 memcg
= sk
->sk_cgrp
->memcg
;
586 mem_cgroup_put(memcg
);
590 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
592 if (!memcg
|| mem_cgroup_is_root(memcg
))
595 return &memcg
->tcp_mem
.cg_proto
;
597 EXPORT_SYMBOL(tcp_proto_cgroup
);
599 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
601 if (!memcg_proto_activated(&memcg
->tcp_mem
.cg_proto
))
603 static_key_slow_dec(&memcg_socket_limit_enabled
);
606 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
611 #ifdef CONFIG_MEMCG_KMEM
613 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614 * There are two main reasons for not using the css_id for this:
615 * 1) this works better in sparse environments, where we have a lot of memcgs,
616 * but only a few kmem-limited. Or also, if we have, for instance, 200
617 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
618 * 200 entry array for that.
620 * 2) In order not to violate the cgroup API, we would like to do all memory
621 * allocation in ->create(). At that point, we haven't yet allocated the
622 * css_id. Having a separate index prevents us from messing with the cgroup
625 * The current size of the caches array is stored in
626 * memcg_limited_groups_array_size. It will double each time we have to
629 static DEFINE_IDA(kmem_limited_groups
);
630 int memcg_limited_groups_array_size
;
633 * MIN_SIZE is different than 1, because we would like to avoid going through
634 * the alloc/free process all the time. In a small machine, 4 kmem-limited
635 * cgroups is a reasonable guess. In the future, it could be a parameter or
636 * tunable, but that is strictly not necessary.
638 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639 * this constant directly from cgroup, but it is understandable that this is
640 * better kept as an internal representation in cgroup.c. In any case, the
641 * css_id space is not getting any smaller, and we don't have to necessarily
642 * increase ours as well if it increases.
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE 65535
648 * A lot of the calls to the cache allocation functions are expected to be
649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650 * conditional to this static branch, we'll have to allow modules that does
651 * kmem_cache_alloc and the such to see this symbol as well
653 struct static_key memcg_kmem_enabled_key
;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
656 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
658 if (memcg_kmem_is_active(memcg
)) {
659 static_key_slow_dec(&memcg_kmem_enabled_key
);
660 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
663 * This check can't live in kmem destruction function,
664 * since the charges will outlive the cgroup
666 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
669 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
672 #endif /* CONFIG_MEMCG_KMEM */
674 static void disarm_static_keys(struct mem_cgroup
*memcg
)
676 disarm_sock_keys(memcg
);
677 disarm_kmem_keys(memcg
);
680 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
682 static struct mem_cgroup_per_zone
*
683 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
685 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
686 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
689 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
694 static struct mem_cgroup_per_zone
*
695 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
697 int nid
= page_to_nid(page
);
698 int zid
= page_zonenum(page
);
700 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
703 static struct mem_cgroup_tree_per_zone
*
704 soft_limit_tree_node_zone(int nid
, int zid
)
706 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
709 static struct mem_cgroup_tree_per_zone
*
710 soft_limit_tree_from_page(struct page
*page
)
712 int nid
= page_to_nid(page
);
713 int zid
= page_zonenum(page
);
715 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
719 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
720 struct mem_cgroup_per_zone
*mz
,
721 struct mem_cgroup_tree_per_zone
*mctz
,
722 unsigned long long new_usage_in_excess
)
724 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
725 struct rb_node
*parent
= NULL
;
726 struct mem_cgroup_per_zone
*mz_node
;
731 mz
->usage_in_excess
= new_usage_in_excess
;
732 if (!mz
->usage_in_excess
)
736 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
738 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
741 * We can't avoid mem cgroups that are over their soft
742 * limit by the same amount
744 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
747 rb_link_node(&mz
->tree_node
, parent
, p
);
748 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
753 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
754 struct mem_cgroup_per_zone
*mz
,
755 struct mem_cgroup_tree_per_zone
*mctz
)
759 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
764 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
765 struct mem_cgroup_per_zone
*mz
,
766 struct mem_cgroup_tree_per_zone
*mctz
)
768 spin_lock(&mctz
->lock
);
769 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
770 spin_unlock(&mctz
->lock
);
774 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
776 unsigned long long excess
;
777 struct mem_cgroup_per_zone
*mz
;
778 struct mem_cgroup_tree_per_zone
*mctz
;
779 int nid
= page_to_nid(page
);
780 int zid
= page_zonenum(page
);
781 mctz
= soft_limit_tree_from_page(page
);
784 * Necessary to update all ancestors when hierarchy is used.
785 * because their event counter is not touched.
787 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
788 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
789 excess
= res_counter_soft_limit_excess(&memcg
->res
);
791 * We have to update the tree if mz is on RB-tree or
792 * mem is over its softlimit.
794 if (excess
|| mz
->on_tree
) {
795 spin_lock(&mctz
->lock
);
796 /* if on-tree, remove it */
798 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
800 * Insert again. mz->usage_in_excess will be updated.
801 * If excess is 0, no tree ops.
803 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
804 spin_unlock(&mctz
->lock
);
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
812 struct mem_cgroup_per_zone
*mz
;
813 struct mem_cgroup_tree_per_zone
*mctz
;
815 for_each_node(node
) {
816 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
817 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
818 mctz
= soft_limit_tree_node_zone(node
, zone
);
819 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
824 static struct mem_cgroup_per_zone
*
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
827 struct rb_node
*rightmost
= NULL
;
828 struct mem_cgroup_per_zone
*mz
;
832 rightmost
= rb_last(&mctz
->rb_root
);
834 goto done
; /* Nothing to reclaim from */
836 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
838 * Remove the node now but someone else can add it back,
839 * we will to add it back at the end of reclaim to its correct
840 * position in the tree.
842 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
843 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
844 !css_tryget(&mz
->memcg
->css
))
850 static struct mem_cgroup_per_zone
*
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
853 struct mem_cgroup_per_zone
*mz
;
855 spin_lock(&mctz
->lock
);
856 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
857 spin_unlock(&mctz
->lock
);
862 * Implementation Note: reading percpu statistics for memcg.
864 * Both of vmstat[] and percpu_counter has threshold and do periodic
865 * synchronization to implement "quick" read. There are trade-off between
866 * reading cost and precision of value. Then, we may have a chance to implement
867 * a periodic synchronizion of counter in memcg's counter.
869 * But this _read() function is used for user interface now. The user accounts
870 * memory usage by memory cgroup and he _always_ requires exact value because
871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872 * have to visit all online cpus and make sum. So, for now, unnecessary
873 * synchronization is not implemented. (just implemented for cpu hotplug)
875 * If there are kernel internal actions which can make use of some not-exact
876 * value, and reading all cpu value can be performance bottleneck in some
877 * common workload, threashold and synchonization as vmstat[] should be
880 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
881 enum mem_cgroup_stat_index idx
)
887 for_each_online_cpu(cpu
)
888 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
889 #ifdef CONFIG_HOTPLUG_CPU
890 spin_lock(&memcg
->pcp_counter_lock
);
891 val
+= memcg
->nocpu_base
.count
[idx
];
892 spin_unlock(&memcg
->pcp_counter_lock
);
898 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
901 int val
= (charge
) ? 1 : -1;
902 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
906 enum mem_cgroup_events_index idx
)
908 unsigned long val
= 0;
911 for_each_online_cpu(cpu
)
912 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
913 #ifdef CONFIG_HOTPLUG_CPU
914 spin_lock(&memcg
->pcp_counter_lock
);
915 val
+= memcg
->nocpu_base
.events
[idx
];
916 spin_unlock(&memcg
->pcp_counter_lock
);
921 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
923 bool anon
, int nr_pages
)
928 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 * counted as CACHE even if it's on ANON LRU.
932 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
935 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
938 if (PageTransHuge(page
))
939 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
942 /* pagein of a big page is an event. So, ignore page size */
944 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
946 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
947 nr_pages
= -nr_pages
; /* for event */
950 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
956 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
958 struct mem_cgroup_per_zone
*mz
;
960 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
961 return mz
->lru_size
[lru
];
965 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
966 unsigned int lru_mask
)
968 struct mem_cgroup_per_zone
*mz
;
970 unsigned long ret
= 0;
972 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
975 if (BIT(lru
) & lru_mask
)
976 ret
+= mz
->lru_size
[lru
];
982 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
983 int nid
, unsigned int lru_mask
)
988 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
989 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
995 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
996 unsigned int lru_mask
)
1001 for_each_node_state(nid
, N_MEMORY
)
1002 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
1006 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
1007 enum mem_cgroup_events_target target
)
1009 unsigned long val
, next
;
1011 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
1012 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
1013 /* from time_after() in jiffies.h */
1014 if ((long)next
- (long)val
< 0) {
1016 case MEM_CGROUP_TARGET_THRESH
:
1017 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
1019 case MEM_CGROUP_TARGET_SOFTLIMIT
:
1020 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
1022 case MEM_CGROUP_TARGET_NUMAINFO
:
1023 next
= val
+ NUMAINFO_EVENTS_TARGET
;
1028 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
1035 * Check events in order.
1038 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
1041 /* threshold event is triggered in finer grain than soft limit */
1042 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1043 MEM_CGROUP_TARGET_THRESH
))) {
1045 bool do_numainfo __maybe_unused
;
1047 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1048 MEM_CGROUP_TARGET_SOFTLIMIT
);
1049 #if MAX_NUMNODES > 1
1050 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1051 MEM_CGROUP_TARGET_NUMAINFO
);
1055 mem_cgroup_threshold(memcg
);
1056 if (unlikely(do_softlimit
))
1057 mem_cgroup_update_tree(memcg
, page
);
1058 #if MAX_NUMNODES > 1
1059 if (unlikely(do_numainfo
))
1060 atomic_inc(&memcg
->numainfo_events
);
1066 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
1068 return mem_cgroup_from_css(
1069 cgroup_subsys_state(cont
, mem_cgroup_subsys_id
));
1072 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1075 * mm_update_next_owner() may clear mm->owner to NULL
1076 * if it races with swapoff, page migration, etc.
1077 * So this can be called with p == NULL.
1082 return mem_cgroup_from_css(task_subsys_state(p
, mem_cgroup_subsys_id
));
1085 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1087 struct mem_cgroup
*memcg
= NULL
;
1092 * Because we have no locks, mm->owner's may be being moved to other
1093 * cgroup. We use css_tryget() here even if this looks
1094 * pessimistic (rather than adding locks here).
1098 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1099 if (unlikely(!memcg
))
1101 } while (!css_tryget(&memcg
->css
));
1107 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108 * ref. count) or NULL if the whole root's subtree has been visited.
1110 * helper function to be used by mem_cgroup_iter
1112 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1113 struct mem_cgroup
*last_visited
)
1115 struct cgroup
*prev_cgroup
, *next_cgroup
;
1118 * Root is not visited by cgroup iterators so it needs an
1124 prev_cgroup
= (last_visited
== root
) ? NULL
1125 : last_visited
->css
.cgroup
;
1127 next_cgroup
= cgroup_next_descendant_pre(
1128 prev_cgroup
, root
->css
.cgroup
);
1131 * Even if we found a group we have to make sure it is
1132 * alive. css && !memcg means that the groups should be
1133 * skipped and we should continue the tree walk.
1134 * last_visited css is safe to use because it is
1135 * protected by css_get and the tree walk is rcu safe.
1138 struct mem_cgroup
*mem
= mem_cgroup_from_cont(
1140 if (css_tryget(&mem
->css
))
1143 prev_cgroup
= next_cgroup
;
1152 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1153 * @root: hierarchy root
1154 * @prev: previously returned memcg, NULL on first invocation
1155 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1157 * Returns references to children of the hierarchy below @root, or
1158 * @root itself, or %NULL after a full round-trip.
1160 * Caller must pass the return value in @prev on subsequent
1161 * invocations for reference counting, or use mem_cgroup_iter_break()
1162 * to cancel a hierarchy walk before the round-trip is complete.
1164 * Reclaimers can specify a zone and a priority level in @reclaim to
1165 * divide up the memcgs in the hierarchy among all concurrent
1166 * reclaimers operating on the same zone and priority.
1168 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1169 struct mem_cgroup
*prev
,
1170 struct mem_cgroup_reclaim_cookie
*reclaim
)
1172 struct mem_cgroup
*memcg
= NULL
;
1173 struct mem_cgroup
*last_visited
= NULL
;
1174 unsigned long uninitialized_var(dead_count
);
1176 if (mem_cgroup_disabled())
1180 root
= root_mem_cgroup
;
1182 if (prev
&& !reclaim
)
1183 last_visited
= prev
;
1185 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1193 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1196 int nid
= zone_to_nid(reclaim
->zone
);
1197 int zid
= zone_idx(reclaim
->zone
);
1198 struct mem_cgroup_per_zone
*mz
;
1200 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
1201 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1202 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1203 iter
->last_visited
= NULL
;
1208 * If the dead_count mismatches, a destruction
1209 * has happened or is happening concurrently.
1210 * If the dead_count matches, a destruction
1211 * might still happen concurrently, but since
1212 * we checked under RCU, that destruction
1213 * won't free the object until we release the
1214 * RCU reader lock. Thus, the dead_count
1215 * check verifies the pointer is still valid,
1216 * css_tryget() verifies the cgroup pointed to
1219 dead_count
= atomic_read(&root
->dead_count
);
1220 if (dead_count
== iter
->last_dead_count
) {
1222 last_visited
= iter
->last_visited
;
1224 !css_tryget(&last_visited
->css
))
1225 last_visited
= NULL
;
1229 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1233 css_put(&last_visited
->css
);
1235 iter
->last_visited
= memcg
;
1237 iter
->last_dead_count
= dead_count
;
1241 else if (!prev
&& memcg
)
1242 reclaim
->generation
= iter
->generation
;
1251 if (prev
&& prev
!= root
)
1252 css_put(&prev
->css
);
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1262 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1263 struct mem_cgroup
*prev
)
1266 root
= root_mem_cgroup
;
1267 if (prev
&& prev
!= root
)
1268 css_put(&prev
->css
);
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1276 #define for_each_mem_cgroup_tree(iter, root) \
1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1279 iter = mem_cgroup_iter(root, iter, NULL))
1281 #define for_each_mem_cgroup(iter) \
1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1284 iter = mem_cgroup_iter(NULL, iter, NULL))
1286 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1288 struct mem_cgroup
*memcg
;
1291 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1292 if (unlikely(!memcg
))
1297 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1300 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
1313 * @memcg: memcg of the wanted lruvec
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1319 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1320 struct mem_cgroup
*memcg
)
1322 struct mem_cgroup_per_zone
*mz
;
1323 struct lruvec
*lruvec
;
1325 if (mem_cgroup_disabled()) {
1326 lruvec
= &zone
->lruvec
;
1330 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1331 lruvec
= &mz
->lruvec
;
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1338 if (unlikely(lruvec
->zone
!= zone
))
1339 lruvec
->zone
= zone
;
1344 * Following LRU functions are allowed to be used without PCG_LOCK.
1345 * Operations are called by routine of global LRU independently from memcg.
1346 * What we have to take care of here is validness of pc->mem_cgroup.
1348 * Changes to pc->mem_cgroup happens when
1351 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1352 * It is added to LRU before charge.
1353 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1354 * When moving account, the page is not on LRU. It's isolated.
1358 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1360 * @zone: zone of the page
1362 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1364 struct mem_cgroup_per_zone
*mz
;
1365 struct mem_cgroup
*memcg
;
1366 struct page_cgroup
*pc
;
1367 struct lruvec
*lruvec
;
1369 if (mem_cgroup_disabled()) {
1370 lruvec
= &zone
->lruvec
;
1374 pc
= lookup_page_cgroup(page
);
1375 memcg
= pc
->mem_cgroup
;
1378 * Surreptitiously switch any uncharged offlist page to root:
1379 * an uncharged page off lru does nothing to secure
1380 * its former mem_cgroup from sudden removal.
1382 * Our caller holds lru_lock, and PageCgroupUsed is updated
1383 * under page_cgroup lock: between them, they make all uses
1384 * of pc->mem_cgroup safe.
1386 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1387 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1389 mz
= page_cgroup_zoneinfo(memcg
, page
);
1390 lruvec
= &mz
->lruvec
;
1393 * Since a node can be onlined after the mem_cgroup was created,
1394 * we have to be prepared to initialize lruvec->zone here;
1395 * and if offlined then reonlined, we need to reinitialize it.
1397 if (unlikely(lruvec
->zone
!= zone
))
1398 lruvec
->zone
= zone
;
1403 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404 * @lruvec: mem_cgroup per zone lru vector
1405 * @lru: index of lru list the page is sitting on
1406 * @nr_pages: positive when adding or negative when removing
1408 * This function must be called when a page is added to or removed from an
1411 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1414 struct mem_cgroup_per_zone
*mz
;
1415 unsigned long *lru_size
;
1417 if (mem_cgroup_disabled())
1420 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1421 lru_size
= mz
->lru_size
+ lru
;
1422 *lru_size
+= nr_pages
;
1423 VM_BUG_ON((long)(*lru_size
) < 0);
1427 * Checks whether given mem is same or in the root_mem_cgroup's
1430 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1431 struct mem_cgroup
*memcg
)
1433 if (root_memcg
== memcg
)
1435 if (!root_memcg
->use_hierarchy
|| !memcg
)
1437 return css_is_ancestor(&memcg
->css
, &root_memcg
->css
);
1440 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1441 struct mem_cgroup
*memcg
)
1446 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1451 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1454 struct mem_cgroup
*curr
= NULL
;
1455 struct task_struct
*p
;
1457 p
= find_lock_task_mm(task
);
1459 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1463 * All threads may have already detached their mm's, but the oom
1464 * killer still needs to detect if they have already been oom
1465 * killed to prevent needlessly killing additional tasks.
1468 curr
= mem_cgroup_from_task(task
);
1470 css_get(&curr
->css
);
1476 * We should check use_hierarchy of "memcg" not "curr". Because checking
1477 * use_hierarchy of "curr" here make this function true if hierarchy is
1478 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1479 * hierarchy(even if use_hierarchy is disabled in "memcg").
1481 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1482 css_put(&curr
->css
);
1486 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1488 unsigned long inactive_ratio
;
1489 unsigned long inactive
;
1490 unsigned long active
;
1493 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1494 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1496 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1498 inactive_ratio
= int_sqrt(10 * gb
);
1502 return inactive
* inactive_ratio
< active
;
1505 #define mem_cgroup_from_res_counter(counter, member) \
1506 container_of(counter, struct mem_cgroup, member)
1509 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1510 * @memcg: the memory cgroup
1512 * Returns the maximum amount of memory @mem can be charged with, in
1515 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1517 unsigned long long margin
;
1519 margin
= res_counter_margin(&memcg
->res
);
1520 if (do_swap_account
)
1521 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1522 return margin
>> PAGE_SHIFT
;
1525 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1527 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1530 if (cgrp
->parent
== NULL
)
1531 return vm_swappiness
;
1533 return memcg
->swappiness
;
1537 * memcg->moving_account is used for checking possibility that some thread is
1538 * calling move_account(). When a thread on CPU-A starts moving pages under
1539 * a memcg, other threads should check memcg->moving_account under
1540 * rcu_read_lock(), like this:
1544 * memcg->moving_account+1 if (memcg->mocing_account)
1546 * synchronize_rcu() update something.
1551 /* for quick checking without looking up memcg */
1552 atomic_t memcg_moving __read_mostly
;
1554 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1556 atomic_inc(&memcg_moving
);
1557 atomic_inc(&memcg
->moving_account
);
1561 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1564 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1565 * We check NULL in callee rather than caller.
1568 atomic_dec(&memcg_moving
);
1569 atomic_dec(&memcg
->moving_account
);
1574 * 2 routines for checking "mem" is under move_account() or not.
1576 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1577 * is used for avoiding races in accounting. If true,
1578 * pc->mem_cgroup may be overwritten.
1580 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1581 * under hierarchy of moving cgroups. This is for
1582 * waiting at hith-memory prressure caused by "move".
1585 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1587 VM_BUG_ON(!rcu_read_lock_held());
1588 return atomic_read(&memcg
->moving_account
) > 0;
1591 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1593 struct mem_cgroup
*from
;
1594 struct mem_cgroup
*to
;
1597 * Unlike task_move routines, we access mc.to, mc.from not under
1598 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1600 spin_lock(&mc
.lock
);
1606 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1607 || mem_cgroup_same_or_subtree(memcg
, to
);
1609 spin_unlock(&mc
.lock
);
1613 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1615 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1616 if (mem_cgroup_under_move(memcg
)) {
1618 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1619 /* moving charge context might have finished. */
1622 finish_wait(&mc
.waitq
, &wait
);
1630 * Take this lock when
1631 * - a code tries to modify page's memcg while it's USED.
1632 * - a code tries to modify page state accounting in a memcg.
1633 * see mem_cgroup_stolen(), too.
1635 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1636 unsigned long *flags
)
1638 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1641 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1642 unsigned long *flags
)
1644 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1647 #define K(x) ((x) << (PAGE_SHIFT-10))
1649 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1650 * @memcg: The memory cgroup that went over limit
1651 * @p: Task that is going to be killed
1653 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1656 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1658 struct cgroup
*task_cgrp
;
1659 struct cgroup
*mem_cgrp
;
1661 * Need a buffer in BSS, can't rely on allocations. The code relies
1662 * on the assumption that OOM is serialized for memory controller.
1663 * If this assumption is broken, revisit this code.
1665 static char memcg_name
[PATH_MAX
];
1667 struct mem_cgroup
*iter
;
1675 mem_cgrp
= memcg
->css
.cgroup
;
1676 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1678 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1681 * Unfortunately, we are unable to convert to a useful name
1682 * But we'll still print out the usage information
1689 pr_info("Task in %s killed", memcg_name
);
1692 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1700 * Continues from above, so we don't need an KERN_ level
1702 pr_cont(" as a result of limit of %s\n", memcg_name
);
1705 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1706 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1707 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1708 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1709 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1710 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1711 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1712 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1713 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1714 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1715 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1716 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1718 for_each_mem_cgroup_tree(iter
, memcg
) {
1719 pr_info("Memory cgroup stats");
1722 ret
= cgroup_path(iter
->css
.cgroup
, memcg_name
, PATH_MAX
);
1724 pr_cont(" for %s", memcg_name
);
1728 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1729 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1731 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1732 K(mem_cgroup_read_stat(iter
, i
)));
1735 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1736 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1737 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1744 * This function returns the number of memcg under hierarchy tree. Returns
1745 * 1(self count) if no children.
1747 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1750 struct mem_cgroup
*iter
;
1752 for_each_mem_cgroup_tree(iter
, memcg
)
1758 * Return the memory (and swap, if configured) limit for a memcg.
1760 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1764 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1767 * Do not consider swap space if we cannot swap due to swappiness
1769 if (mem_cgroup_swappiness(memcg
)) {
1772 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1773 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1776 * If memsw is finite and limits the amount of swap space
1777 * available to this memcg, return that limit.
1779 limit
= min(limit
, memsw
);
1785 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1788 struct mem_cgroup
*iter
;
1789 unsigned long chosen_points
= 0;
1790 unsigned long totalpages
;
1791 unsigned int points
= 0;
1792 struct task_struct
*chosen
= NULL
;
1795 * If current has a pending SIGKILL or is exiting, then automatically
1796 * select it. The goal is to allow it to allocate so that it may
1797 * quickly exit and free its memory.
1799 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1800 set_thread_flag(TIF_MEMDIE
);
1804 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1805 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1806 for_each_mem_cgroup_tree(iter
, memcg
) {
1807 struct cgroup
*cgroup
= iter
->css
.cgroup
;
1808 struct cgroup_iter it
;
1809 struct task_struct
*task
;
1811 cgroup_iter_start(cgroup
, &it
);
1812 while ((task
= cgroup_iter_next(cgroup
, &it
))) {
1813 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1815 case OOM_SCAN_SELECT
:
1817 put_task_struct(chosen
);
1819 chosen_points
= ULONG_MAX
;
1820 get_task_struct(chosen
);
1822 case OOM_SCAN_CONTINUE
:
1824 case OOM_SCAN_ABORT
:
1825 cgroup_iter_end(cgroup
, &it
);
1826 mem_cgroup_iter_break(memcg
, iter
);
1828 put_task_struct(chosen
);
1833 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1834 if (points
> chosen_points
) {
1836 put_task_struct(chosen
);
1838 chosen_points
= points
;
1839 get_task_struct(chosen
);
1842 cgroup_iter_end(cgroup
, &it
);
1847 points
= chosen_points
* 1000 / totalpages
;
1848 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1849 NULL
, "Memory cgroup out of memory");
1852 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1854 unsigned long flags
)
1856 unsigned long total
= 0;
1857 bool noswap
= false;
1860 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1862 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1865 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1867 drain_all_stock_async(memcg
);
1868 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1870 * Allow limit shrinkers, which are triggered directly
1871 * by userspace, to catch signals and stop reclaim
1872 * after minimal progress, regardless of the margin.
1874 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1876 if (mem_cgroup_margin(memcg
))
1879 * If nothing was reclaimed after two attempts, there
1880 * may be no reclaimable pages in this hierarchy.
1889 * test_mem_cgroup_node_reclaimable
1890 * @memcg: the target memcg
1891 * @nid: the node ID to be checked.
1892 * @noswap : specify true here if the user wants flle only information.
1894 * This function returns whether the specified memcg contains any
1895 * reclaimable pages on a node. Returns true if there are any reclaimable
1896 * pages in the node.
1898 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1899 int nid
, bool noswap
)
1901 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1903 if (noswap
|| !total_swap_pages
)
1905 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1910 #if MAX_NUMNODES > 1
1913 * Always updating the nodemask is not very good - even if we have an empty
1914 * list or the wrong list here, we can start from some node and traverse all
1915 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1918 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1922 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1923 * pagein/pageout changes since the last update.
1925 if (!atomic_read(&memcg
->numainfo_events
))
1927 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1930 /* make a nodemask where this memcg uses memory from */
1931 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1933 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1935 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1936 node_clear(nid
, memcg
->scan_nodes
);
1939 atomic_set(&memcg
->numainfo_events
, 0);
1940 atomic_set(&memcg
->numainfo_updating
, 0);
1944 * Selecting a node where we start reclaim from. Because what we need is just
1945 * reducing usage counter, start from anywhere is O,K. Considering
1946 * memory reclaim from current node, there are pros. and cons.
1948 * Freeing memory from current node means freeing memory from a node which
1949 * we'll use or we've used. So, it may make LRU bad. And if several threads
1950 * hit limits, it will see a contention on a node. But freeing from remote
1951 * node means more costs for memory reclaim because of memory latency.
1953 * Now, we use round-robin. Better algorithm is welcomed.
1955 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1959 mem_cgroup_may_update_nodemask(memcg
);
1960 node
= memcg
->last_scanned_node
;
1962 node
= next_node(node
, memcg
->scan_nodes
);
1963 if (node
== MAX_NUMNODES
)
1964 node
= first_node(memcg
->scan_nodes
);
1966 * We call this when we hit limit, not when pages are added to LRU.
1967 * No LRU may hold pages because all pages are UNEVICTABLE or
1968 * memcg is too small and all pages are not on LRU. In that case,
1969 * we use curret node.
1971 if (unlikely(node
== MAX_NUMNODES
))
1972 node
= numa_node_id();
1974 memcg
->last_scanned_node
= node
;
1979 * Check all nodes whether it contains reclaimable pages or not.
1980 * For quick scan, we make use of scan_nodes. This will allow us to skip
1981 * unused nodes. But scan_nodes is lazily updated and may not cotain
1982 * enough new information. We need to do double check.
1984 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1989 * quick check...making use of scan_node.
1990 * We can skip unused nodes.
1992 if (!nodes_empty(memcg
->scan_nodes
)) {
1993 for (nid
= first_node(memcg
->scan_nodes
);
1995 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1997 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
2002 * Check rest of nodes.
2004 for_each_node_state(nid
, N_MEMORY
) {
2005 if (node_isset(nid
, memcg
->scan_nodes
))
2007 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
2014 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
2019 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
2021 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
2025 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
2028 unsigned long *total_scanned
)
2030 struct mem_cgroup
*victim
= NULL
;
2033 unsigned long excess
;
2034 unsigned long nr_scanned
;
2035 struct mem_cgroup_reclaim_cookie reclaim
= {
2040 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
2043 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
2048 * If we have not been able to reclaim
2049 * anything, it might because there are
2050 * no reclaimable pages under this hierarchy
2055 * We want to do more targeted reclaim.
2056 * excess >> 2 is not to excessive so as to
2057 * reclaim too much, nor too less that we keep
2058 * coming back to reclaim from this cgroup
2060 if (total
>= (excess
>> 2) ||
2061 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
2066 if (!mem_cgroup_reclaimable(victim
, false))
2068 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
2070 *total_scanned
+= nr_scanned
;
2071 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
2074 mem_cgroup_iter_break(root_memcg
, victim
);
2079 * Check OOM-Killer is already running under our hierarchy.
2080 * If someone is running, return false.
2081 * Has to be called with memcg_oom_lock
2083 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
2085 struct mem_cgroup
*iter
, *failed
= NULL
;
2087 for_each_mem_cgroup_tree(iter
, memcg
) {
2088 if (iter
->oom_lock
) {
2090 * this subtree of our hierarchy is already locked
2091 * so we cannot give a lock.
2094 mem_cgroup_iter_break(memcg
, iter
);
2097 iter
->oom_lock
= true;
2104 * OK, we failed to lock the whole subtree so we have to clean up
2105 * what we set up to the failing subtree
2107 for_each_mem_cgroup_tree(iter
, memcg
) {
2108 if (iter
== failed
) {
2109 mem_cgroup_iter_break(memcg
, iter
);
2112 iter
->oom_lock
= false;
2118 * Has to be called with memcg_oom_lock
2120 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2122 struct mem_cgroup
*iter
;
2124 for_each_mem_cgroup_tree(iter
, memcg
)
2125 iter
->oom_lock
= false;
2129 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2131 struct mem_cgroup
*iter
;
2133 for_each_mem_cgroup_tree(iter
, memcg
)
2134 atomic_inc(&iter
->under_oom
);
2137 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2139 struct mem_cgroup
*iter
;
2142 * When a new child is created while the hierarchy is under oom,
2143 * mem_cgroup_oom_lock() may not be called. We have to use
2144 * atomic_add_unless() here.
2146 for_each_mem_cgroup_tree(iter
, memcg
)
2147 atomic_add_unless(&iter
->under_oom
, -1, 0);
2150 static DEFINE_SPINLOCK(memcg_oom_lock
);
2151 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2153 struct oom_wait_info
{
2154 struct mem_cgroup
*memcg
;
2158 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2159 unsigned mode
, int sync
, void *arg
)
2161 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2162 struct mem_cgroup
*oom_wait_memcg
;
2163 struct oom_wait_info
*oom_wait_info
;
2165 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2166 oom_wait_memcg
= oom_wait_info
->memcg
;
2169 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2170 * Then we can use css_is_ancestor without taking care of RCU.
2172 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2173 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2175 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2178 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2180 /* for filtering, pass "memcg" as argument. */
2181 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2184 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2186 if (memcg
&& atomic_read(&memcg
->under_oom
))
2187 memcg_wakeup_oom(memcg
);
2191 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2193 static bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
,
2196 struct oom_wait_info owait
;
2197 bool locked
, need_to_kill
;
2199 owait
.memcg
= memcg
;
2200 owait
.wait
.flags
= 0;
2201 owait
.wait
.func
= memcg_oom_wake_function
;
2202 owait
.wait
.private = current
;
2203 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2204 need_to_kill
= true;
2205 mem_cgroup_mark_under_oom(memcg
);
2207 /* At first, try to OOM lock hierarchy under memcg.*/
2208 spin_lock(&memcg_oom_lock
);
2209 locked
= mem_cgroup_oom_lock(memcg
);
2211 * Even if signal_pending(), we can't quit charge() loop without
2212 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2213 * under OOM is always welcomed, use TASK_KILLABLE here.
2215 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2216 if (!locked
|| memcg
->oom_kill_disable
)
2217 need_to_kill
= false;
2219 mem_cgroup_oom_notify(memcg
);
2220 spin_unlock(&memcg_oom_lock
);
2223 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2224 mem_cgroup_out_of_memory(memcg
, mask
, order
);
2227 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2229 spin_lock(&memcg_oom_lock
);
2231 mem_cgroup_oom_unlock(memcg
);
2232 memcg_wakeup_oom(memcg
);
2233 spin_unlock(&memcg_oom_lock
);
2235 mem_cgroup_unmark_under_oom(memcg
);
2237 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
2239 /* Give chance to dying process */
2240 schedule_timeout_uninterruptible(1);
2245 * Currently used to update mapped file statistics, but the routine can be
2246 * generalized to update other statistics as well.
2248 * Notes: Race condition
2250 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2251 * it tends to be costly. But considering some conditions, we doesn't need
2252 * to do so _always_.
2254 * Considering "charge", lock_page_cgroup() is not required because all
2255 * file-stat operations happen after a page is attached to radix-tree. There
2256 * are no race with "charge".
2258 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2259 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2260 * if there are race with "uncharge". Statistics itself is properly handled
2263 * Considering "move", this is an only case we see a race. To make the race
2264 * small, we check mm->moving_account and detect there are possibility of race
2265 * If there is, we take a lock.
2268 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2269 bool *locked
, unsigned long *flags
)
2271 struct mem_cgroup
*memcg
;
2272 struct page_cgroup
*pc
;
2274 pc
= lookup_page_cgroup(page
);
2276 memcg
= pc
->mem_cgroup
;
2277 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2280 * If this memory cgroup is not under account moving, we don't
2281 * need to take move_lock_mem_cgroup(). Because we already hold
2282 * rcu_read_lock(), any calls to move_account will be delayed until
2283 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2285 if (!mem_cgroup_stolen(memcg
))
2288 move_lock_mem_cgroup(memcg
, flags
);
2289 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2290 move_unlock_mem_cgroup(memcg
, flags
);
2296 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2298 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2301 * It's guaranteed that pc->mem_cgroup never changes while
2302 * lock is held because a routine modifies pc->mem_cgroup
2303 * should take move_lock_mem_cgroup().
2305 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2308 void mem_cgroup_update_page_stat(struct page
*page
,
2309 enum mem_cgroup_page_stat_item idx
, int val
)
2311 struct mem_cgroup
*memcg
;
2312 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2313 unsigned long uninitialized_var(flags
);
2315 if (mem_cgroup_disabled())
2318 memcg
= pc
->mem_cgroup
;
2319 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2323 case MEMCG_NR_FILE_MAPPED
:
2324 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
2330 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2334 * size of first charge trial. "32" comes from vmscan.c's magic value.
2335 * TODO: maybe necessary to use big numbers in big irons.
2337 #define CHARGE_BATCH 32U
2338 struct memcg_stock_pcp
{
2339 struct mem_cgroup
*cached
; /* this never be root cgroup */
2340 unsigned int nr_pages
;
2341 struct work_struct work
;
2342 unsigned long flags
;
2343 #define FLUSHING_CACHED_CHARGE 0
2345 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2346 static DEFINE_MUTEX(percpu_charge_mutex
);
2349 * consume_stock: Try to consume stocked charge on this cpu.
2350 * @memcg: memcg to consume from.
2351 * @nr_pages: how many pages to charge.
2353 * The charges will only happen if @memcg matches the current cpu's memcg
2354 * stock, and at least @nr_pages are available in that stock. Failure to
2355 * service an allocation will refill the stock.
2357 * returns true if successful, false otherwise.
2359 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2361 struct memcg_stock_pcp
*stock
;
2364 if (nr_pages
> CHARGE_BATCH
)
2367 stock
= &get_cpu_var(memcg_stock
);
2368 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2369 stock
->nr_pages
-= nr_pages
;
2370 else /* need to call res_counter_charge */
2372 put_cpu_var(memcg_stock
);
2377 * Returns stocks cached in percpu to res_counter and reset cached information.
2379 static void drain_stock(struct memcg_stock_pcp
*stock
)
2381 struct mem_cgroup
*old
= stock
->cached
;
2383 if (stock
->nr_pages
) {
2384 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2386 res_counter_uncharge(&old
->res
, bytes
);
2387 if (do_swap_account
)
2388 res_counter_uncharge(&old
->memsw
, bytes
);
2389 stock
->nr_pages
= 0;
2391 stock
->cached
= NULL
;
2395 * This must be called under preempt disabled or must be called by
2396 * a thread which is pinned to local cpu.
2398 static void drain_local_stock(struct work_struct
*dummy
)
2400 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2402 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2405 static void __init
memcg_stock_init(void)
2409 for_each_possible_cpu(cpu
) {
2410 struct memcg_stock_pcp
*stock
=
2411 &per_cpu(memcg_stock
, cpu
);
2412 INIT_WORK(&stock
->work
, drain_local_stock
);
2417 * Cache charges(val) which is from res_counter, to local per_cpu area.
2418 * This will be consumed by consume_stock() function, later.
2420 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2422 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2424 if (stock
->cached
!= memcg
) { /* reset if necessary */
2426 stock
->cached
= memcg
;
2428 stock
->nr_pages
+= nr_pages
;
2429 put_cpu_var(memcg_stock
);
2433 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2434 * of the hierarchy under it. sync flag says whether we should block
2435 * until the work is done.
2437 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2441 /* Notify other cpus that system-wide "drain" is running */
2444 for_each_online_cpu(cpu
) {
2445 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2446 struct mem_cgroup
*memcg
;
2448 memcg
= stock
->cached
;
2449 if (!memcg
|| !stock
->nr_pages
)
2451 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2453 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2455 drain_local_stock(&stock
->work
);
2457 schedule_work_on(cpu
, &stock
->work
);
2465 for_each_online_cpu(cpu
) {
2466 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2467 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2468 flush_work(&stock
->work
);
2475 * Tries to drain stocked charges in other cpus. This function is asynchronous
2476 * and just put a work per cpu for draining localy on each cpu. Caller can
2477 * expects some charges will be back to res_counter later but cannot wait for
2480 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2483 * If someone calls draining, avoid adding more kworker runs.
2485 if (!mutex_trylock(&percpu_charge_mutex
))
2487 drain_all_stock(root_memcg
, false);
2488 mutex_unlock(&percpu_charge_mutex
);
2491 /* This is a synchronous drain interface. */
2492 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2494 /* called when force_empty is called */
2495 mutex_lock(&percpu_charge_mutex
);
2496 drain_all_stock(root_memcg
, true);
2497 mutex_unlock(&percpu_charge_mutex
);
2501 * This function drains percpu counter value from DEAD cpu and
2502 * move it to local cpu. Note that this function can be preempted.
2504 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2508 spin_lock(&memcg
->pcp_counter_lock
);
2509 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2510 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2512 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2513 memcg
->nocpu_base
.count
[i
] += x
;
2515 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2516 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2518 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2519 memcg
->nocpu_base
.events
[i
] += x
;
2521 spin_unlock(&memcg
->pcp_counter_lock
);
2524 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2525 unsigned long action
,
2528 int cpu
= (unsigned long)hcpu
;
2529 struct memcg_stock_pcp
*stock
;
2530 struct mem_cgroup
*iter
;
2532 if (action
== CPU_ONLINE
)
2535 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2538 for_each_mem_cgroup(iter
)
2539 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2541 stock
= &per_cpu(memcg_stock
, cpu
);
2547 /* See __mem_cgroup_try_charge() for details */
2549 CHARGE_OK
, /* success */
2550 CHARGE_RETRY
, /* need to retry but retry is not bad */
2551 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2552 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2553 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2556 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2557 unsigned int nr_pages
, unsigned int min_pages
,
2560 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2561 struct mem_cgroup
*mem_over_limit
;
2562 struct res_counter
*fail_res
;
2563 unsigned long flags
= 0;
2566 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2569 if (!do_swap_account
)
2571 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2575 res_counter_uncharge(&memcg
->res
, csize
);
2576 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2577 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2579 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2581 * Never reclaim on behalf of optional batching, retry with a
2582 * single page instead.
2584 if (nr_pages
> min_pages
)
2585 return CHARGE_RETRY
;
2587 if (!(gfp_mask
& __GFP_WAIT
))
2588 return CHARGE_WOULDBLOCK
;
2590 if (gfp_mask
& __GFP_NORETRY
)
2591 return CHARGE_NOMEM
;
2593 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2594 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2595 return CHARGE_RETRY
;
2597 * Even though the limit is exceeded at this point, reclaim
2598 * may have been able to free some pages. Retry the charge
2599 * before killing the task.
2601 * Only for regular pages, though: huge pages are rather
2602 * unlikely to succeed so close to the limit, and we fall back
2603 * to regular pages anyway in case of failure.
2605 if (nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
) && ret
)
2606 return CHARGE_RETRY
;
2609 * At task move, charge accounts can be doubly counted. So, it's
2610 * better to wait until the end of task_move if something is going on.
2612 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2613 return CHARGE_RETRY
;
2615 /* If we don't need to call oom-killer at el, return immediately */
2617 return CHARGE_NOMEM
;
2619 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
, get_order(csize
)))
2620 return CHARGE_OOM_DIE
;
2622 return CHARGE_RETRY
;
2626 * __mem_cgroup_try_charge() does
2627 * 1. detect memcg to be charged against from passed *mm and *ptr,
2628 * 2. update res_counter
2629 * 3. call memory reclaim if necessary.
2631 * In some special case, if the task is fatal, fatal_signal_pending() or
2632 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2633 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2634 * as possible without any hazards. 2: all pages should have a valid
2635 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2636 * pointer, that is treated as a charge to root_mem_cgroup.
2638 * So __mem_cgroup_try_charge() will return
2639 * 0 ... on success, filling *ptr with a valid memcg pointer.
2640 * -ENOMEM ... charge failure because of resource limits.
2641 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2643 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2644 * the oom-killer can be invoked.
2646 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2648 unsigned int nr_pages
,
2649 struct mem_cgroup
**ptr
,
2652 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2653 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2654 struct mem_cgroup
*memcg
= NULL
;
2658 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2659 * in system level. So, allow to go ahead dying process in addition to
2662 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2663 || fatal_signal_pending(current
)))
2667 * We always charge the cgroup the mm_struct belongs to.
2668 * The mm_struct's mem_cgroup changes on task migration if the
2669 * thread group leader migrates. It's possible that mm is not
2670 * set, if so charge the root memcg (happens for pagecache usage).
2673 *ptr
= root_mem_cgroup
;
2675 if (*ptr
) { /* css should be a valid one */
2677 if (mem_cgroup_is_root(memcg
))
2679 if (consume_stock(memcg
, nr_pages
))
2681 css_get(&memcg
->css
);
2683 struct task_struct
*p
;
2686 p
= rcu_dereference(mm
->owner
);
2688 * Because we don't have task_lock(), "p" can exit.
2689 * In that case, "memcg" can point to root or p can be NULL with
2690 * race with swapoff. Then, we have small risk of mis-accouning.
2691 * But such kind of mis-account by race always happens because
2692 * we don't have cgroup_mutex(). It's overkill and we allo that
2694 * (*) swapoff at el will charge against mm-struct not against
2695 * task-struct. So, mm->owner can be NULL.
2697 memcg
= mem_cgroup_from_task(p
);
2699 memcg
= root_mem_cgroup
;
2700 if (mem_cgroup_is_root(memcg
)) {
2704 if (consume_stock(memcg
, nr_pages
)) {
2706 * It seems dagerous to access memcg without css_get().
2707 * But considering how consume_stok works, it's not
2708 * necessary. If consume_stock success, some charges
2709 * from this memcg are cached on this cpu. So, we
2710 * don't need to call css_get()/css_tryget() before
2711 * calling consume_stock().
2716 /* after here, we may be blocked. we need to get refcnt */
2717 if (!css_tryget(&memcg
->css
)) {
2727 /* If killed, bypass charge */
2728 if (fatal_signal_pending(current
)) {
2729 css_put(&memcg
->css
);
2734 if (oom
&& !nr_oom_retries
) {
2736 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2739 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, nr_pages
,
2744 case CHARGE_RETRY
: /* not in OOM situation but retry */
2746 css_put(&memcg
->css
);
2749 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2750 css_put(&memcg
->css
);
2752 case CHARGE_NOMEM
: /* OOM routine works */
2754 css_put(&memcg
->css
);
2757 /* If oom, we never return -ENOMEM */
2760 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2761 css_put(&memcg
->css
);
2764 } while (ret
!= CHARGE_OK
);
2766 if (batch
> nr_pages
)
2767 refill_stock(memcg
, batch
- nr_pages
);
2768 css_put(&memcg
->css
);
2776 *ptr
= root_mem_cgroup
;
2781 * Somemtimes we have to undo a charge we got by try_charge().
2782 * This function is for that and do uncharge, put css's refcnt.
2783 * gotten by try_charge().
2785 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2786 unsigned int nr_pages
)
2788 if (!mem_cgroup_is_root(memcg
)) {
2789 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2791 res_counter_uncharge(&memcg
->res
, bytes
);
2792 if (do_swap_account
)
2793 res_counter_uncharge(&memcg
->memsw
, bytes
);
2798 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2799 * This is useful when moving usage to parent cgroup.
2801 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2802 unsigned int nr_pages
)
2804 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2806 if (mem_cgroup_is_root(memcg
))
2809 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2810 if (do_swap_account
)
2811 res_counter_uncharge_until(&memcg
->memsw
,
2812 memcg
->memsw
.parent
, bytes
);
2816 * A helper function to get mem_cgroup from ID. must be called under
2817 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2818 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2819 * called against removed memcg.)
2821 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2823 struct cgroup_subsys_state
*css
;
2825 /* ID 0 is unused ID */
2828 css
= css_lookup(&mem_cgroup_subsys
, id
);
2831 return mem_cgroup_from_css(css
);
2834 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2836 struct mem_cgroup
*memcg
= NULL
;
2837 struct page_cgroup
*pc
;
2841 VM_BUG_ON(!PageLocked(page
));
2843 pc
= lookup_page_cgroup(page
);
2844 lock_page_cgroup(pc
);
2845 if (PageCgroupUsed(pc
)) {
2846 memcg
= pc
->mem_cgroup
;
2847 if (memcg
&& !css_tryget(&memcg
->css
))
2849 } else if (PageSwapCache(page
)) {
2850 ent
.val
= page_private(page
);
2851 id
= lookup_swap_cgroup_id(ent
);
2853 memcg
= mem_cgroup_lookup(id
);
2854 if (memcg
&& !css_tryget(&memcg
->css
))
2858 unlock_page_cgroup(pc
);
2862 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2864 unsigned int nr_pages
,
2865 enum charge_type ctype
,
2868 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2869 struct zone
*uninitialized_var(zone
);
2870 struct lruvec
*lruvec
;
2871 bool was_on_lru
= false;
2874 lock_page_cgroup(pc
);
2875 VM_BUG_ON(PageCgroupUsed(pc
));
2877 * we don't need page_cgroup_lock about tail pages, becase they are not
2878 * accessed by any other context at this point.
2882 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2883 * may already be on some other mem_cgroup's LRU. Take care of it.
2886 zone
= page_zone(page
);
2887 spin_lock_irq(&zone
->lru_lock
);
2888 if (PageLRU(page
)) {
2889 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2891 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2896 pc
->mem_cgroup
= memcg
;
2898 * We access a page_cgroup asynchronously without lock_page_cgroup().
2899 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2900 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2901 * before USED bit, we need memory barrier here.
2902 * See mem_cgroup_add_lru_list(), etc.
2905 SetPageCgroupUsed(pc
);
2909 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2910 VM_BUG_ON(PageLRU(page
));
2912 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2914 spin_unlock_irq(&zone
->lru_lock
);
2917 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
2922 mem_cgroup_charge_statistics(memcg
, page
, anon
, nr_pages
);
2923 unlock_page_cgroup(pc
);
2926 * "charge_statistics" updated event counter. Then, check it.
2927 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2928 * if they exceeds softlimit.
2930 memcg_check_events(memcg
, page
);
2933 static DEFINE_MUTEX(set_limit_mutex
);
2935 #ifdef CONFIG_MEMCG_KMEM
2936 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
2938 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
2939 (memcg
->kmem_account_flags
& KMEM_ACCOUNTED_MASK
);
2943 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2944 * in the memcg_cache_params struct.
2946 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
2948 struct kmem_cache
*cachep
;
2950 VM_BUG_ON(p
->is_root_cache
);
2951 cachep
= p
->root_cache
;
2952 return cachep
->memcg_params
->memcg_caches
[memcg_cache_id(p
->memcg
)];
2955 #ifdef CONFIG_SLABINFO
2956 static int mem_cgroup_slabinfo_read(struct cgroup
*cont
, struct cftype
*cft
,
2959 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
2960 struct memcg_cache_params
*params
;
2962 if (!memcg_can_account_kmem(memcg
))
2965 print_slabinfo_header(m
);
2967 mutex_lock(&memcg
->slab_caches_mutex
);
2968 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
2969 cache_show(memcg_params_to_cache(params
), m
);
2970 mutex_unlock(&memcg
->slab_caches_mutex
);
2976 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
2978 struct res_counter
*fail_res
;
2979 struct mem_cgroup
*_memcg
;
2983 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
2988 * Conditions under which we can wait for the oom_killer. Those are
2989 * the same conditions tested by the core page allocator
2991 may_oom
= (gfp
& __GFP_FS
) && !(gfp
& __GFP_NORETRY
);
2994 ret
= __mem_cgroup_try_charge(NULL
, gfp
, size
>> PAGE_SHIFT
,
2997 if (ret
== -EINTR
) {
2999 * __mem_cgroup_try_charge() chosed to bypass to root due to
3000 * OOM kill or fatal signal. Since our only options are to
3001 * either fail the allocation or charge it to this cgroup, do
3002 * it as a temporary condition. But we can't fail. From a
3003 * kmem/slab perspective, the cache has already been selected,
3004 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3007 * This condition will only trigger if the task entered
3008 * memcg_charge_kmem in a sane state, but was OOM-killed during
3009 * __mem_cgroup_try_charge() above. Tasks that were already
3010 * dying when the allocation triggers should have been already
3011 * directed to the root cgroup in memcontrol.h
3013 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
3014 if (do_swap_account
)
3015 res_counter_charge_nofail(&memcg
->memsw
, size
,
3019 res_counter_uncharge(&memcg
->kmem
, size
);
3024 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
3026 res_counter_uncharge(&memcg
->res
, size
);
3027 if (do_swap_account
)
3028 res_counter_uncharge(&memcg
->memsw
, size
);
3031 if (res_counter_uncharge(&memcg
->kmem
, size
))
3034 if (memcg_kmem_test_and_clear_dead(memcg
))
3035 mem_cgroup_put(memcg
);
3038 void memcg_cache_list_add(struct mem_cgroup
*memcg
, struct kmem_cache
*cachep
)
3043 mutex_lock(&memcg
->slab_caches_mutex
);
3044 list_add(&cachep
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
3045 mutex_unlock(&memcg
->slab_caches_mutex
);
3049 * helper for acessing a memcg's index. It will be used as an index in the
3050 * child cache array in kmem_cache, and also to derive its name. This function
3051 * will return -1 when this is not a kmem-limited memcg.
3053 int memcg_cache_id(struct mem_cgroup
*memcg
)
3055 return memcg
? memcg
->kmemcg_id
: -1;
3059 * This ends up being protected by the set_limit mutex, during normal
3060 * operation, because that is its main call site.
3062 * But when we create a new cache, we can call this as well if its parent
3063 * is kmem-limited. That will have to hold set_limit_mutex as well.
3065 int memcg_update_cache_sizes(struct mem_cgroup
*memcg
)
3069 num
= ida_simple_get(&kmem_limited_groups
,
3070 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
3074 * After this point, kmem_accounted (that we test atomically in
3075 * the beginning of this conditional), is no longer 0. This
3076 * guarantees only one process will set the following boolean
3077 * to true. We don't need test_and_set because we're protected
3078 * by the set_limit_mutex anyway.
3080 memcg_kmem_set_activated(memcg
);
3082 ret
= memcg_update_all_caches(num
+1);
3084 ida_simple_remove(&kmem_limited_groups
, num
);
3085 memcg_kmem_clear_activated(memcg
);
3089 memcg
->kmemcg_id
= num
;
3090 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
3091 mutex_init(&memcg
->slab_caches_mutex
);
3095 static size_t memcg_caches_array_size(int num_groups
)
3098 if (num_groups
<= 0)
3101 size
= 2 * num_groups
;
3102 if (size
< MEMCG_CACHES_MIN_SIZE
)
3103 size
= MEMCG_CACHES_MIN_SIZE
;
3104 else if (size
> MEMCG_CACHES_MAX_SIZE
)
3105 size
= MEMCG_CACHES_MAX_SIZE
;
3111 * We should update the current array size iff all caches updates succeed. This
3112 * can only be done from the slab side. The slab mutex needs to be held when
3115 void memcg_update_array_size(int num
)
3117 if (num
> memcg_limited_groups_array_size
)
3118 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
3121 static void kmem_cache_destroy_work_func(struct work_struct
*w
);
3123 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
3125 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
3127 VM_BUG_ON(s
->memcg_params
&& !s
->memcg_params
->is_root_cache
);
3129 if (num_groups
> memcg_limited_groups_array_size
) {
3131 ssize_t size
= memcg_caches_array_size(num_groups
);
3133 size
*= sizeof(void *);
3134 size
+= sizeof(struct memcg_cache_params
);
3136 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3137 if (!s
->memcg_params
) {
3138 s
->memcg_params
= cur_params
;
3142 s
->memcg_params
->is_root_cache
= true;
3145 * There is the chance it will be bigger than
3146 * memcg_limited_groups_array_size, if we failed an allocation
3147 * in a cache, in which case all caches updated before it, will
3148 * have a bigger array.
3150 * But if that is the case, the data after
3151 * memcg_limited_groups_array_size is certainly unused
3153 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3154 if (!cur_params
->memcg_caches
[i
])
3156 s
->memcg_params
->memcg_caches
[i
] =
3157 cur_params
->memcg_caches
[i
];
3161 * Ideally, we would wait until all caches succeed, and only
3162 * then free the old one. But this is not worth the extra
3163 * pointer per-cache we'd have to have for this.
3165 * It is not a big deal if some caches are left with a size
3166 * bigger than the others. And all updates will reset this
3174 int memcg_register_cache(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
3175 struct kmem_cache
*root_cache
)
3177 size_t size
= sizeof(struct memcg_cache_params
);
3179 if (!memcg_kmem_enabled())
3183 size
+= memcg_limited_groups_array_size
* sizeof(void *);
3185 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3186 if (!s
->memcg_params
)
3190 s
->memcg_params
->memcg
= memcg
;
3191 s
->memcg_params
->root_cache
= root_cache
;
3192 INIT_WORK(&s
->memcg_params
->destroy
,
3193 kmem_cache_destroy_work_func
);
3195 s
->memcg_params
->is_root_cache
= true;
3200 void memcg_release_cache(struct kmem_cache
*s
)
3202 struct kmem_cache
*root
;
3203 struct mem_cgroup
*memcg
;
3207 * This happens, for instance, when a root cache goes away before we
3210 if (!s
->memcg_params
)
3213 if (s
->memcg_params
->is_root_cache
)
3216 memcg
= s
->memcg_params
->memcg
;
3217 id
= memcg_cache_id(memcg
);
3219 root
= s
->memcg_params
->root_cache
;
3220 root
->memcg_params
->memcg_caches
[id
] = NULL
;
3222 mutex_lock(&memcg
->slab_caches_mutex
);
3223 list_del(&s
->memcg_params
->list
);
3224 mutex_unlock(&memcg
->slab_caches_mutex
);
3226 mem_cgroup_put(memcg
);
3228 kfree(s
->memcg_params
);
3232 * During the creation a new cache, we need to disable our accounting mechanism
3233 * altogether. This is true even if we are not creating, but rather just
3234 * enqueing new caches to be created.
3236 * This is because that process will trigger allocations; some visible, like
3237 * explicit kmallocs to auxiliary data structures, name strings and internal
3238 * cache structures; some well concealed, like INIT_WORK() that can allocate
3239 * objects during debug.
3241 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3242 * to it. This may not be a bounded recursion: since the first cache creation
3243 * failed to complete (waiting on the allocation), we'll just try to create the
3244 * cache again, failing at the same point.
3246 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3247 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3248 * inside the following two functions.
3250 static inline void memcg_stop_kmem_account(void)
3252 VM_BUG_ON(!current
->mm
);
3253 current
->memcg_kmem_skip_account
++;
3256 static inline void memcg_resume_kmem_account(void)
3258 VM_BUG_ON(!current
->mm
);
3259 current
->memcg_kmem_skip_account
--;
3262 static void kmem_cache_destroy_work_func(struct work_struct
*w
)
3264 struct kmem_cache
*cachep
;
3265 struct memcg_cache_params
*p
;
3267 p
= container_of(w
, struct memcg_cache_params
, destroy
);
3269 cachep
= memcg_params_to_cache(p
);
3272 * If we get down to 0 after shrink, we could delete right away.
3273 * However, memcg_release_pages() already puts us back in the workqueue
3274 * in that case. If we proceed deleting, we'll get a dangling
3275 * reference, and removing the object from the workqueue in that case
3276 * is unnecessary complication. We are not a fast path.
3278 * Note that this case is fundamentally different from racing with
3279 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3280 * kmem_cache_shrink, not only we would be reinserting a dead cache
3281 * into the queue, but doing so from inside the worker racing to
3284 * So if we aren't down to zero, we'll just schedule a worker and try
3287 if (atomic_read(&cachep
->memcg_params
->nr_pages
) != 0) {
3288 kmem_cache_shrink(cachep
);
3289 if (atomic_read(&cachep
->memcg_params
->nr_pages
) == 0)
3292 kmem_cache_destroy(cachep
);
3295 void mem_cgroup_destroy_cache(struct kmem_cache
*cachep
)
3297 if (!cachep
->memcg_params
->dead
)
3301 * There are many ways in which we can get here.
3303 * We can get to a memory-pressure situation while the delayed work is
3304 * still pending to run. The vmscan shrinkers can then release all
3305 * cache memory and get us to destruction. If this is the case, we'll
3306 * be executed twice, which is a bug (the second time will execute over
3307 * bogus data). In this case, cancelling the work should be fine.
3309 * But we can also get here from the worker itself, if
3310 * kmem_cache_shrink is enough to shake all the remaining objects and
3311 * get the page count to 0. In this case, we'll deadlock if we try to
3312 * cancel the work (the worker runs with an internal lock held, which
3313 * is the same lock we would hold for cancel_work_sync().)
3315 * Since we can't possibly know who got us here, just refrain from
3316 * running if there is already work pending
3318 if (work_pending(&cachep
->memcg_params
->destroy
))
3321 * We have to defer the actual destroying to a workqueue, because
3322 * we might currently be in a context that cannot sleep.
3324 schedule_work(&cachep
->memcg_params
->destroy
);
3328 * This lock protects updaters, not readers. We want readers to be as fast as
3329 * they can, and they will either see NULL or a valid cache value. Our model
3330 * allow them to see NULL, in which case the root memcg will be selected.
3332 * We need this lock because multiple allocations to the same cache from a non
3333 * will span more than one worker. Only one of them can create the cache.
3335 static DEFINE_MUTEX(memcg_cache_mutex
);
3338 * Called with memcg_cache_mutex held
3340 static struct kmem_cache
*kmem_cache_dup(struct mem_cgroup
*memcg
,
3341 struct kmem_cache
*s
)
3343 struct kmem_cache
*new;
3344 static char *tmp_name
= NULL
;
3346 lockdep_assert_held(&memcg_cache_mutex
);
3349 * kmem_cache_create_memcg duplicates the given name and
3350 * cgroup_name for this name requires RCU context.
3351 * This static temporary buffer is used to prevent from
3352 * pointless shortliving allocation.
3355 tmp_name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3361 snprintf(tmp_name
, PATH_MAX
, "%s(%d:%s)", s
->name
,
3362 memcg_cache_id(memcg
), cgroup_name(memcg
->css
.cgroup
));
3365 new = kmem_cache_create_memcg(memcg
, tmp_name
, s
->object_size
, s
->align
,
3366 (s
->flags
& ~SLAB_PANIC
), s
->ctor
, s
);
3369 new->allocflags
|= __GFP_KMEMCG
;
3374 static struct kmem_cache
*memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
3375 struct kmem_cache
*cachep
)
3377 struct kmem_cache
*new_cachep
;
3380 BUG_ON(!memcg_can_account_kmem(memcg
));
3382 idx
= memcg_cache_id(memcg
);
3384 mutex_lock(&memcg_cache_mutex
);
3385 new_cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3389 new_cachep
= kmem_cache_dup(memcg
, cachep
);
3390 if (new_cachep
== NULL
) {
3391 new_cachep
= cachep
;
3395 mem_cgroup_get(memcg
);
3396 atomic_set(&new_cachep
->memcg_params
->nr_pages
, 0);
3398 cachep
->memcg_params
->memcg_caches
[idx
] = new_cachep
;
3400 * the readers won't lock, make sure everybody sees the updated value,
3401 * so they won't put stuff in the queue again for no reason
3405 mutex_unlock(&memcg_cache_mutex
);
3409 void kmem_cache_destroy_memcg_children(struct kmem_cache
*s
)
3411 struct kmem_cache
*c
;
3414 if (!s
->memcg_params
)
3416 if (!s
->memcg_params
->is_root_cache
)
3420 * If the cache is being destroyed, we trust that there is no one else
3421 * requesting objects from it. Even if there are, the sanity checks in
3422 * kmem_cache_destroy should caught this ill-case.
3424 * Still, we don't want anyone else freeing memcg_caches under our
3425 * noses, which can happen if a new memcg comes to life. As usual,
3426 * we'll take the set_limit_mutex to protect ourselves against this.
3428 mutex_lock(&set_limit_mutex
);
3429 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3430 c
= s
->memcg_params
->memcg_caches
[i
];
3435 * We will now manually delete the caches, so to avoid races
3436 * we need to cancel all pending destruction workers and
3437 * proceed with destruction ourselves.
3439 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3440 * and that could spawn the workers again: it is likely that
3441 * the cache still have active pages until this very moment.
3442 * This would lead us back to mem_cgroup_destroy_cache.
3444 * But that will not execute at all if the "dead" flag is not
3445 * set, so flip it down to guarantee we are in control.
3447 c
->memcg_params
->dead
= false;
3448 cancel_work_sync(&c
->memcg_params
->destroy
);
3449 kmem_cache_destroy(c
);
3451 mutex_unlock(&set_limit_mutex
);
3454 struct create_work
{
3455 struct mem_cgroup
*memcg
;
3456 struct kmem_cache
*cachep
;
3457 struct work_struct work
;
3460 static void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3462 struct kmem_cache
*cachep
;
3463 struct memcg_cache_params
*params
;
3465 if (!memcg_kmem_is_active(memcg
))
3468 mutex_lock(&memcg
->slab_caches_mutex
);
3469 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
) {
3470 cachep
= memcg_params_to_cache(params
);
3471 cachep
->memcg_params
->dead
= true;
3472 schedule_work(&cachep
->memcg_params
->destroy
);
3474 mutex_unlock(&memcg
->slab_caches_mutex
);
3477 static void memcg_create_cache_work_func(struct work_struct
*w
)
3479 struct create_work
*cw
;
3481 cw
= container_of(w
, struct create_work
, work
);
3482 memcg_create_kmem_cache(cw
->memcg
, cw
->cachep
);
3483 /* Drop the reference gotten when we enqueued. */
3484 css_put(&cw
->memcg
->css
);
3489 * Enqueue the creation of a per-memcg kmem_cache.
3491 static void __memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3492 struct kmem_cache
*cachep
)
3494 struct create_work
*cw
;
3496 cw
= kmalloc(sizeof(struct create_work
), GFP_NOWAIT
);
3498 css_put(&memcg
->css
);
3503 cw
->cachep
= cachep
;
3505 INIT_WORK(&cw
->work
, memcg_create_cache_work_func
);
3506 schedule_work(&cw
->work
);
3509 static void memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3510 struct kmem_cache
*cachep
)
3513 * We need to stop accounting when we kmalloc, because if the
3514 * corresponding kmalloc cache is not yet created, the first allocation
3515 * in __memcg_create_cache_enqueue will recurse.
3517 * However, it is better to enclose the whole function. Depending on
3518 * the debugging options enabled, INIT_WORK(), for instance, can
3519 * trigger an allocation. This too, will make us recurse. Because at
3520 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3521 * the safest choice is to do it like this, wrapping the whole function.
3523 memcg_stop_kmem_account();
3524 __memcg_create_cache_enqueue(memcg
, cachep
);
3525 memcg_resume_kmem_account();
3528 * Return the kmem_cache we're supposed to use for a slab allocation.
3529 * We try to use the current memcg's version of the cache.
3531 * If the cache does not exist yet, if we are the first user of it,
3532 * we either create it immediately, if possible, or create it asynchronously
3534 * In the latter case, we will let the current allocation go through with
3535 * the original cache.
3537 * Can't be called in interrupt context or from kernel threads.
3538 * This function needs to be called with rcu_read_lock() held.
3540 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3543 struct mem_cgroup
*memcg
;
3546 VM_BUG_ON(!cachep
->memcg_params
);
3547 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3549 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3553 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3555 if (!memcg_can_account_kmem(memcg
))
3558 idx
= memcg_cache_id(memcg
);
3561 * barrier to mare sure we're always seeing the up to date value. The
3562 * code updating memcg_caches will issue a write barrier to match this.
3564 read_barrier_depends();
3565 if (likely(cachep
->memcg_params
->memcg_caches
[idx
])) {
3566 cachep
= cachep
->memcg_params
->memcg_caches
[idx
];
3570 /* The corresponding put will be done in the workqueue. */
3571 if (!css_tryget(&memcg
->css
))
3576 * If we are in a safe context (can wait, and not in interrupt
3577 * context), we could be be predictable and return right away.
3578 * This would guarantee that the allocation being performed
3579 * already belongs in the new cache.
3581 * However, there are some clashes that can arrive from locking.
3582 * For instance, because we acquire the slab_mutex while doing
3583 * kmem_cache_dup, this means no further allocation could happen
3584 * with the slab_mutex held.
3586 * Also, because cache creation issue get_online_cpus(), this
3587 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3588 * that ends up reversed during cpu hotplug. (cpuset allocates
3589 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3590 * better to defer everything.
3592 memcg_create_cache_enqueue(memcg
, cachep
);
3598 EXPORT_SYMBOL(__memcg_kmem_get_cache
);
3601 * We need to verify if the allocation against current->mm->owner's memcg is
3602 * possible for the given order. But the page is not allocated yet, so we'll
3603 * need a further commit step to do the final arrangements.
3605 * It is possible for the task to switch cgroups in this mean time, so at
3606 * commit time, we can't rely on task conversion any longer. We'll then use
3607 * the handle argument to return to the caller which cgroup we should commit
3608 * against. We could also return the memcg directly and avoid the pointer
3609 * passing, but a boolean return value gives better semantics considering
3610 * the compiled-out case as well.
3612 * Returning true means the allocation is possible.
3615 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3617 struct mem_cgroup
*memcg
;
3621 memcg
= try_get_mem_cgroup_from_mm(current
->mm
);
3624 * very rare case described in mem_cgroup_from_task. Unfortunately there
3625 * isn't much we can do without complicating this too much, and it would
3626 * be gfp-dependent anyway. Just let it go
3628 if (unlikely(!memcg
))
3631 if (!memcg_can_account_kmem(memcg
)) {
3632 css_put(&memcg
->css
);
3636 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3640 css_put(&memcg
->css
);
3644 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3647 struct page_cgroup
*pc
;
3649 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3651 /* The page allocation failed. Revert */
3653 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3657 pc
= lookup_page_cgroup(page
);
3658 lock_page_cgroup(pc
);
3659 pc
->mem_cgroup
= memcg
;
3660 SetPageCgroupUsed(pc
);
3661 unlock_page_cgroup(pc
);
3664 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3666 struct mem_cgroup
*memcg
= NULL
;
3667 struct page_cgroup
*pc
;
3670 pc
= lookup_page_cgroup(page
);
3672 * Fast unlocked return. Theoretically might have changed, have to
3673 * check again after locking.
3675 if (!PageCgroupUsed(pc
))
3678 lock_page_cgroup(pc
);
3679 if (PageCgroupUsed(pc
)) {
3680 memcg
= pc
->mem_cgroup
;
3681 ClearPageCgroupUsed(pc
);
3683 unlock_page_cgroup(pc
);
3686 * We trust that only if there is a memcg associated with the page, it
3687 * is a valid allocation
3692 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3693 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3696 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3699 #endif /* CONFIG_MEMCG_KMEM */
3701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3703 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3705 * Because tail pages are not marked as "used", set it. We're under
3706 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3707 * charge/uncharge will be never happen and move_account() is done under
3708 * compound_lock(), so we don't have to take care of races.
3710 void mem_cgroup_split_huge_fixup(struct page
*head
)
3712 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3713 struct page_cgroup
*pc
;
3714 struct mem_cgroup
*memcg
;
3717 if (mem_cgroup_disabled())
3720 memcg
= head_pc
->mem_cgroup
;
3721 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3723 pc
->mem_cgroup
= memcg
;
3724 smp_wmb();/* see __commit_charge() */
3725 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
3727 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3733 * mem_cgroup_move_account - move account of the page
3735 * @nr_pages: number of regular pages (>1 for huge pages)
3736 * @pc: page_cgroup of the page.
3737 * @from: mem_cgroup which the page is moved from.
3738 * @to: mem_cgroup which the page is moved to. @from != @to.
3740 * The caller must confirm following.
3741 * - page is not on LRU (isolate_page() is useful.)
3742 * - compound_lock is held when nr_pages > 1
3744 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3747 static int mem_cgroup_move_account(struct page
*page
,
3748 unsigned int nr_pages
,
3749 struct page_cgroup
*pc
,
3750 struct mem_cgroup
*from
,
3751 struct mem_cgroup
*to
)
3753 unsigned long flags
;
3755 bool anon
= PageAnon(page
);
3757 VM_BUG_ON(from
== to
);
3758 VM_BUG_ON(PageLRU(page
));
3760 * The page is isolated from LRU. So, collapse function
3761 * will not handle this page. But page splitting can happen.
3762 * Do this check under compound_page_lock(). The caller should
3766 if (nr_pages
> 1 && !PageTransHuge(page
))
3769 lock_page_cgroup(pc
);
3772 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3775 move_lock_mem_cgroup(from
, &flags
);
3777 if (!anon
&& page_mapped(page
)) {
3778 /* Update mapped_file data for mem_cgroup */
3780 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
3781 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
3784 mem_cgroup_charge_statistics(from
, page
, anon
, -nr_pages
);
3786 /* caller should have done css_get */
3787 pc
->mem_cgroup
= to
;
3788 mem_cgroup_charge_statistics(to
, page
, anon
, nr_pages
);
3789 move_unlock_mem_cgroup(from
, &flags
);
3792 unlock_page_cgroup(pc
);
3796 memcg_check_events(to
, page
);
3797 memcg_check_events(from
, page
);
3803 * mem_cgroup_move_parent - moves page to the parent group
3804 * @page: the page to move
3805 * @pc: page_cgroup of the page
3806 * @child: page's cgroup
3808 * move charges to its parent or the root cgroup if the group has no
3809 * parent (aka use_hierarchy==0).
3810 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3811 * mem_cgroup_move_account fails) the failure is always temporary and
3812 * it signals a race with a page removal/uncharge or migration. In the
3813 * first case the page is on the way out and it will vanish from the LRU
3814 * on the next attempt and the call should be retried later.
3815 * Isolation from the LRU fails only if page has been isolated from
3816 * the LRU since we looked at it and that usually means either global
3817 * reclaim or migration going on. The page will either get back to the
3819 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3820 * (!PageCgroupUsed) or moved to a different group. The page will
3821 * disappear in the next attempt.
3823 static int mem_cgroup_move_parent(struct page
*page
,
3824 struct page_cgroup
*pc
,
3825 struct mem_cgroup
*child
)
3827 struct mem_cgroup
*parent
;
3828 unsigned int nr_pages
;
3829 unsigned long uninitialized_var(flags
);
3832 VM_BUG_ON(mem_cgroup_is_root(child
));
3835 if (!get_page_unless_zero(page
))
3837 if (isolate_lru_page(page
))
3840 nr_pages
= hpage_nr_pages(page
);
3842 parent
= parent_mem_cgroup(child
);
3844 * If no parent, move charges to root cgroup.
3847 parent
= root_mem_cgroup
;
3850 VM_BUG_ON(!PageTransHuge(page
));
3851 flags
= compound_lock_irqsave(page
);
3854 ret
= mem_cgroup_move_account(page
, nr_pages
,
3857 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3860 compound_unlock_irqrestore(page
, flags
);
3861 putback_lru_page(page
);
3869 * Charge the memory controller for page usage.
3871 * 0 if the charge was successful
3872 * < 0 if the cgroup is over its limit
3874 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
3875 gfp_t gfp_mask
, enum charge_type ctype
)
3877 struct mem_cgroup
*memcg
= NULL
;
3878 unsigned int nr_pages
= 1;
3882 if (PageTransHuge(page
)) {
3883 nr_pages
<<= compound_order(page
);
3884 VM_BUG_ON(!PageTransHuge(page
));
3886 * Never OOM-kill a process for a huge page. The
3887 * fault handler will fall back to regular pages.
3892 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
3895 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
3899 int mem_cgroup_newpage_charge(struct page
*page
,
3900 struct mm_struct
*mm
, gfp_t gfp_mask
)
3902 if (mem_cgroup_disabled())
3904 VM_BUG_ON(page_mapped(page
));
3905 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
3907 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
3908 MEM_CGROUP_CHARGE_TYPE_ANON
);
3912 * While swap-in, try_charge -> commit or cancel, the page is locked.
3913 * And when try_charge() successfully returns, one refcnt to memcg without
3914 * struct page_cgroup is acquired. This refcnt will be consumed by
3915 * "commit()" or removed by "cancel()"
3917 static int __mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
3920 struct mem_cgroup
**memcgp
)
3922 struct mem_cgroup
*memcg
;
3923 struct page_cgroup
*pc
;
3926 pc
= lookup_page_cgroup(page
);
3928 * Every swap fault against a single page tries to charge the
3929 * page, bail as early as possible. shmem_unuse() encounters
3930 * already charged pages, too. The USED bit is protected by
3931 * the page lock, which serializes swap cache removal, which
3932 * in turn serializes uncharging.
3934 if (PageCgroupUsed(pc
))
3936 if (!do_swap_account
)
3938 memcg
= try_get_mem_cgroup_from_page(page
);
3942 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
3943 css_put(&memcg
->css
);
3948 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
3954 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
, struct page
*page
,
3955 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
3958 if (mem_cgroup_disabled())
3961 * A racing thread's fault, or swapoff, may have already
3962 * updated the pte, and even removed page from swap cache: in
3963 * those cases unuse_pte()'s pte_same() test will fail; but
3964 * there's also a KSM case which does need to charge the page.
3966 if (!PageSwapCache(page
)) {
3969 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, memcgp
, true);
3974 return __mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, memcgp
);
3977 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
3979 if (mem_cgroup_disabled())
3983 __mem_cgroup_cancel_charge(memcg
, 1);
3987 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
3988 enum charge_type ctype
)
3990 if (mem_cgroup_disabled())
3995 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
3997 * Now swap is on-memory. This means this page may be
3998 * counted both as mem and swap....double count.
3999 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4000 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4001 * may call delete_from_swap_cache() before reach here.
4003 if (do_swap_account
&& PageSwapCache(page
)) {
4004 swp_entry_t ent
= {.val
= page_private(page
)};
4005 mem_cgroup_uncharge_swap(ent
);
4009 void mem_cgroup_commit_charge_swapin(struct page
*page
,
4010 struct mem_cgroup
*memcg
)
4012 __mem_cgroup_commit_charge_swapin(page
, memcg
,
4013 MEM_CGROUP_CHARGE_TYPE_ANON
);
4016 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
4019 struct mem_cgroup
*memcg
= NULL
;
4020 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4023 if (mem_cgroup_disabled())
4025 if (PageCompound(page
))
4028 if (!PageSwapCache(page
))
4029 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
4030 else { /* page is swapcache/shmem */
4031 ret
= __mem_cgroup_try_charge_swapin(mm
, page
,
4034 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
4039 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
4040 unsigned int nr_pages
,
4041 const enum charge_type ctype
)
4043 struct memcg_batch_info
*batch
= NULL
;
4044 bool uncharge_memsw
= true;
4046 /* If swapout, usage of swap doesn't decrease */
4047 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
4048 uncharge_memsw
= false;
4050 batch
= ¤t
->memcg_batch
;
4052 * In usual, we do css_get() when we remember memcg pointer.
4053 * But in this case, we keep res->usage until end of a series of
4054 * uncharges. Then, it's ok to ignore memcg's refcnt.
4057 batch
->memcg
= memcg
;
4059 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4060 * In those cases, all pages freed continuously can be expected to be in
4061 * the same cgroup and we have chance to coalesce uncharges.
4062 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4063 * because we want to do uncharge as soon as possible.
4066 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
4067 goto direct_uncharge
;
4070 goto direct_uncharge
;
4073 * In typical case, batch->memcg == mem. This means we can
4074 * merge a series of uncharges to an uncharge of res_counter.
4075 * If not, we uncharge res_counter ony by one.
4077 if (batch
->memcg
!= memcg
)
4078 goto direct_uncharge
;
4079 /* remember freed charge and uncharge it later */
4082 batch
->memsw_nr_pages
++;
4085 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
4087 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
4088 if (unlikely(batch
->memcg
!= memcg
))
4089 memcg_oom_recover(memcg
);
4093 * uncharge if !page_mapped(page)
4095 static struct mem_cgroup
*
4096 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
,
4099 struct mem_cgroup
*memcg
= NULL
;
4100 unsigned int nr_pages
= 1;
4101 struct page_cgroup
*pc
;
4104 if (mem_cgroup_disabled())
4107 if (PageTransHuge(page
)) {
4108 nr_pages
<<= compound_order(page
);
4109 VM_BUG_ON(!PageTransHuge(page
));
4112 * Check if our page_cgroup is valid
4114 pc
= lookup_page_cgroup(page
);
4115 if (unlikely(!PageCgroupUsed(pc
)))
4118 lock_page_cgroup(pc
);
4120 memcg
= pc
->mem_cgroup
;
4122 if (!PageCgroupUsed(pc
))
4125 anon
= PageAnon(page
);
4128 case MEM_CGROUP_CHARGE_TYPE_ANON
:
4130 * Generally PageAnon tells if it's the anon statistics to be
4131 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4132 * used before page reached the stage of being marked PageAnon.
4136 case MEM_CGROUP_CHARGE_TYPE_DROP
:
4137 /* See mem_cgroup_prepare_migration() */
4138 if (page_mapped(page
))
4141 * Pages under migration may not be uncharged. But
4142 * end_migration() /must/ be the one uncharging the
4143 * unused post-migration page and so it has to call
4144 * here with the migration bit still set. See the
4145 * res_counter handling below.
4147 if (!end_migration
&& PageCgroupMigration(pc
))
4150 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
4151 if (!PageAnon(page
)) { /* Shared memory */
4152 if (page
->mapping
&& !page_is_file_cache(page
))
4154 } else if (page_mapped(page
)) /* Anon */
4161 mem_cgroup_charge_statistics(memcg
, page
, anon
, -nr_pages
);
4163 ClearPageCgroupUsed(pc
);
4165 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4166 * freed from LRU. This is safe because uncharged page is expected not
4167 * to be reused (freed soon). Exception is SwapCache, it's handled by
4168 * special functions.
4171 unlock_page_cgroup(pc
);
4173 * even after unlock, we have memcg->res.usage here and this memcg
4174 * will never be freed.
4176 memcg_check_events(memcg
, page
);
4177 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
4178 mem_cgroup_swap_statistics(memcg
, true);
4179 mem_cgroup_get(memcg
);
4182 * Migration does not charge the res_counter for the
4183 * replacement page, so leave it alone when phasing out the
4184 * page that is unused after the migration.
4186 if (!end_migration
&& !mem_cgroup_is_root(memcg
))
4187 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
4192 unlock_page_cgroup(pc
);
4196 void mem_cgroup_uncharge_page(struct page
*page
)
4199 if (page_mapped(page
))
4201 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
4203 * If the page is in swap cache, uncharge should be deferred
4204 * to the swap path, which also properly accounts swap usage
4205 * and handles memcg lifetime.
4207 * Note that this check is not stable and reclaim may add the
4208 * page to swap cache at any time after this. However, if the
4209 * page is not in swap cache by the time page->mapcount hits
4210 * 0, there won't be any page table references to the swap
4211 * slot, and reclaim will free it and not actually write the
4214 if (PageSwapCache(page
))
4216 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
, false);
4219 void mem_cgroup_uncharge_cache_page(struct page
*page
)
4221 VM_BUG_ON(page_mapped(page
));
4222 VM_BUG_ON(page
->mapping
);
4223 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
, false);
4227 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4228 * In that cases, pages are freed continuously and we can expect pages
4229 * are in the same memcg. All these calls itself limits the number of
4230 * pages freed at once, then uncharge_start/end() is called properly.
4231 * This may be called prural(2) times in a context,
4234 void mem_cgroup_uncharge_start(void)
4236 current
->memcg_batch
.do_batch
++;
4237 /* We can do nest. */
4238 if (current
->memcg_batch
.do_batch
== 1) {
4239 current
->memcg_batch
.memcg
= NULL
;
4240 current
->memcg_batch
.nr_pages
= 0;
4241 current
->memcg_batch
.memsw_nr_pages
= 0;
4245 void mem_cgroup_uncharge_end(void)
4247 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
4249 if (!batch
->do_batch
)
4253 if (batch
->do_batch
) /* If stacked, do nothing. */
4259 * This "batch->memcg" is valid without any css_get/put etc...
4260 * bacause we hide charges behind us.
4262 if (batch
->nr_pages
)
4263 res_counter_uncharge(&batch
->memcg
->res
,
4264 batch
->nr_pages
* PAGE_SIZE
);
4265 if (batch
->memsw_nr_pages
)
4266 res_counter_uncharge(&batch
->memcg
->memsw
,
4267 batch
->memsw_nr_pages
* PAGE_SIZE
);
4268 memcg_oom_recover(batch
->memcg
);
4269 /* forget this pointer (for sanity check) */
4270 batch
->memcg
= NULL
;
4275 * called after __delete_from_swap_cache() and drop "page" account.
4276 * memcg information is recorded to swap_cgroup of "ent"
4279 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
4281 struct mem_cgroup
*memcg
;
4282 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
4284 if (!swapout
) /* this was a swap cache but the swap is unused ! */
4285 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
4287 memcg
= __mem_cgroup_uncharge_common(page
, ctype
, false);
4290 * record memcg information, if swapout && memcg != NULL,
4291 * mem_cgroup_get() was called in uncharge().
4293 if (do_swap_account
&& swapout
&& memcg
)
4294 swap_cgroup_record(ent
, css_id(&memcg
->css
));
4298 #ifdef CONFIG_MEMCG_SWAP
4300 * called from swap_entry_free(). remove record in swap_cgroup and
4301 * uncharge "memsw" account.
4303 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
4305 struct mem_cgroup
*memcg
;
4308 if (!do_swap_account
)
4311 id
= swap_cgroup_record(ent
, 0);
4313 memcg
= mem_cgroup_lookup(id
);
4316 * We uncharge this because swap is freed.
4317 * This memcg can be obsolete one. We avoid calling css_tryget
4319 if (!mem_cgroup_is_root(memcg
))
4320 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
4321 mem_cgroup_swap_statistics(memcg
, false);
4322 mem_cgroup_put(memcg
);
4328 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4329 * @entry: swap entry to be moved
4330 * @from: mem_cgroup which the entry is moved from
4331 * @to: mem_cgroup which the entry is moved to
4333 * It succeeds only when the swap_cgroup's record for this entry is the same
4334 * as the mem_cgroup's id of @from.
4336 * Returns 0 on success, -EINVAL on failure.
4338 * The caller must have charged to @to, IOW, called res_counter_charge() about
4339 * both res and memsw, and called css_get().
4341 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
4342 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4344 unsigned short old_id
, new_id
;
4346 old_id
= css_id(&from
->css
);
4347 new_id
= css_id(&to
->css
);
4349 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
4350 mem_cgroup_swap_statistics(from
, false);
4351 mem_cgroup_swap_statistics(to
, true);
4353 * This function is only called from task migration context now.
4354 * It postpones res_counter and refcount handling till the end
4355 * of task migration(mem_cgroup_clear_mc()) for performance
4356 * improvement. But we cannot postpone mem_cgroup_get(to)
4357 * because if the process that has been moved to @to does
4358 * swap-in, the refcount of @to might be decreased to 0.
4366 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
4367 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4374 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4377 void mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
,
4378 struct mem_cgroup
**memcgp
)
4380 struct mem_cgroup
*memcg
= NULL
;
4381 unsigned int nr_pages
= 1;
4382 struct page_cgroup
*pc
;
4383 enum charge_type ctype
;
4387 if (mem_cgroup_disabled())
4390 if (PageTransHuge(page
))
4391 nr_pages
<<= compound_order(page
);
4393 pc
= lookup_page_cgroup(page
);
4394 lock_page_cgroup(pc
);
4395 if (PageCgroupUsed(pc
)) {
4396 memcg
= pc
->mem_cgroup
;
4397 css_get(&memcg
->css
);
4399 * At migrating an anonymous page, its mapcount goes down
4400 * to 0 and uncharge() will be called. But, even if it's fully
4401 * unmapped, migration may fail and this page has to be
4402 * charged again. We set MIGRATION flag here and delay uncharge
4403 * until end_migration() is called
4405 * Corner Case Thinking
4407 * When the old page was mapped as Anon and it's unmap-and-freed
4408 * while migration was ongoing.
4409 * If unmap finds the old page, uncharge() of it will be delayed
4410 * until end_migration(). If unmap finds a new page, it's
4411 * uncharged when it make mapcount to be 1->0. If unmap code
4412 * finds swap_migration_entry, the new page will not be mapped
4413 * and end_migration() will find it(mapcount==0).
4416 * When the old page was mapped but migraion fails, the kernel
4417 * remaps it. A charge for it is kept by MIGRATION flag even
4418 * if mapcount goes down to 0. We can do remap successfully
4419 * without charging it again.
4422 * The "old" page is under lock_page() until the end of
4423 * migration, so, the old page itself will not be swapped-out.
4424 * If the new page is swapped out before end_migraton, our
4425 * hook to usual swap-out path will catch the event.
4428 SetPageCgroupMigration(pc
);
4430 unlock_page_cgroup(pc
);
4432 * If the page is not charged at this point,
4440 * We charge new page before it's used/mapped. So, even if unlock_page()
4441 * is called before end_migration, we can catch all events on this new
4442 * page. In the case new page is migrated but not remapped, new page's
4443 * mapcount will be finally 0 and we call uncharge in end_migration().
4446 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
4448 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4450 * The page is committed to the memcg, but it's not actually
4451 * charged to the res_counter since we plan on replacing the
4452 * old one and only one page is going to be left afterwards.
4454 __mem_cgroup_commit_charge(memcg
, newpage
, nr_pages
, ctype
, false);
4457 /* remove redundant charge if migration failed*/
4458 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
4459 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
4461 struct page
*used
, *unused
;
4462 struct page_cgroup
*pc
;
4468 if (!migration_ok
) {
4475 anon
= PageAnon(used
);
4476 __mem_cgroup_uncharge_common(unused
,
4477 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
4478 : MEM_CGROUP_CHARGE_TYPE_CACHE
,
4480 css_put(&memcg
->css
);
4482 * We disallowed uncharge of pages under migration because mapcount
4483 * of the page goes down to zero, temporarly.
4484 * Clear the flag and check the page should be charged.
4486 pc
= lookup_page_cgroup(oldpage
);
4487 lock_page_cgroup(pc
);
4488 ClearPageCgroupMigration(pc
);
4489 unlock_page_cgroup(pc
);
4492 * If a page is a file cache, radix-tree replacement is very atomic
4493 * and we can skip this check. When it was an Anon page, its mapcount
4494 * goes down to 0. But because we added MIGRATION flage, it's not
4495 * uncharged yet. There are several case but page->mapcount check
4496 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4497 * check. (see prepare_charge() also)
4500 mem_cgroup_uncharge_page(used
);
4504 * At replace page cache, newpage is not under any memcg but it's on
4505 * LRU. So, this function doesn't touch res_counter but handles LRU
4506 * in correct way. Both pages are locked so we cannot race with uncharge.
4508 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
4509 struct page
*newpage
)
4511 struct mem_cgroup
*memcg
= NULL
;
4512 struct page_cgroup
*pc
;
4513 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4515 if (mem_cgroup_disabled())
4518 pc
= lookup_page_cgroup(oldpage
);
4519 /* fix accounting on old pages */
4520 lock_page_cgroup(pc
);
4521 if (PageCgroupUsed(pc
)) {
4522 memcg
= pc
->mem_cgroup
;
4523 mem_cgroup_charge_statistics(memcg
, oldpage
, false, -1);
4524 ClearPageCgroupUsed(pc
);
4526 unlock_page_cgroup(pc
);
4529 * When called from shmem_replace_page(), in some cases the
4530 * oldpage has already been charged, and in some cases not.
4535 * Even if newpage->mapping was NULL before starting replacement,
4536 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4537 * LRU while we overwrite pc->mem_cgroup.
4539 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
4542 #ifdef CONFIG_DEBUG_VM
4543 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
4545 struct page_cgroup
*pc
;
4547 pc
= lookup_page_cgroup(page
);
4549 * Can be NULL while feeding pages into the page allocator for
4550 * the first time, i.e. during boot or memory hotplug;
4551 * or when mem_cgroup_disabled().
4553 if (likely(pc
) && PageCgroupUsed(pc
))
4558 bool mem_cgroup_bad_page_check(struct page
*page
)
4560 if (mem_cgroup_disabled())
4563 return lookup_page_cgroup_used(page
) != NULL
;
4566 void mem_cgroup_print_bad_page(struct page
*page
)
4568 struct page_cgroup
*pc
;
4570 pc
= lookup_page_cgroup_used(page
);
4572 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4573 pc
, pc
->flags
, pc
->mem_cgroup
);
4578 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
4579 unsigned long long val
)
4582 u64 memswlimit
, memlimit
;
4584 int children
= mem_cgroup_count_children(memcg
);
4585 u64 curusage
, oldusage
;
4589 * For keeping hierarchical_reclaim simple, how long we should retry
4590 * is depends on callers. We set our retry-count to be function
4591 * of # of children which we should visit in this loop.
4593 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
4595 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4598 while (retry_count
) {
4599 if (signal_pending(current
)) {
4604 * Rather than hide all in some function, I do this in
4605 * open coded manner. You see what this really does.
4606 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4608 mutex_lock(&set_limit_mutex
);
4609 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4610 if (memswlimit
< val
) {
4612 mutex_unlock(&set_limit_mutex
);
4616 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4620 ret
= res_counter_set_limit(&memcg
->res
, val
);
4622 if (memswlimit
== val
)
4623 memcg
->memsw_is_minimum
= true;
4625 memcg
->memsw_is_minimum
= false;
4627 mutex_unlock(&set_limit_mutex
);
4632 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4633 MEM_CGROUP_RECLAIM_SHRINK
);
4634 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4635 /* Usage is reduced ? */
4636 if (curusage
>= oldusage
)
4639 oldusage
= curusage
;
4641 if (!ret
&& enlarge
)
4642 memcg_oom_recover(memcg
);
4647 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
4648 unsigned long long val
)
4651 u64 memlimit
, memswlimit
, oldusage
, curusage
;
4652 int children
= mem_cgroup_count_children(memcg
);
4656 /* see mem_cgroup_resize_res_limit */
4657 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
4658 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4659 while (retry_count
) {
4660 if (signal_pending(current
)) {
4665 * Rather than hide all in some function, I do this in
4666 * open coded manner. You see what this really does.
4667 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4669 mutex_lock(&set_limit_mutex
);
4670 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4671 if (memlimit
> val
) {
4673 mutex_unlock(&set_limit_mutex
);
4676 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4677 if (memswlimit
< val
)
4679 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
4681 if (memlimit
== val
)
4682 memcg
->memsw_is_minimum
= true;
4684 memcg
->memsw_is_minimum
= false;
4686 mutex_unlock(&set_limit_mutex
);
4691 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4692 MEM_CGROUP_RECLAIM_NOSWAP
|
4693 MEM_CGROUP_RECLAIM_SHRINK
);
4694 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4695 /* Usage is reduced ? */
4696 if (curusage
>= oldusage
)
4699 oldusage
= curusage
;
4701 if (!ret
&& enlarge
)
4702 memcg_oom_recover(memcg
);
4706 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
4708 unsigned long *total_scanned
)
4710 unsigned long nr_reclaimed
= 0;
4711 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
4712 unsigned long reclaimed
;
4714 struct mem_cgroup_tree_per_zone
*mctz
;
4715 unsigned long long excess
;
4716 unsigned long nr_scanned
;
4721 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
4723 * This loop can run a while, specially if mem_cgroup's continuously
4724 * keep exceeding their soft limit and putting the system under
4731 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
4736 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
4737 gfp_mask
, &nr_scanned
);
4738 nr_reclaimed
+= reclaimed
;
4739 *total_scanned
+= nr_scanned
;
4740 spin_lock(&mctz
->lock
);
4743 * If we failed to reclaim anything from this memory cgroup
4744 * it is time to move on to the next cgroup
4750 * Loop until we find yet another one.
4752 * By the time we get the soft_limit lock
4753 * again, someone might have aded the
4754 * group back on the RB tree. Iterate to
4755 * make sure we get a different mem.
4756 * mem_cgroup_largest_soft_limit_node returns
4757 * NULL if no other cgroup is present on
4761 __mem_cgroup_largest_soft_limit_node(mctz
);
4763 css_put(&next_mz
->memcg
->css
);
4764 else /* next_mz == NULL or other memcg */
4768 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
4769 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
4771 * One school of thought says that we should not add
4772 * back the node to the tree if reclaim returns 0.
4773 * But our reclaim could return 0, simply because due
4774 * to priority we are exposing a smaller subset of
4775 * memory to reclaim from. Consider this as a longer
4778 /* If excess == 0, no tree ops */
4779 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
4780 spin_unlock(&mctz
->lock
);
4781 css_put(&mz
->memcg
->css
);
4784 * Could not reclaim anything and there are no more
4785 * mem cgroups to try or we seem to be looping without
4786 * reclaiming anything.
4788 if (!nr_reclaimed
&&
4790 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
4792 } while (!nr_reclaimed
);
4794 css_put(&next_mz
->memcg
->css
);
4795 return nr_reclaimed
;
4799 * mem_cgroup_force_empty_list - clears LRU of a group
4800 * @memcg: group to clear
4803 * @lru: lru to to clear
4805 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4806 * reclaim the pages page themselves - pages are moved to the parent (or root)
4809 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
4810 int node
, int zid
, enum lru_list lru
)
4812 struct lruvec
*lruvec
;
4813 unsigned long flags
;
4814 struct list_head
*list
;
4818 zone
= &NODE_DATA(node
)->node_zones
[zid
];
4819 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
4820 list
= &lruvec
->lists
[lru
];
4824 struct page_cgroup
*pc
;
4827 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4828 if (list_empty(list
)) {
4829 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4832 page
= list_entry(list
->prev
, struct page
, lru
);
4834 list_move(&page
->lru
, list
);
4836 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4839 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4841 pc
= lookup_page_cgroup(page
);
4843 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
4844 /* found lock contention or "pc" is obsolete. */
4849 } while (!list_empty(list
));
4853 * make mem_cgroup's charge to be 0 if there is no task by moving
4854 * all the charges and pages to the parent.
4855 * This enables deleting this mem_cgroup.
4857 * Caller is responsible for holding css reference on the memcg.
4859 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
4865 /* This is for making all *used* pages to be on LRU. */
4866 lru_add_drain_all();
4867 drain_all_stock_sync(memcg
);
4868 mem_cgroup_start_move(memcg
);
4869 for_each_node_state(node
, N_MEMORY
) {
4870 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4873 mem_cgroup_force_empty_list(memcg
,
4878 mem_cgroup_end_move(memcg
);
4879 memcg_oom_recover(memcg
);
4883 * Kernel memory may not necessarily be trackable to a specific
4884 * process. So they are not migrated, and therefore we can't
4885 * expect their value to drop to 0 here.
4886 * Having res filled up with kmem only is enough.
4888 * This is a safety check because mem_cgroup_force_empty_list
4889 * could have raced with mem_cgroup_replace_page_cache callers
4890 * so the lru seemed empty but the page could have been added
4891 * right after the check. RES_USAGE should be safe as we always
4892 * charge before adding to the LRU.
4894 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
4895 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
4896 } while (usage
> 0);
4900 * This mainly exists for tests during the setting of set of use_hierarchy.
4901 * Since this is the very setting we are changing, the current hierarchy value
4904 static inline bool __memcg_has_children(struct mem_cgroup
*memcg
)
4908 /* bounce at first found */
4909 cgroup_for_each_child(pos
, memcg
->css
.cgroup
)
4915 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4916 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4917 * from mem_cgroup_count_children(), in the sense that we don't really care how
4918 * many children we have; we only need to know if we have any. It also counts
4919 * any memcg without hierarchy as infertile.
4921 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
4923 return memcg
->use_hierarchy
&& __memcg_has_children(memcg
);
4927 * Reclaims as many pages from the given memcg as possible and moves
4928 * the rest to the parent.
4930 * Caller is responsible for holding css reference for memcg.
4932 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
4934 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
4935 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
4937 /* returns EBUSY if there is a task or if we come here twice. */
4938 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
4941 /* we call try-to-free pages for make this cgroup empty */
4942 lru_add_drain_all();
4943 /* try to free all pages in this cgroup */
4944 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
4947 if (signal_pending(current
))
4950 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
4954 /* maybe some writeback is necessary */
4955 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4960 mem_cgroup_reparent_charges(memcg
);
4965 static int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
4967 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4970 if (mem_cgroup_is_root(memcg
))
4972 css_get(&memcg
->css
);
4973 ret
= mem_cgroup_force_empty(memcg
);
4974 css_put(&memcg
->css
);
4980 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
4982 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
4985 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
4989 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4990 struct cgroup
*parent
= cont
->parent
;
4991 struct mem_cgroup
*parent_memcg
= NULL
;
4994 parent_memcg
= mem_cgroup_from_cont(parent
);
4996 mutex_lock(&memcg_create_mutex
);
4998 if (memcg
->use_hierarchy
== val
)
5002 * If parent's use_hierarchy is set, we can't make any modifications
5003 * in the child subtrees. If it is unset, then the change can
5004 * occur, provided the current cgroup has no children.
5006 * For the root cgroup, parent_mem is NULL, we allow value to be
5007 * set if there are no children.
5009 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
5010 (val
== 1 || val
== 0)) {
5011 if (!__memcg_has_children(memcg
))
5012 memcg
->use_hierarchy
= val
;
5019 mutex_unlock(&memcg_create_mutex
);
5025 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
5026 enum mem_cgroup_stat_index idx
)
5028 struct mem_cgroup
*iter
;
5031 /* Per-cpu values can be negative, use a signed accumulator */
5032 for_each_mem_cgroup_tree(iter
, memcg
)
5033 val
+= mem_cgroup_read_stat(iter
, idx
);
5035 if (val
< 0) /* race ? */
5040 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
5044 if (!mem_cgroup_is_root(memcg
)) {
5046 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
5048 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
5052 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5053 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5055 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
5056 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
5059 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
5061 return val
<< PAGE_SHIFT
;
5064 static ssize_t
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
,
5065 struct file
*file
, char __user
*buf
,
5066 size_t nbytes
, loff_t
*ppos
)
5068 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5074 type
= MEMFILE_TYPE(cft
->private);
5075 name
= MEMFILE_ATTR(cft
->private);
5079 if (name
== RES_USAGE
)
5080 val
= mem_cgroup_usage(memcg
, false);
5082 val
= res_counter_read_u64(&memcg
->res
, name
);
5085 if (name
== RES_USAGE
)
5086 val
= mem_cgroup_usage(memcg
, true);
5088 val
= res_counter_read_u64(&memcg
->memsw
, name
);
5091 val
= res_counter_read_u64(&memcg
->kmem
, name
);
5097 len
= scnprintf(str
, sizeof(str
), "%llu\n", (unsigned long long)val
);
5098 return simple_read_from_buffer(buf
, nbytes
, ppos
, str
, len
);
5101 static int memcg_update_kmem_limit(struct cgroup
*cont
, u64 val
)
5104 #ifdef CONFIG_MEMCG_KMEM
5105 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5107 * For simplicity, we won't allow this to be disabled. It also can't
5108 * be changed if the cgroup has children already, or if tasks had
5111 * If tasks join before we set the limit, a person looking at
5112 * kmem.usage_in_bytes will have no way to determine when it took
5113 * place, which makes the value quite meaningless.
5115 * After it first became limited, changes in the value of the limit are
5116 * of course permitted.
5118 mutex_lock(&memcg_create_mutex
);
5119 mutex_lock(&set_limit_mutex
);
5120 if (!memcg
->kmem_account_flags
&& val
!= RESOURCE_MAX
) {
5121 if (cgroup_task_count(cont
) || memcg_has_children(memcg
)) {
5125 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5128 ret
= memcg_update_cache_sizes(memcg
);
5130 res_counter_set_limit(&memcg
->kmem
, RESOURCE_MAX
);
5133 static_key_slow_inc(&memcg_kmem_enabled_key
);
5135 * setting the active bit after the inc will guarantee no one
5136 * starts accounting before all call sites are patched
5138 memcg_kmem_set_active(memcg
);
5141 * kmem charges can outlive the cgroup. In the case of slab
5142 * pages, for instance, a page contain objects from various
5143 * processes, so it is unfeasible to migrate them away. We
5144 * need to reference count the memcg because of that.
5146 mem_cgroup_get(memcg
);
5148 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5150 mutex_unlock(&set_limit_mutex
);
5151 mutex_unlock(&memcg_create_mutex
);
5156 #ifdef CONFIG_MEMCG_KMEM
5157 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
5160 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
5164 memcg
->kmem_account_flags
= parent
->kmem_account_flags
;
5166 * When that happen, we need to disable the static branch only on those
5167 * memcgs that enabled it. To achieve this, we would be forced to
5168 * complicate the code by keeping track of which memcgs were the ones
5169 * that actually enabled limits, and which ones got it from its
5172 * It is a lot simpler just to do static_key_slow_inc() on every child
5173 * that is accounted.
5175 if (!memcg_kmem_is_active(memcg
))
5179 * destroy(), called if we fail, will issue static_key_slow_inc() and
5180 * mem_cgroup_put() if kmem is enabled. We have to either call them
5181 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5182 * this more consistent, since it always leads to the same destroy path
5184 mem_cgroup_get(memcg
);
5185 static_key_slow_inc(&memcg_kmem_enabled_key
);
5187 mutex_lock(&set_limit_mutex
);
5188 ret
= memcg_update_cache_sizes(memcg
);
5189 mutex_unlock(&set_limit_mutex
);
5193 #endif /* CONFIG_MEMCG_KMEM */
5196 * The user of this function is...
5199 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
5202 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5205 unsigned long long val
;
5208 type
= MEMFILE_TYPE(cft
->private);
5209 name
= MEMFILE_ATTR(cft
->private);
5213 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
5217 /* This function does all necessary parse...reuse it */
5218 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5222 ret
= mem_cgroup_resize_limit(memcg
, val
);
5223 else if (type
== _MEMSWAP
)
5224 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
5225 else if (type
== _KMEM
)
5226 ret
= memcg_update_kmem_limit(cont
, val
);
5230 case RES_SOFT_LIMIT
:
5231 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5235 * For memsw, soft limits are hard to implement in terms
5236 * of semantics, for now, we support soft limits for
5237 * control without swap
5240 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
5245 ret
= -EINVAL
; /* should be BUG() ? */
5251 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
5252 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
5254 struct cgroup
*cgroup
;
5255 unsigned long long min_limit
, min_memsw_limit
, tmp
;
5257 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5258 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5259 cgroup
= memcg
->css
.cgroup
;
5260 if (!memcg
->use_hierarchy
)
5263 while (cgroup
->parent
) {
5264 cgroup
= cgroup
->parent
;
5265 memcg
= mem_cgroup_from_cont(cgroup
);
5266 if (!memcg
->use_hierarchy
)
5268 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5269 min_limit
= min(min_limit
, tmp
);
5270 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5271 min_memsw_limit
= min(min_memsw_limit
, tmp
);
5274 *mem_limit
= min_limit
;
5275 *memsw_limit
= min_memsw_limit
;
5278 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
5280 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5284 type
= MEMFILE_TYPE(event
);
5285 name
= MEMFILE_ATTR(event
);
5290 res_counter_reset_max(&memcg
->res
);
5291 else if (type
== _MEMSWAP
)
5292 res_counter_reset_max(&memcg
->memsw
);
5293 else if (type
== _KMEM
)
5294 res_counter_reset_max(&memcg
->kmem
);
5300 res_counter_reset_failcnt(&memcg
->res
);
5301 else if (type
== _MEMSWAP
)
5302 res_counter_reset_failcnt(&memcg
->memsw
);
5303 else if (type
== _KMEM
)
5304 res_counter_reset_failcnt(&memcg
->kmem
);
5313 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
5316 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
5320 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
5321 struct cftype
*cft
, u64 val
)
5323 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5325 if (val
>= (1 << NR_MOVE_TYPE
))
5329 * No kind of locking is needed in here, because ->can_attach() will
5330 * check this value once in the beginning of the process, and then carry
5331 * on with stale data. This means that changes to this value will only
5332 * affect task migrations starting after the change.
5334 memcg
->move_charge_at_immigrate
= val
;
5338 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
5339 struct cftype
*cft
, u64 val
)
5346 static int memcg_numa_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
5350 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
5351 unsigned long node_nr
;
5352 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5354 total_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL
);
5355 seq_printf(m
, "total=%lu", total_nr
);
5356 for_each_node_state(nid
, N_MEMORY
) {
5357 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL
);
5358 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5362 file_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_FILE
);
5363 seq_printf(m
, "file=%lu", file_nr
);
5364 for_each_node_state(nid
, N_MEMORY
) {
5365 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5367 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5371 anon_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_ANON
);
5372 seq_printf(m
, "anon=%lu", anon_nr
);
5373 for_each_node_state(nid
, N_MEMORY
) {
5374 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5376 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5380 unevictable_nr
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
5381 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
5382 for_each_node_state(nid
, N_MEMORY
) {
5383 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5384 BIT(LRU_UNEVICTABLE
));
5385 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
5390 #endif /* CONFIG_NUMA */
5392 static inline void mem_cgroup_lru_names_not_uptodate(void)
5394 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
5397 static int memcg_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
5400 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
5401 struct mem_cgroup
*mi
;
5404 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5405 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5407 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
5408 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
5411 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
5412 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
5413 mem_cgroup_read_events(memcg
, i
));
5415 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5416 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
5417 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
5419 /* Hierarchical information */
5421 unsigned long long limit
, memsw_limit
;
5422 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
5423 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
5424 if (do_swap_account
)
5425 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
5429 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5432 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5434 for_each_mem_cgroup_tree(mi
, memcg
)
5435 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
5436 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
5439 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
5440 unsigned long long val
= 0;
5442 for_each_mem_cgroup_tree(mi
, memcg
)
5443 val
+= mem_cgroup_read_events(mi
, i
);
5444 seq_printf(m
, "total_%s %llu\n",
5445 mem_cgroup_events_names
[i
], val
);
5448 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5449 unsigned long long val
= 0;
5451 for_each_mem_cgroup_tree(mi
, memcg
)
5452 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
5453 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
5456 #ifdef CONFIG_DEBUG_VM
5459 struct mem_cgroup_per_zone
*mz
;
5460 struct zone_reclaim_stat
*rstat
;
5461 unsigned long recent_rotated
[2] = {0, 0};
5462 unsigned long recent_scanned
[2] = {0, 0};
5464 for_each_online_node(nid
)
5465 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
5466 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
5467 rstat
= &mz
->lruvec
.reclaim_stat
;
5469 recent_rotated
[0] += rstat
->recent_rotated
[0];
5470 recent_rotated
[1] += rstat
->recent_rotated
[1];
5471 recent_scanned
[0] += rstat
->recent_scanned
[0];
5472 recent_scanned
[1] += rstat
->recent_scanned
[1];
5474 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
5475 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
5476 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
5477 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
5484 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
5486 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5488 return mem_cgroup_swappiness(memcg
);
5491 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
5494 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5495 struct mem_cgroup
*parent
;
5500 if (cgrp
->parent
== NULL
)
5503 parent
= mem_cgroup_from_cont(cgrp
->parent
);
5505 mutex_lock(&memcg_create_mutex
);
5507 /* If under hierarchy, only empty-root can set this value */
5508 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5509 mutex_unlock(&memcg_create_mutex
);
5513 memcg
->swappiness
= val
;
5515 mutex_unlock(&memcg_create_mutex
);
5520 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
5522 struct mem_cgroup_threshold_ary
*t
;
5528 t
= rcu_dereference(memcg
->thresholds
.primary
);
5530 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
5535 usage
= mem_cgroup_usage(memcg
, swap
);
5538 * current_threshold points to threshold just below or equal to usage.
5539 * If it's not true, a threshold was crossed after last
5540 * call of __mem_cgroup_threshold().
5542 i
= t
->current_threshold
;
5545 * Iterate backward over array of thresholds starting from
5546 * current_threshold and check if a threshold is crossed.
5547 * If none of thresholds below usage is crossed, we read
5548 * only one element of the array here.
5550 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
5551 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5553 /* i = current_threshold + 1 */
5557 * Iterate forward over array of thresholds starting from
5558 * current_threshold+1 and check if a threshold is crossed.
5559 * If none of thresholds above usage is crossed, we read
5560 * only one element of the array here.
5562 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
5563 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5565 /* Update current_threshold */
5566 t
->current_threshold
= i
- 1;
5571 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
5574 __mem_cgroup_threshold(memcg
, false);
5575 if (do_swap_account
)
5576 __mem_cgroup_threshold(memcg
, true);
5578 memcg
= parent_mem_cgroup(memcg
);
5582 static int compare_thresholds(const void *a
, const void *b
)
5584 const struct mem_cgroup_threshold
*_a
= a
;
5585 const struct mem_cgroup_threshold
*_b
= b
;
5587 if (_a
->threshold
> _b
->threshold
)
5590 if (_a
->threshold
< _b
->threshold
)
5596 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
5598 struct mem_cgroup_eventfd_list
*ev
;
5600 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
5601 eventfd_signal(ev
->eventfd
, 1);
5605 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
5607 struct mem_cgroup
*iter
;
5609 for_each_mem_cgroup_tree(iter
, memcg
)
5610 mem_cgroup_oom_notify_cb(iter
);
5613 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
5614 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5616 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5617 struct mem_cgroup_thresholds
*thresholds
;
5618 struct mem_cgroup_threshold_ary
*new;
5619 enum res_type type
= MEMFILE_TYPE(cft
->private);
5620 u64 threshold
, usage
;
5623 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
5627 mutex_lock(&memcg
->thresholds_lock
);
5630 thresholds
= &memcg
->thresholds
;
5631 else if (type
== _MEMSWAP
)
5632 thresholds
= &memcg
->memsw_thresholds
;
5636 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5638 /* Check if a threshold crossed before adding a new one */
5639 if (thresholds
->primary
)
5640 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5642 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
5644 /* Allocate memory for new array of thresholds */
5645 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
5653 /* Copy thresholds (if any) to new array */
5654 if (thresholds
->primary
) {
5655 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
5656 sizeof(struct mem_cgroup_threshold
));
5659 /* Add new threshold */
5660 new->entries
[size
- 1].eventfd
= eventfd
;
5661 new->entries
[size
- 1].threshold
= threshold
;
5663 /* Sort thresholds. Registering of new threshold isn't time-critical */
5664 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
5665 compare_thresholds
, NULL
);
5667 /* Find current threshold */
5668 new->current_threshold
= -1;
5669 for (i
= 0; i
< size
; i
++) {
5670 if (new->entries
[i
].threshold
<= usage
) {
5672 * new->current_threshold will not be used until
5673 * rcu_assign_pointer(), so it's safe to increment
5676 ++new->current_threshold
;
5681 /* Free old spare buffer and save old primary buffer as spare */
5682 kfree(thresholds
->spare
);
5683 thresholds
->spare
= thresholds
->primary
;
5685 rcu_assign_pointer(thresholds
->primary
, new);
5687 /* To be sure that nobody uses thresholds */
5691 mutex_unlock(&memcg
->thresholds_lock
);
5696 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
5697 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5699 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5700 struct mem_cgroup_thresholds
*thresholds
;
5701 struct mem_cgroup_threshold_ary
*new;
5702 enum res_type type
= MEMFILE_TYPE(cft
->private);
5706 mutex_lock(&memcg
->thresholds_lock
);
5708 thresholds
= &memcg
->thresholds
;
5709 else if (type
== _MEMSWAP
)
5710 thresholds
= &memcg
->memsw_thresholds
;
5714 if (!thresholds
->primary
)
5717 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5719 /* Check if a threshold crossed before removing */
5720 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5722 /* Calculate new number of threshold */
5724 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
5725 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
5729 new = thresholds
->spare
;
5731 /* Set thresholds array to NULL if we don't have thresholds */
5740 /* Copy thresholds and find current threshold */
5741 new->current_threshold
= -1;
5742 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
5743 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
5746 new->entries
[j
] = thresholds
->primary
->entries
[i
];
5747 if (new->entries
[j
].threshold
<= usage
) {
5749 * new->current_threshold will not be used
5750 * until rcu_assign_pointer(), so it's safe to increment
5753 ++new->current_threshold
;
5759 /* Swap primary and spare array */
5760 thresholds
->spare
= thresholds
->primary
;
5761 /* If all events are unregistered, free the spare array */
5763 kfree(thresholds
->spare
);
5764 thresholds
->spare
= NULL
;
5767 rcu_assign_pointer(thresholds
->primary
, new);
5769 /* To be sure that nobody uses thresholds */
5772 mutex_unlock(&memcg
->thresholds_lock
);
5775 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
5776 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
5778 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5779 struct mem_cgroup_eventfd_list
*event
;
5780 enum res_type type
= MEMFILE_TYPE(cft
->private);
5782 BUG_ON(type
!= _OOM_TYPE
);
5783 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
5787 spin_lock(&memcg_oom_lock
);
5789 event
->eventfd
= eventfd
;
5790 list_add(&event
->list
, &memcg
->oom_notify
);
5792 /* already in OOM ? */
5793 if (atomic_read(&memcg
->under_oom
))
5794 eventfd_signal(eventfd
, 1);
5795 spin_unlock(&memcg_oom_lock
);
5800 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
5801 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
5803 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5804 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
5805 enum res_type type
= MEMFILE_TYPE(cft
->private);
5807 BUG_ON(type
!= _OOM_TYPE
);
5809 spin_lock(&memcg_oom_lock
);
5811 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
5812 if (ev
->eventfd
== eventfd
) {
5813 list_del(&ev
->list
);
5818 spin_unlock(&memcg_oom_lock
);
5821 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
5822 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
5824 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5826 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
5828 if (atomic_read(&memcg
->under_oom
))
5829 cb
->fill(cb
, "under_oom", 1);
5831 cb
->fill(cb
, "under_oom", 0);
5835 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
5836 struct cftype
*cft
, u64 val
)
5838 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
5839 struct mem_cgroup
*parent
;
5841 /* cannot set to root cgroup and only 0 and 1 are allowed */
5842 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
5845 parent
= mem_cgroup_from_cont(cgrp
->parent
);
5847 mutex_lock(&memcg_create_mutex
);
5848 /* oom-kill-disable is a flag for subhierarchy. */
5849 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5850 mutex_unlock(&memcg_create_mutex
);
5853 memcg
->oom_kill_disable
= val
;
5855 memcg_oom_recover(memcg
);
5856 mutex_unlock(&memcg_create_mutex
);
5860 #ifdef CONFIG_MEMCG_KMEM
5861 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5865 memcg
->kmemcg_id
= -1;
5866 ret
= memcg_propagate_kmem(memcg
);
5870 return mem_cgroup_sockets_init(memcg
, ss
);
5873 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
5875 mem_cgroup_sockets_destroy(memcg
);
5877 memcg_kmem_mark_dead(memcg
);
5879 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
5883 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5884 * path here, being careful not to race with memcg_uncharge_kmem: it is
5885 * possible that the charges went down to 0 between mark_dead and the
5886 * res_counter read, so in that case, we don't need the put
5888 if (memcg_kmem_test_and_clear_dead(memcg
))
5889 mem_cgroup_put(memcg
);
5892 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5897 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
5902 static struct cftype mem_cgroup_files
[] = {
5904 .name
= "usage_in_bytes",
5905 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
5906 .read
= mem_cgroup_read
,
5907 .register_event
= mem_cgroup_usage_register_event
,
5908 .unregister_event
= mem_cgroup_usage_unregister_event
,
5911 .name
= "max_usage_in_bytes",
5912 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
5913 .trigger
= mem_cgroup_reset
,
5914 .read
= mem_cgroup_read
,
5917 .name
= "limit_in_bytes",
5918 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
5919 .write_string
= mem_cgroup_write
,
5920 .read
= mem_cgroup_read
,
5923 .name
= "soft_limit_in_bytes",
5924 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
5925 .write_string
= mem_cgroup_write
,
5926 .read
= mem_cgroup_read
,
5930 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
5931 .trigger
= mem_cgroup_reset
,
5932 .read
= mem_cgroup_read
,
5936 .read_seq_string
= memcg_stat_show
,
5939 .name
= "force_empty",
5940 .trigger
= mem_cgroup_force_empty_write
,
5943 .name
= "use_hierarchy",
5944 .flags
= CFTYPE_INSANE
,
5945 .write_u64
= mem_cgroup_hierarchy_write
,
5946 .read_u64
= mem_cgroup_hierarchy_read
,
5949 .name
= "swappiness",
5950 .read_u64
= mem_cgroup_swappiness_read
,
5951 .write_u64
= mem_cgroup_swappiness_write
,
5954 .name
= "move_charge_at_immigrate",
5955 .read_u64
= mem_cgroup_move_charge_read
,
5956 .write_u64
= mem_cgroup_move_charge_write
,
5959 .name
= "oom_control",
5960 .read_map
= mem_cgroup_oom_control_read
,
5961 .write_u64
= mem_cgroup_oom_control_write
,
5962 .register_event
= mem_cgroup_oom_register_event
,
5963 .unregister_event
= mem_cgroup_oom_unregister_event
,
5964 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
5967 .name
= "pressure_level",
5968 .register_event
= vmpressure_register_event
,
5969 .unregister_event
= vmpressure_unregister_event
,
5973 .name
= "numa_stat",
5974 .read_seq_string
= memcg_numa_stat_show
,
5977 #ifdef CONFIG_MEMCG_KMEM
5979 .name
= "kmem.limit_in_bytes",
5980 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
5981 .write_string
= mem_cgroup_write
,
5982 .read
= mem_cgroup_read
,
5985 .name
= "kmem.usage_in_bytes",
5986 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
5987 .read
= mem_cgroup_read
,
5990 .name
= "kmem.failcnt",
5991 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
5992 .trigger
= mem_cgroup_reset
,
5993 .read
= mem_cgroup_read
,
5996 .name
= "kmem.max_usage_in_bytes",
5997 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
5998 .trigger
= mem_cgroup_reset
,
5999 .read
= mem_cgroup_read
,
6001 #ifdef CONFIG_SLABINFO
6003 .name
= "kmem.slabinfo",
6004 .read_seq_string
= mem_cgroup_slabinfo_read
,
6008 { }, /* terminate */
6011 #ifdef CONFIG_MEMCG_SWAP
6012 static struct cftype memsw_cgroup_files
[] = {
6014 .name
= "memsw.usage_in_bytes",
6015 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6016 .read
= mem_cgroup_read
,
6017 .register_event
= mem_cgroup_usage_register_event
,
6018 .unregister_event
= mem_cgroup_usage_unregister_event
,
6021 .name
= "memsw.max_usage_in_bytes",
6022 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6023 .trigger
= mem_cgroup_reset
,
6024 .read
= mem_cgroup_read
,
6027 .name
= "memsw.limit_in_bytes",
6028 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6029 .write_string
= mem_cgroup_write
,
6030 .read
= mem_cgroup_read
,
6033 .name
= "memsw.failcnt",
6034 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6035 .trigger
= mem_cgroup_reset
,
6036 .read
= mem_cgroup_read
,
6038 { }, /* terminate */
6041 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6043 struct mem_cgroup_per_node
*pn
;
6044 struct mem_cgroup_per_zone
*mz
;
6045 int zone
, tmp
= node
;
6047 * This routine is called against possible nodes.
6048 * But it's BUG to call kmalloc() against offline node.
6050 * TODO: this routine can waste much memory for nodes which will
6051 * never be onlined. It's better to use memory hotplug callback
6054 if (!node_state(node
, N_NORMAL_MEMORY
))
6056 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
6060 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6061 mz
= &pn
->zoneinfo
[zone
];
6062 lruvec_init(&mz
->lruvec
);
6063 mz
->usage_in_excess
= 0;
6064 mz
->on_tree
= false;
6067 memcg
->info
.nodeinfo
[node
] = pn
;
6071 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6073 kfree(memcg
->info
.nodeinfo
[node
]);
6076 static struct mem_cgroup
*mem_cgroup_alloc(void)
6078 struct mem_cgroup
*memcg
;
6079 size_t size
= memcg_size();
6081 /* Can be very big if nr_node_ids is very big */
6082 if (size
< PAGE_SIZE
)
6083 memcg
= kzalloc(size
, GFP_KERNEL
);
6085 memcg
= vzalloc(size
);
6090 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
6093 spin_lock_init(&memcg
->pcp_counter_lock
);
6097 if (size
< PAGE_SIZE
)
6105 * At destroying mem_cgroup, references from swap_cgroup can remain.
6106 * (scanning all at force_empty is too costly...)
6108 * Instead of clearing all references at force_empty, we remember
6109 * the number of reference from swap_cgroup and free mem_cgroup when
6110 * it goes down to 0.
6112 * Removal of cgroup itself succeeds regardless of refs from swap.
6115 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
6118 size_t size
= memcg_size();
6120 mem_cgroup_remove_from_trees(memcg
);
6121 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
6124 free_mem_cgroup_per_zone_info(memcg
, node
);
6126 free_percpu(memcg
->stat
);
6129 * We need to make sure that (at least for now), the jump label
6130 * destruction code runs outside of the cgroup lock. This is because
6131 * get_online_cpus(), which is called from the static_branch update,
6132 * can't be called inside the cgroup_lock. cpusets are the ones
6133 * enforcing this dependency, so if they ever change, we might as well.
6135 * schedule_work() will guarantee this happens. Be careful if you need
6136 * to move this code around, and make sure it is outside
6139 disarm_static_keys(memcg
);
6140 if (size
< PAGE_SIZE
)
6148 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6149 * but in process context. The work_freeing structure is overlaid
6150 * on the rcu_freeing structure, which itself is overlaid on memsw.
6152 static void free_work(struct work_struct
*work
)
6154 struct mem_cgroup
*memcg
;
6156 memcg
= container_of(work
, struct mem_cgroup
, work_freeing
);
6157 __mem_cgroup_free(memcg
);
6160 static void free_rcu(struct rcu_head
*rcu_head
)
6162 struct mem_cgroup
*memcg
;
6164 memcg
= container_of(rcu_head
, struct mem_cgroup
, rcu_freeing
);
6165 INIT_WORK(&memcg
->work_freeing
, free_work
);
6166 schedule_work(&memcg
->work_freeing
);
6169 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
6171 atomic_inc(&memcg
->refcnt
);
6174 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
6176 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
6177 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
6178 call_rcu(&memcg
->rcu_freeing
, free_rcu
);
6180 mem_cgroup_put(parent
);
6184 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
6186 __mem_cgroup_put(memcg
, 1);
6190 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6192 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
6194 if (!memcg
->res
.parent
)
6196 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
6198 EXPORT_SYMBOL(parent_mem_cgroup
);
6200 static void __init
mem_cgroup_soft_limit_tree_init(void)
6202 struct mem_cgroup_tree_per_node
*rtpn
;
6203 struct mem_cgroup_tree_per_zone
*rtpz
;
6204 int tmp
, node
, zone
;
6206 for_each_node(node
) {
6208 if (!node_state(node
, N_NORMAL_MEMORY
))
6210 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
6213 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6215 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6216 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
6217 rtpz
->rb_root
= RB_ROOT
;
6218 spin_lock_init(&rtpz
->lock
);
6223 static struct cgroup_subsys_state
* __ref
6224 mem_cgroup_css_alloc(struct cgroup
*cont
)
6226 struct mem_cgroup
*memcg
;
6227 long error
= -ENOMEM
;
6230 memcg
= mem_cgroup_alloc();
6232 return ERR_PTR(error
);
6235 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
6239 if (cont
->parent
== NULL
) {
6240 root_mem_cgroup
= memcg
;
6241 res_counter_init(&memcg
->res
, NULL
);
6242 res_counter_init(&memcg
->memsw
, NULL
);
6243 res_counter_init(&memcg
->kmem
, NULL
);
6246 memcg
->last_scanned_node
= MAX_NUMNODES
;
6247 INIT_LIST_HEAD(&memcg
->oom_notify
);
6248 atomic_set(&memcg
->refcnt
, 1);
6249 memcg
->move_charge_at_immigrate
= 0;
6250 mutex_init(&memcg
->thresholds_lock
);
6251 spin_lock_init(&memcg
->move_lock
);
6252 vmpressure_init(&memcg
->vmpressure
);
6257 __mem_cgroup_free(memcg
);
6258 return ERR_PTR(error
);
6262 mem_cgroup_css_online(struct cgroup
*cont
)
6264 struct mem_cgroup
*memcg
, *parent
;
6270 mutex_lock(&memcg_create_mutex
);
6271 memcg
= mem_cgroup_from_cont(cont
);
6272 parent
= mem_cgroup_from_cont(cont
->parent
);
6274 memcg
->use_hierarchy
= parent
->use_hierarchy
;
6275 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
6276 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
6278 if (parent
->use_hierarchy
) {
6279 res_counter_init(&memcg
->res
, &parent
->res
);
6280 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
6281 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
6284 * We increment refcnt of the parent to ensure that we can
6285 * safely access it on res_counter_charge/uncharge.
6286 * This refcnt will be decremented when freeing this
6287 * mem_cgroup(see mem_cgroup_put).
6289 mem_cgroup_get(parent
);
6291 res_counter_init(&memcg
->res
, NULL
);
6292 res_counter_init(&memcg
->memsw
, NULL
);
6293 res_counter_init(&memcg
->kmem
, NULL
);
6295 * Deeper hierachy with use_hierarchy == false doesn't make
6296 * much sense so let cgroup subsystem know about this
6297 * unfortunate state in our controller.
6299 if (parent
!= root_mem_cgroup
)
6300 mem_cgroup_subsys
.broken_hierarchy
= true;
6303 error
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
6304 mutex_unlock(&memcg_create_mutex
);
6309 * Announce all parents that a group from their hierarchy is gone.
6311 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
6313 struct mem_cgroup
*parent
= memcg
;
6315 while ((parent
= parent_mem_cgroup(parent
)))
6316 atomic_inc(&parent
->dead_count
);
6319 * if the root memcg is not hierarchical we have to check it
6322 if (!root_mem_cgroup
->use_hierarchy
)
6323 atomic_inc(&root_mem_cgroup
->dead_count
);
6326 static void mem_cgroup_css_offline(struct cgroup
*cont
)
6328 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
6330 mem_cgroup_invalidate_reclaim_iterators(memcg
);
6331 mem_cgroup_reparent_charges(memcg
);
6332 mem_cgroup_destroy_all_caches(memcg
);
6335 static void mem_cgroup_css_free(struct cgroup
*cont
)
6337 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
6339 kmem_cgroup_destroy(memcg
);
6341 mem_cgroup_put(memcg
);
6345 /* Handlers for move charge at task migration. */
6346 #define PRECHARGE_COUNT_AT_ONCE 256
6347 static int mem_cgroup_do_precharge(unsigned long count
)
6350 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6351 struct mem_cgroup
*memcg
= mc
.to
;
6353 if (mem_cgroup_is_root(memcg
)) {
6354 mc
.precharge
+= count
;
6355 /* we don't need css_get for root */
6358 /* try to charge at once */
6360 struct res_counter
*dummy
;
6362 * "memcg" cannot be under rmdir() because we've already checked
6363 * by cgroup_lock_live_cgroup() that it is not removed and we
6364 * are still under the same cgroup_mutex. So we can postpone
6367 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
6369 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
6370 PAGE_SIZE
* count
, &dummy
)) {
6371 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
6374 mc
.precharge
+= count
;
6378 /* fall back to one by one charge */
6380 if (signal_pending(current
)) {
6384 if (!batch_count
--) {
6385 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6388 ret
= __mem_cgroup_try_charge(NULL
,
6389 GFP_KERNEL
, 1, &memcg
, false);
6391 /* mem_cgroup_clear_mc() will do uncharge later */
6399 * get_mctgt_type - get target type of moving charge
6400 * @vma: the vma the pte to be checked belongs
6401 * @addr: the address corresponding to the pte to be checked
6402 * @ptent: the pte to be checked
6403 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6406 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6407 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6408 * move charge. if @target is not NULL, the page is stored in target->page
6409 * with extra refcnt got(Callers should handle it).
6410 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6411 * target for charge migration. if @target is not NULL, the entry is stored
6414 * Called with pte lock held.
6421 enum mc_target_type
{
6427 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
6428 unsigned long addr
, pte_t ptent
)
6430 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
6432 if (!page
|| !page_mapped(page
))
6434 if (PageAnon(page
)) {
6435 /* we don't move shared anon */
6438 } else if (!move_file())
6439 /* we ignore mapcount for file pages */
6441 if (!get_page_unless_zero(page
))
6448 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6449 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6451 struct page
*page
= NULL
;
6452 swp_entry_t ent
= pte_to_swp_entry(ptent
);
6454 if (!move_anon() || non_swap_entry(ent
))
6457 * Because lookup_swap_cache() updates some statistics counter,
6458 * we call find_get_page() with swapper_space directly.
6460 page
= find_get_page(swap_address_space(ent
), ent
.val
);
6461 if (do_swap_account
)
6462 entry
->val
= ent
.val
;
6467 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6468 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6474 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
6475 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6477 struct page
*page
= NULL
;
6478 struct address_space
*mapping
;
6481 if (!vma
->vm_file
) /* anonymous vma */
6486 mapping
= vma
->vm_file
->f_mapping
;
6487 if (pte_none(ptent
))
6488 pgoff
= linear_page_index(vma
, addr
);
6489 else /* pte_file(ptent) is true */
6490 pgoff
= pte_to_pgoff(ptent
);
6492 /* page is moved even if it's not RSS of this task(page-faulted). */
6493 page
= find_get_page(mapping
, pgoff
);
6496 /* shmem/tmpfs may report page out on swap: account for that too. */
6497 if (radix_tree_exceptional_entry(page
)) {
6498 swp_entry_t swap
= radix_to_swp_entry(page
);
6499 if (do_swap_account
)
6501 page
= find_get_page(swap_address_space(swap
), swap
.val
);
6507 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
6508 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
6510 struct page
*page
= NULL
;
6511 struct page_cgroup
*pc
;
6512 enum mc_target_type ret
= MC_TARGET_NONE
;
6513 swp_entry_t ent
= { .val
= 0 };
6515 if (pte_present(ptent
))
6516 page
= mc_handle_present_pte(vma
, addr
, ptent
);
6517 else if (is_swap_pte(ptent
))
6518 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
6519 else if (pte_none(ptent
) || pte_file(ptent
))
6520 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
6522 if (!page
&& !ent
.val
)
6525 pc
= lookup_page_cgroup(page
);
6527 * Do only loose check w/o page_cgroup lock.
6528 * mem_cgroup_move_account() checks the pc is valid or not under
6531 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6532 ret
= MC_TARGET_PAGE
;
6534 target
->page
= page
;
6536 if (!ret
|| !target
)
6539 /* There is a swap entry and a page doesn't exist or isn't charged */
6540 if (ent
.val
&& !ret
&&
6541 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
6542 ret
= MC_TARGET_SWAP
;
6549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6551 * We don't consider swapping or file mapped pages because THP does not
6552 * support them for now.
6553 * Caller should make sure that pmd_trans_huge(pmd) is true.
6555 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6556 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6558 struct page
*page
= NULL
;
6559 struct page_cgroup
*pc
;
6560 enum mc_target_type ret
= MC_TARGET_NONE
;
6562 page
= pmd_page(pmd
);
6563 VM_BUG_ON(!page
|| !PageHead(page
));
6566 pc
= lookup_page_cgroup(page
);
6567 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6568 ret
= MC_TARGET_PAGE
;
6571 target
->page
= page
;
6577 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6578 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6580 return MC_TARGET_NONE
;
6584 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
6585 unsigned long addr
, unsigned long end
,
6586 struct mm_walk
*walk
)
6588 struct vm_area_struct
*vma
= walk
->private;
6592 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6593 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
6594 mc
.precharge
+= HPAGE_PMD_NR
;
6595 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6599 if (pmd_trans_unstable(pmd
))
6601 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6602 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
6603 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
6604 mc
.precharge
++; /* increment precharge temporarily */
6605 pte_unmap_unlock(pte
- 1, ptl
);
6611 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
6613 unsigned long precharge
;
6614 struct vm_area_struct
*vma
;
6616 down_read(&mm
->mmap_sem
);
6617 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6618 struct mm_walk mem_cgroup_count_precharge_walk
= {
6619 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
6623 if (is_vm_hugetlb_page(vma
))
6625 walk_page_range(vma
->vm_start
, vma
->vm_end
,
6626 &mem_cgroup_count_precharge_walk
);
6628 up_read(&mm
->mmap_sem
);
6630 precharge
= mc
.precharge
;
6636 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
6638 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
6640 VM_BUG_ON(mc
.moving_task
);
6641 mc
.moving_task
= current
;
6642 return mem_cgroup_do_precharge(precharge
);
6645 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6646 static void __mem_cgroup_clear_mc(void)
6648 struct mem_cgroup
*from
= mc
.from
;
6649 struct mem_cgroup
*to
= mc
.to
;
6651 /* we must uncharge all the leftover precharges from mc.to */
6653 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
6657 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6658 * we must uncharge here.
6660 if (mc
.moved_charge
) {
6661 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
6662 mc
.moved_charge
= 0;
6664 /* we must fixup refcnts and charges */
6665 if (mc
.moved_swap
) {
6666 /* uncharge swap account from the old cgroup */
6667 if (!mem_cgroup_is_root(mc
.from
))
6668 res_counter_uncharge(&mc
.from
->memsw
,
6669 PAGE_SIZE
* mc
.moved_swap
);
6670 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
6672 if (!mem_cgroup_is_root(mc
.to
)) {
6674 * we charged both to->res and to->memsw, so we should
6677 res_counter_uncharge(&mc
.to
->res
,
6678 PAGE_SIZE
* mc
.moved_swap
);
6680 /* we've already done mem_cgroup_get(mc.to) */
6683 memcg_oom_recover(from
);
6684 memcg_oom_recover(to
);
6685 wake_up_all(&mc
.waitq
);
6688 static void mem_cgroup_clear_mc(void)
6690 struct mem_cgroup
*from
= mc
.from
;
6693 * we must clear moving_task before waking up waiters at the end of
6696 mc
.moving_task
= NULL
;
6697 __mem_cgroup_clear_mc();
6698 spin_lock(&mc
.lock
);
6701 spin_unlock(&mc
.lock
);
6702 mem_cgroup_end_move(from
);
6705 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
6706 struct cgroup_taskset
*tset
)
6708 struct task_struct
*p
= cgroup_taskset_first(tset
);
6710 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
6711 unsigned long move_charge_at_immigrate
;
6714 * We are now commited to this value whatever it is. Changes in this
6715 * tunable will only affect upcoming migrations, not the current one.
6716 * So we need to save it, and keep it going.
6718 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
6719 if (move_charge_at_immigrate
) {
6720 struct mm_struct
*mm
;
6721 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
6723 VM_BUG_ON(from
== memcg
);
6725 mm
= get_task_mm(p
);
6728 /* We move charges only when we move a owner of the mm */
6729 if (mm
->owner
== p
) {
6732 VM_BUG_ON(mc
.precharge
);
6733 VM_BUG_ON(mc
.moved_charge
);
6734 VM_BUG_ON(mc
.moved_swap
);
6735 mem_cgroup_start_move(from
);
6736 spin_lock(&mc
.lock
);
6739 mc
.immigrate_flags
= move_charge_at_immigrate
;
6740 spin_unlock(&mc
.lock
);
6741 /* We set mc.moving_task later */
6743 ret
= mem_cgroup_precharge_mc(mm
);
6745 mem_cgroup_clear_mc();
6752 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
6753 struct cgroup_taskset
*tset
)
6755 mem_cgroup_clear_mc();
6758 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
6759 unsigned long addr
, unsigned long end
,
6760 struct mm_walk
*walk
)
6763 struct vm_area_struct
*vma
= walk
->private;
6766 enum mc_target_type target_type
;
6767 union mc_target target
;
6769 struct page_cgroup
*pc
;
6772 * We don't take compound_lock() here but no race with splitting thp
6774 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6775 * under splitting, which means there's no concurrent thp split,
6776 * - if another thread runs into split_huge_page() just after we
6777 * entered this if-block, the thread must wait for page table lock
6778 * to be unlocked in __split_huge_page_splitting(), where the main
6779 * part of thp split is not executed yet.
6781 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
6782 if (mc
.precharge
< HPAGE_PMD_NR
) {
6783 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6786 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
6787 if (target_type
== MC_TARGET_PAGE
) {
6789 if (!isolate_lru_page(page
)) {
6790 pc
= lookup_page_cgroup(page
);
6791 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
6792 pc
, mc
.from
, mc
.to
)) {
6793 mc
.precharge
-= HPAGE_PMD_NR
;
6794 mc
.moved_charge
+= HPAGE_PMD_NR
;
6796 putback_lru_page(page
);
6800 spin_unlock(&vma
->vm_mm
->page_table_lock
);
6804 if (pmd_trans_unstable(pmd
))
6807 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6808 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
6809 pte_t ptent
= *(pte
++);
6815 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
6816 case MC_TARGET_PAGE
:
6818 if (isolate_lru_page(page
))
6820 pc
= lookup_page_cgroup(page
);
6821 if (!mem_cgroup_move_account(page
, 1, pc
,
6824 /* we uncharge from mc.from later. */
6827 putback_lru_page(page
);
6828 put
: /* get_mctgt_type() gets the page */
6831 case MC_TARGET_SWAP
:
6833 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
6835 /* we fixup refcnts and charges later. */
6843 pte_unmap_unlock(pte
- 1, ptl
);
6848 * We have consumed all precharges we got in can_attach().
6849 * We try charge one by one, but don't do any additional
6850 * charges to mc.to if we have failed in charge once in attach()
6853 ret
= mem_cgroup_do_precharge(1);
6861 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
6863 struct vm_area_struct
*vma
;
6865 lru_add_drain_all();
6867 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
6869 * Someone who are holding the mmap_sem might be waiting in
6870 * waitq. So we cancel all extra charges, wake up all waiters,
6871 * and retry. Because we cancel precharges, we might not be able
6872 * to move enough charges, but moving charge is a best-effort
6873 * feature anyway, so it wouldn't be a big problem.
6875 __mem_cgroup_clear_mc();
6879 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6881 struct mm_walk mem_cgroup_move_charge_walk
= {
6882 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
6886 if (is_vm_hugetlb_page(vma
))
6888 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
6889 &mem_cgroup_move_charge_walk
);
6892 * means we have consumed all precharges and failed in
6893 * doing additional charge. Just abandon here.
6897 up_read(&mm
->mmap_sem
);
6900 static void mem_cgroup_move_task(struct cgroup
*cont
,
6901 struct cgroup_taskset
*tset
)
6903 struct task_struct
*p
= cgroup_taskset_first(tset
);
6904 struct mm_struct
*mm
= get_task_mm(p
);
6908 mem_cgroup_move_charge(mm
);
6912 mem_cgroup_clear_mc();
6914 #else /* !CONFIG_MMU */
6915 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
6916 struct cgroup_taskset
*tset
)
6920 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
6921 struct cgroup_taskset
*tset
)
6924 static void mem_cgroup_move_task(struct cgroup
*cont
,
6925 struct cgroup_taskset
*tset
)
6931 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6932 * to verify sane_behavior flag on each mount attempt.
6934 static void mem_cgroup_bind(struct cgroup
*root
)
6937 * use_hierarchy is forced with sane_behavior. cgroup core
6938 * guarantees that @root doesn't have any children, so turning it
6939 * on for the root memcg is enough.
6941 if (cgroup_sane_behavior(root
))
6942 mem_cgroup_from_cont(root
)->use_hierarchy
= true;
6945 struct cgroup_subsys mem_cgroup_subsys
= {
6947 .subsys_id
= mem_cgroup_subsys_id
,
6948 .css_alloc
= mem_cgroup_css_alloc
,
6949 .css_online
= mem_cgroup_css_online
,
6950 .css_offline
= mem_cgroup_css_offline
,
6951 .css_free
= mem_cgroup_css_free
,
6952 .can_attach
= mem_cgroup_can_attach
,
6953 .cancel_attach
= mem_cgroup_cancel_attach
,
6954 .attach
= mem_cgroup_move_task
,
6955 .bind
= mem_cgroup_bind
,
6956 .base_cftypes
= mem_cgroup_files
,
6961 #ifdef CONFIG_MEMCG_SWAP
6962 static int __init
enable_swap_account(char *s
)
6964 /* consider enabled if no parameter or 1 is given */
6965 if (!strcmp(s
, "1"))
6966 really_do_swap_account
= 1;
6967 else if (!strcmp(s
, "0"))
6968 really_do_swap_account
= 0;
6971 __setup("swapaccount=", enable_swap_account
);
6973 static void __init
memsw_file_init(void)
6975 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys
, memsw_cgroup_files
));
6978 static void __init
enable_swap_cgroup(void)
6980 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6981 do_swap_account
= 1;
6987 static void __init
enable_swap_cgroup(void)
6993 * subsys_initcall() for memory controller.
6995 * Some parts like hotcpu_notifier() have to be initialized from this context
6996 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6997 * everything that doesn't depend on a specific mem_cgroup structure should
6998 * be initialized from here.
7000 static int __init
mem_cgroup_init(void)
7002 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
7003 enable_swap_cgroup();
7004 mem_cgroup_soft_limit_tree_init();
7008 subsys_initcall(mem_cgroup_init
);