2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static unsigned int sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use
);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
190 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
194 if (copy_from_user(kaddr
, uaddr
, ulen
))
196 return audit_sockaddr(ulen
, kaddr
);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
217 void __user
*uaddr
, int __user
*ulen
)
222 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
223 err
= get_user(len
, ulen
);
231 if (audit_sockaddr(klen
, kaddr
))
233 if (copy_to_user(uaddr
, kaddr
, len
))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen
, ulen
);
243 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
245 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
247 struct socket_alloc
*ei
;
248 struct socket_wq
*wq
;
250 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
253 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
255 kmem_cache_free(sock_inode_cachep
, ei
);
258 init_waitqueue_head(&wq
->wait
);
259 wq
->fasync_list
= NULL
;
260 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
262 ei
->socket
.state
= SS_UNCONNECTED
;
263 ei
->socket
.flags
= 0;
264 ei
->socket
.ops
= NULL
;
265 ei
->socket
.sk
= NULL
;
266 ei
->socket
.file
= NULL
;
268 return &ei
->vfs_inode
;
271 static void sock_destroy_inode(struct inode
*inode
)
273 struct socket_alloc
*ei
;
274 struct socket_wq
*wq
;
276 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
277 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
279 kmem_cache_free(sock_inode_cachep
, ei
);
282 static void init_once(void *foo
)
284 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
286 inode_init_once(&ei
->vfs_inode
);
289 static int init_inodecache(void)
291 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc
),
294 (SLAB_HWCACHE_ALIGN
|
295 SLAB_RECLAIM_ACCOUNT
|
298 if (sock_inode_cachep
== NULL
)
303 static const struct super_operations sockfs_ops
= {
304 .alloc_inode
= sock_alloc_inode
,
305 .destroy_inode
= sock_destroy_inode
,
306 .statfs
= simple_statfs
,
310 * sockfs_dname() is called from d_path().
312 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
314 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
315 d_inode(dentry
)->i_ino
);
318 static const struct dentry_operations sockfs_dentry_operations
= {
319 .d_dname
= sockfs_dname
,
322 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
323 int flags
, const char *dev_name
, void *data
)
325 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
326 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
329 static struct vfsmount
*sock_mnt __read_mostly
;
331 static struct file_system_type sock_fs_type
= {
333 .mount
= sockfs_mount
,
334 .kill_sb
= kill_anon_super
,
338 * Obtains the first available file descriptor and sets it up for use.
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
354 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
356 struct qstr name
= { .name
= "" };
362 name
.len
= strlen(name
.name
);
363 } else if (sock
->sk
) {
364 name
.name
= sock
->sk
->sk_prot_creator
->name
;
365 name
.len
= strlen(name
.name
);
367 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
368 if (unlikely(!path
.dentry
))
369 return ERR_PTR(-ENOMEM
);
370 path
.mnt
= mntget(sock_mnt
);
372 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
374 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
376 if (unlikely(IS_ERR(file
))) {
377 /* drop dentry, keep inode */
378 ihold(d_inode(path
.dentry
));
384 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
385 file
->private_data
= sock
;
388 EXPORT_SYMBOL(sock_alloc_file
);
390 static int sock_map_fd(struct socket
*sock
, int flags
)
392 struct file
*newfile
;
393 int fd
= get_unused_fd_flags(flags
);
394 if (unlikely(fd
< 0))
397 newfile
= sock_alloc_file(sock
, flags
, NULL
);
398 if (likely(!IS_ERR(newfile
))) {
399 fd_install(fd
, newfile
);
404 return PTR_ERR(newfile
);
407 struct socket
*sock_from_file(struct file
*file
, int *err
)
409 if (file
->f_op
== &socket_file_ops
)
410 return file
->private_data
; /* set in sock_map_fd */
415 EXPORT_SYMBOL(sock_from_file
);
418 * sockfd_lookup - Go from a file number to its socket slot
420 * @err: pointer to an error code return
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
427 * On a success the socket object pointer is returned.
430 struct socket
*sockfd_lookup(int fd
, int *err
)
441 sock
= sock_from_file(file
, err
);
446 EXPORT_SYMBOL(sockfd_lookup
);
448 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
450 struct fd f
= fdget(fd
);
455 sock
= sock_from_file(f
.file
, err
);
457 *fput_needed
= f
.flags
;
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
469 const char *name
, void *value
, size_t size
)
471 const char *proto_name
;
476 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
477 proto_name
= dentry
->d_name
.name
;
478 proto_size
= strlen(proto_name
);
482 if (proto_size
+ 1 > size
)
485 strncpy(value
, proto_name
, proto_size
+ 1);
487 error
= proto_size
+ 1;
494 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
500 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
510 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
515 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
522 static const struct inode_operations sockfs_inode_ops
= {
523 .getxattr
= sockfs_getxattr
,
524 .listxattr
= sockfs_listxattr
,
528 * sock_alloc - allocate a socket
530 * Allocate a new inode and socket object. The two are bound together
531 * and initialised. The socket is then returned. If we are out of inodes
535 static struct socket
*sock_alloc(void)
540 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
544 sock
= SOCKET_I(inode
);
546 kmemcheck_annotate_bitfield(sock
, type
);
547 inode
->i_ino
= get_next_ino();
548 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
549 inode
->i_uid
= current_fsuid();
550 inode
->i_gid
= current_fsgid();
551 inode
->i_op
= &sockfs_inode_ops
;
553 this_cpu_add(sockets_in_use
, 1);
558 * sock_release - close a socket
559 * @sock: socket to close
561 * The socket is released from the protocol stack if it has a release
562 * callback, and the inode is then released if the socket is bound to
563 * an inode not a file.
566 void sock_release(struct socket
*sock
)
569 struct module
*owner
= sock
->ops
->owner
;
571 sock
->ops
->release(sock
);
576 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
577 pr_err("%s: fasync list not empty!\n", __func__
);
579 if (test_bit(SOCK_EXTERNALLY_ALLOCATED
, &sock
->flags
))
582 this_cpu_sub(sockets_in_use
, 1);
584 iput(SOCK_INODE(sock
));
589 EXPORT_SYMBOL(sock_release
);
591 void __sock_tx_timestamp(const struct sock
*sk
, __u8
*tx_flags
)
593 u8 flags
= *tx_flags
;
595 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
596 flags
|= SKBTX_HW_TSTAMP
;
598 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
599 flags
|= SKBTX_SW_TSTAMP
;
601 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
602 flags
|= SKBTX_SCHED_TSTAMP
;
604 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_TX_ACK
)
605 flags
|= SKBTX_ACK_TSTAMP
;
609 EXPORT_SYMBOL(__sock_tx_timestamp
);
611 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
613 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
614 BUG_ON(ret
== -EIOCBQUEUED
);
618 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
620 int err
= security_socket_sendmsg(sock
, msg
,
623 return err
?: sock_sendmsg_nosec(sock
, msg
);
625 EXPORT_SYMBOL(sock_sendmsg
);
627 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
628 struct kvec
*vec
, size_t num
, size_t size
)
630 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
631 return sock_sendmsg(sock
, msg
);
633 EXPORT_SYMBOL(kernel_sendmsg
);
636 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
638 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
641 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
642 struct scm_timestamping tss
;
644 struct skb_shared_hwtstamps
*shhwtstamps
=
647 /* Race occurred between timestamp enabling and packet
648 receiving. Fill in the current time for now. */
649 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
650 __net_timestamp(skb
);
652 if (need_software_tstamp
) {
653 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
655 skb_get_timestamp(skb
, &tv
);
656 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
660 skb_get_timestampns(skb
, &ts
);
661 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
666 memset(&tss
, 0, sizeof(tss
));
667 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
668 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
671 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
672 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
675 put_cmsg(msg
, SOL_SOCKET
,
676 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
678 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
680 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
685 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
687 if (!skb
->wifi_acked_valid
)
690 ack
= skb
->wifi_acked
;
692 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
694 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
696 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
699 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
700 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
701 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
704 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
707 sock_recv_timestamp(msg
, sk
, skb
);
708 sock_recv_drops(msg
, sk
, skb
);
710 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
712 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
713 size_t size
, int flags
)
715 return sock
->ops
->recvmsg(sock
, msg
, size
, flags
);
718 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
721 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
723 return err
?: sock_recvmsg_nosec(sock
, msg
, size
, flags
);
725 EXPORT_SYMBOL(sock_recvmsg
);
728 * kernel_recvmsg - Receive a message from a socket (kernel space)
729 * @sock: The socket to receive the message from
730 * @msg: Received message
731 * @vec: Input s/g array for message data
732 * @num: Size of input s/g array
733 * @size: Number of bytes to read
734 * @flags: Message flags (MSG_DONTWAIT, etc...)
736 * On return the msg structure contains the scatter/gather array passed in the
737 * vec argument. The array is modified so that it consists of the unfilled
738 * portion of the original array.
740 * The returned value is the total number of bytes received, or an error.
742 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
743 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
745 mm_segment_t oldfs
= get_fs();
748 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
750 result
= sock_recvmsg(sock
, msg
, size
, flags
);
754 EXPORT_SYMBOL(kernel_recvmsg
);
756 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
757 int offset
, size_t size
, loff_t
*ppos
, int more
)
762 sock
= file
->private_data
;
764 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
765 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
768 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
771 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
772 struct pipe_inode_info
*pipe
, size_t len
,
775 struct socket
*sock
= file
->private_data
;
777 if (unlikely(!sock
->ops
->splice_read
))
780 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
783 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
785 struct file
*file
= iocb
->ki_filp
;
786 struct socket
*sock
= file
->private_data
;
787 struct msghdr msg
= {.msg_iter
= *to
,
791 if (file
->f_flags
& O_NONBLOCK
)
792 msg
.msg_flags
= MSG_DONTWAIT
;
794 if (iocb
->ki_pos
!= 0)
797 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
800 res
= sock_recvmsg(sock
, &msg
, iov_iter_count(to
), msg
.msg_flags
);
805 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
807 struct file
*file
= iocb
->ki_filp
;
808 struct socket
*sock
= file
->private_data
;
809 struct msghdr msg
= {.msg_iter
= *from
,
813 if (iocb
->ki_pos
!= 0)
816 if (file
->f_flags
& O_NONBLOCK
)
817 msg
.msg_flags
= MSG_DONTWAIT
;
819 if (sock
->type
== SOCK_SEQPACKET
)
820 msg
.msg_flags
|= MSG_EOR
;
822 res
= sock_sendmsg(sock
, &msg
);
823 *from
= msg
.msg_iter
;
828 * Atomic setting of ioctl hooks to avoid race
829 * with module unload.
832 static DEFINE_MUTEX(br_ioctl_mutex
);
833 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
835 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
837 mutex_lock(&br_ioctl_mutex
);
838 br_ioctl_hook
= hook
;
839 mutex_unlock(&br_ioctl_mutex
);
841 EXPORT_SYMBOL(brioctl_set
);
843 static DEFINE_MUTEX(vlan_ioctl_mutex
);
844 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
846 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
848 mutex_lock(&vlan_ioctl_mutex
);
849 vlan_ioctl_hook
= hook
;
850 mutex_unlock(&vlan_ioctl_mutex
);
852 EXPORT_SYMBOL(vlan_ioctl_set
);
854 static DEFINE_MUTEX(dlci_ioctl_mutex
);
855 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
857 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
859 mutex_lock(&dlci_ioctl_mutex
);
860 dlci_ioctl_hook
= hook
;
861 mutex_unlock(&dlci_ioctl_mutex
);
863 EXPORT_SYMBOL(dlci_ioctl_set
);
865 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
866 unsigned int cmd
, unsigned long arg
)
869 void __user
*argp
= (void __user
*)arg
;
871 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
874 * If this ioctl is unknown try to hand it down
877 if (err
== -ENOIOCTLCMD
)
878 err
= dev_ioctl(net
, cmd
, argp
);
884 * With an ioctl, arg may well be a user mode pointer, but we don't know
885 * what to do with it - that's up to the protocol still.
888 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
892 void __user
*argp
= (void __user
*)arg
;
896 sock
= file
->private_data
;
899 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
900 err
= dev_ioctl(net
, cmd
, argp
);
902 #ifdef CONFIG_WEXT_CORE
903 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
904 err
= dev_ioctl(net
, cmd
, argp
);
911 if (get_user(pid
, (int __user
*)argp
))
913 f_setown(sock
->file
, pid
, 1);
918 err
= put_user(f_getown(sock
->file
),
927 request_module("bridge");
929 mutex_lock(&br_ioctl_mutex
);
931 err
= br_ioctl_hook(net
, cmd
, argp
);
932 mutex_unlock(&br_ioctl_mutex
);
937 if (!vlan_ioctl_hook
)
938 request_module("8021q");
940 mutex_lock(&vlan_ioctl_mutex
);
942 err
= vlan_ioctl_hook(net
, argp
);
943 mutex_unlock(&vlan_ioctl_mutex
);
948 if (!dlci_ioctl_hook
)
949 request_module("dlci");
951 mutex_lock(&dlci_ioctl_mutex
);
953 err
= dlci_ioctl_hook(cmd
, argp
);
954 mutex_unlock(&dlci_ioctl_mutex
);
957 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
963 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
966 struct socket
*sock
= NULL
;
968 err
= security_socket_create(family
, type
, protocol
, 1);
979 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
991 EXPORT_SYMBOL(sock_create_lite
);
993 /* No kernel lock held - perfect */
994 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
996 unsigned int busy_flag
= 0;
1000 * We can't return errors to poll, so it's either yes or no.
1002 sock
= file
->private_data
;
1004 if (sk_can_busy_loop(sock
->sk
)) {
1005 /* this socket can poll_ll so tell the system call */
1006 busy_flag
= POLL_BUSY_LOOP
;
1008 /* once, only if requested by syscall */
1009 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1010 sk_busy_loop(sock
->sk
, 1);
1013 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1016 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1018 struct socket
*sock
= file
->private_data
;
1020 return sock
->ops
->mmap(file
, sock
, vma
);
1023 static int sock_close(struct inode
*inode
, struct file
*filp
)
1025 sock_release(SOCKET_I(inode
));
1030 * Update the socket async list
1032 * Fasync_list locking strategy.
1034 * 1. fasync_list is modified only under process context socket lock
1035 * i.e. under semaphore.
1036 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1037 * or under socket lock
1040 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1042 struct socket
*sock
= filp
->private_data
;
1043 struct sock
*sk
= sock
->sk
;
1044 struct socket_wq
*wq
;
1050 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1051 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1053 if (!wq
->fasync_list
)
1054 sock_reset_flag(sk
, SOCK_FASYNC
);
1056 sock_set_flag(sk
, SOCK_FASYNC
);
1062 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1064 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1066 struct socket_wq
*wq
;
1071 wq
= rcu_dereference(sock
->wq
);
1072 if (!wq
|| !wq
->fasync_list
) {
1077 case SOCK_WAKE_WAITD
:
1078 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1081 case SOCK_WAKE_SPACE
:
1082 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1087 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1090 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1095 EXPORT_SYMBOL(sock_wake_async
);
1097 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1098 struct socket
**res
, int kern
)
1101 struct socket
*sock
;
1102 const struct net_proto_family
*pf
;
1105 * Check protocol is in range
1107 if (family
< 0 || family
>= NPROTO
)
1108 return -EAFNOSUPPORT
;
1109 if (type
< 0 || type
>= SOCK_MAX
)
1114 This uglymoron is moved from INET layer to here to avoid
1115 deadlock in module load.
1117 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1121 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1127 err
= security_socket_create(family
, type
, protocol
, kern
);
1132 * Allocate the socket and allow the family to set things up. if
1133 * the protocol is 0, the family is instructed to select an appropriate
1136 sock
= sock_alloc();
1138 net_warn_ratelimited("socket: no more sockets\n");
1139 return -ENFILE
; /* Not exactly a match, but its the
1140 closest posix thing */
1145 #ifdef CONFIG_MODULES
1146 /* Attempt to load a protocol module if the find failed.
1148 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149 * requested real, full-featured networking support upon configuration.
1150 * Otherwise module support will break!
1152 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1153 request_module("net-pf-%d", family
);
1157 pf
= rcu_dereference(net_families
[family
]);
1158 err
= -EAFNOSUPPORT
;
1163 * We will call the ->create function, that possibly is in a loadable
1164 * module, so we have to bump that loadable module refcnt first.
1166 if (!try_module_get(pf
->owner
))
1169 /* Now protected by module ref count */
1172 err
= pf
->create(net
, sock
, protocol
, kern
);
1174 goto out_module_put
;
1177 * Now to bump the refcnt of the [loadable] module that owns this
1178 * socket at sock_release time we decrement its refcnt.
1180 if (!try_module_get(sock
->ops
->owner
))
1181 goto out_module_busy
;
1184 * Now that we're done with the ->create function, the [loadable]
1185 * module can have its refcnt decremented
1187 module_put(pf
->owner
);
1188 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1190 goto out_sock_release
;
1196 err
= -EAFNOSUPPORT
;
1199 module_put(pf
->owner
);
1206 goto out_sock_release
;
1208 EXPORT_SYMBOL(__sock_create
);
1210 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1212 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1214 EXPORT_SYMBOL(sock_create
);
1216 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1218 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1220 EXPORT_SYMBOL(sock_create_kern
);
1222 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1225 struct socket
*sock
;
1228 /* Check the SOCK_* constants for consistency. */
1229 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1230 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1231 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1232 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1234 flags
= type
& ~SOCK_TYPE_MASK
;
1235 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1237 type
&= SOCK_TYPE_MASK
;
1239 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1240 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1242 retval
= sock_create(family
, type
, protocol
, &sock
);
1246 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1251 /* It may be already another descriptor 8) Not kernel problem. */
1260 * Create a pair of connected sockets.
1263 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1264 int __user
*, usockvec
)
1266 struct socket
*sock1
, *sock2
;
1268 struct file
*newfile1
, *newfile2
;
1271 flags
= type
& ~SOCK_TYPE_MASK
;
1272 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1274 type
&= SOCK_TYPE_MASK
;
1276 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1277 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1280 * Obtain the first socket and check if the underlying protocol
1281 * supports the socketpair call.
1284 err
= sock_create(family
, type
, protocol
, &sock1
);
1288 err
= sock_create(family
, type
, protocol
, &sock2
);
1292 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1294 goto out_release_both
;
1296 fd1
= get_unused_fd_flags(flags
);
1297 if (unlikely(fd1
< 0)) {
1299 goto out_release_both
;
1302 fd2
= get_unused_fd_flags(flags
);
1303 if (unlikely(fd2
< 0)) {
1305 goto out_put_unused_1
;
1308 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1309 if (unlikely(IS_ERR(newfile1
))) {
1310 err
= PTR_ERR(newfile1
);
1311 goto out_put_unused_both
;
1314 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1315 if (IS_ERR(newfile2
)) {
1316 err
= PTR_ERR(newfile2
);
1320 err
= put_user(fd1
, &usockvec
[0]);
1324 err
= put_user(fd2
, &usockvec
[1]);
1328 audit_fd_pair(fd1
, fd2
);
1330 fd_install(fd1
, newfile1
);
1331 fd_install(fd2
, newfile2
);
1332 /* fd1 and fd2 may be already another descriptors.
1333 * Not kernel problem.
1349 sock_release(sock2
);
1352 out_put_unused_both
:
1357 sock_release(sock2
);
1359 sock_release(sock1
);
1365 * Bind a name to a socket. Nothing much to do here since it's
1366 * the protocol's responsibility to handle the local address.
1368 * We move the socket address to kernel space before we call
1369 * the protocol layer (having also checked the address is ok).
1372 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1374 struct socket
*sock
;
1375 struct sockaddr_storage address
;
1376 int err
, fput_needed
;
1378 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1380 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1382 err
= security_socket_bind(sock
,
1383 (struct sockaddr
*)&address
,
1386 err
= sock
->ops
->bind(sock
,
1390 fput_light(sock
->file
, fput_needed
);
1396 * Perform a listen. Basically, we allow the protocol to do anything
1397 * necessary for a listen, and if that works, we mark the socket as
1398 * ready for listening.
1401 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1403 struct socket
*sock
;
1404 int err
, fput_needed
;
1407 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1409 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1410 if ((unsigned int)backlog
> somaxconn
)
1411 backlog
= somaxconn
;
1413 err
= security_socket_listen(sock
, backlog
);
1415 err
= sock
->ops
->listen(sock
, backlog
);
1417 fput_light(sock
->file
, fput_needed
);
1423 * For accept, we attempt to create a new socket, set up the link
1424 * with the client, wake up the client, then return the new
1425 * connected fd. We collect the address of the connector in kernel
1426 * space and move it to user at the very end. This is unclean because
1427 * we open the socket then return an error.
1429 * 1003.1g adds the ability to recvmsg() to query connection pending
1430 * status to recvmsg. We need to add that support in a way thats
1431 * clean when we restucture accept also.
1434 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1435 int __user
*, upeer_addrlen
, int, flags
)
1437 struct socket
*sock
, *newsock
;
1438 struct file
*newfile
;
1439 int err
, len
, newfd
, fput_needed
;
1440 struct sockaddr_storage address
;
1442 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1445 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1446 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1448 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1453 newsock
= sock_alloc();
1457 newsock
->type
= sock
->type
;
1458 newsock
->ops
= sock
->ops
;
1461 * We don't need try_module_get here, as the listening socket (sock)
1462 * has the protocol module (sock->ops->owner) held.
1464 __module_get(newsock
->ops
->owner
);
1466 newfd
= get_unused_fd_flags(flags
);
1467 if (unlikely(newfd
< 0)) {
1469 sock_release(newsock
);
1472 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1473 if (unlikely(IS_ERR(newfile
))) {
1474 err
= PTR_ERR(newfile
);
1475 put_unused_fd(newfd
);
1476 sock_release(newsock
);
1480 err
= security_socket_accept(sock
, newsock
);
1484 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1488 if (upeer_sockaddr
) {
1489 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1491 err
= -ECONNABORTED
;
1494 err
= move_addr_to_user(&address
,
1495 len
, upeer_sockaddr
, upeer_addrlen
);
1500 /* File flags are not inherited via accept() unlike another OSes. */
1502 fd_install(newfd
, newfile
);
1506 fput_light(sock
->file
, fput_needed
);
1511 put_unused_fd(newfd
);
1515 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1516 int __user
*, upeer_addrlen
)
1518 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1522 * Attempt to connect to a socket with the server address. The address
1523 * is in user space so we verify it is OK and move it to kernel space.
1525 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1528 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1529 * other SEQPACKET protocols that take time to connect() as it doesn't
1530 * include the -EINPROGRESS status for such sockets.
1533 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1536 struct socket
*sock
;
1537 struct sockaddr_storage address
;
1538 int err
, fput_needed
;
1540 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1543 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1548 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1552 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1553 sock
->file
->f_flags
);
1555 fput_light(sock
->file
, fput_needed
);
1561 * Get the local address ('name') of a socket object. Move the obtained
1562 * name to user space.
1565 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1566 int __user
*, usockaddr_len
)
1568 struct socket
*sock
;
1569 struct sockaddr_storage address
;
1570 int len
, err
, fput_needed
;
1572 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1576 err
= security_socket_getsockname(sock
);
1580 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1583 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1586 fput_light(sock
->file
, fput_needed
);
1592 * Get the remote address ('name') of a socket object. Move the obtained
1593 * name to user space.
1596 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1597 int __user
*, usockaddr_len
)
1599 struct socket
*sock
;
1600 struct sockaddr_storage address
;
1601 int len
, err
, fput_needed
;
1603 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1605 err
= security_socket_getpeername(sock
);
1607 fput_light(sock
->file
, fput_needed
);
1612 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1615 err
= move_addr_to_user(&address
, len
, usockaddr
,
1617 fput_light(sock
->file
, fput_needed
);
1623 * Send a datagram to a given address. We move the address into kernel
1624 * space and check the user space data area is readable before invoking
1628 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1629 unsigned int, flags
, struct sockaddr __user
*, addr
,
1632 struct socket
*sock
;
1633 struct sockaddr_storage address
;
1639 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1642 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1646 msg
.msg_name
= NULL
;
1647 msg
.msg_control
= NULL
;
1648 msg
.msg_controllen
= 0;
1649 msg
.msg_namelen
= 0;
1651 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1654 msg
.msg_name
= (struct sockaddr
*)&address
;
1655 msg
.msg_namelen
= addr_len
;
1657 if (sock
->file
->f_flags
& O_NONBLOCK
)
1658 flags
|= MSG_DONTWAIT
;
1659 msg
.msg_flags
= flags
;
1660 err
= sock_sendmsg(sock
, &msg
);
1663 fput_light(sock
->file
, fput_needed
);
1669 * Send a datagram down a socket.
1672 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1673 unsigned int, flags
)
1675 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1679 * Receive a frame from the socket and optionally record the address of the
1680 * sender. We verify the buffers are writable and if needed move the
1681 * sender address from kernel to user space.
1684 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1685 unsigned int, flags
, struct sockaddr __user
*, addr
,
1686 int __user
*, addr_len
)
1688 struct socket
*sock
;
1691 struct sockaddr_storage address
;
1695 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1698 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1702 msg
.msg_control
= NULL
;
1703 msg
.msg_controllen
= 0;
1704 /* Save some cycles and don't copy the address if not needed */
1705 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1706 /* We assume all kernel code knows the size of sockaddr_storage */
1707 msg
.msg_namelen
= 0;
1708 if (sock
->file
->f_flags
& O_NONBLOCK
)
1709 flags
|= MSG_DONTWAIT
;
1710 err
= sock_recvmsg(sock
, &msg
, iov_iter_count(&msg
.msg_iter
), flags
);
1712 if (err
>= 0 && addr
!= NULL
) {
1713 err2
= move_addr_to_user(&address
,
1714 msg
.msg_namelen
, addr
, addr_len
);
1719 fput_light(sock
->file
, fput_needed
);
1725 * Receive a datagram from a socket.
1728 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1729 unsigned int, flags
)
1731 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1735 * Set a socket option. Because we don't know the option lengths we have
1736 * to pass the user mode parameter for the protocols to sort out.
1739 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1740 char __user
*, optval
, int, optlen
)
1742 int err
, fput_needed
;
1743 struct socket
*sock
;
1748 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1750 err
= security_socket_setsockopt(sock
, level
, optname
);
1754 if (level
== SOL_SOCKET
)
1756 sock_setsockopt(sock
, level
, optname
, optval
,
1760 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1763 fput_light(sock
->file
, fput_needed
);
1769 * Get a socket option. Because we don't know the option lengths we have
1770 * to pass a user mode parameter for the protocols to sort out.
1773 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1774 char __user
*, optval
, int __user
*, optlen
)
1776 int err
, fput_needed
;
1777 struct socket
*sock
;
1779 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1781 err
= security_socket_getsockopt(sock
, level
, optname
);
1785 if (level
== SOL_SOCKET
)
1787 sock_getsockopt(sock
, level
, optname
, optval
,
1791 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1794 fput_light(sock
->file
, fput_needed
);
1800 * Shutdown a socket.
1803 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1805 int err
, fput_needed
;
1806 struct socket
*sock
;
1808 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1810 err
= security_socket_shutdown(sock
, how
);
1812 err
= sock
->ops
->shutdown(sock
, how
);
1813 fput_light(sock
->file
, fput_needed
);
1818 /* A couple of helpful macros for getting the address of the 32/64 bit
1819 * fields which are the same type (int / unsigned) on our platforms.
1821 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1822 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1823 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1825 struct used_address
{
1826 struct sockaddr_storage name
;
1827 unsigned int name_len
;
1830 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1831 struct user_msghdr __user
*umsg
,
1832 struct sockaddr __user
**save_addr
,
1835 struct sockaddr __user
*uaddr
;
1836 struct iovec __user
*uiov
;
1840 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1841 __get_user(uaddr
, &umsg
->msg_name
) ||
1842 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1843 __get_user(uiov
, &umsg
->msg_iov
) ||
1844 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1845 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1846 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1847 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1851 kmsg
->msg_namelen
= 0;
1853 if (kmsg
->msg_namelen
< 0)
1856 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1857 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1862 if (uaddr
&& kmsg
->msg_namelen
) {
1864 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1870 kmsg
->msg_name
= NULL
;
1871 kmsg
->msg_namelen
= 0;
1874 if (nr_segs
> UIO_MAXIOV
)
1877 kmsg
->msg_iocb
= NULL
;
1879 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1880 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1883 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1884 struct msghdr
*msg_sys
, unsigned int flags
,
1885 struct used_address
*used_address
)
1887 struct compat_msghdr __user
*msg_compat
=
1888 (struct compat_msghdr __user
*)msg
;
1889 struct sockaddr_storage address
;
1890 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1891 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1892 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1893 /* 20 is size of ipv6_pktinfo */
1894 unsigned char *ctl_buf
= ctl
;
1898 msg_sys
->msg_name
= &address
;
1900 if (MSG_CMSG_COMPAT
& flags
)
1901 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1903 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1909 if (msg_sys
->msg_controllen
> INT_MAX
)
1911 ctl_len
= msg_sys
->msg_controllen
;
1912 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1914 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1918 ctl_buf
= msg_sys
->msg_control
;
1919 ctl_len
= msg_sys
->msg_controllen
;
1920 } else if (ctl_len
) {
1921 if (ctl_len
> sizeof(ctl
)) {
1922 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1923 if (ctl_buf
== NULL
)
1928 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1929 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1930 * checking falls down on this.
1932 if (copy_from_user(ctl_buf
,
1933 (void __user __force
*)msg_sys
->msg_control
,
1936 msg_sys
->msg_control
= ctl_buf
;
1938 msg_sys
->msg_flags
= flags
;
1940 if (sock
->file
->f_flags
& O_NONBLOCK
)
1941 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1943 * If this is sendmmsg() and current destination address is same as
1944 * previously succeeded address, omit asking LSM's decision.
1945 * used_address->name_len is initialized to UINT_MAX so that the first
1946 * destination address never matches.
1948 if (used_address
&& msg_sys
->msg_name
&&
1949 used_address
->name_len
== msg_sys
->msg_namelen
&&
1950 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1951 used_address
->name_len
)) {
1952 err
= sock_sendmsg_nosec(sock
, msg_sys
);
1955 err
= sock_sendmsg(sock
, msg_sys
);
1957 * If this is sendmmsg() and sending to current destination address was
1958 * successful, remember it.
1960 if (used_address
&& err
>= 0) {
1961 used_address
->name_len
= msg_sys
->msg_namelen
;
1962 if (msg_sys
->msg_name
)
1963 memcpy(&used_address
->name
, msg_sys
->msg_name
,
1964 used_address
->name_len
);
1969 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1976 * BSD sendmsg interface
1979 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
1981 int fput_needed
, err
;
1982 struct msghdr msg_sys
;
1983 struct socket
*sock
;
1985 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1989 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
1991 fput_light(sock
->file
, fput_needed
);
1996 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
1998 if (flags
& MSG_CMSG_COMPAT
)
2000 return __sys_sendmsg(fd
, msg
, flags
);
2004 * Linux sendmmsg interface
2007 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2010 int fput_needed
, err
, datagrams
;
2011 struct socket
*sock
;
2012 struct mmsghdr __user
*entry
;
2013 struct compat_mmsghdr __user
*compat_entry
;
2014 struct msghdr msg_sys
;
2015 struct used_address used_address
;
2017 if (vlen
> UIO_MAXIOV
)
2022 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2026 used_address
.name_len
= UINT_MAX
;
2028 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2031 while (datagrams
< vlen
) {
2032 if (MSG_CMSG_COMPAT
& flags
) {
2033 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2034 &msg_sys
, flags
, &used_address
);
2037 err
= __put_user(err
, &compat_entry
->msg_len
);
2040 err
= ___sys_sendmsg(sock
,
2041 (struct user_msghdr __user
*)entry
,
2042 &msg_sys
, flags
, &used_address
);
2045 err
= put_user(err
, &entry
->msg_len
);
2054 fput_light(sock
->file
, fput_needed
);
2056 /* We only return an error if no datagrams were able to be sent */
2063 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2064 unsigned int, vlen
, unsigned int, flags
)
2066 if (flags
& MSG_CMSG_COMPAT
)
2068 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2071 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2072 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2074 struct compat_msghdr __user
*msg_compat
=
2075 (struct compat_msghdr __user
*)msg
;
2076 struct iovec iovstack
[UIO_FASTIOV
];
2077 struct iovec
*iov
= iovstack
;
2078 unsigned long cmsg_ptr
;
2082 /* kernel mode address */
2083 struct sockaddr_storage addr
;
2085 /* user mode address pointers */
2086 struct sockaddr __user
*uaddr
;
2087 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2089 msg_sys
->msg_name
= &addr
;
2091 if (MSG_CMSG_COMPAT
& flags
)
2092 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2094 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2097 total_len
= iov_iter_count(&msg_sys
->msg_iter
);
2099 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2100 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2102 /* We assume all kernel code knows the size of sockaddr_storage */
2103 msg_sys
->msg_namelen
= 0;
2105 if (sock
->file
->f_flags
& O_NONBLOCK
)
2106 flags
|= MSG_DONTWAIT
;
2107 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2113 if (uaddr
!= NULL
) {
2114 err
= move_addr_to_user(&addr
,
2115 msg_sys
->msg_namelen
, uaddr
,
2120 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2124 if (MSG_CMSG_COMPAT
& flags
)
2125 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2126 &msg_compat
->msg_controllen
);
2128 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2129 &msg
->msg_controllen
);
2140 * BSD recvmsg interface
2143 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2145 int fput_needed
, err
;
2146 struct msghdr msg_sys
;
2147 struct socket
*sock
;
2149 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2153 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2155 fput_light(sock
->file
, fput_needed
);
2160 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2161 unsigned int, flags
)
2163 if (flags
& MSG_CMSG_COMPAT
)
2165 return __sys_recvmsg(fd
, msg
, flags
);
2169 * Linux recvmmsg interface
2172 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2173 unsigned int flags
, struct timespec
*timeout
)
2175 int fput_needed
, err
, datagrams
;
2176 struct socket
*sock
;
2177 struct mmsghdr __user
*entry
;
2178 struct compat_mmsghdr __user
*compat_entry
;
2179 struct msghdr msg_sys
;
2180 struct timespec end_time
;
2183 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2189 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2193 err
= sock_error(sock
->sk
);
2198 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2200 while (datagrams
< vlen
) {
2202 * No need to ask LSM for more than the first datagram.
2204 if (MSG_CMSG_COMPAT
& flags
) {
2205 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2206 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2210 err
= __put_user(err
, &compat_entry
->msg_len
);
2213 err
= ___sys_recvmsg(sock
,
2214 (struct user_msghdr __user
*)entry
,
2215 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2219 err
= put_user(err
, &entry
->msg_len
);
2227 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2228 if (flags
& MSG_WAITFORONE
)
2229 flags
|= MSG_DONTWAIT
;
2232 ktime_get_ts(timeout
);
2233 *timeout
= timespec_sub(end_time
, *timeout
);
2234 if (timeout
->tv_sec
< 0) {
2235 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2239 /* Timeout, return less than vlen datagrams */
2240 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2244 /* Out of band data, return right away */
2245 if (msg_sys
.msg_flags
& MSG_OOB
)
2250 fput_light(sock
->file
, fput_needed
);
2255 if (datagrams
!= 0) {
2257 * We may return less entries than requested (vlen) if the
2258 * sock is non block and there aren't enough datagrams...
2260 if (err
!= -EAGAIN
) {
2262 * ... or if recvmsg returns an error after we
2263 * received some datagrams, where we record the
2264 * error to return on the next call or if the
2265 * app asks about it using getsockopt(SO_ERROR).
2267 sock
->sk
->sk_err
= -err
;
2276 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2277 unsigned int, vlen
, unsigned int, flags
,
2278 struct timespec __user
*, timeout
)
2281 struct timespec timeout_sys
;
2283 if (flags
& MSG_CMSG_COMPAT
)
2287 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2289 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2292 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2294 if (datagrams
> 0 &&
2295 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2296 datagrams
= -EFAULT
;
2301 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2302 /* Argument list sizes for sys_socketcall */
2303 #define AL(x) ((x) * sizeof(unsigned long))
2304 static const unsigned char nargs
[21] = {
2305 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2306 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2307 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2314 * System call vectors.
2316 * Argument checking cleaned up. Saved 20% in size.
2317 * This function doesn't need to set the kernel lock because
2318 * it is set by the callees.
2321 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2323 unsigned long a
[AUDITSC_ARGS
];
2324 unsigned long a0
, a1
;
2328 if (call
< 1 || call
> SYS_SENDMMSG
)
2332 if (len
> sizeof(a
))
2335 /* copy_from_user should be SMP safe. */
2336 if (copy_from_user(a
, args
, len
))
2339 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2348 err
= sys_socket(a0
, a1
, a
[2]);
2351 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2354 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2357 err
= sys_listen(a0
, a1
);
2360 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2361 (int __user
*)a
[2], 0);
2363 case SYS_GETSOCKNAME
:
2365 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2366 (int __user
*)a
[2]);
2368 case SYS_GETPEERNAME
:
2370 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2371 (int __user
*)a
[2]);
2373 case SYS_SOCKETPAIR
:
2374 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2377 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2380 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2381 (struct sockaddr __user
*)a
[4], a
[5]);
2384 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2387 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2388 (struct sockaddr __user
*)a
[4],
2389 (int __user
*)a
[5]);
2392 err
= sys_shutdown(a0
, a1
);
2394 case SYS_SETSOCKOPT
:
2395 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2397 case SYS_GETSOCKOPT
:
2399 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2400 (int __user
*)a
[4]);
2403 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2406 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2409 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2412 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2413 (struct timespec __user
*)a
[4]);
2416 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2417 (int __user
*)a
[2], a
[3]);
2426 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2429 * sock_register - add a socket protocol handler
2430 * @ops: description of protocol
2432 * This function is called by a protocol handler that wants to
2433 * advertise its address family, and have it linked into the
2434 * socket interface. The value ops->family corresponds to the
2435 * socket system call protocol family.
2437 int sock_register(const struct net_proto_family
*ops
)
2441 if (ops
->family
>= NPROTO
) {
2442 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2446 spin_lock(&net_family_lock
);
2447 if (rcu_dereference_protected(net_families
[ops
->family
],
2448 lockdep_is_held(&net_family_lock
)))
2451 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2454 spin_unlock(&net_family_lock
);
2456 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2459 EXPORT_SYMBOL(sock_register
);
2462 * sock_unregister - remove a protocol handler
2463 * @family: protocol family to remove
2465 * This function is called by a protocol handler that wants to
2466 * remove its address family, and have it unlinked from the
2467 * new socket creation.
2469 * If protocol handler is a module, then it can use module reference
2470 * counts to protect against new references. If protocol handler is not
2471 * a module then it needs to provide its own protection in
2472 * the ops->create routine.
2474 void sock_unregister(int family
)
2476 BUG_ON(family
< 0 || family
>= NPROTO
);
2478 spin_lock(&net_family_lock
);
2479 RCU_INIT_POINTER(net_families
[family
], NULL
);
2480 spin_unlock(&net_family_lock
);
2484 pr_info("NET: Unregistered protocol family %d\n", family
);
2486 EXPORT_SYMBOL(sock_unregister
);
2488 static int __init
sock_init(void)
2492 * Initialize the network sysctl infrastructure.
2494 err
= net_sysctl_init();
2499 * Initialize skbuff SLAB cache
2504 * Initialize the protocols module.
2509 err
= register_filesystem(&sock_fs_type
);
2512 sock_mnt
= kern_mount(&sock_fs_type
);
2513 if (IS_ERR(sock_mnt
)) {
2514 err
= PTR_ERR(sock_mnt
);
2518 /* The real protocol initialization is performed in later initcalls.
2521 #ifdef CONFIG_NETFILTER
2522 err
= netfilter_init();
2527 ptp_classifier_init();
2533 unregister_filesystem(&sock_fs_type
);
2538 core_initcall(sock_init
); /* early initcall */
2540 #ifdef CONFIG_PROC_FS
2541 void socket_seq_show(struct seq_file
*seq
)
2546 for_each_possible_cpu(cpu
)
2547 counter
+= per_cpu(sockets_in_use
, cpu
);
2549 /* It can be negative, by the way. 8) */
2553 seq_printf(seq
, "sockets: used %d\n", counter
);
2555 #endif /* CONFIG_PROC_FS */
2557 #ifdef CONFIG_COMPAT
2558 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2559 unsigned int cmd
, void __user
*up
)
2561 mm_segment_t old_fs
= get_fs();
2566 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2569 err
= compat_put_timeval(&ktv
, up
);
2574 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2575 unsigned int cmd
, void __user
*up
)
2577 mm_segment_t old_fs
= get_fs();
2578 struct timespec kts
;
2582 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2585 err
= compat_put_timespec(&kts
, up
);
2590 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2592 struct ifreq __user
*uifr
;
2595 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2596 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2599 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2603 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2609 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2611 struct compat_ifconf ifc32
;
2613 struct ifconf __user
*uifc
;
2614 struct compat_ifreq __user
*ifr32
;
2615 struct ifreq __user
*ifr
;
2619 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2622 memset(&ifc
, 0, sizeof(ifc
));
2623 if (ifc32
.ifcbuf
== 0) {
2627 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2629 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2630 sizeof(struct ifreq
);
2631 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2633 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2634 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2635 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2636 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2642 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2645 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2649 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2653 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2655 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2656 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2657 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2663 if (ifc32
.ifcbuf
== 0) {
2664 /* Translate from 64-bit structure multiple to
2668 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2673 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2679 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2681 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2682 bool convert_in
= false, convert_out
= false;
2683 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2684 struct ethtool_rxnfc __user
*rxnfc
;
2685 struct ifreq __user
*ifr
;
2686 u32 rule_cnt
= 0, actual_rule_cnt
;
2691 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2694 compat_rxnfc
= compat_ptr(data
);
2696 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2699 /* Most ethtool structures are defined without padding.
2700 * Unfortunately struct ethtool_rxnfc is an exception.
2705 case ETHTOOL_GRXCLSRLALL
:
2706 /* Buffer size is variable */
2707 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2709 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2711 buf_size
+= rule_cnt
* sizeof(u32
);
2713 case ETHTOOL_GRXRINGS
:
2714 case ETHTOOL_GRXCLSRLCNT
:
2715 case ETHTOOL_GRXCLSRULE
:
2716 case ETHTOOL_SRXCLSRLINS
:
2719 case ETHTOOL_SRXCLSRLDEL
:
2720 buf_size
+= sizeof(struct ethtool_rxnfc
);
2725 ifr
= compat_alloc_user_space(buf_size
);
2726 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2728 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2731 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2732 &ifr
->ifr_ifru
.ifru_data
))
2736 /* We expect there to be holes between fs.m_ext and
2737 * fs.ring_cookie and at the end of fs, but nowhere else.
2739 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2740 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2741 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2742 sizeof(rxnfc
->fs
.m_ext
));
2744 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2745 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2746 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2747 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2749 if (copy_in_user(rxnfc
, compat_rxnfc
,
2750 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2751 (void __user
*)rxnfc
) ||
2752 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2753 &compat_rxnfc
->fs
.ring_cookie
,
2754 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2755 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2756 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2757 sizeof(rxnfc
->rule_cnt
)))
2761 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2766 if (copy_in_user(compat_rxnfc
, rxnfc
,
2767 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2768 (const void __user
*)rxnfc
) ||
2769 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2770 &rxnfc
->fs
.ring_cookie
,
2771 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2772 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2773 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2774 sizeof(rxnfc
->rule_cnt
)))
2777 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2778 /* As an optimisation, we only copy the actual
2779 * number of rules that the underlying
2780 * function returned. Since Mallory might
2781 * change the rule count in user memory, we
2782 * check that it is less than the rule count
2783 * originally given (as the user buffer size),
2784 * which has been range-checked.
2786 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2788 if (actual_rule_cnt
< rule_cnt
)
2789 rule_cnt
= actual_rule_cnt
;
2790 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2791 &rxnfc
->rule_locs
[0],
2792 rule_cnt
* sizeof(u32
)))
2800 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2803 compat_uptr_t uptr32
;
2804 struct ifreq __user
*uifr
;
2806 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2807 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2810 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2813 uptr
= compat_ptr(uptr32
);
2815 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2818 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2821 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2822 struct compat_ifreq __user
*ifr32
)
2825 mm_segment_t old_fs
;
2829 case SIOCBONDENSLAVE
:
2830 case SIOCBONDRELEASE
:
2831 case SIOCBONDSETHWADDR
:
2832 case SIOCBONDCHANGEACTIVE
:
2833 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2838 err
= dev_ioctl(net
, cmd
,
2839 (struct ifreq __user __force
*) &kifr
);
2844 return -ENOIOCTLCMD
;
2848 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2849 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2850 struct compat_ifreq __user
*u_ifreq32
)
2852 struct ifreq __user
*u_ifreq64
;
2853 char tmp_buf
[IFNAMSIZ
];
2854 void __user
*data64
;
2857 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2860 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2862 data64
= compat_ptr(data32
);
2864 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2866 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2869 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2872 return dev_ioctl(net
, cmd
, u_ifreq64
);
2875 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2876 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2878 struct ifreq __user
*uifr
;
2881 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2882 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2885 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2896 case SIOCGIFBRDADDR
:
2897 case SIOCGIFDSTADDR
:
2898 case SIOCGIFNETMASK
:
2903 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2911 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2912 struct compat_ifreq __user
*uifr32
)
2915 struct compat_ifmap __user
*uifmap32
;
2916 mm_segment_t old_fs
;
2919 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2920 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2921 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2922 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2923 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2924 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2925 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2926 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2932 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2935 if (cmd
== SIOCGIFMAP
&& !err
) {
2936 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2937 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2938 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2939 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2940 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2941 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2942 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2951 struct sockaddr rt_dst
; /* target address */
2952 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2953 struct sockaddr rt_genmask
; /* target network mask (IP) */
2954 unsigned short rt_flags
;
2957 unsigned char rt_tos
;
2958 unsigned char rt_class
;
2960 short rt_metric
; /* +1 for binary compatibility! */
2961 /* char * */ u32 rt_dev
; /* forcing the device at add */
2962 u32 rt_mtu
; /* per route MTU/Window */
2963 u32 rt_window
; /* Window clamping */
2964 unsigned short rt_irtt
; /* Initial RTT */
2967 struct in6_rtmsg32
{
2968 struct in6_addr rtmsg_dst
;
2969 struct in6_addr rtmsg_src
;
2970 struct in6_addr rtmsg_gateway
;
2980 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
2981 unsigned int cmd
, void __user
*argp
)
2985 struct in6_rtmsg r6
;
2989 mm_segment_t old_fs
= get_fs();
2991 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
2992 struct in6_rtmsg32 __user
*ur6
= argp
;
2993 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
2994 3 * sizeof(struct in6_addr
));
2995 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
2996 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
2997 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
2998 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
2999 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3000 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3001 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3005 struct rtentry32 __user
*ur4
= argp
;
3006 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3007 3 * sizeof(struct sockaddr
));
3008 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3009 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3010 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3011 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3012 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3013 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3015 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3016 r4
.rt_dev
= (char __user __force
*)devname
;
3030 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3037 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3038 * for some operations; this forces use of the newer bridge-utils that
3039 * use compatible ioctls
3041 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3045 if (get_user(tmp
, argp
))
3047 if (tmp
== BRCTL_GET_VERSION
)
3048 return BRCTL_VERSION
+ 1;
3052 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3053 unsigned int cmd
, unsigned long arg
)
3055 void __user
*argp
= compat_ptr(arg
);
3056 struct sock
*sk
= sock
->sk
;
3057 struct net
*net
= sock_net(sk
);
3059 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3060 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3065 return old_bridge_ioctl(argp
);
3067 return dev_ifname32(net
, argp
);
3069 return dev_ifconf(net
, argp
);
3071 return ethtool_ioctl(net
, argp
);
3073 return compat_siocwandev(net
, argp
);
3076 return compat_sioc_ifmap(net
, cmd
, argp
);
3077 case SIOCBONDENSLAVE
:
3078 case SIOCBONDRELEASE
:
3079 case SIOCBONDSETHWADDR
:
3080 case SIOCBONDCHANGEACTIVE
:
3081 return bond_ioctl(net
, cmd
, argp
);
3084 return routing_ioctl(net
, sock
, cmd
, argp
);
3086 return do_siocgstamp(net
, sock
, cmd
, argp
);
3088 return do_siocgstampns(net
, sock
, cmd
, argp
);
3089 case SIOCBONDSLAVEINFOQUERY
:
3090 case SIOCBONDINFOQUERY
:
3093 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3105 return sock_ioctl(file
, cmd
, arg
);
3122 case SIOCSIFHWBROADCAST
:
3124 case SIOCGIFBRDADDR
:
3125 case SIOCSIFBRDADDR
:
3126 case SIOCGIFDSTADDR
:
3127 case SIOCSIFDSTADDR
:
3128 case SIOCGIFNETMASK
:
3129 case SIOCSIFNETMASK
:
3140 return dev_ifsioc(net
, sock
, cmd
, argp
);
3146 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3149 return -ENOIOCTLCMD
;
3152 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3155 struct socket
*sock
= file
->private_data
;
3156 int ret
= -ENOIOCTLCMD
;
3163 if (sock
->ops
->compat_ioctl
)
3164 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3166 if (ret
== -ENOIOCTLCMD
&&
3167 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3168 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3170 if (ret
== -ENOIOCTLCMD
)
3171 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3177 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3179 return sock
->ops
->bind(sock
, addr
, addrlen
);
3181 EXPORT_SYMBOL(kernel_bind
);
3183 int kernel_listen(struct socket
*sock
, int backlog
)
3185 return sock
->ops
->listen(sock
, backlog
);
3187 EXPORT_SYMBOL(kernel_listen
);
3189 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3191 struct sock
*sk
= sock
->sk
;
3194 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3199 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3201 sock_release(*newsock
);
3206 (*newsock
)->ops
= sock
->ops
;
3207 __module_get((*newsock
)->ops
->owner
);
3212 EXPORT_SYMBOL(kernel_accept
);
3214 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3217 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3219 EXPORT_SYMBOL(kernel_connect
);
3221 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3224 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3226 EXPORT_SYMBOL(kernel_getsockname
);
3228 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3231 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3233 EXPORT_SYMBOL(kernel_getpeername
);
3235 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3236 char *optval
, int *optlen
)
3238 mm_segment_t oldfs
= get_fs();
3239 char __user
*uoptval
;
3240 int __user
*uoptlen
;
3243 uoptval
= (char __user __force
*) optval
;
3244 uoptlen
= (int __user __force
*) optlen
;
3247 if (level
== SOL_SOCKET
)
3248 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3250 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3255 EXPORT_SYMBOL(kernel_getsockopt
);
3257 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3258 char *optval
, unsigned int optlen
)
3260 mm_segment_t oldfs
= get_fs();
3261 char __user
*uoptval
;
3264 uoptval
= (char __user __force
*) optval
;
3267 if (level
== SOL_SOCKET
)
3268 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3270 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3275 EXPORT_SYMBOL(kernel_setsockopt
);
3277 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3278 size_t size
, int flags
)
3280 if (sock
->ops
->sendpage
)
3281 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3283 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3285 EXPORT_SYMBOL(kernel_sendpage
);
3287 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3289 mm_segment_t oldfs
= get_fs();
3293 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3298 EXPORT_SYMBOL(kernel_sock_ioctl
);
3300 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3302 return sock
->ops
->shutdown(sock
, how
);
3304 EXPORT_SYMBOL(kernel_sock_shutdown
);