iscsi-target: add void (*iscsit_get_rx_pdu)()
[linux/fpc-iii.git] / mm / util.c
blob6cc81e7b870523342cb8882ba222149644d894ac
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
18 #include "internal.h"
20 static inline int is_kernel_rodata(unsigned long addr)
22 return addr >= (unsigned long)__start_rodata &&
23 addr < (unsigned long)__end_rodata;
26 /**
27 * kfree_const - conditionally free memory
28 * @x: pointer to the memory
30 * Function calls kfree only if @x is not in .rodata section.
32 void kfree_const(const void *x)
34 if (!is_kernel_rodata((unsigned long)x))
35 kfree(x);
37 EXPORT_SYMBOL(kfree_const);
39 /**
40 * kstrdup - allocate space for and copy an existing string
41 * @s: the string to duplicate
42 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
44 char *kstrdup(const char *s, gfp_t gfp)
46 size_t len;
47 char *buf;
49 if (!s)
50 return NULL;
52 len = strlen(s) + 1;
53 buf = kmalloc_track_caller(len, gfp);
54 if (buf)
55 memcpy(buf, s, len);
56 return buf;
58 EXPORT_SYMBOL(kstrdup);
60 /**
61 * kstrdup_const - conditionally duplicate an existing const string
62 * @s: the string to duplicate
63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
65 * Function returns source string if it is in .rodata section otherwise it
66 * fallbacks to kstrdup.
67 * Strings allocated by kstrdup_const should be freed by kfree_const.
69 const char *kstrdup_const(const char *s, gfp_t gfp)
71 if (is_kernel_rodata((unsigned long)s))
72 return s;
74 return kstrdup(s, gfp);
76 EXPORT_SYMBOL(kstrdup_const);
78 /**
79 * kstrndup - allocate space for and copy an existing string
80 * @s: the string to duplicate
81 * @max: read at most @max chars from @s
82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
86 size_t len;
87 char *buf;
89 if (!s)
90 return NULL;
92 len = strnlen(s, max);
93 buf = kmalloc_track_caller(len+1, gfp);
94 if (buf) {
95 memcpy(buf, s, len);
96 buf[len] = '\0';
98 return buf;
100 EXPORT_SYMBOL(kstrndup);
103 * kmemdup - duplicate region of memory
105 * @src: memory region to duplicate
106 * @len: memory region length
107 * @gfp: GFP mask to use
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
111 void *p;
113 p = kmalloc_track_caller(len, gfp);
114 if (p)
115 memcpy(p, src, len);
116 return p;
118 EXPORT_SYMBOL(kmemdup);
121 * memdup_user - duplicate memory region from user space
123 * @src: source address in user space
124 * @len: number of bytes to copy
126 * Returns an ERR_PTR() on failure.
128 void *memdup_user(const void __user *src, size_t len)
130 void *p;
133 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 * cause pagefault, which makes it pointless to use GFP_NOFS
135 * or GFP_ATOMIC.
137 p = kmalloc_track_caller(len, GFP_KERNEL);
138 if (!p)
139 return ERR_PTR(-ENOMEM);
141 if (copy_from_user(p, src, len)) {
142 kfree(p);
143 return ERR_PTR(-EFAULT);
146 return p;
148 EXPORT_SYMBOL(memdup_user);
151 * strndup_user - duplicate an existing string from user space
152 * @s: The string to duplicate
153 * @n: Maximum number of bytes to copy, including the trailing NUL.
155 char *strndup_user(const char __user *s, long n)
157 char *p;
158 long length;
160 length = strnlen_user(s, n);
162 if (!length)
163 return ERR_PTR(-EFAULT);
165 if (length > n)
166 return ERR_PTR(-EINVAL);
168 p = memdup_user(s, length);
170 if (IS_ERR(p))
171 return p;
173 p[length - 1] = '\0';
175 return p;
177 EXPORT_SYMBOL(strndup_user);
180 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
182 * @src: source address in user space
183 * @len: number of bytes to copy
185 * Returns an ERR_PTR() on failure.
187 void *memdup_user_nul(const void __user *src, size_t len)
189 char *p;
192 * Always use GFP_KERNEL, since copy_from_user() can sleep and
193 * cause pagefault, which makes it pointless to use GFP_NOFS
194 * or GFP_ATOMIC.
196 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
197 if (!p)
198 return ERR_PTR(-ENOMEM);
200 if (copy_from_user(p, src, len)) {
201 kfree(p);
202 return ERR_PTR(-EFAULT);
204 p[len] = '\0';
206 return p;
208 EXPORT_SYMBOL(memdup_user_nul);
210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
211 struct vm_area_struct *prev, struct rb_node *rb_parent)
213 struct vm_area_struct *next;
215 vma->vm_prev = prev;
216 if (prev) {
217 next = prev->vm_next;
218 prev->vm_next = vma;
219 } else {
220 mm->mmap = vma;
221 if (rb_parent)
222 next = rb_entry(rb_parent,
223 struct vm_area_struct, vm_rb);
224 else
225 next = NULL;
227 vma->vm_next = next;
228 if (next)
229 next->vm_prev = vma;
232 /* Check if the vma is being used as a stack by this task */
233 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t)
235 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
238 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
239 void arch_pick_mmap_layout(struct mm_struct *mm)
241 mm->mmap_base = TASK_UNMAPPED_BASE;
242 mm->get_unmapped_area = arch_get_unmapped_area;
244 #endif
247 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
248 * back to the regular GUP.
249 * If the architecture not support this function, simply return with no
250 * page pinned
252 int __weak __get_user_pages_fast(unsigned long start,
253 int nr_pages, int write, struct page **pages)
255 return 0;
257 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
260 * get_user_pages_fast() - pin user pages in memory
261 * @start: starting user address
262 * @nr_pages: number of pages from start to pin
263 * @write: whether pages will be written to
264 * @pages: array that receives pointers to the pages pinned.
265 * Should be at least nr_pages long.
267 * Returns number of pages pinned. This may be fewer than the number
268 * requested. If nr_pages is 0 or negative, returns 0. If no pages
269 * were pinned, returns -errno.
271 * get_user_pages_fast provides equivalent functionality to get_user_pages,
272 * operating on current and current->mm, with force=0 and vma=NULL. However
273 * unlike get_user_pages, it must be called without mmap_sem held.
275 * get_user_pages_fast may take mmap_sem and page table locks, so no
276 * assumptions can be made about lack of locking. get_user_pages_fast is to be
277 * implemented in a way that is advantageous (vs get_user_pages()) when the
278 * user memory area is already faulted in and present in ptes. However if the
279 * pages have to be faulted in, it may turn out to be slightly slower so
280 * callers need to carefully consider what to use. On many architectures,
281 * get_user_pages_fast simply falls back to get_user_pages.
283 int __weak get_user_pages_fast(unsigned long start,
284 int nr_pages, int write, struct page **pages)
286 return get_user_pages_unlocked(start, nr_pages, write, 0, pages);
288 EXPORT_SYMBOL_GPL(get_user_pages_fast);
290 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
291 unsigned long len, unsigned long prot,
292 unsigned long flag, unsigned long pgoff)
294 unsigned long ret;
295 struct mm_struct *mm = current->mm;
296 unsigned long populate;
298 ret = security_mmap_file(file, prot, flag);
299 if (!ret) {
300 down_write(&mm->mmap_sem);
301 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
302 &populate);
303 up_write(&mm->mmap_sem);
304 if (populate)
305 mm_populate(ret, populate);
307 return ret;
310 unsigned long vm_mmap(struct file *file, unsigned long addr,
311 unsigned long len, unsigned long prot,
312 unsigned long flag, unsigned long offset)
314 if (unlikely(offset + PAGE_ALIGN(len) < offset))
315 return -EINVAL;
316 if (unlikely(offset_in_page(offset)))
317 return -EINVAL;
319 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
321 EXPORT_SYMBOL(vm_mmap);
323 void kvfree(const void *addr)
325 if (is_vmalloc_addr(addr))
326 vfree(addr);
327 else
328 kfree(addr);
330 EXPORT_SYMBOL(kvfree);
332 static inline void *__page_rmapping(struct page *page)
334 unsigned long mapping;
336 mapping = (unsigned long)page->mapping;
337 mapping &= ~PAGE_MAPPING_FLAGS;
339 return (void *)mapping;
342 /* Neutral page->mapping pointer to address_space or anon_vma or other */
343 void *page_rmapping(struct page *page)
345 page = compound_head(page);
346 return __page_rmapping(page);
349 struct anon_vma *page_anon_vma(struct page *page)
351 unsigned long mapping;
353 page = compound_head(page);
354 mapping = (unsigned long)page->mapping;
355 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
356 return NULL;
357 return __page_rmapping(page);
360 struct address_space *page_mapping(struct page *page)
362 struct address_space *mapping;
364 page = compound_head(page);
366 /* This happens if someone calls flush_dcache_page on slab page */
367 if (unlikely(PageSlab(page)))
368 return NULL;
370 if (unlikely(PageSwapCache(page))) {
371 swp_entry_t entry;
373 entry.val = page_private(page);
374 return swap_address_space(entry);
377 mapping = page->mapping;
378 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
379 return NULL;
380 return mapping;
383 /* Slow path of page_mapcount() for compound pages */
384 int __page_mapcount(struct page *page)
386 int ret;
388 ret = atomic_read(&page->_mapcount) + 1;
389 page = compound_head(page);
390 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
391 if (PageDoubleMap(page))
392 ret--;
393 return ret;
395 EXPORT_SYMBOL_GPL(__page_mapcount);
397 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
398 int sysctl_overcommit_ratio __read_mostly = 50;
399 unsigned long sysctl_overcommit_kbytes __read_mostly;
400 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
401 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
402 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
404 int overcommit_ratio_handler(struct ctl_table *table, int write,
405 void __user *buffer, size_t *lenp,
406 loff_t *ppos)
408 int ret;
410 ret = proc_dointvec(table, write, buffer, lenp, ppos);
411 if (ret == 0 && write)
412 sysctl_overcommit_kbytes = 0;
413 return ret;
416 int overcommit_kbytes_handler(struct ctl_table *table, int write,
417 void __user *buffer, size_t *lenp,
418 loff_t *ppos)
420 int ret;
422 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
423 if (ret == 0 && write)
424 sysctl_overcommit_ratio = 0;
425 return ret;
429 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
431 unsigned long vm_commit_limit(void)
433 unsigned long allowed;
435 if (sysctl_overcommit_kbytes)
436 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
437 else
438 allowed = ((totalram_pages - hugetlb_total_pages())
439 * sysctl_overcommit_ratio / 100);
440 allowed += total_swap_pages;
442 return allowed;
446 * Make sure vm_committed_as in one cacheline and not cacheline shared with
447 * other variables. It can be updated by several CPUs frequently.
449 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
452 * The global memory commitment made in the system can be a metric
453 * that can be used to drive ballooning decisions when Linux is hosted
454 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
455 * balancing memory across competing virtual machines that are hosted.
456 * Several metrics drive this policy engine including the guest reported
457 * memory commitment.
459 unsigned long vm_memory_committed(void)
461 return percpu_counter_read_positive(&vm_committed_as);
463 EXPORT_SYMBOL_GPL(vm_memory_committed);
466 * Check that a process has enough memory to allocate a new virtual
467 * mapping. 0 means there is enough memory for the allocation to
468 * succeed and -ENOMEM implies there is not.
470 * We currently support three overcommit policies, which are set via the
471 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
473 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
474 * Additional code 2002 Jul 20 by Robert Love.
476 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
478 * Note this is a helper function intended to be used by LSMs which
479 * wish to use this logic.
481 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
483 long free, allowed, reserve;
485 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
486 -(s64)vm_committed_as_batch * num_online_cpus(),
487 "memory commitment underflow");
489 vm_acct_memory(pages);
492 * Sometimes we want to use more memory than we have
494 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
495 return 0;
497 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
498 free = global_page_state(NR_FREE_PAGES);
499 free += global_page_state(NR_FILE_PAGES);
502 * shmem pages shouldn't be counted as free in this
503 * case, they can't be purged, only swapped out, and
504 * that won't affect the overall amount of available
505 * memory in the system.
507 free -= global_page_state(NR_SHMEM);
509 free += get_nr_swap_pages();
512 * Any slabs which are created with the
513 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
514 * which are reclaimable, under pressure. The dentry
515 * cache and most inode caches should fall into this
517 free += global_page_state(NR_SLAB_RECLAIMABLE);
520 * Leave reserved pages. The pages are not for anonymous pages.
522 if (free <= totalreserve_pages)
523 goto error;
524 else
525 free -= totalreserve_pages;
528 * Reserve some for root
530 if (!cap_sys_admin)
531 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
533 if (free > pages)
534 return 0;
536 goto error;
539 allowed = vm_commit_limit();
541 * Reserve some for root
543 if (!cap_sys_admin)
544 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
547 * Don't let a single process grow so big a user can't recover
549 if (mm) {
550 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
551 allowed -= min_t(long, mm->total_vm / 32, reserve);
554 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
555 return 0;
556 error:
557 vm_unacct_memory(pages);
559 return -ENOMEM;
563 * get_cmdline() - copy the cmdline value to a buffer.
564 * @task: the task whose cmdline value to copy.
565 * @buffer: the buffer to copy to.
566 * @buflen: the length of the buffer. Larger cmdline values are truncated
567 * to this length.
568 * Returns the size of the cmdline field copied. Note that the copy does
569 * not guarantee an ending NULL byte.
571 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
573 int res = 0;
574 unsigned int len;
575 struct mm_struct *mm = get_task_mm(task);
576 unsigned long arg_start, arg_end, env_start, env_end;
577 if (!mm)
578 goto out;
579 if (!mm->arg_end)
580 goto out_mm; /* Shh! No looking before we're done */
582 down_read(&mm->mmap_sem);
583 arg_start = mm->arg_start;
584 arg_end = mm->arg_end;
585 env_start = mm->env_start;
586 env_end = mm->env_end;
587 up_read(&mm->mmap_sem);
589 len = arg_end - arg_start;
591 if (len > buflen)
592 len = buflen;
594 res = access_process_vm(task, arg_start, buffer, len, 0);
597 * If the nul at the end of args has been overwritten, then
598 * assume application is using setproctitle(3).
600 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
601 len = strnlen(buffer, res);
602 if (len < res) {
603 res = len;
604 } else {
605 len = env_end - env_start;
606 if (len > buflen - res)
607 len = buflen - res;
608 res += access_process_vm(task, env_start,
609 buffer+res, len, 0);
610 res = strnlen(buffer, res);
613 out_mm:
614 mmput(mm);
615 out:
616 return res;