2 * linux/arch/i386/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/highmem.h>
23 #include <linux/module.h>
24 #include <linux/kprobes.h>
25 #include <linux/uaccess.h>
27 #include <asm/system.h>
29 #include <asm/kdebug.h>
30 #include <asm/segment.h>
32 extern void die(const char *,struct pt_regs
*,long);
34 static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain
);
36 int register_page_fault_notifier(struct notifier_block
*nb
)
39 return atomic_notifier_chain_register(¬ify_page_fault_chain
, nb
);
41 EXPORT_SYMBOL_GPL(register_page_fault_notifier
);
43 int unregister_page_fault_notifier(struct notifier_block
*nb
)
45 return atomic_notifier_chain_unregister(¬ify_page_fault_chain
, nb
);
47 EXPORT_SYMBOL_GPL(unregister_page_fault_notifier
);
49 static inline int notify_page_fault(struct pt_regs
*regs
, long err
)
51 struct die_args args
= {
58 return atomic_notifier_call_chain(¬ify_page_fault_chain
,
59 DIE_PAGE_FAULT
, &args
);
63 * Return EIP plus the CS segment base. The segment limit is also
64 * adjusted, clamped to the kernel/user address space (whichever is
65 * appropriate), and returned in *eip_limit.
67 * The segment is checked, because it might have been changed by another
68 * task between the original faulting instruction and here.
70 * If CS is no longer a valid code segment, or if EIP is beyond the
71 * limit, or if it is a kernel address when CS is not a kernel segment,
72 * then the returned value will be greater than *eip_limit.
74 * This is slow, but is very rarely executed.
76 static inline unsigned long get_segment_eip(struct pt_regs
*regs
,
77 unsigned long *eip_limit
)
79 unsigned long eip
= regs
->eip
;
80 unsigned seg
= regs
->xcs
& 0xffff;
81 u32 seg_ar
, seg_limit
, base
, *desc
;
83 /* Unlikely, but must come before segment checks. */
84 if (unlikely(regs
->eflags
& VM_MASK
)) {
86 *eip_limit
= base
+ 0xffff;
87 return base
+ (eip
& 0xffff);
90 /* The standard kernel/user address space limit. */
91 *eip_limit
= user_mode(regs
) ? USER_DS
.seg
: KERNEL_DS
.seg
;
93 /* By far the most common cases. */
94 if (likely(SEGMENT_IS_FLAT_CODE(seg
)))
97 /* Check the segment exists, is within the current LDT/GDT size,
98 that kernel/user (ring 0..3) has the appropriate privilege,
99 that it's a code segment, and get the limit. */
100 __asm__ ("larl %3,%0; lsll %3,%1"
101 : "=&r" (seg_ar
), "=r" (seg_limit
) : "0" (0), "rm" (seg
));
102 if ((~seg_ar
& 0x9800) || eip
> seg_limit
) {
104 return 1; /* So that returned eip > *eip_limit. */
107 /* Get the GDT/LDT descriptor base.
108 When you look for races in this code remember that
109 LDT and other horrors are only used in user space. */
111 /* Must lock the LDT while reading it. */
112 down(¤t
->mm
->context
.sem
);
113 desc
= current
->mm
->context
.ldt
;
114 desc
= (void *)desc
+ (seg
& ~7);
116 /* Must disable preemption while reading the GDT. */
117 desc
= (u32
*)get_cpu_gdt_table(get_cpu());
118 desc
= (void *)desc
+ (seg
& ~7);
121 /* Decode the code segment base from the descriptor */
122 base
= get_desc_base((unsigned long *)desc
);
125 up(¤t
->mm
->context
.sem
);
129 /* Adjust EIP and segment limit, and clamp at the kernel limit.
130 It's legitimate for segments to wrap at 0xffffffff. */
132 if (seg_limit
< *eip_limit
&& seg_limit
>= base
)
133 *eip_limit
= seg_limit
;
138 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
139 * Check that here and ignore it.
141 static int __is_prefetch(struct pt_regs
*regs
, unsigned long addr
)
144 unsigned char *instr
= (unsigned char *)get_segment_eip (regs
, &limit
);
149 for (i
= 0; scan_more
&& i
< 15; i
++) {
150 unsigned char opcode
;
151 unsigned char instr_hi
;
152 unsigned char instr_lo
;
154 if (instr
> (unsigned char *)limit
)
156 if (probe_kernel_address(instr
, opcode
))
159 instr_hi
= opcode
& 0xf0;
160 instr_lo
= opcode
& 0x0f;
166 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
167 scan_more
= ((instr_lo
& 7) == 0x6);
171 /* 0x64 thru 0x67 are valid prefixes in all modes. */
172 scan_more
= (instr_lo
& 0xC) == 0x4;
175 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
176 scan_more
= !instr_lo
|| (instr_lo
>>1) == 1;
179 /* Prefetch instruction is 0x0F0D or 0x0F18 */
181 if (instr
> (unsigned char *)limit
)
183 if (probe_kernel_address(instr
, opcode
))
185 prefetch
= (instr_lo
== 0xF) &&
186 (opcode
== 0x0D || opcode
== 0x18);
196 static inline int is_prefetch(struct pt_regs
*regs
, unsigned long addr
,
197 unsigned long error_code
)
199 if (unlikely(boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
&&
200 boot_cpu_data
.x86
>= 6)) {
201 /* Catch an obscure case of prefetch inside an NX page. */
202 if (nx_enabled
&& (error_code
& 16))
204 return __is_prefetch(regs
, addr
);
209 static noinline
void force_sig_info_fault(int si_signo
, int si_code
,
210 unsigned long address
, struct task_struct
*tsk
)
214 info
.si_signo
= si_signo
;
216 info
.si_code
= si_code
;
217 info
.si_addr
= (void __user
*)address
;
218 force_sig_info(si_signo
, &info
, tsk
);
221 fastcall
void do_invalid_op(struct pt_regs
*, unsigned long);
223 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
225 unsigned index
= pgd_index(address
);
231 pgd_k
= init_mm
.pgd
+ index
;
233 if (!pgd_present(*pgd_k
))
237 * set_pgd(pgd, *pgd_k); here would be useless on PAE
238 * and redundant with the set_pmd() on non-PAE. As would
242 pud
= pud_offset(pgd
, address
);
243 pud_k
= pud_offset(pgd_k
, address
);
244 if (!pud_present(*pud_k
))
247 pmd
= pmd_offset(pud
, address
);
248 pmd_k
= pmd_offset(pud_k
, address
);
249 if (!pmd_present(*pmd_k
))
251 if (!pmd_present(*pmd
))
252 set_pmd(pmd
, *pmd_k
);
254 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
259 * Handle a fault on the vmalloc or module mapping area
261 * This assumes no large pages in there.
263 static inline int vmalloc_fault(unsigned long address
)
265 unsigned long pgd_paddr
;
269 * Synchronize this task's top level page-table
270 * with the 'reference' page table.
272 * Do _not_ use "current" here. We might be inside
273 * an interrupt in the middle of a task switch..
275 pgd_paddr
= read_cr3();
276 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
279 pte_k
= pte_offset_kernel(pmd_k
, address
);
280 if (!pte_present(*pte_k
))
286 * This routine handles page faults. It determines the address,
287 * and the problem, and then passes it off to one of the appropriate
291 * bit 0 == 0 means no page found, 1 means protection fault
292 * bit 1 == 0 means read, 1 means write
293 * bit 2 == 0 means kernel, 1 means user-mode
294 * bit 3 == 1 means use of reserved bit detected
295 * bit 4 == 1 means fault was an instruction fetch
297 fastcall
void __kprobes
do_page_fault(struct pt_regs
*regs
,
298 unsigned long error_code
)
300 struct task_struct
*tsk
;
301 struct mm_struct
*mm
;
302 struct vm_area_struct
* vma
;
303 unsigned long address
;
307 /* get the address */
308 address
= read_cr2();
312 si_code
= SEGV_MAPERR
;
315 * We fault-in kernel-space virtual memory on-demand. The
316 * 'reference' page table is init_mm.pgd.
318 * NOTE! We MUST NOT take any locks for this case. We may
319 * be in an interrupt or a critical region, and should
320 * only copy the information from the master page table,
323 * This verifies that the fault happens in kernel space
324 * (error_code & 4) == 0, and that the fault was not a
325 * protection error (error_code & 9) == 0.
327 if (unlikely(address
>= TASK_SIZE
)) {
328 if (!(error_code
& 0x0000000d) && vmalloc_fault(address
) >= 0)
330 if (notify_page_fault(regs
, error_code
) == NOTIFY_STOP
)
333 * Don't take the mm semaphore here. If we fixup a prefetch
334 * fault we could otherwise deadlock.
336 goto bad_area_nosemaphore
;
339 if (notify_page_fault(regs
, error_code
) == NOTIFY_STOP
)
342 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
343 fault has been handled. */
344 if (regs
->eflags
& (X86_EFLAGS_IF
|VM_MASK
))
350 * If we're in an interrupt, have no user context or are running in an
351 * atomic region then we must not take the fault..
353 if (in_atomic() || !mm
)
354 goto bad_area_nosemaphore
;
356 /* When running in the kernel we expect faults to occur only to
357 * addresses in user space. All other faults represent errors in the
358 * kernel and should generate an OOPS. Unfortunatly, in the case of an
359 * erroneous fault occurring in a code path which already holds mmap_sem
360 * we will deadlock attempting to validate the fault against the
361 * address space. Luckily the kernel only validly references user
362 * space from well defined areas of code, which are listed in the
365 * As the vast majority of faults will be valid we will only perform
366 * the source reference check when there is a possibilty of a deadlock.
367 * Attempt to lock the address space, if we cannot we then validate the
368 * source. If this is invalid we can skip the address space check,
369 * thus avoiding the deadlock.
371 if (!down_read_trylock(&mm
->mmap_sem
)) {
372 if ((error_code
& 4) == 0 &&
373 !search_exception_tables(regs
->eip
))
374 goto bad_area_nosemaphore
;
375 down_read(&mm
->mmap_sem
);
378 vma
= find_vma(mm
, address
);
381 if (vma
->vm_start
<= address
)
383 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
385 if (error_code
& 4) {
387 * Accessing the stack below %esp is always a bug.
388 * The large cushion allows instructions like enter
389 * and pusha to work. ("enter $65535,$31" pushes
390 * 32 pointers and then decrements %esp by 65535.)
392 if (address
+ 65536 + 32 * sizeof(unsigned long) < regs
->esp
)
395 if (expand_stack(vma
, address
))
398 * Ok, we have a good vm_area for this memory access, so
402 si_code
= SEGV_ACCERR
;
404 switch (error_code
& 3) {
405 default: /* 3: write, present */
407 case 2: /* write, not present */
408 if (!(vma
->vm_flags
& VM_WRITE
))
412 case 1: /* read, present */
414 case 0: /* read, not present */
415 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
421 * If for any reason at all we couldn't handle the fault,
422 * make sure we exit gracefully rather than endlessly redo
425 switch (handle_mm_fault(mm
, vma
, address
, write
)) {
432 case VM_FAULT_SIGBUS
:
441 * Did it hit the DOS screen memory VA from vm86 mode?
443 if (regs
->eflags
& VM_MASK
) {
444 unsigned long bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
446 tsk
->thread
.screen_bitmap
|= 1 << bit
;
448 up_read(&mm
->mmap_sem
);
452 * Something tried to access memory that isn't in our memory map..
453 * Fix it, but check if it's kernel or user first..
456 up_read(&mm
->mmap_sem
);
458 bad_area_nosemaphore
:
459 /* User mode accesses just cause a SIGSEGV */
460 if (error_code
& 4) {
462 * Valid to do another page fault here because this one came
465 if (is_prefetch(regs
, address
, error_code
))
468 tsk
->thread
.cr2
= address
;
469 /* Kernel addresses are always protection faults */
470 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
471 tsk
->thread
.trap_no
= 14;
472 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
);
476 #ifdef CONFIG_X86_F00F_BUG
478 * Pentium F0 0F C7 C8 bug workaround.
480 if (boot_cpu_data
.f00f_bug
) {
483 nr
= (address
- idt_descr
.address
) >> 3;
486 do_invalid_op(regs
, 0);
493 /* Are we prepared to handle this kernel fault? */
494 if (fixup_exception(regs
))
498 * Valid to do another page fault here, because if this fault
499 * had been triggered by is_prefetch fixup_exception would have
502 if (is_prefetch(regs
, address
, error_code
))
506 * Oops. The kernel tried to access some bad page. We'll have to
507 * terminate things with extreme prejudice.
512 if (oops_may_print()) {
513 #ifdef CONFIG_X86_PAE
514 if (error_code
& 16) {
515 pte_t
*pte
= lookup_address(address
);
517 if (pte
&& pte_present(*pte
) && !pte_exec_kernel(*pte
))
518 printk(KERN_CRIT
"kernel tried to execute "
519 "NX-protected page - exploit attempt? "
520 "(uid: %d)\n", current
->uid
);
523 if (address
< PAGE_SIZE
)
524 printk(KERN_ALERT
"BUG: unable to handle kernel NULL "
525 "pointer dereference");
527 printk(KERN_ALERT
"BUG: unable to handle kernel paging"
529 printk(" at virtual address %08lx\n",address
);
530 printk(KERN_ALERT
" printing eip:\n");
531 printk("%08lx\n", regs
->eip
);
534 page
= ((unsigned long *) __va(page
))[address
>> 22];
535 if (oops_may_print())
536 printk(KERN_ALERT
"*pde = %08lx\n", page
);
538 * We must not directly access the pte in the highpte
539 * case, the page table might be allocated in highmem.
540 * And lets rather not kmap-atomic the pte, just in case
541 * it's allocated already.
543 #ifndef CONFIG_HIGHPTE
544 if ((page
& 1) && oops_may_print()) {
546 address
&= 0x003ff000;
547 page
= ((unsigned long *) __va(page
))[address
>> PAGE_SHIFT
];
548 printk(KERN_ALERT
"*pte = %08lx\n", page
);
551 tsk
->thread
.cr2
= address
;
552 tsk
->thread
.trap_no
= 14;
553 tsk
->thread
.error_code
= error_code
;
554 die("Oops", regs
, error_code
);
559 * We ran out of memory, or some other thing happened to us that made
560 * us unable to handle the page fault gracefully.
563 up_read(&mm
->mmap_sem
);
566 down_read(&mm
->mmap_sem
);
569 printk("VM: killing process %s\n", tsk
->comm
);
575 up_read(&mm
->mmap_sem
);
577 /* Kernel mode? Handle exceptions or die */
578 if (!(error_code
& 4))
581 /* User space => ok to do another page fault */
582 if (is_prefetch(regs
, address
, error_code
))
585 tsk
->thread
.cr2
= address
;
586 tsk
->thread
.error_code
= error_code
;
587 tsk
->thread
.trap_no
= 14;
588 force_sig_info_fault(SIGBUS
, BUS_ADRERR
, address
, tsk
);
591 #ifndef CONFIG_X86_PAE
592 void vmalloc_sync_all(void)
595 * Note that races in the updates of insync and start aren't
596 * problematic: insync can only get set bits added, and updates to
597 * start are only improving performance (without affecting correctness
600 static DECLARE_BITMAP(insync
, PTRS_PER_PGD
);
601 static unsigned long start
= TASK_SIZE
;
602 unsigned long address
;
604 BUILD_BUG_ON(TASK_SIZE
& ~PGDIR_MASK
);
605 for (address
= start
; address
>= TASK_SIZE
; address
+= PGDIR_SIZE
) {
606 if (!test_bit(pgd_index(address
), insync
)) {
610 spin_lock_irqsave(&pgd_lock
, flags
);
611 for (page
= pgd_list
; page
; page
=
612 (struct page
*)page
->index
)
613 if (!vmalloc_sync_one(page_address(page
),
615 BUG_ON(page
!= pgd_list
);
618 spin_unlock_irqrestore(&pgd_lock
, flags
);
620 set_bit(pgd_index(address
), insync
);
622 if (address
== start
&& test_bit(pgd_index(address
), insync
))
623 start
= address
+ PGDIR_SIZE
;