2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * 2003-10-17 - Ported from altq
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
72 * kernel internal service curve representation:
73 * coordinates are given by 64 bit unsigned integers.
74 * x-axis: unit is clock count.
75 * y-axis: unit is byte.
77 * The service curve parameters are converted to the internal
78 * representation. The slope values are scaled to avoid overflow.
79 * the inverse slope values as well as the y-projection of the 1st
80 * segment are kept in order to avoid 64-bit divide operations
81 * that are expensive on 32-bit architectures.
86 u64 sm1
; /* scaled slope of the 1st segment */
87 u64 ism1
; /* scaled inverse-slope of the 1st segment */
88 u64 dx
; /* the x-projection of the 1st segment */
89 u64 dy
; /* the y-projection of the 1st segment */
90 u64 sm2
; /* scaled slope of the 2nd segment */
91 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
94 /* runtime service curve */
97 u64 x
; /* current starting position on x-axis */
98 u64 y
; /* current starting position on y-axis */
99 u64 sm1
; /* scaled slope of the 1st segment */
100 u64 ism1
; /* scaled inverse-slope of the 1st segment */
101 u64 dx
; /* the x-projection of the 1st segment */
102 u64 dy
; /* the y-projection of the 1st segment */
103 u64 sm2
; /* scaled slope of the 2nd segment */
104 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
107 enum hfsc_class_flags
116 struct Qdisc_class_common cl_common
;
117 unsigned int refcnt
; /* usage count */
119 struct gnet_stats_basic_packed bstats
;
120 struct gnet_stats_queue qstats
;
121 struct gnet_stats_rate_est rate_est
;
122 unsigned int level
; /* class level in hierarchy */
123 struct tcf_proto
*filter_list
; /* filter list */
124 unsigned int filter_cnt
; /* filter count */
126 struct hfsc_sched
*sched
; /* scheduler data */
127 struct hfsc_class
*cl_parent
; /* parent class */
128 struct list_head siblings
; /* sibling classes */
129 struct list_head children
; /* child classes */
130 struct Qdisc
*qdisc
; /* leaf qdisc */
132 struct rb_node el_node
; /* qdisc's eligible tree member */
133 struct rb_root vt_tree
; /* active children sorted by cl_vt */
134 struct rb_node vt_node
; /* parent's vt_tree member */
135 struct rb_root cf_tree
; /* active children sorted by cl_f */
136 struct rb_node cf_node
; /* parent's cf_heap member */
137 struct list_head dlist
; /* drop list member */
139 u64 cl_total
; /* total work in bytes */
140 u64 cl_cumul
; /* cumulative work in bytes done by
141 real-time criteria */
143 u64 cl_d
; /* deadline*/
144 u64 cl_e
; /* eligible time */
145 u64 cl_vt
; /* virtual time */
146 u64 cl_f
; /* time when this class will fit for
147 link-sharing, max(myf, cfmin) */
148 u64 cl_myf
; /* my fit-time (calculated from this
149 class's own upperlimit curve) */
150 u64 cl_myfadj
; /* my fit-time adjustment (to cancel
151 history dependence) */
152 u64 cl_cfmin
; /* earliest children's fit-time (used
153 with cl_myf to obtain cl_f) */
154 u64 cl_cvtmin
; /* minimal virtual time among the
155 children fit for link-sharing
156 (monotonic within a period) */
157 u64 cl_vtadj
; /* intra-period cumulative vt
159 u64 cl_vtoff
; /* inter-period cumulative vt offset */
160 u64 cl_cvtmax
; /* max child's vt in the last period */
161 u64 cl_cvtoff
; /* cumulative cvtmax of all periods */
162 u64 cl_pcvtoff
; /* parent's cvtoff at initialization
165 struct internal_sc cl_rsc
; /* internal real-time service curve */
166 struct internal_sc cl_fsc
; /* internal fair service curve */
167 struct internal_sc cl_usc
; /* internal upperlimit service curve */
168 struct runtime_sc cl_deadline
; /* deadline curve */
169 struct runtime_sc cl_eligible
; /* eligible curve */
170 struct runtime_sc cl_virtual
; /* virtual curve */
171 struct runtime_sc cl_ulimit
; /* upperlimit curve */
173 unsigned long cl_flags
; /* which curves are valid */
174 unsigned long cl_vtperiod
; /* vt period sequence number */
175 unsigned long cl_parentperiod
;/* parent's vt period sequence number*/
176 unsigned long cl_nactive
; /* number of active children */
181 u16 defcls
; /* default class id */
182 struct hfsc_class root
; /* root class */
183 struct Qdisc_class_hash clhash
; /* class hash */
184 struct rb_root eligible
; /* eligible tree */
185 struct list_head droplist
; /* active leaf class list (for
187 struct qdisc_watchdog watchdog
; /* watchdog timer */
190 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
194 * eligible tree holds backlogged classes being sorted by their eligible times.
195 * there is one eligible tree per hfsc instance.
199 eltree_insert(struct hfsc_class
*cl
)
201 struct rb_node
**p
= &cl
->sched
->eligible
.rb_node
;
202 struct rb_node
*parent
= NULL
;
203 struct hfsc_class
*cl1
;
207 cl1
= rb_entry(parent
, struct hfsc_class
, el_node
);
208 if (cl
->cl_e
>= cl1
->cl_e
)
209 p
= &parent
->rb_right
;
211 p
= &parent
->rb_left
;
213 rb_link_node(&cl
->el_node
, parent
, p
);
214 rb_insert_color(&cl
->el_node
, &cl
->sched
->eligible
);
218 eltree_remove(struct hfsc_class
*cl
)
220 rb_erase(&cl
->el_node
, &cl
->sched
->eligible
);
224 eltree_update(struct hfsc_class
*cl
)
230 /* find the class with the minimum deadline among the eligible classes */
231 static inline struct hfsc_class
*
232 eltree_get_mindl(struct hfsc_sched
*q
, u64 cur_time
)
234 struct hfsc_class
*p
, *cl
= NULL
;
237 for (n
= rb_first(&q
->eligible
); n
!= NULL
; n
= rb_next(n
)) {
238 p
= rb_entry(n
, struct hfsc_class
, el_node
);
239 if (p
->cl_e
> cur_time
)
241 if (cl
== NULL
|| p
->cl_d
< cl
->cl_d
)
247 /* find the class with minimum eligible time among the eligible classes */
248 static inline struct hfsc_class
*
249 eltree_get_minel(struct hfsc_sched
*q
)
253 n
= rb_first(&q
->eligible
);
256 return rb_entry(n
, struct hfsc_class
, el_node
);
260 * vttree holds holds backlogged child classes being sorted by their virtual
261 * time. each intermediate class has one vttree.
264 vttree_insert(struct hfsc_class
*cl
)
266 struct rb_node
**p
= &cl
->cl_parent
->vt_tree
.rb_node
;
267 struct rb_node
*parent
= NULL
;
268 struct hfsc_class
*cl1
;
272 cl1
= rb_entry(parent
, struct hfsc_class
, vt_node
);
273 if (cl
->cl_vt
>= cl1
->cl_vt
)
274 p
= &parent
->rb_right
;
276 p
= &parent
->rb_left
;
278 rb_link_node(&cl
->vt_node
, parent
, p
);
279 rb_insert_color(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
283 vttree_remove(struct hfsc_class
*cl
)
285 rb_erase(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
289 vttree_update(struct hfsc_class
*cl
)
295 static inline struct hfsc_class
*
296 vttree_firstfit(struct hfsc_class
*cl
, u64 cur_time
)
298 struct hfsc_class
*p
;
301 for (n
= rb_first(&cl
->vt_tree
); n
!= NULL
; n
= rb_next(n
)) {
302 p
= rb_entry(n
, struct hfsc_class
, vt_node
);
303 if (p
->cl_f
<= cur_time
)
310 * get the leaf class with the minimum vt in the hierarchy
312 static struct hfsc_class
*
313 vttree_get_minvt(struct hfsc_class
*cl
, u64 cur_time
)
315 /* if root-class's cfmin is bigger than cur_time nothing to do */
316 if (cl
->cl_cfmin
> cur_time
)
319 while (cl
->level
> 0) {
320 cl
= vttree_firstfit(cl
, cur_time
);
324 * update parent's cl_cvtmin.
326 if (cl
->cl_parent
->cl_cvtmin
< cl
->cl_vt
)
327 cl
->cl_parent
->cl_cvtmin
= cl
->cl_vt
;
333 cftree_insert(struct hfsc_class
*cl
)
335 struct rb_node
**p
= &cl
->cl_parent
->cf_tree
.rb_node
;
336 struct rb_node
*parent
= NULL
;
337 struct hfsc_class
*cl1
;
341 cl1
= rb_entry(parent
, struct hfsc_class
, cf_node
);
342 if (cl
->cl_f
>= cl1
->cl_f
)
343 p
= &parent
->rb_right
;
345 p
= &parent
->rb_left
;
347 rb_link_node(&cl
->cf_node
, parent
, p
);
348 rb_insert_color(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
352 cftree_remove(struct hfsc_class
*cl
)
354 rb_erase(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
358 cftree_update(struct hfsc_class
*cl
)
365 * service curve support functions
367 * external service curve parameters
370 * internal service curve parameters
371 * sm: (bytes/psched_us) << SM_SHIFT
372 * ism: (psched_us/byte) << ISM_SHIFT
375 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
377 * sm and ism are scaled in order to keep effective digits.
378 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
379 * digits in decimal using the following table.
381 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
382 * ------------+-------------------------------------------------------
383 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
385 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
387 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
389 #define SM_SHIFT (30 - PSCHED_SHIFT)
390 #define ISM_SHIFT (8 + PSCHED_SHIFT)
392 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
393 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
396 seg_x2y(u64 x
, u64 sm
)
402 * y = x * sm >> SM_SHIFT
403 * but divide it for the upper and lower bits to avoid overflow
405 y
= (x
>> SM_SHIFT
) * sm
+ (((x
& SM_MASK
) * sm
) >> SM_SHIFT
);
410 seg_y2x(u64 y
, u64 ism
)
416 else if (ism
== HT_INFINITY
)
419 x
= (y
>> ISM_SHIFT
) * ism
420 + (((y
& ISM_MASK
) * ism
) >> ISM_SHIFT
);
425 /* Convert m (bps) into sm (bytes/psched us) */
431 sm
= ((u64
)m
<< SM_SHIFT
);
432 sm
+= PSCHED_TICKS_PER_SEC
- 1;
433 do_div(sm
, PSCHED_TICKS_PER_SEC
);
437 /* convert m (bps) into ism (psched us/byte) */
446 ism
= ((u64
)PSCHED_TICKS_PER_SEC
<< ISM_SHIFT
);
453 /* convert d (us) into dx (psched us) */
459 dx
= ((u64
)d
* PSCHED_TICKS_PER_SEC
);
460 dx
+= USEC_PER_SEC
- 1;
461 do_div(dx
, USEC_PER_SEC
);
465 /* convert sm (bytes/psched us) into m (bps) */
471 m
= (sm
* PSCHED_TICKS_PER_SEC
) >> SM_SHIFT
;
475 /* convert dx (psched us) into d (us) */
481 d
= dx
* USEC_PER_SEC
;
482 do_div(d
, PSCHED_TICKS_PER_SEC
);
487 sc2isc(struct tc_service_curve
*sc
, struct internal_sc
*isc
)
489 isc
->sm1
= m2sm(sc
->m1
);
490 isc
->ism1
= m2ism(sc
->m1
);
491 isc
->dx
= d2dx(sc
->d
);
492 isc
->dy
= seg_x2y(isc
->dx
, isc
->sm1
);
493 isc
->sm2
= m2sm(sc
->m2
);
494 isc
->ism2
= m2ism(sc
->m2
);
498 * initialize the runtime service curve with the given internal
499 * service curve starting at (x, y).
502 rtsc_init(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
506 rtsc
->sm1
= isc
->sm1
;
507 rtsc
->ism1
= isc
->ism1
;
510 rtsc
->sm2
= isc
->sm2
;
511 rtsc
->ism2
= isc
->ism2
;
515 * calculate the y-projection of the runtime service curve by the
516 * given x-projection value
519 rtsc_y2x(struct runtime_sc
*rtsc
, u64 y
)
525 else if (y
<= rtsc
->y
+ rtsc
->dy
) {
526 /* x belongs to the 1st segment */
528 x
= rtsc
->x
+ rtsc
->dx
;
530 x
= rtsc
->x
+ seg_y2x(y
- rtsc
->y
, rtsc
->ism1
);
532 /* x belongs to the 2nd segment */
533 x
= rtsc
->x
+ rtsc
->dx
534 + seg_y2x(y
- rtsc
->y
- rtsc
->dy
, rtsc
->ism2
);
540 rtsc_x2y(struct runtime_sc
*rtsc
, u64 x
)
546 else if (x
<= rtsc
->x
+ rtsc
->dx
)
547 /* y belongs to the 1st segment */
548 y
= rtsc
->y
+ seg_x2y(x
- rtsc
->x
, rtsc
->sm1
);
550 /* y belongs to the 2nd segment */
551 y
= rtsc
->y
+ rtsc
->dy
552 + seg_x2y(x
- rtsc
->x
- rtsc
->dx
, rtsc
->sm2
);
557 * update the runtime service curve by taking the minimum of the current
558 * runtime service curve and the service curve starting at (x, y).
561 rtsc_min(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
566 if (isc
->sm1
<= isc
->sm2
) {
567 /* service curve is convex */
568 y1
= rtsc_x2y(rtsc
, x
);
570 /* the current rtsc is smaller */
578 * service curve is concave
579 * compute the two y values of the current rtsc
583 y1
= rtsc_x2y(rtsc
, x
);
585 /* rtsc is below isc, no change to rtsc */
589 y2
= rtsc_x2y(rtsc
, x
+ isc
->dx
);
590 if (y2
>= y
+ isc
->dy
) {
591 /* rtsc is above isc, replace rtsc by isc */
600 * the two curves intersect
601 * compute the offsets (dx, dy) using the reverse
602 * function of seg_x2y()
603 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
605 dx
= (y1
- y
) << SM_SHIFT
;
606 dsm
= isc
->sm1
- isc
->sm2
;
609 * check if (x, y1) belongs to the 1st segment of rtsc.
610 * if so, add the offset.
612 if (rtsc
->x
+ rtsc
->dx
> x
)
613 dx
+= rtsc
->x
+ rtsc
->dx
- x
;
614 dy
= seg_x2y(dx
, isc
->sm1
);
623 init_ed(struct hfsc_class
*cl
, unsigned int next_len
)
625 u64 cur_time
= psched_get_time();
627 /* update the deadline curve */
628 rtsc_min(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
631 * update the eligible curve.
632 * for concave, it is equal to the deadline curve.
633 * for convex, it is a linear curve with slope m2.
635 cl
->cl_eligible
= cl
->cl_deadline
;
636 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
637 cl
->cl_eligible
.dx
= 0;
638 cl
->cl_eligible
.dy
= 0;
641 /* compute e and d */
642 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
643 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
649 update_ed(struct hfsc_class
*cl
, unsigned int next_len
)
651 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
652 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
658 update_d(struct hfsc_class
*cl
, unsigned int next_len
)
660 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
664 update_cfmin(struct hfsc_class
*cl
)
666 struct rb_node
*n
= rb_first(&cl
->cf_tree
);
667 struct hfsc_class
*p
;
673 p
= rb_entry(n
, struct hfsc_class
, cf_node
);
674 cl
->cl_cfmin
= p
->cl_f
;
678 init_vf(struct hfsc_class
*cl
, unsigned int len
)
680 struct hfsc_class
*max_cl
;
687 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
688 if (go_active
&& cl
->cl_nactive
++ == 0)
694 n
= rb_last(&cl
->cl_parent
->vt_tree
);
696 max_cl
= rb_entry(n
, struct hfsc_class
,vt_node
);
698 * set vt to the average of the min and max
699 * classes. if the parent's period didn't
700 * change, don't decrease vt of the class.
703 if (cl
->cl_parent
->cl_cvtmin
!= 0)
704 vt
= (cl
->cl_parent
->cl_cvtmin
+ vt
)/2;
706 if (cl
->cl_parent
->cl_vtperiod
!=
707 cl
->cl_parentperiod
|| vt
> cl
->cl_vt
)
711 * first child for a new parent backlog period.
712 * add parent's cvtmax to cvtoff to make a new
713 * vt (vtoff + vt) larger than the vt in the
714 * last period for all children.
716 vt
= cl
->cl_parent
->cl_cvtmax
;
717 cl
->cl_parent
->cl_cvtoff
+= vt
;
718 cl
->cl_parent
->cl_cvtmax
= 0;
719 cl
->cl_parent
->cl_cvtmin
= 0;
723 cl
->cl_vtoff
= cl
->cl_parent
->cl_cvtoff
-
726 /* update the virtual curve */
727 vt
= cl
->cl_vt
+ cl
->cl_vtoff
;
728 rtsc_min(&cl
->cl_virtual
, &cl
->cl_fsc
, vt
,
730 if (cl
->cl_virtual
.x
== vt
) {
731 cl
->cl_virtual
.x
-= cl
->cl_vtoff
;
736 cl
->cl_vtperiod
++; /* increment vt period */
737 cl
->cl_parentperiod
= cl
->cl_parent
->cl_vtperiod
;
738 if (cl
->cl_parent
->cl_nactive
== 0)
739 cl
->cl_parentperiod
++;
745 if (cl
->cl_flags
& HFSC_USC
) {
746 /* class has upper limit curve */
748 cur_time
= psched_get_time();
750 /* update the ulimit curve */
751 rtsc_min(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
,
754 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
,
760 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
764 update_cfmin(cl
->cl_parent
);
770 update_vf(struct hfsc_class
*cl
, unsigned int len
, u64 cur_time
)
772 u64 f
; /* , myf_bound, delta; */
775 if (cl
->qdisc
->q
.qlen
== 0 && cl
->cl_flags
& HFSC_FSC
)
778 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
781 if (!(cl
->cl_flags
& HFSC_FSC
) || cl
->cl_nactive
== 0)
784 if (go_passive
&& --cl
->cl_nactive
== 0)
790 /* no more active child, going passive */
792 /* update cvtmax of the parent class */
793 if (cl
->cl_vt
> cl
->cl_parent
->cl_cvtmax
)
794 cl
->cl_parent
->cl_cvtmax
= cl
->cl_vt
;
796 /* remove this class from the vt tree */
800 update_cfmin(cl
->cl_parent
);
808 cl
->cl_vt
= rtsc_y2x(&cl
->cl_virtual
, cl
->cl_total
)
809 - cl
->cl_vtoff
+ cl
->cl_vtadj
;
812 * if vt of the class is smaller than cvtmin,
813 * the class was skipped in the past due to non-fit.
814 * if so, we need to adjust vtadj.
816 if (cl
->cl_vt
< cl
->cl_parent
->cl_cvtmin
) {
817 cl
->cl_vtadj
+= cl
->cl_parent
->cl_cvtmin
- cl
->cl_vt
;
818 cl
->cl_vt
= cl
->cl_parent
->cl_cvtmin
;
821 /* update the vt tree */
824 if (cl
->cl_flags
& HFSC_USC
) {
825 cl
->cl_myf
= cl
->cl_myfadj
+ rtsc_y2x(&cl
->cl_ulimit
,
829 * This code causes classes to stay way under their
830 * limit when multiple classes are used at gigabit
831 * speed. needs investigation. -kaber
834 * if myf lags behind by more than one clock tick
835 * from the current time, adjust myfadj to prevent
836 * a rate-limited class from going greedy.
837 * in a steady state under rate-limiting, myf
838 * fluctuates within one clock tick.
840 myf_bound
= cur_time
- PSCHED_JIFFIE2US(1);
841 if (cl
->cl_myf
< myf_bound
) {
842 delta
= cur_time
- cl
->cl_myf
;
843 cl
->cl_myfadj
+= delta
;
849 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
853 update_cfmin(cl
->cl_parent
);
859 set_active(struct hfsc_class
*cl
, unsigned int len
)
861 if (cl
->cl_flags
& HFSC_RSC
)
863 if (cl
->cl_flags
& HFSC_FSC
)
866 list_add_tail(&cl
->dlist
, &cl
->sched
->droplist
);
870 set_passive(struct hfsc_class
*cl
)
872 if (cl
->cl_flags
& HFSC_RSC
)
875 list_del(&cl
->dlist
);
878 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
879 * needs to be called explicitly to remove a class from vttree.
884 qdisc_peek_len(struct Qdisc
*sch
)
889 skb
= sch
->ops
->peek(sch
);
891 qdisc_warn_nonwc("qdisc_peek_len", sch
);
894 len
= qdisc_pkt_len(skb
);
900 hfsc_purge_queue(struct Qdisc
*sch
, struct hfsc_class
*cl
)
902 unsigned int len
= cl
->qdisc
->q
.qlen
;
904 qdisc_reset(cl
->qdisc
);
905 qdisc_tree_decrease_qlen(cl
->qdisc
, len
);
909 hfsc_adjust_levels(struct hfsc_class
*cl
)
911 struct hfsc_class
*p
;
916 list_for_each_entry(p
, &cl
->children
, siblings
) {
917 if (p
->level
>= level
)
918 level
= p
->level
+ 1;
921 } while ((cl
= cl
->cl_parent
) != NULL
);
924 static inline struct hfsc_class
*
925 hfsc_find_class(u32 classid
, struct Qdisc
*sch
)
927 struct hfsc_sched
*q
= qdisc_priv(sch
);
928 struct Qdisc_class_common
*clc
;
930 clc
= qdisc_class_find(&q
->clhash
, classid
);
933 return container_of(clc
, struct hfsc_class
, cl_common
);
937 hfsc_change_rsc(struct hfsc_class
*cl
, struct tc_service_curve
*rsc
,
940 sc2isc(rsc
, &cl
->cl_rsc
);
941 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
942 cl
->cl_eligible
= cl
->cl_deadline
;
943 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
944 cl
->cl_eligible
.dx
= 0;
945 cl
->cl_eligible
.dy
= 0;
947 cl
->cl_flags
|= HFSC_RSC
;
951 hfsc_change_fsc(struct hfsc_class
*cl
, struct tc_service_curve
*fsc
)
953 sc2isc(fsc
, &cl
->cl_fsc
);
954 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
955 cl
->cl_flags
|= HFSC_FSC
;
959 hfsc_change_usc(struct hfsc_class
*cl
, struct tc_service_curve
*usc
,
962 sc2isc(usc
, &cl
->cl_usc
);
963 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
, cl
->cl_total
);
964 cl
->cl_flags
|= HFSC_USC
;
967 static const struct nla_policy hfsc_policy
[TCA_HFSC_MAX
+ 1] = {
968 [TCA_HFSC_RSC
] = { .len
= sizeof(struct tc_service_curve
) },
969 [TCA_HFSC_FSC
] = { .len
= sizeof(struct tc_service_curve
) },
970 [TCA_HFSC_USC
] = { .len
= sizeof(struct tc_service_curve
) },
974 hfsc_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
975 struct nlattr
**tca
, unsigned long *arg
)
977 struct hfsc_sched
*q
= qdisc_priv(sch
);
978 struct hfsc_class
*cl
= (struct hfsc_class
*)*arg
;
979 struct hfsc_class
*parent
= NULL
;
980 struct nlattr
*opt
= tca
[TCA_OPTIONS
];
981 struct nlattr
*tb
[TCA_HFSC_MAX
+ 1];
982 struct tc_service_curve
*rsc
= NULL
, *fsc
= NULL
, *usc
= NULL
;
989 err
= nla_parse_nested(tb
, TCA_HFSC_MAX
, opt
, hfsc_policy
);
993 if (tb
[TCA_HFSC_RSC
]) {
994 rsc
= nla_data(tb
[TCA_HFSC_RSC
]);
995 if (rsc
->m1
== 0 && rsc
->m2
== 0)
999 if (tb
[TCA_HFSC_FSC
]) {
1000 fsc
= nla_data(tb
[TCA_HFSC_FSC
]);
1001 if (fsc
->m1
== 0 && fsc
->m2
== 0)
1005 if (tb
[TCA_HFSC_USC
]) {
1006 usc
= nla_data(tb
[TCA_HFSC_USC
]);
1007 if (usc
->m1
== 0 && usc
->m2
== 0)
1013 if (cl
->cl_parent
&&
1014 cl
->cl_parent
->cl_common
.classid
!= parentid
)
1016 if (cl
->cl_parent
== NULL
&& parentid
!= TC_H_ROOT
)
1019 cur_time
= psched_get_time();
1021 if (tca
[TCA_RATE
]) {
1022 err
= gen_replace_estimator(&cl
->bstats
, &cl
->rate_est
,
1023 qdisc_root_sleeping_lock(sch
),
1031 hfsc_change_rsc(cl
, rsc
, cur_time
);
1033 hfsc_change_fsc(cl
, fsc
);
1035 hfsc_change_usc(cl
, usc
, cur_time
);
1037 if (cl
->qdisc
->q
.qlen
!= 0) {
1038 if (cl
->cl_flags
& HFSC_RSC
)
1039 update_ed(cl
, qdisc_peek_len(cl
->qdisc
));
1040 if (cl
->cl_flags
& HFSC_FSC
)
1041 update_vf(cl
, 0, cur_time
);
1043 sch_tree_unlock(sch
);
1048 if (parentid
== TC_H_ROOT
)
1053 parent
= hfsc_find_class(parentid
, sch
);
1058 if (classid
== 0 || TC_H_MAJ(classid
^ sch
->handle
) != 0)
1060 if (hfsc_find_class(classid
, sch
))
1063 if (rsc
== NULL
&& fsc
== NULL
)
1066 cl
= kzalloc(sizeof(struct hfsc_class
), GFP_KERNEL
);
1070 if (tca
[TCA_RATE
]) {
1071 err
= gen_new_estimator(&cl
->bstats
, &cl
->rate_est
,
1072 qdisc_root_sleeping_lock(sch
),
1081 hfsc_change_rsc(cl
, rsc
, 0);
1083 hfsc_change_fsc(cl
, fsc
);
1085 hfsc_change_usc(cl
, usc
, 0);
1087 cl
->cl_common
.classid
= classid
;
1090 cl
->cl_parent
= parent
;
1091 cl
->qdisc
= qdisc_create_dflt(qdisc_dev(sch
), sch
->dev_queue
,
1092 &pfifo_qdisc_ops
, classid
);
1093 if (cl
->qdisc
== NULL
)
1094 cl
->qdisc
= &noop_qdisc
;
1095 INIT_LIST_HEAD(&cl
->children
);
1096 cl
->vt_tree
= RB_ROOT
;
1097 cl
->cf_tree
= RB_ROOT
;
1100 qdisc_class_hash_insert(&q
->clhash
, &cl
->cl_common
);
1101 list_add_tail(&cl
->siblings
, &parent
->children
);
1102 if (parent
->level
== 0)
1103 hfsc_purge_queue(sch
, parent
);
1104 hfsc_adjust_levels(parent
);
1105 cl
->cl_pcvtoff
= parent
->cl_cvtoff
;
1106 sch_tree_unlock(sch
);
1108 qdisc_class_hash_grow(sch
, &q
->clhash
);
1110 *arg
= (unsigned long)cl
;
1115 hfsc_destroy_class(struct Qdisc
*sch
, struct hfsc_class
*cl
)
1117 struct hfsc_sched
*q
= qdisc_priv(sch
);
1119 tcf_destroy_chain(&cl
->filter_list
);
1120 qdisc_destroy(cl
->qdisc
);
1121 gen_kill_estimator(&cl
->bstats
, &cl
->rate_est
);
1127 hfsc_delete_class(struct Qdisc
*sch
, unsigned long arg
)
1129 struct hfsc_sched
*q
= qdisc_priv(sch
);
1130 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1132 if (cl
->level
> 0 || cl
->filter_cnt
> 0 || cl
== &q
->root
)
1137 list_del(&cl
->siblings
);
1138 hfsc_adjust_levels(cl
->cl_parent
);
1140 hfsc_purge_queue(sch
, cl
);
1141 qdisc_class_hash_remove(&q
->clhash
, &cl
->cl_common
);
1143 BUG_ON(--cl
->refcnt
== 0);
1145 * This shouldn't happen: we "hold" one cops->get() when called
1146 * from tc_ctl_tclass; the destroy method is done from cops->put().
1149 sch_tree_unlock(sch
);
1153 static struct hfsc_class
*
1154 hfsc_classify(struct sk_buff
*skb
, struct Qdisc
*sch
, int *qerr
)
1156 struct hfsc_sched
*q
= qdisc_priv(sch
);
1157 struct hfsc_class
*head
, *cl
;
1158 struct tcf_result res
;
1159 struct tcf_proto
*tcf
;
1162 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0 &&
1163 (cl
= hfsc_find_class(skb
->priority
, sch
)) != NULL
)
1167 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
1169 tcf
= q
->root
.filter_list
;
1170 while (tcf
&& (result
= tc_classify(skb
, tcf
, &res
)) >= 0) {
1171 #ifdef CONFIG_NET_CLS_ACT
1175 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
1180 if ((cl
= (struct hfsc_class
*)res
.class) == NULL
) {
1181 if ((cl
= hfsc_find_class(res
.classid
, sch
)) == NULL
)
1182 break; /* filter selected invalid classid */
1183 if (cl
->level
>= head
->level
)
1184 break; /* filter may only point downwards */
1188 return cl
; /* hit leaf class */
1190 /* apply inner filter chain */
1191 tcf
= cl
->filter_list
;
1195 /* classification failed, try default class */
1196 cl
= hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch
->handle
), q
->defcls
), sch
);
1197 if (cl
== NULL
|| cl
->level
> 0)
1204 hfsc_graft_class(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1207 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1212 new = qdisc_create_dflt(qdisc_dev(sch
), sch
->dev_queue
,
1214 cl
->cl_common
.classid
);
1220 hfsc_purge_queue(sch
, cl
);
1223 sch_tree_unlock(sch
);
1227 static struct Qdisc
*
1228 hfsc_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
1230 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1239 hfsc_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1241 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1243 if (cl
->qdisc
->q
.qlen
== 0) {
1244 update_vf(cl
, 0, 0);
1249 static unsigned long
1250 hfsc_get_class(struct Qdisc
*sch
, u32 classid
)
1252 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1257 return (unsigned long)cl
;
1261 hfsc_put_class(struct Qdisc
*sch
, unsigned long arg
)
1263 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1265 if (--cl
->refcnt
== 0)
1266 hfsc_destroy_class(sch
, cl
);
1269 static unsigned long
1270 hfsc_bind_tcf(struct Qdisc
*sch
, unsigned long parent
, u32 classid
)
1272 struct hfsc_class
*p
= (struct hfsc_class
*)parent
;
1273 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1276 if (p
!= NULL
&& p
->level
<= cl
->level
)
1281 return (unsigned long)cl
;
1285 hfsc_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
1287 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1292 static struct tcf_proto
**
1293 hfsc_tcf_chain(struct Qdisc
*sch
, unsigned long arg
)
1295 struct hfsc_sched
*q
= qdisc_priv(sch
);
1296 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1301 return &cl
->filter_list
;
1305 hfsc_dump_sc(struct sk_buff
*skb
, int attr
, struct internal_sc
*sc
)
1307 struct tc_service_curve tsc
;
1309 tsc
.m1
= sm2m(sc
->sm1
);
1310 tsc
.d
= dx2d(sc
->dx
);
1311 tsc
.m2
= sm2m(sc
->sm2
);
1312 NLA_PUT(skb
, attr
, sizeof(tsc
), &tsc
);
1321 hfsc_dump_curves(struct sk_buff
*skb
, struct hfsc_class
*cl
)
1323 if ((cl
->cl_flags
& HFSC_RSC
) &&
1324 (hfsc_dump_sc(skb
, TCA_HFSC_RSC
, &cl
->cl_rsc
) < 0))
1325 goto nla_put_failure
;
1327 if ((cl
->cl_flags
& HFSC_FSC
) &&
1328 (hfsc_dump_sc(skb
, TCA_HFSC_FSC
, &cl
->cl_fsc
) < 0))
1329 goto nla_put_failure
;
1331 if ((cl
->cl_flags
& HFSC_USC
) &&
1332 (hfsc_dump_sc(skb
, TCA_HFSC_USC
, &cl
->cl_usc
) < 0))
1333 goto nla_put_failure
;
1342 hfsc_dump_class(struct Qdisc
*sch
, unsigned long arg
, struct sk_buff
*skb
,
1345 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1346 struct nlattr
*nest
;
1348 tcm
->tcm_parent
= cl
->cl_parent
? cl
->cl_parent
->cl_common
.classid
:
1350 tcm
->tcm_handle
= cl
->cl_common
.classid
;
1352 tcm
->tcm_info
= cl
->qdisc
->handle
;
1354 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
1356 goto nla_put_failure
;
1357 if (hfsc_dump_curves(skb
, cl
) < 0)
1358 goto nla_put_failure
;
1359 nla_nest_end(skb
, nest
);
1363 nla_nest_cancel(skb
, nest
);
1368 hfsc_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
1369 struct gnet_dump
*d
)
1371 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1372 struct tc_hfsc_stats xstats
;
1374 cl
->qstats
.qlen
= cl
->qdisc
->q
.qlen
;
1375 xstats
.level
= cl
->level
;
1376 xstats
.period
= cl
->cl_vtperiod
;
1377 xstats
.work
= cl
->cl_total
;
1378 xstats
.rtwork
= cl
->cl_cumul
;
1380 if (gnet_stats_copy_basic(d
, &cl
->bstats
) < 0 ||
1381 gnet_stats_copy_rate_est(d
, &cl
->bstats
, &cl
->rate_est
) < 0 ||
1382 gnet_stats_copy_queue(d
, &cl
->qstats
) < 0)
1385 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
1391 hfsc_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
1393 struct hfsc_sched
*q
= qdisc_priv(sch
);
1394 struct hlist_node
*n
;
1395 struct hfsc_class
*cl
;
1401 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1402 hlist_for_each_entry(cl
, n
, &q
->clhash
.hash
[i
],
1404 if (arg
->count
< arg
->skip
) {
1408 if (arg
->fn(sch
, (unsigned long)cl
, arg
) < 0) {
1418 hfsc_schedule_watchdog(struct Qdisc
*sch
)
1420 struct hfsc_sched
*q
= qdisc_priv(sch
);
1421 struct hfsc_class
*cl
;
1424 if ((cl
= eltree_get_minel(q
)) != NULL
)
1425 next_time
= cl
->cl_e
;
1426 if (q
->root
.cl_cfmin
!= 0) {
1427 if (next_time
== 0 || next_time
> q
->root
.cl_cfmin
)
1428 next_time
= q
->root
.cl_cfmin
;
1430 WARN_ON(next_time
== 0);
1431 qdisc_watchdog_schedule(&q
->watchdog
, next_time
);
1435 hfsc_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1437 struct hfsc_sched
*q
= qdisc_priv(sch
);
1438 struct tc_hfsc_qopt
*qopt
;
1441 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1443 qopt
= nla_data(opt
);
1445 q
->defcls
= qopt
->defcls
;
1446 err
= qdisc_class_hash_init(&q
->clhash
);
1449 q
->eligible
= RB_ROOT
;
1450 INIT_LIST_HEAD(&q
->droplist
);
1452 q
->root
.cl_common
.classid
= sch
->handle
;
1455 q
->root
.qdisc
= qdisc_create_dflt(qdisc_dev(sch
), sch
->dev_queue
,
1458 if (q
->root
.qdisc
== NULL
)
1459 q
->root
.qdisc
= &noop_qdisc
;
1460 INIT_LIST_HEAD(&q
->root
.children
);
1461 q
->root
.vt_tree
= RB_ROOT
;
1462 q
->root
.cf_tree
= RB_ROOT
;
1464 qdisc_class_hash_insert(&q
->clhash
, &q
->root
.cl_common
);
1465 qdisc_class_hash_grow(sch
, &q
->clhash
);
1467 qdisc_watchdog_init(&q
->watchdog
, sch
);
1473 hfsc_change_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1475 struct hfsc_sched
*q
= qdisc_priv(sch
);
1476 struct tc_hfsc_qopt
*qopt
;
1478 if (opt
== NULL
|| nla_len(opt
) < sizeof(*qopt
))
1480 qopt
= nla_data(opt
);
1483 q
->defcls
= qopt
->defcls
;
1484 sch_tree_unlock(sch
);
1490 hfsc_reset_class(struct hfsc_class
*cl
)
1503 cl
->cl_vtperiod
= 0;
1504 cl
->cl_parentperiod
= 0;
1511 cl
->vt_tree
= RB_ROOT
;
1512 cl
->cf_tree
= RB_ROOT
;
1513 qdisc_reset(cl
->qdisc
);
1515 if (cl
->cl_flags
& HFSC_RSC
)
1516 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, 0, 0);
1517 if (cl
->cl_flags
& HFSC_FSC
)
1518 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, 0, 0);
1519 if (cl
->cl_flags
& HFSC_USC
)
1520 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, 0, 0);
1524 hfsc_reset_qdisc(struct Qdisc
*sch
)
1526 struct hfsc_sched
*q
= qdisc_priv(sch
);
1527 struct hfsc_class
*cl
;
1528 struct hlist_node
*n
;
1531 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1532 hlist_for_each_entry(cl
, n
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1533 hfsc_reset_class(cl
);
1535 q
->eligible
= RB_ROOT
;
1536 INIT_LIST_HEAD(&q
->droplist
);
1537 qdisc_watchdog_cancel(&q
->watchdog
);
1542 hfsc_destroy_qdisc(struct Qdisc
*sch
)
1544 struct hfsc_sched
*q
= qdisc_priv(sch
);
1545 struct hlist_node
*n
, *next
;
1546 struct hfsc_class
*cl
;
1549 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1550 hlist_for_each_entry(cl
, n
, &q
->clhash
.hash
[i
], cl_common
.hnode
)
1551 tcf_destroy_chain(&cl
->filter_list
);
1553 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1554 hlist_for_each_entry_safe(cl
, n
, next
, &q
->clhash
.hash
[i
],
1556 hfsc_destroy_class(sch
, cl
);
1558 qdisc_class_hash_destroy(&q
->clhash
);
1559 qdisc_watchdog_cancel(&q
->watchdog
);
1563 hfsc_dump_qdisc(struct Qdisc
*sch
, struct sk_buff
*skb
)
1565 struct hfsc_sched
*q
= qdisc_priv(sch
);
1566 unsigned char *b
= skb_tail_pointer(skb
);
1567 struct tc_hfsc_qopt qopt
;
1569 qopt
.defcls
= q
->defcls
;
1570 NLA_PUT(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
);
1579 hfsc_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
1581 struct hfsc_class
*cl
;
1582 int uninitialized_var(err
);
1584 cl
= hfsc_classify(skb
, sch
, &err
);
1586 if (err
& __NET_XMIT_BYPASS
)
1587 sch
->qstats
.drops
++;
1592 err
= qdisc_enqueue(skb
, cl
->qdisc
);
1593 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1594 if (net_xmit_drop_count(err
)) {
1596 sch
->qstats
.drops
++;
1601 if (cl
->qdisc
->q
.qlen
== 1)
1602 set_active(cl
, qdisc_pkt_len(skb
));
1604 cl
->bstats
.packets
++;
1605 cl
->bstats
.bytes
+= qdisc_pkt_len(skb
);
1606 sch
->bstats
.packets
++;
1607 sch
->bstats
.bytes
+= qdisc_pkt_len(skb
);
1610 return NET_XMIT_SUCCESS
;
1613 static struct sk_buff
*
1614 hfsc_dequeue(struct Qdisc
*sch
)
1616 struct hfsc_sched
*q
= qdisc_priv(sch
);
1617 struct hfsc_class
*cl
;
1618 struct sk_buff
*skb
;
1620 unsigned int next_len
;
1623 if (sch
->q
.qlen
== 0)
1626 cur_time
= psched_get_time();
1629 * if there are eligible classes, use real-time criteria.
1630 * find the class with the minimum deadline among
1631 * the eligible classes.
1633 if ((cl
= eltree_get_mindl(q
, cur_time
)) != NULL
) {
1637 * use link-sharing criteria
1638 * get the class with the minimum vt in the hierarchy
1640 cl
= vttree_get_minvt(&q
->root
, cur_time
);
1642 sch
->qstats
.overlimits
++;
1643 hfsc_schedule_watchdog(sch
);
1648 skb
= qdisc_dequeue_peeked(cl
->qdisc
);
1650 qdisc_warn_nonwc("HFSC", cl
->qdisc
);
1654 update_vf(cl
, qdisc_pkt_len(skb
), cur_time
);
1656 cl
->cl_cumul
+= qdisc_pkt_len(skb
);
1658 if (cl
->qdisc
->q
.qlen
!= 0) {
1659 if (cl
->cl_flags
& HFSC_RSC
) {
1661 next_len
= qdisc_peek_len(cl
->qdisc
);
1663 update_ed(cl
, next_len
);
1665 update_d(cl
, next_len
);
1668 /* the class becomes passive */
1672 sch
->flags
&= ~TCQ_F_THROTTLED
;
1679 hfsc_drop(struct Qdisc
*sch
)
1681 struct hfsc_sched
*q
= qdisc_priv(sch
);
1682 struct hfsc_class
*cl
;
1685 list_for_each_entry(cl
, &q
->droplist
, dlist
) {
1686 if (cl
->qdisc
->ops
->drop
!= NULL
&&
1687 (len
= cl
->qdisc
->ops
->drop(cl
->qdisc
)) > 0) {
1688 if (cl
->qdisc
->q
.qlen
== 0) {
1689 update_vf(cl
, 0, 0);
1692 list_move_tail(&cl
->dlist
, &q
->droplist
);
1695 sch
->qstats
.drops
++;
1703 static const struct Qdisc_class_ops hfsc_class_ops
= {
1704 .change
= hfsc_change_class
,
1705 .delete = hfsc_delete_class
,
1706 .graft
= hfsc_graft_class
,
1707 .leaf
= hfsc_class_leaf
,
1708 .qlen_notify
= hfsc_qlen_notify
,
1709 .get
= hfsc_get_class
,
1710 .put
= hfsc_put_class
,
1711 .bind_tcf
= hfsc_bind_tcf
,
1712 .unbind_tcf
= hfsc_unbind_tcf
,
1713 .tcf_chain
= hfsc_tcf_chain
,
1714 .dump
= hfsc_dump_class
,
1715 .dump_stats
= hfsc_dump_class_stats
,
1719 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly
= {
1721 .init
= hfsc_init_qdisc
,
1722 .change
= hfsc_change_qdisc
,
1723 .reset
= hfsc_reset_qdisc
,
1724 .destroy
= hfsc_destroy_qdisc
,
1725 .dump
= hfsc_dump_qdisc
,
1726 .enqueue
= hfsc_enqueue
,
1727 .dequeue
= hfsc_dequeue
,
1728 .peek
= qdisc_peek_dequeued
,
1730 .cl_ops
= &hfsc_class_ops
,
1731 .priv_size
= sizeof(struct hfsc_sched
),
1732 .owner
= THIS_MODULE
1738 return register_qdisc(&hfsc_qdisc_ops
);
1744 unregister_qdisc(&hfsc_qdisc_ops
);
1747 MODULE_LICENSE("GPL");
1748 module_init(hfsc_init
);
1749 module_exit(hfsc_cleanup
);