Merge tag 'vfio-v4.10-final' of git://github.com/awilliam/linux-vfio
[linux/fpc-iii.git] / mm / huge_memory.c
blob5f3ad65c85de01fa6e4c8a07ef9494410bf2b133
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
57 static struct shrinker deferred_split_shrinker;
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
62 static struct page *get_huge_zero_page(void)
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
89 static void put_huge_zero_page(void)
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
103 if (!get_huge_zero_page())
104 return NULL;
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
109 return READ_ONCE(huge_zero_page);
112 void mm_put_huge_zero_page(struct mm_struct *mm)
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
135 return 0;
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
144 #ifdef CONFIG_SYSFS
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
178 return count;
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
196 ssize_t ret;
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
209 return ret;
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
227 unsigned long value;
228 int ret;
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
241 return count;
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
289 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
294 static struct kobj_attribute hpage_pmd_size_attr =
295 __ATTR_RO(hpage_pmd_size);
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
301 return single_hugepage_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
308 return single_hugepage_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
311 static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
315 static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 &use_zero_page_attr.attr,
319 &hpage_pmd_size_attr.attr,
320 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 &shmem_enabled_attr.attr,
322 #endif
323 #ifdef CONFIG_DEBUG_VM
324 &debug_cow_attr.attr,
325 #endif
326 NULL,
329 static struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
335 int err;
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
339 pr_err("failed to create transparent hugepage kobject\n");
340 return -ENOMEM;
343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 if (err) {
345 pr_err("failed to register transparent hugepage group\n");
346 goto delete_obj;
349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 if (err) {
351 pr_err("failed to register transparent hugepage group\n");
352 goto remove_hp_group;
355 return 0;
357 remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
370 #else
371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
373 return 0;
376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 #endif /* CONFIG_SYSFS */
381 static int __init hugepage_init(void)
383 int err;
384 struct kobject *hugepage_kobj;
386 if (!has_transparent_hugepage()) {
387 transparent_hugepage_flags = 0;
388 return -EINVAL;
392 * hugepages can't be allocated by the buddy allocator
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
396 * we use page->mapping and page->index in second tail page
397 * as list_head: assuming THP order >= 2
399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
401 err = hugepage_init_sysfs(&hugepage_kobj);
402 if (err)
403 goto err_sysfs;
405 err = khugepaged_init();
406 if (err)
407 goto err_slab;
409 err = register_shrinker(&huge_zero_page_shrinker);
410 if (err)
411 goto err_hzp_shrinker;
412 err = register_shrinker(&deferred_split_shrinker);
413 if (err)
414 goto err_split_shrinker;
417 * By default disable transparent hugepages on smaller systems,
418 * where the extra memory used could hurt more than TLB overhead
419 * is likely to save. The admin can still enable it through /sys.
421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422 transparent_hugepage_flags = 0;
423 return 0;
426 err = start_stop_khugepaged();
427 if (err)
428 goto err_khugepaged;
430 return 0;
431 err_khugepaged:
432 unregister_shrinker(&deferred_split_shrinker);
433 err_split_shrinker:
434 unregister_shrinker(&huge_zero_page_shrinker);
435 err_hzp_shrinker:
436 khugepaged_destroy();
437 err_slab:
438 hugepage_exit_sysfs(hugepage_kobj);
439 err_sysfs:
440 return err;
442 subsys_initcall(hugepage_init);
444 static int __init setup_transparent_hugepage(char *str)
446 int ret = 0;
447 if (!str)
448 goto out;
449 if (!strcmp(str, "always")) {
450 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 } else if (!strcmp(str, "madvise")) {
456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "never")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
468 out:
469 if (!ret)
470 pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 return ret;
473 __setup("transparent_hugepage=", setup_transparent_hugepage);
475 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
477 if (likely(vma->vm_flags & VM_WRITE))
478 pmd = pmd_mkwrite(pmd);
479 return pmd;
482 static inline struct list_head *page_deferred_list(struct page *page)
485 * ->lru in the tail pages is occupied by compound_head.
486 * Let's use ->mapping + ->index in the second tail page as list_head.
488 return (struct list_head *)&page[2].mapping;
491 void prep_transhuge_page(struct page *page)
494 * we use page->mapping and page->indexlru in second tail page
495 * as list_head: assuming THP order >= 2
498 INIT_LIST_HEAD(page_deferred_list(page));
499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 loff_t off, unsigned long flags, unsigned long size)
505 unsigned long addr;
506 loff_t off_end = off + len;
507 loff_t off_align = round_up(off, size);
508 unsigned long len_pad;
510 if (off_end <= off_align || (off_end - off_align) < size)
511 return 0;
513 len_pad = len + size;
514 if (len_pad < len || (off + len_pad) < off)
515 return 0;
517 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 off >> PAGE_SHIFT, flags);
519 if (IS_ERR_VALUE(addr))
520 return 0;
522 addr += (off - addr) & (size - 1);
523 return addr;
526 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 unsigned long len, unsigned long pgoff, unsigned long flags)
529 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
531 if (addr)
532 goto out;
533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 goto out;
536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 if (addr)
538 return addr;
540 out:
541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
543 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
545 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
546 gfp_t gfp)
548 struct vm_area_struct *vma = vmf->vma;
549 struct mem_cgroup *memcg;
550 pgtable_t pgtable;
551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 mem_cgroup_cancel_charge(page, memcg, true);
564 put_page(page);
565 return VM_FAULT_OOM;
568 clear_huge_page(page, haddr, HPAGE_PMD_NR);
570 * The memory barrier inside __SetPageUptodate makes sure that
571 * clear_huge_page writes become visible before the set_pmd_at()
572 * write.
574 __SetPageUptodate(page);
576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
577 if (unlikely(!pmd_none(*vmf->pmd))) {
578 spin_unlock(vmf->ptl);
579 mem_cgroup_cancel_charge(page, memcg, true);
580 put_page(page);
581 pte_free(vma->vm_mm, pgtable);
582 } else {
583 pmd_t entry;
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
589 spin_unlock(vmf->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 atomic_long_inc(&vma->vm_mm->nr_ptes);
607 spin_unlock(vmf->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
611 return 0;
615 * If THP defrag is set to always then directly reclaim/compact as necessary
616 * If set to defer then do only background reclaim/compact and defer to khugepaged
617 * If set to madvise and the VMA is flagged then directly reclaim/compact
618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
620 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 &transparent_hugepage_flags) && vma_madvised)
626 return GFP_TRANSHUGE;
627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 &transparent_hugepage_flags))
632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
634 return GFP_TRANSHUGE_LIGHT;
637 /* Caller must hold page table lock. */
638 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
640 struct page *zero_page)
642 pmd_t entry;
643 if (!pmd_none(*pmd))
644 return false;
645 entry = mk_pmd(zero_page, vma->vm_page_prot);
646 entry = pmd_mkhuge(entry);
647 if (pgtable)
648 pgtable_trans_huge_deposit(mm, pmd, pgtable);
649 set_pmd_at(mm, haddr, pmd, entry);
650 atomic_long_inc(&mm->nr_ptes);
651 return true;
654 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
656 struct vm_area_struct *vma = vmf->vma;
657 gfp_t gfp;
658 struct page *page;
659 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
662 return VM_FAULT_FALLBACK;
663 if (unlikely(anon_vma_prepare(vma)))
664 return VM_FAULT_OOM;
665 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
666 return VM_FAULT_OOM;
667 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
668 !mm_forbids_zeropage(vma->vm_mm) &&
669 transparent_hugepage_use_zero_page()) {
670 pgtable_t pgtable;
671 struct page *zero_page;
672 bool set;
673 int ret;
674 pgtable = pte_alloc_one(vma->vm_mm, haddr);
675 if (unlikely(!pgtable))
676 return VM_FAULT_OOM;
677 zero_page = mm_get_huge_zero_page(vma->vm_mm);
678 if (unlikely(!zero_page)) {
679 pte_free(vma->vm_mm, pgtable);
680 count_vm_event(THP_FAULT_FALLBACK);
681 return VM_FAULT_FALLBACK;
683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 ret = 0;
685 set = false;
686 if (pmd_none(*vmf->pmd)) {
687 if (userfaultfd_missing(vma)) {
688 spin_unlock(vmf->ptl);
689 ret = handle_userfault(vmf, VM_UFFD_MISSING);
690 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 } else {
692 set_huge_zero_page(pgtable, vma->vm_mm, vma,
693 haddr, vmf->pmd, zero_page);
694 spin_unlock(vmf->ptl);
695 set = true;
697 } else
698 spin_unlock(vmf->ptl);
699 if (!set)
700 pte_free(vma->vm_mm, pgtable);
701 return ret;
703 gfp = alloc_hugepage_direct_gfpmask(vma);
704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
705 if (unlikely(!page)) {
706 count_vm_event(THP_FAULT_FALLBACK);
707 return VM_FAULT_FALLBACK;
709 prep_transhuge_page(page);
710 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
713 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
716 struct mm_struct *mm = vma->vm_mm;
717 pmd_t entry;
718 spinlock_t *ptl;
720 ptl = pmd_lock(mm, pmd);
721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 if (pfn_t_devmap(pfn))
723 entry = pmd_mkdevmap(entry);
724 if (write) {
725 entry = pmd_mkyoung(pmd_mkdirty(entry));
726 entry = maybe_pmd_mkwrite(entry, vma);
728 set_pmd_at(mm, addr, pmd, entry);
729 update_mmu_cache_pmd(vma, addr, pmd);
730 spin_unlock(ptl);
733 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734 pmd_t *pmd, pfn_t pfn, bool write)
736 pgprot_t pgprot = vma->vm_page_prot;
738 * If we had pmd_special, we could avoid all these restrictions,
739 * but we need to be consistent with PTEs and architectures that
740 * can't support a 'special' bit.
742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 (VM_PFNMAP|VM_MIXEDMAP));
745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
746 BUG_ON(!pfn_t_devmap(pfn));
748 if (addr < vma->vm_start || addr >= vma->vm_end)
749 return VM_FAULT_SIGBUS;
751 track_pfn_insert(vma, &pgprot, pfn);
753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 return VM_FAULT_NOPAGE;
756 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
758 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd)
761 pmd_t _pmd;
764 * We should set the dirty bit only for FOLL_WRITE but for now
765 * the dirty bit in the pmd is meaningless. And if the dirty
766 * bit will become meaningful and we'll only set it with
767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 * set the young bit, instead of the current set_pmd_at.
770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 pmd, _pmd, 1))
773 update_mmu_cache_pmd(vma, addr, pmd);
776 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 pmd_t *pmd, int flags)
779 unsigned long pfn = pmd_pfn(*pmd);
780 struct mm_struct *mm = vma->vm_mm;
781 struct dev_pagemap *pgmap;
782 struct page *page;
784 assert_spin_locked(pmd_lockptr(mm, pmd));
787 * When we COW a devmap PMD entry, we split it into PTEs, so we should
788 * not be in this function with `flags & FOLL_COW` set.
790 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
792 if (flags & FOLL_WRITE && !pmd_write(*pmd))
793 return NULL;
795 if (pmd_present(*pmd) && pmd_devmap(*pmd))
796 /* pass */;
797 else
798 return NULL;
800 if (flags & FOLL_TOUCH)
801 touch_pmd(vma, addr, pmd);
804 * device mapped pages can only be returned if the
805 * caller will manage the page reference count.
807 if (!(flags & FOLL_GET))
808 return ERR_PTR(-EEXIST);
810 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
811 pgmap = get_dev_pagemap(pfn, NULL);
812 if (!pgmap)
813 return ERR_PTR(-EFAULT);
814 page = pfn_to_page(pfn);
815 get_page(page);
816 put_dev_pagemap(pgmap);
818 return page;
821 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
822 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
823 struct vm_area_struct *vma)
825 spinlock_t *dst_ptl, *src_ptl;
826 struct page *src_page;
827 pmd_t pmd;
828 pgtable_t pgtable = NULL;
829 int ret = -ENOMEM;
831 /* Skip if can be re-fill on fault */
832 if (!vma_is_anonymous(vma))
833 return 0;
835 pgtable = pte_alloc_one(dst_mm, addr);
836 if (unlikely(!pgtable))
837 goto out;
839 dst_ptl = pmd_lock(dst_mm, dst_pmd);
840 src_ptl = pmd_lockptr(src_mm, src_pmd);
841 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
843 ret = -EAGAIN;
844 pmd = *src_pmd;
845 if (unlikely(!pmd_trans_huge(pmd))) {
846 pte_free(dst_mm, pgtable);
847 goto out_unlock;
850 * When page table lock is held, the huge zero pmd should not be
851 * under splitting since we don't split the page itself, only pmd to
852 * a page table.
854 if (is_huge_zero_pmd(pmd)) {
855 struct page *zero_page;
857 * get_huge_zero_page() will never allocate a new page here,
858 * since we already have a zero page to copy. It just takes a
859 * reference.
861 zero_page = mm_get_huge_zero_page(dst_mm);
862 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
863 zero_page);
864 ret = 0;
865 goto out_unlock;
868 src_page = pmd_page(pmd);
869 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
870 get_page(src_page);
871 page_dup_rmap(src_page, true);
872 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
873 atomic_long_inc(&dst_mm->nr_ptes);
874 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
876 pmdp_set_wrprotect(src_mm, addr, src_pmd);
877 pmd = pmd_mkold(pmd_wrprotect(pmd));
878 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
880 ret = 0;
881 out_unlock:
882 spin_unlock(src_ptl);
883 spin_unlock(dst_ptl);
884 out:
885 return ret;
888 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
890 pmd_t entry;
891 unsigned long haddr;
892 bool write = vmf->flags & FAULT_FLAG_WRITE;
894 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
895 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
896 goto unlock;
898 entry = pmd_mkyoung(orig_pmd);
899 if (write)
900 entry = pmd_mkdirty(entry);
901 haddr = vmf->address & HPAGE_PMD_MASK;
902 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
903 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
905 unlock:
906 spin_unlock(vmf->ptl);
909 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
910 struct page *page)
912 struct vm_area_struct *vma = vmf->vma;
913 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
914 struct mem_cgroup *memcg;
915 pgtable_t pgtable;
916 pmd_t _pmd;
917 int ret = 0, i;
918 struct page **pages;
919 unsigned long mmun_start; /* For mmu_notifiers */
920 unsigned long mmun_end; /* For mmu_notifiers */
922 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
923 GFP_KERNEL);
924 if (unlikely(!pages)) {
925 ret |= VM_FAULT_OOM;
926 goto out;
929 for (i = 0; i < HPAGE_PMD_NR; i++) {
930 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
931 vmf->address, page_to_nid(page));
932 if (unlikely(!pages[i] ||
933 mem_cgroup_try_charge(pages[i], vma->vm_mm,
934 GFP_KERNEL, &memcg, false))) {
935 if (pages[i])
936 put_page(pages[i]);
937 while (--i >= 0) {
938 memcg = (void *)page_private(pages[i]);
939 set_page_private(pages[i], 0);
940 mem_cgroup_cancel_charge(pages[i], memcg,
941 false);
942 put_page(pages[i]);
944 kfree(pages);
945 ret |= VM_FAULT_OOM;
946 goto out;
948 set_page_private(pages[i], (unsigned long)memcg);
951 for (i = 0; i < HPAGE_PMD_NR; i++) {
952 copy_user_highpage(pages[i], page + i,
953 haddr + PAGE_SIZE * i, vma);
954 __SetPageUptodate(pages[i]);
955 cond_resched();
958 mmun_start = haddr;
959 mmun_end = haddr + HPAGE_PMD_SIZE;
960 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
962 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
963 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
964 goto out_free_pages;
965 VM_BUG_ON_PAGE(!PageHead(page), page);
967 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
968 /* leave pmd empty until pte is filled */
970 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
971 pmd_populate(vma->vm_mm, &_pmd, pgtable);
973 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
974 pte_t entry;
975 entry = mk_pte(pages[i], vma->vm_page_prot);
976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
977 memcg = (void *)page_private(pages[i]);
978 set_page_private(pages[i], 0);
979 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
980 mem_cgroup_commit_charge(pages[i], memcg, false, false);
981 lru_cache_add_active_or_unevictable(pages[i], vma);
982 vmf->pte = pte_offset_map(&_pmd, haddr);
983 VM_BUG_ON(!pte_none(*vmf->pte));
984 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
985 pte_unmap(vmf->pte);
987 kfree(pages);
989 smp_wmb(); /* make pte visible before pmd */
990 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
991 page_remove_rmap(page, true);
992 spin_unlock(vmf->ptl);
994 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
996 ret |= VM_FAULT_WRITE;
997 put_page(page);
999 out:
1000 return ret;
1002 out_free_pages:
1003 spin_unlock(vmf->ptl);
1004 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1005 for (i = 0; i < HPAGE_PMD_NR; i++) {
1006 memcg = (void *)page_private(pages[i]);
1007 set_page_private(pages[i], 0);
1008 mem_cgroup_cancel_charge(pages[i], memcg, false);
1009 put_page(pages[i]);
1011 kfree(pages);
1012 goto out;
1015 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1017 struct vm_area_struct *vma = vmf->vma;
1018 struct page *page = NULL, *new_page;
1019 struct mem_cgroup *memcg;
1020 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1021 unsigned long mmun_start; /* For mmu_notifiers */
1022 unsigned long mmun_end; /* For mmu_notifiers */
1023 gfp_t huge_gfp; /* for allocation and charge */
1024 int ret = 0;
1026 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1027 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1028 if (is_huge_zero_pmd(orig_pmd))
1029 goto alloc;
1030 spin_lock(vmf->ptl);
1031 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1032 goto out_unlock;
1034 page = pmd_page(orig_pmd);
1035 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1037 * We can only reuse the page if nobody else maps the huge page or it's
1038 * part.
1040 if (page_trans_huge_mapcount(page, NULL) == 1) {
1041 pmd_t entry;
1042 entry = pmd_mkyoung(orig_pmd);
1043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1044 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1045 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1046 ret |= VM_FAULT_WRITE;
1047 goto out_unlock;
1049 get_page(page);
1050 spin_unlock(vmf->ptl);
1051 alloc:
1052 if (transparent_hugepage_enabled(vma) &&
1053 !transparent_hugepage_debug_cow()) {
1054 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1055 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1056 } else
1057 new_page = NULL;
1059 if (likely(new_page)) {
1060 prep_transhuge_page(new_page);
1061 } else {
1062 if (!page) {
1063 split_huge_pmd(vma, vmf->pmd, vmf->address);
1064 ret |= VM_FAULT_FALLBACK;
1065 } else {
1066 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1067 if (ret & VM_FAULT_OOM) {
1068 split_huge_pmd(vma, vmf->pmd, vmf->address);
1069 ret |= VM_FAULT_FALLBACK;
1071 put_page(page);
1073 count_vm_event(THP_FAULT_FALLBACK);
1074 goto out;
1077 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1078 huge_gfp, &memcg, true))) {
1079 put_page(new_page);
1080 split_huge_pmd(vma, vmf->pmd, vmf->address);
1081 if (page)
1082 put_page(page);
1083 ret |= VM_FAULT_FALLBACK;
1084 count_vm_event(THP_FAULT_FALLBACK);
1085 goto out;
1088 count_vm_event(THP_FAULT_ALLOC);
1090 if (!page)
1091 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1092 else
1093 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1094 __SetPageUptodate(new_page);
1096 mmun_start = haddr;
1097 mmun_end = haddr + HPAGE_PMD_SIZE;
1098 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1100 spin_lock(vmf->ptl);
1101 if (page)
1102 put_page(page);
1103 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1104 spin_unlock(vmf->ptl);
1105 mem_cgroup_cancel_charge(new_page, memcg, true);
1106 put_page(new_page);
1107 goto out_mn;
1108 } else {
1109 pmd_t entry;
1110 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1111 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1112 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1113 page_add_new_anon_rmap(new_page, vma, haddr, true);
1114 mem_cgroup_commit_charge(new_page, memcg, false, true);
1115 lru_cache_add_active_or_unevictable(new_page, vma);
1116 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1117 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1118 if (!page) {
1119 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1120 } else {
1121 VM_BUG_ON_PAGE(!PageHead(page), page);
1122 page_remove_rmap(page, true);
1123 put_page(page);
1125 ret |= VM_FAULT_WRITE;
1127 spin_unlock(vmf->ptl);
1128 out_mn:
1129 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1130 out:
1131 return ret;
1132 out_unlock:
1133 spin_unlock(vmf->ptl);
1134 return ret;
1138 * FOLL_FORCE can write to even unwritable pmd's, but only
1139 * after we've gone through a COW cycle and they are dirty.
1141 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1143 return pmd_write(pmd) ||
1144 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1147 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1148 unsigned long addr,
1149 pmd_t *pmd,
1150 unsigned int flags)
1152 struct mm_struct *mm = vma->vm_mm;
1153 struct page *page = NULL;
1155 assert_spin_locked(pmd_lockptr(mm, pmd));
1157 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1158 goto out;
1160 /* Avoid dumping huge zero page */
1161 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1162 return ERR_PTR(-EFAULT);
1164 /* Full NUMA hinting faults to serialise migration in fault paths */
1165 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1166 goto out;
1168 page = pmd_page(*pmd);
1169 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1170 if (flags & FOLL_TOUCH)
1171 touch_pmd(vma, addr, pmd);
1172 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1174 * We don't mlock() pte-mapped THPs. This way we can avoid
1175 * leaking mlocked pages into non-VM_LOCKED VMAs.
1177 * For anon THP:
1179 * In most cases the pmd is the only mapping of the page as we
1180 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1181 * writable private mappings in populate_vma_page_range().
1183 * The only scenario when we have the page shared here is if we
1184 * mlocking read-only mapping shared over fork(). We skip
1185 * mlocking such pages.
1187 * For file THP:
1189 * We can expect PageDoubleMap() to be stable under page lock:
1190 * for file pages we set it in page_add_file_rmap(), which
1191 * requires page to be locked.
1194 if (PageAnon(page) && compound_mapcount(page) != 1)
1195 goto skip_mlock;
1196 if (PageDoubleMap(page) || !page->mapping)
1197 goto skip_mlock;
1198 if (!trylock_page(page))
1199 goto skip_mlock;
1200 lru_add_drain();
1201 if (page->mapping && !PageDoubleMap(page))
1202 mlock_vma_page(page);
1203 unlock_page(page);
1205 skip_mlock:
1206 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1207 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1208 if (flags & FOLL_GET)
1209 get_page(page);
1211 out:
1212 return page;
1215 /* NUMA hinting page fault entry point for trans huge pmds */
1216 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1218 struct vm_area_struct *vma = vmf->vma;
1219 struct anon_vma *anon_vma = NULL;
1220 struct page *page;
1221 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1222 int page_nid = -1, this_nid = numa_node_id();
1223 int target_nid, last_cpupid = -1;
1224 bool page_locked;
1225 bool migrated = false;
1226 bool was_writable;
1227 int flags = 0;
1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1231 goto out_unlock;
1234 * If there are potential migrations, wait for completion and retry
1235 * without disrupting NUMA hinting information. Do not relock and
1236 * check_same as the page may no longer be mapped.
1238 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1239 page = pmd_page(*vmf->pmd);
1240 spin_unlock(vmf->ptl);
1241 wait_on_page_locked(page);
1242 goto out;
1245 page = pmd_page(pmd);
1246 BUG_ON(is_huge_zero_page(page));
1247 page_nid = page_to_nid(page);
1248 last_cpupid = page_cpupid_last(page);
1249 count_vm_numa_event(NUMA_HINT_FAULTS);
1250 if (page_nid == this_nid) {
1251 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1252 flags |= TNF_FAULT_LOCAL;
1255 /* See similar comment in do_numa_page for explanation */
1256 if (!pmd_write(pmd))
1257 flags |= TNF_NO_GROUP;
1260 * Acquire the page lock to serialise THP migrations but avoid dropping
1261 * page_table_lock if at all possible
1263 page_locked = trylock_page(page);
1264 target_nid = mpol_misplaced(page, vma, haddr);
1265 if (target_nid == -1) {
1266 /* If the page was locked, there are no parallel migrations */
1267 if (page_locked)
1268 goto clear_pmdnuma;
1271 /* Migration could have started since the pmd_trans_migrating check */
1272 if (!page_locked) {
1273 spin_unlock(vmf->ptl);
1274 wait_on_page_locked(page);
1275 page_nid = -1;
1276 goto out;
1280 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1281 * to serialises splits
1283 get_page(page);
1284 spin_unlock(vmf->ptl);
1285 anon_vma = page_lock_anon_vma_read(page);
1287 /* Confirm the PMD did not change while page_table_lock was released */
1288 spin_lock(vmf->ptl);
1289 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1290 unlock_page(page);
1291 put_page(page);
1292 page_nid = -1;
1293 goto out_unlock;
1296 /* Bail if we fail to protect against THP splits for any reason */
1297 if (unlikely(!anon_vma)) {
1298 put_page(page);
1299 page_nid = -1;
1300 goto clear_pmdnuma;
1304 * Migrate the THP to the requested node, returns with page unlocked
1305 * and access rights restored.
1307 spin_unlock(vmf->ptl);
1308 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1309 vmf->pmd, pmd, vmf->address, page, target_nid);
1310 if (migrated) {
1311 flags |= TNF_MIGRATED;
1312 page_nid = target_nid;
1313 } else
1314 flags |= TNF_MIGRATE_FAIL;
1316 goto out;
1317 clear_pmdnuma:
1318 BUG_ON(!PageLocked(page));
1319 was_writable = pmd_write(pmd);
1320 pmd = pmd_modify(pmd, vma->vm_page_prot);
1321 pmd = pmd_mkyoung(pmd);
1322 if (was_writable)
1323 pmd = pmd_mkwrite(pmd);
1324 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1325 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1326 unlock_page(page);
1327 out_unlock:
1328 spin_unlock(vmf->ptl);
1330 out:
1331 if (anon_vma)
1332 page_unlock_anon_vma_read(anon_vma);
1334 if (page_nid != -1)
1335 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1336 vmf->flags);
1338 return 0;
1342 * Return true if we do MADV_FREE successfully on entire pmd page.
1343 * Otherwise, return false.
1345 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1346 pmd_t *pmd, unsigned long addr, unsigned long next)
1348 spinlock_t *ptl;
1349 pmd_t orig_pmd;
1350 struct page *page;
1351 struct mm_struct *mm = tlb->mm;
1352 bool ret = false;
1354 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1356 ptl = pmd_trans_huge_lock(pmd, vma);
1357 if (!ptl)
1358 goto out_unlocked;
1360 orig_pmd = *pmd;
1361 if (is_huge_zero_pmd(orig_pmd))
1362 goto out;
1364 page = pmd_page(orig_pmd);
1366 * If other processes are mapping this page, we couldn't discard
1367 * the page unless they all do MADV_FREE so let's skip the page.
1369 if (page_mapcount(page) != 1)
1370 goto out;
1372 if (!trylock_page(page))
1373 goto out;
1376 * If user want to discard part-pages of THP, split it so MADV_FREE
1377 * will deactivate only them.
1379 if (next - addr != HPAGE_PMD_SIZE) {
1380 get_page(page);
1381 spin_unlock(ptl);
1382 split_huge_page(page);
1383 put_page(page);
1384 unlock_page(page);
1385 goto out_unlocked;
1388 if (PageDirty(page))
1389 ClearPageDirty(page);
1390 unlock_page(page);
1392 if (PageActive(page))
1393 deactivate_page(page);
1395 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1396 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1397 tlb->fullmm);
1398 orig_pmd = pmd_mkold(orig_pmd);
1399 orig_pmd = pmd_mkclean(orig_pmd);
1401 set_pmd_at(mm, addr, pmd, orig_pmd);
1402 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1404 ret = true;
1405 out:
1406 spin_unlock(ptl);
1407 out_unlocked:
1408 return ret;
1411 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1413 pgtable_t pgtable;
1415 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1416 pte_free(mm, pgtable);
1417 atomic_long_dec(&mm->nr_ptes);
1420 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1421 pmd_t *pmd, unsigned long addr)
1423 pmd_t orig_pmd;
1424 spinlock_t *ptl;
1426 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1428 ptl = __pmd_trans_huge_lock(pmd, vma);
1429 if (!ptl)
1430 return 0;
1432 * For architectures like ppc64 we look at deposited pgtable
1433 * when calling pmdp_huge_get_and_clear. So do the
1434 * pgtable_trans_huge_withdraw after finishing pmdp related
1435 * operations.
1437 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1438 tlb->fullmm);
1439 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1440 if (vma_is_dax(vma)) {
1441 spin_unlock(ptl);
1442 if (is_huge_zero_pmd(orig_pmd))
1443 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1444 } else if (is_huge_zero_pmd(orig_pmd)) {
1445 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1446 atomic_long_dec(&tlb->mm->nr_ptes);
1447 spin_unlock(ptl);
1448 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1449 } else {
1450 struct page *page = pmd_page(orig_pmd);
1451 page_remove_rmap(page, true);
1452 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1453 VM_BUG_ON_PAGE(!PageHead(page), page);
1454 if (PageAnon(page)) {
1455 pgtable_t pgtable;
1456 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1457 pte_free(tlb->mm, pgtable);
1458 atomic_long_dec(&tlb->mm->nr_ptes);
1459 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1460 } else {
1461 if (arch_needs_pgtable_deposit())
1462 zap_deposited_table(tlb->mm, pmd);
1463 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1465 spin_unlock(ptl);
1466 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1468 return 1;
1471 #ifndef pmd_move_must_withdraw
1472 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1473 spinlock_t *old_pmd_ptl,
1474 struct vm_area_struct *vma)
1477 * With split pmd lock we also need to move preallocated
1478 * PTE page table if new_pmd is on different PMD page table.
1480 * We also don't deposit and withdraw tables for file pages.
1482 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1484 #endif
1486 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1487 unsigned long new_addr, unsigned long old_end,
1488 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1490 spinlock_t *old_ptl, *new_ptl;
1491 pmd_t pmd;
1492 struct mm_struct *mm = vma->vm_mm;
1493 bool force_flush = false;
1495 if ((old_addr & ~HPAGE_PMD_MASK) ||
1496 (new_addr & ~HPAGE_PMD_MASK) ||
1497 old_end - old_addr < HPAGE_PMD_SIZE)
1498 return false;
1501 * The destination pmd shouldn't be established, free_pgtables()
1502 * should have release it.
1504 if (WARN_ON(!pmd_none(*new_pmd))) {
1505 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1506 return false;
1510 * We don't have to worry about the ordering of src and dst
1511 * ptlocks because exclusive mmap_sem prevents deadlock.
1513 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1514 if (old_ptl) {
1515 new_ptl = pmd_lockptr(mm, new_pmd);
1516 if (new_ptl != old_ptl)
1517 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1518 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1519 if (pmd_present(pmd) && pmd_dirty(pmd))
1520 force_flush = true;
1521 VM_BUG_ON(!pmd_none(*new_pmd));
1523 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1524 pgtable_t pgtable;
1525 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1526 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1528 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1529 if (new_ptl != old_ptl)
1530 spin_unlock(new_ptl);
1531 if (force_flush)
1532 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1533 else
1534 *need_flush = true;
1535 spin_unlock(old_ptl);
1536 return true;
1538 return false;
1542 * Returns
1543 * - 0 if PMD could not be locked
1544 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1545 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1547 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1548 unsigned long addr, pgprot_t newprot, int prot_numa)
1550 struct mm_struct *mm = vma->vm_mm;
1551 spinlock_t *ptl;
1552 int ret = 0;
1554 ptl = __pmd_trans_huge_lock(pmd, vma);
1555 if (ptl) {
1556 pmd_t entry;
1557 bool preserve_write = prot_numa && pmd_write(*pmd);
1558 ret = 1;
1561 * Avoid trapping faults against the zero page. The read-only
1562 * data is likely to be read-cached on the local CPU and
1563 * local/remote hits to the zero page are not interesting.
1565 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1566 spin_unlock(ptl);
1567 return ret;
1570 if (!prot_numa || !pmd_protnone(*pmd)) {
1571 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1572 entry = pmd_modify(entry, newprot);
1573 if (preserve_write)
1574 entry = pmd_mkwrite(entry);
1575 ret = HPAGE_PMD_NR;
1576 set_pmd_at(mm, addr, pmd, entry);
1577 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1578 pmd_write(entry));
1580 spin_unlock(ptl);
1583 return ret;
1587 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1589 * Note that if it returns page table lock pointer, this routine returns without
1590 * unlocking page table lock. So callers must unlock it.
1592 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1594 spinlock_t *ptl;
1595 ptl = pmd_lock(vma->vm_mm, pmd);
1596 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1597 return ptl;
1598 spin_unlock(ptl);
1599 return NULL;
1602 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1603 unsigned long haddr, pmd_t *pmd)
1605 struct mm_struct *mm = vma->vm_mm;
1606 pgtable_t pgtable;
1607 pmd_t _pmd;
1608 int i;
1610 /* leave pmd empty until pte is filled */
1611 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1613 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1614 pmd_populate(mm, &_pmd, pgtable);
1616 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1617 pte_t *pte, entry;
1618 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1619 entry = pte_mkspecial(entry);
1620 pte = pte_offset_map(&_pmd, haddr);
1621 VM_BUG_ON(!pte_none(*pte));
1622 set_pte_at(mm, haddr, pte, entry);
1623 pte_unmap(pte);
1625 smp_wmb(); /* make pte visible before pmd */
1626 pmd_populate(mm, pmd, pgtable);
1629 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1630 unsigned long haddr, bool freeze)
1632 struct mm_struct *mm = vma->vm_mm;
1633 struct page *page;
1634 pgtable_t pgtable;
1635 pmd_t _pmd;
1636 bool young, write, dirty, soft_dirty;
1637 unsigned long addr;
1638 int i;
1640 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1641 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1642 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1643 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1645 count_vm_event(THP_SPLIT_PMD);
1647 if (!vma_is_anonymous(vma)) {
1648 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1650 * We are going to unmap this huge page. So
1651 * just go ahead and zap it
1653 if (arch_needs_pgtable_deposit())
1654 zap_deposited_table(mm, pmd);
1655 if (vma_is_dax(vma))
1656 return;
1657 page = pmd_page(_pmd);
1658 if (!PageReferenced(page) && pmd_young(_pmd))
1659 SetPageReferenced(page);
1660 page_remove_rmap(page, true);
1661 put_page(page);
1662 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1663 return;
1664 } else if (is_huge_zero_pmd(*pmd)) {
1665 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1668 page = pmd_page(*pmd);
1669 VM_BUG_ON_PAGE(!page_count(page), page);
1670 page_ref_add(page, HPAGE_PMD_NR - 1);
1671 write = pmd_write(*pmd);
1672 young = pmd_young(*pmd);
1673 dirty = pmd_dirty(*pmd);
1674 soft_dirty = pmd_soft_dirty(*pmd);
1676 pmdp_huge_split_prepare(vma, haddr, pmd);
1677 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1678 pmd_populate(mm, &_pmd, pgtable);
1680 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1681 pte_t entry, *pte;
1683 * Note that NUMA hinting access restrictions are not
1684 * transferred to avoid any possibility of altering
1685 * permissions across VMAs.
1687 if (freeze) {
1688 swp_entry_t swp_entry;
1689 swp_entry = make_migration_entry(page + i, write);
1690 entry = swp_entry_to_pte(swp_entry);
1691 if (soft_dirty)
1692 entry = pte_swp_mksoft_dirty(entry);
1693 } else {
1694 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1695 entry = maybe_mkwrite(entry, vma);
1696 if (!write)
1697 entry = pte_wrprotect(entry);
1698 if (!young)
1699 entry = pte_mkold(entry);
1700 if (soft_dirty)
1701 entry = pte_mksoft_dirty(entry);
1703 if (dirty)
1704 SetPageDirty(page + i);
1705 pte = pte_offset_map(&_pmd, addr);
1706 BUG_ON(!pte_none(*pte));
1707 set_pte_at(mm, addr, pte, entry);
1708 atomic_inc(&page[i]._mapcount);
1709 pte_unmap(pte);
1713 * Set PG_double_map before dropping compound_mapcount to avoid
1714 * false-negative page_mapped().
1716 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1717 for (i = 0; i < HPAGE_PMD_NR; i++)
1718 atomic_inc(&page[i]._mapcount);
1721 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1722 /* Last compound_mapcount is gone. */
1723 __dec_node_page_state(page, NR_ANON_THPS);
1724 if (TestClearPageDoubleMap(page)) {
1725 /* No need in mapcount reference anymore */
1726 for (i = 0; i < HPAGE_PMD_NR; i++)
1727 atomic_dec(&page[i]._mapcount);
1731 smp_wmb(); /* make pte visible before pmd */
1733 * Up to this point the pmd is present and huge and userland has the
1734 * whole access to the hugepage during the split (which happens in
1735 * place). If we overwrite the pmd with the not-huge version pointing
1736 * to the pte here (which of course we could if all CPUs were bug
1737 * free), userland could trigger a small page size TLB miss on the
1738 * small sized TLB while the hugepage TLB entry is still established in
1739 * the huge TLB. Some CPU doesn't like that.
1740 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1741 * 383 on page 93. Intel should be safe but is also warns that it's
1742 * only safe if the permission and cache attributes of the two entries
1743 * loaded in the two TLB is identical (which should be the case here).
1744 * But it is generally safer to never allow small and huge TLB entries
1745 * for the same virtual address to be loaded simultaneously. So instead
1746 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1747 * current pmd notpresent (atomically because here the pmd_trans_huge
1748 * and pmd_trans_splitting must remain set at all times on the pmd
1749 * until the split is complete for this pmd), then we flush the SMP TLB
1750 * and finally we write the non-huge version of the pmd entry with
1751 * pmd_populate.
1753 pmdp_invalidate(vma, haddr, pmd);
1754 pmd_populate(mm, pmd, pgtable);
1756 if (freeze) {
1757 for (i = 0; i < HPAGE_PMD_NR; i++) {
1758 page_remove_rmap(page + i, false);
1759 put_page(page + i);
1764 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1765 unsigned long address, bool freeze, struct page *page)
1767 spinlock_t *ptl;
1768 struct mm_struct *mm = vma->vm_mm;
1769 unsigned long haddr = address & HPAGE_PMD_MASK;
1771 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1772 ptl = pmd_lock(mm, pmd);
1775 * If caller asks to setup a migration entries, we need a page to check
1776 * pmd against. Otherwise we can end up replacing wrong page.
1778 VM_BUG_ON(freeze && !page);
1779 if (page && page != pmd_page(*pmd))
1780 goto out;
1782 if (pmd_trans_huge(*pmd)) {
1783 page = pmd_page(*pmd);
1784 if (PageMlocked(page))
1785 clear_page_mlock(page);
1786 } else if (!pmd_devmap(*pmd))
1787 goto out;
1788 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1789 out:
1790 spin_unlock(ptl);
1791 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1794 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1795 bool freeze, struct page *page)
1797 pgd_t *pgd;
1798 pud_t *pud;
1799 pmd_t *pmd;
1801 pgd = pgd_offset(vma->vm_mm, address);
1802 if (!pgd_present(*pgd))
1803 return;
1805 pud = pud_offset(pgd, address);
1806 if (!pud_present(*pud))
1807 return;
1809 pmd = pmd_offset(pud, address);
1811 __split_huge_pmd(vma, pmd, address, freeze, page);
1814 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1815 unsigned long start,
1816 unsigned long end,
1817 long adjust_next)
1820 * If the new start address isn't hpage aligned and it could
1821 * previously contain an hugepage: check if we need to split
1822 * an huge pmd.
1824 if (start & ~HPAGE_PMD_MASK &&
1825 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1826 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1827 split_huge_pmd_address(vma, start, false, NULL);
1830 * If the new end address isn't hpage aligned and it could
1831 * previously contain an hugepage: check if we need to split
1832 * an huge pmd.
1834 if (end & ~HPAGE_PMD_MASK &&
1835 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1836 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1837 split_huge_pmd_address(vma, end, false, NULL);
1840 * If we're also updating the vma->vm_next->vm_start, if the new
1841 * vm_next->vm_start isn't page aligned and it could previously
1842 * contain an hugepage: check if we need to split an huge pmd.
1844 if (adjust_next > 0) {
1845 struct vm_area_struct *next = vma->vm_next;
1846 unsigned long nstart = next->vm_start;
1847 nstart += adjust_next << PAGE_SHIFT;
1848 if (nstart & ~HPAGE_PMD_MASK &&
1849 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1850 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1851 split_huge_pmd_address(next, nstart, false, NULL);
1855 static void freeze_page(struct page *page)
1857 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1858 TTU_RMAP_LOCKED;
1859 int i, ret;
1861 VM_BUG_ON_PAGE(!PageHead(page), page);
1863 if (PageAnon(page))
1864 ttu_flags |= TTU_MIGRATION;
1866 /* We only need TTU_SPLIT_HUGE_PMD once */
1867 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1868 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1869 /* Cut short if the page is unmapped */
1870 if (page_count(page) == 1)
1871 return;
1873 ret = try_to_unmap(page + i, ttu_flags);
1875 VM_BUG_ON_PAGE(ret, page + i - 1);
1878 static void unfreeze_page(struct page *page)
1880 int i;
1882 for (i = 0; i < HPAGE_PMD_NR; i++)
1883 remove_migration_ptes(page + i, page + i, true);
1886 static void __split_huge_page_tail(struct page *head, int tail,
1887 struct lruvec *lruvec, struct list_head *list)
1889 struct page *page_tail = head + tail;
1891 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1892 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1895 * tail_page->_refcount is zero and not changing from under us. But
1896 * get_page_unless_zero() may be running from under us on the
1897 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1898 * atomic_add(), we would then run atomic_set() concurrently with
1899 * get_page_unless_zero(), and atomic_set() is implemented in C not
1900 * using locked ops. spin_unlock on x86 sometime uses locked ops
1901 * because of PPro errata 66, 92, so unless somebody can guarantee
1902 * atomic_set() here would be safe on all archs (and not only on x86),
1903 * it's safer to use atomic_inc()/atomic_add().
1905 if (PageAnon(head)) {
1906 page_ref_inc(page_tail);
1907 } else {
1908 /* Additional pin to radix tree */
1909 page_ref_add(page_tail, 2);
1912 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1913 page_tail->flags |= (head->flags &
1914 ((1L << PG_referenced) |
1915 (1L << PG_swapbacked) |
1916 (1L << PG_mlocked) |
1917 (1L << PG_uptodate) |
1918 (1L << PG_active) |
1919 (1L << PG_locked) |
1920 (1L << PG_unevictable) |
1921 (1L << PG_dirty)));
1924 * After clearing PageTail the gup refcount can be released.
1925 * Page flags also must be visible before we make the page non-compound.
1927 smp_wmb();
1929 clear_compound_head(page_tail);
1931 if (page_is_young(head))
1932 set_page_young(page_tail);
1933 if (page_is_idle(head))
1934 set_page_idle(page_tail);
1936 /* ->mapping in first tail page is compound_mapcount */
1937 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1938 page_tail);
1939 page_tail->mapping = head->mapping;
1941 page_tail->index = head->index + tail;
1942 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1943 lru_add_page_tail(head, page_tail, lruvec, list);
1946 static void __split_huge_page(struct page *page, struct list_head *list,
1947 unsigned long flags)
1949 struct page *head = compound_head(page);
1950 struct zone *zone = page_zone(head);
1951 struct lruvec *lruvec;
1952 pgoff_t end = -1;
1953 int i;
1955 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1957 /* complete memcg works before add pages to LRU */
1958 mem_cgroup_split_huge_fixup(head);
1960 if (!PageAnon(page))
1961 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1963 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1964 __split_huge_page_tail(head, i, lruvec, list);
1965 /* Some pages can be beyond i_size: drop them from page cache */
1966 if (head[i].index >= end) {
1967 __ClearPageDirty(head + i);
1968 __delete_from_page_cache(head + i, NULL);
1969 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1970 shmem_uncharge(head->mapping->host, 1);
1971 put_page(head + i);
1975 ClearPageCompound(head);
1976 /* See comment in __split_huge_page_tail() */
1977 if (PageAnon(head)) {
1978 page_ref_inc(head);
1979 } else {
1980 /* Additional pin to radix tree */
1981 page_ref_add(head, 2);
1982 spin_unlock(&head->mapping->tree_lock);
1985 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1987 unfreeze_page(head);
1989 for (i = 0; i < HPAGE_PMD_NR; i++) {
1990 struct page *subpage = head + i;
1991 if (subpage == page)
1992 continue;
1993 unlock_page(subpage);
1996 * Subpages may be freed if there wasn't any mapping
1997 * like if add_to_swap() is running on a lru page that
1998 * had its mapping zapped. And freeing these pages
1999 * requires taking the lru_lock so we do the put_page
2000 * of the tail pages after the split is complete.
2002 put_page(subpage);
2006 int total_mapcount(struct page *page)
2008 int i, compound, ret;
2010 VM_BUG_ON_PAGE(PageTail(page), page);
2012 if (likely(!PageCompound(page)))
2013 return atomic_read(&page->_mapcount) + 1;
2015 compound = compound_mapcount(page);
2016 if (PageHuge(page))
2017 return compound;
2018 ret = compound;
2019 for (i = 0; i < HPAGE_PMD_NR; i++)
2020 ret += atomic_read(&page[i]._mapcount) + 1;
2021 /* File pages has compound_mapcount included in _mapcount */
2022 if (!PageAnon(page))
2023 return ret - compound * HPAGE_PMD_NR;
2024 if (PageDoubleMap(page))
2025 ret -= HPAGE_PMD_NR;
2026 return ret;
2030 * This calculates accurately how many mappings a transparent hugepage
2031 * has (unlike page_mapcount() which isn't fully accurate). This full
2032 * accuracy is primarily needed to know if copy-on-write faults can
2033 * reuse the page and change the mapping to read-write instead of
2034 * copying them. At the same time this returns the total_mapcount too.
2036 * The function returns the highest mapcount any one of the subpages
2037 * has. If the return value is one, even if different processes are
2038 * mapping different subpages of the transparent hugepage, they can
2039 * all reuse it, because each process is reusing a different subpage.
2041 * The total_mapcount is instead counting all virtual mappings of the
2042 * subpages. If the total_mapcount is equal to "one", it tells the
2043 * caller all mappings belong to the same "mm" and in turn the
2044 * anon_vma of the transparent hugepage can become the vma->anon_vma
2045 * local one as no other process may be mapping any of the subpages.
2047 * It would be more accurate to replace page_mapcount() with
2048 * page_trans_huge_mapcount(), however we only use
2049 * page_trans_huge_mapcount() in the copy-on-write faults where we
2050 * need full accuracy to avoid breaking page pinning, because
2051 * page_trans_huge_mapcount() is slower than page_mapcount().
2053 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2055 int i, ret, _total_mapcount, mapcount;
2057 /* hugetlbfs shouldn't call it */
2058 VM_BUG_ON_PAGE(PageHuge(page), page);
2060 if (likely(!PageTransCompound(page))) {
2061 mapcount = atomic_read(&page->_mapcount) + 1;
2062 if (total_mapcount)
2063 *total_mapcount = mapcount;
2064 return mapcount;
2067 page = compound_head(page);
2069 _total_mapcount = ret = 0;
2070 for (i = 0; i < HPAGE_PMD_NR; i++) {
2071 mapcount = atomic_read(&page[i]._mapcount) + 1;
2072 ret = max(ret, mapcount);
2073 _total_mapcount += mapcount;
2075 if (PageDoubleMap(page)) {
2076 ret -= 1;
2077 _total_mapcount -= HPAGE_PMD_NR;
2079 mapcount = compound_mapcount(page);
2080 ret += mapcount;
2081 _total_mapcount += mapcount;
2082 if (total_mapcount)
2083 *total_mapcount = _total_mapcount;
2084 return ret;
2088 * This function splits huge page into normal pages. @page can point to any
2089 * subpage of huge page to split. Split doesn't change the position of @page.
2091 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2092 * The huge page must be locked.
2094 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2096 * Both head page and tail pages will inherit mapping, flags, and so on from
2097 * the hugepage.
2099 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2100 * they are not mapped.
2102 * Returns 0 if the hugepage is split successfully.
2103 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2104 * us.
2106 int split_huge_page_to_list(struct page *page, struct list_head *list)
2108 struct page *head = compound_head(page);
2109 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2110 struct anon_vma *anon_vma = NULL;
2111 struct address_space *mapping = NULL;
2112 int count, mapcount, extra_pins, ret;
2113 bool mlocked;
2114 unsigned long flags;
2116 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2117 VM_BUG_ON_PAGE(!PageLocked(page), page);
2118 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119 VM_BUG_ON_PAGE(!PageCompound(page), page);
2121 if (PageAnon(head)) {
2123 * The caller does not necessarily hold an mmap_sem that would
2124 * prevent the anon_vma disappearing so we first we take a
2125 * reference to it and then lock the anon_vma for write. This
2126 * is similar to page_lock_anon_vma_read except the write lock
2127 * is taken to serialise against parallel split or collapse
2128 * operations.
2130 anon_vma = page_get_anon_vma(head);
2131 if (!anon_vma) {
2132 ret = -EBUSY;
2133 goto out;
2135 extra_pins = 0;
2136 mapping = NULL;
2137 anon_vma_lock_write(anon_vma);
2138 } else {
2139 mapping = head->mapping;
2141 /* Truncated ? */
2142 if (!mapping) {
2143 ret = -EBUSY;
2144 goto out;
2147 /* Addidional pins from radix tree */
2148 extra_pins = HPAGE_PMD_NR;
2149 anon_vma = NULL;
2150 i_mmap_lock_read(mapping);
2154 * Racy check if we can split the page, before freeze_page() will
2155 * split PMDs
2157 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2158 ret = -EBUSY;
2159 goto out_unlock;
2162 mlocked = PageMlocked(page);
2163 freeze_page(head);
2164 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2166 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2167 if (mlocked)
2168 lru_add_drain();
2170 /* prevent PageLRU to go away from under us, and freeze lru stats */
2171 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2173 if (mapping) {
2174 void **pslot;
2176 spin_lock(&mapping->tree_lock);
2177 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2178 page_index(head));
2180 * Check if the head page is present in radix tree.
2181 * We assume all tail are present too, if head is there.
2183 if (radix_tree_deref_slot_protected(pslot,
2184 &mapping->tree_lock) != head)
2185 goto fail;
2188 /* Prevent deferred_split_scan() touching ->_refcount */
2189 spin_lock(&pgdata->split_queue_lock);
2190 count = page_count(head);
2191 mapcount = total_mapcount(head);
2192 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2193 if (!list_empty(page_deferred_list(head))) {
2194 pgdata->split_queue_len--;
2195 list_del(page_deferred_list(head));
2197 if (mapping)
2198 __dec_node_page_state(page, NR_SHMEM_THPS);
2199 spin_unlock(&pgdata->split_queue_lock);
2200 __split_huge_page(page, list, flags);
2201 ret = 0;
2202 } else {
2203 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2204 pr_alert("total_mapcount: %u, page_count(): %u\n",
2205 mapcount, count);
2206 if (PageTail(page))
2207 dump_page(head, NULL);
2208 dump_page(page, "total_mapcount(head) > 0");
2209 BUG();
2211 spin_unlock(&pgdata->split_queue_lock);
2212 fail: if (mapping)
2213 spin_unlock(&mapping->tree_lock);
2214 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2215 unfreeze_page(head);
2216 ret = -EBUSY;
2219 out_unlock:
2220 if (anon_vma) {
2221 anon_vma_unlock_write(anon_vma);
2222 put_anon_vma(anon_vma);
2224 if (mapping)
2225 i_mmap_unlock_read(mapping);
2226 out:
2227 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2228 return ret;
2231 void free_transhuge_page(struct page *page)
2233 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2234 unsigned long flags;
2236 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237 if (!list_empty(page_deferred_list(page))) {
2238 pgdata->split_queue_len--;
2239 list_del(page_deferred_list(page));
2241 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2242 free_compound_page(page);
2245 void deferred_split_huge_page(struct page *page)
2247 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2248 unsigned long flags;
2250 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2252 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2253 if (list_empty(page_deferred_list(page))) {
2254 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2255 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2256 pgdata->split_queue_len++;
2258 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2261 static unsigned long deferred_split_count(struct shrinker *shrink,
2262 struct shrink_control *sc)
2264 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2265 return ACCESS_ONCE(pgdata->split_queue_len);
2268 static unsigned long deferred_split_scan(struct shrinker *shrink,
2269 struct shrink_control *sc)
2271 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2272 unsigned long flags;
2273 LIST_HEAD(list), *pos, *next;
2274 struct page *page;
2275 int split = 0;
2277 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2278 /* Take pin on all head pages to avoid freeing them under us */
2279 list_for_each_safe(pos, next, &pgdata->split_queue) {
2280 page = list_entry((void *)pos, struct page, mapping);
2281 page = compound_head(page);
2282 if (get_page_unless_zero(page)) {
2283 list_move(page_deferred_list(page), &list);
2284 } else {
2285 /* We lost race with put_compound_page() */
2286 list_del_init(page_deferred_list(page));
2287 pgdata->split_queue_len--;
2289 if (!--sc->nr_to_scan)
2290 break;
2292 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2294 list_for_each_safe(pos, next, &list) {
2295 page = list_entry((void *)pos, struct page, mapping);
2296 lock_page(page);
2297 /* split_huge_page() removes page from list on success */
2298 if (!split_huge_page(page))
2299 split++;
2300 unlock_page(page);
2301 put_page(page);
2304 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2305 list_splice_tail(&list, &pgdata->split_queue);
2306 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2309 * Stop shrinker if we didn't split any page, but the queue is empty.
2310 * This can happen if pages were freed under us.
2312 if (!split && list_empty(&pgdata->split_queue))
2313 return SHRINK_STOP;
2314 return split;
2317 static struct shrinker deferred_split_shrinker = {
2318 .count_objects = deferred_split_count,
2319 .scan_objects = deferred_split_scan,
2320 .seeks = DEFAULT_SEEKS,
2321 .flags = SHRINKER_NUMA_AWARE,
2324 #ifdef CONFIG_DEBUG_FS
2325 static int split_huge_pages_set(void *data, u64 val)
2327 struct zone *zone;
2328 struct page *page;
2329 unsigned long pfn, max_zone_pfn;
2330 unsigned long total = 0, split = 0;
2332 if (val != 1)
2333 return -EINVAL;
2335 for_each_populated_zone(zone) {
2336 max_zone_pfn = zone_end_pfn(zone);
2337 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2338 if (!pfn_valid(pfn))
2339 continue;
2341 page = pfn_to_page(pfn);
2342 if (!get_page_unless_zero(page))
2343 continue;
2345 if (zone != page_zone(page))
2346 goto next;
2348 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2349 goto next;
2351 total++;
2352 lock_page(page);
2353 if (!split_huge_page(page))
2354 split++;
2355 unlock_page(page);
2356 next:
2357 put_page(page);
2361 pr_info("%lu of %lu THP split\n", split, total);
2363 return 0;
2365 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2366 "%llu\n");
2368 static int __init split_huge_pages_debugfs(void)
2370 void *ret;
2372 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2373 &split_huge_pages_fops);
2374 if (!ret)
2375 pr_warn("Failed to create split_huge_pages in debugfs");
2376 return 0;
2378 late_initcall(split_huge_pages_debugfs);
2379 #endif