mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / arch / arm64 / kernel / cpufeature.c
blob536d572e55967286b65457631251c842c1951353
1 /*
2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT \
42 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
56 * Flag to indicate if we have computed the system wide
57 * capabilities based on the boot time active CPUs. This
58 * will be used to determine if a new booting CPU should
59 * go through the verification process to make sure that it
60 * supports the system capabilities, without using a hotplug
61 * notifier.
63 static bool sys_caps_initialised;
65 static inline void set_sys_caps_initialised(void)
67 sys_caps_initialised = true;
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
72 /* file-wide pr_fmt adds "CPU features: " prefix */
73 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 return 0;
77 static struct notifier_block cpu_hwcaps_notifier = {
78 .notifier_call = dump_cpu_hwcaps
81 static int __init register_cpu_hwcaps_dumper(void)
83 atomic_notifier_chain_register(&panic_notifier_list,
84 &cpu_hwcaps_notifier);
85 return 0;
87 __initcall(register_cpu_hwcaps_dumper);
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 { \
94 .sign = SIGNED, \
95 .visible = VISIBLE, \
96 .strict = STRICT, \
97 .type = TYPE, \
98 .shift = SHIFT, \
99 .width = WIDTH, \
100 .safe_val = SAFE_VAL, \
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
111 #define ARM64_FTR_END \
113 .width = 0, \
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
137 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
138 ARM64_FTR_END,
141 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
142 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
146 ARM64_FTR_END,
149 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
150 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
151 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
152 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
153 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
154 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
155 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
156 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
157 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
158 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
159 /* Linux doesn't care about the EL3 */
160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
164 ARM64_FTR_END,
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
168 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
169 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
172 /* Linux shouldn't care about secure memory */
173 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
174 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
175 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
177 * Differing PARange is fine as long as all peripherals and memory are mapped
178 * within the minimum PARange of all CPUs
180 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
181 ARM64_FTR_END,
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
185 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
186 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
191 ARM64_FTR_END,
194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
201 ARM64_FTR_END,
204 static const struct arm64_ftr_bits ftr_ctr[] = {
205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
208 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
212 * Linux can handle differing I-cache policies. Userspace JITs will
213 * make use of *minLine.
214 * If we have differing I-cache policies, report it as the weakest - VIPT.
216 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
218 ARM64_FTR_END,
221 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
222 .name = "SYS_CTR_EL0",
223 .ftr_bits = ftr_ctr
226 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
227 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
228 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
231 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
232 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
235 ARM64_FTR_END,
238 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
245 * We can instantiate multiple PMU instances with different levels
246 * of support.
248 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
251 ARM64_FTR_END,
254 static const struct arm64_ftr_bits ftr_mvfr2[] = {
255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
257 ARM64_FTR_END,
260 static const struct arm64_ftr_bits ftr_dczid[] = {
261 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
262 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
263 ARM64_FTR_END,
267 static const struct arm64_ftr_bits ftr_id_isar5[] = {
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
269 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
271 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
272 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
273 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
274 ARM64_FTR_END,
277 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
279 ARM64_FTR_END,
282 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
287 ARM64_FTR_END,
290 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
292 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
299 ARM64_FTR_END,
302 static const struct arm64_ftr_bits ftr_zcr[] = {
303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
304 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
305 ARM64_FTR_END,
309 * Common ftr bits for a 32bit register with all hidden, strict
310 * attributes, with 4bit feature fields and a default safe value of
311 * 0. Covers the following 32bit registers:
312 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
314 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
315 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
316 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
317 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
318 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
323 ARM64_FTR_END,
326 /* Table for a single 32bit feature value */
327 static const struct arm64_ftr_bits ftr_single32[] = {
328 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
329 ARM64_FTR_END,
332 static const struct arm64_ftr_bits ftr_raz[] = {
333 ARM64_FTR_END,
336 #define ARM64_FTR_REG(id, table) { \
337 .sys_id = id, \
338 .reg = &(struct arm64_ftr_reg){ \
339 .name = #id, \
340 .ftr_bits = &((table)[0]), \
343 static const struct __ftr_reg_entry {
344 u32 sys_id;
345 struct arm64_ftr_reg *reg;
346 } arm64_ftr_regs[] = {
348 /* Op1 = 0, CRn = 0, CRm = 1 */
349 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
350 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
351 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
352 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
353 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
354 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
355 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
357 /* Op1 = 0, CRn = 0, CRm = 2 */
358 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
359 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
360 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
361 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
362 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
363 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
364 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
366 /* Op1 = 0, CRn = 0, CRm = 3 */
367 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
368 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
369 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
371 /* Op1 = 0, CRn = 0, CRm = 4 */
372 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
373 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
374 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
376 /* Op1 = 0, CRn = 0, CRm = 5 */
377 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
378 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
380 /* Op1 = 0, CRn = 0, CRm = 6 */
381 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
382 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
384 /* Op1 = 0, CRn = 0, CRm = 7 */
385 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
386 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
387 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
389 /* Op1 = 0, CRn = 1, CRm = 2 */
390 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
392 /* Op1 = 3, CRn = 0, CRm = 0 */
393 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
394 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
396 /* Op1 = 3, CRn = 14, CRm = 0 */
397 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
400 static int search_cmp_ftr_reg(const void *id, const void *regp)
402 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
406 * get_arm64_ftr_reg - Lookup a feature register entry using its
407 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
408 * ascending order of sys_id , we use binary search to find a matching
409 * entry.
411 * returns - Upon success, matching ftr_reg entry for id.
412 * - NULL on failure. It is upto the caller to decide
413 * the impact of a failure.
415 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
417 const struct __ftr_reg_entry *ret;
419 ret = bsearch((const void *)(unsigned long)sys_id,
420 arm64_ftr_regs,
421 ARRAY_SIZE(arm64_ftr_regs),
422 sizeof(arm64_ftr_regs[0]),
423 search_cmp_ftr_reg);
424 if (ret)
425 return ret->reg;
426 return NULL;
429 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
430 s64 ftr_val)
432 u64 mask = arm64_ftr_mask(ftrp);
434 reg &= ~mask;
435 reg |= (ftr_val << ftrp->shift) & mask;
436 return reg;
439 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
440 s64 cur)
442 s64 ret = 0;
444 switch (ftrp->type) {
445 case FTR_EXACT:
446 ret = ftrp->safe_val;
447 break;
448 case FTR_LOWER_SAFE:
449 ret = new < cur ? new : cur;
450 break;
451 case FTR_HIGHER_SAFE:
452 ret = new > cur ? new : cur;
453 break;
454 default:
455 BUG();
458 return ret;
461 static void __init sort_ftr_regs(void)
463 int i;
465 /* Check that the array is sorted so that we can do the binary search */
466 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
467 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
471 * Initialise the CPU feature register from Boot CPU values.
472 * Also initiliases the strict_mask for the register.
473 * Any bits that are not covered by an arm64_ftr_bits entry are considered
474 * RES0 for the system-wide value, and must strictly match.
476 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
478 u64 val = 0;
479 u64 strict_mask = ~0x0ULL;
480 u64 user_mask = 0;
481 u64 valid_mask = 0;
483 const struct arm64_ftr_bits *ftrp;
484 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
486 BUG_ON(!reg);
488 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
489 u64 ftr_mask = arm64_ftr_mask(ftrp);
490 s64 ftr_new = arm64_ftr_value(ftrp, new);
492 val = arm64_ftr_set_value(ftrp, val, ftr_new);
494 valid_mask |= ftr_mask;
495 if (!ftrp->strict)
496 strict_mask &= ~ftr_mask;
497 if (ftrp->visible)
498 user_mask |= ftr_mask;
499 else
500 reg->user_val = arm64_ftr_set_value(ftrp,
501 reg->user_val,
502 ftrp->safe_val);
505 val &= valid_mask;
507 reg->sys_val = val;
508 reg->strict_mask = strict_mask;
509 reg->user_mask = user_mask;
512 extern const struct arm64_cpu_capabilities arm64_errata[];
513 static void __init setup_boot_cpu_capabilities(void);
515 void __init init_cpu_features(struct cpuinfo_arm64 *info)
517 /* Before we start using the tables, make sure it is sorted */
518 sort_ftr_regs();
520 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
521 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
522 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
523 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
524 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
525 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
526 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
527 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
528 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
529 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
530 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
531 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
532 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
534 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
535 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
536 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
537 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
538 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
539 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
540 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
541 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
542 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
543 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
544 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
545 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
546 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
547 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
548 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
549 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
550 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
553 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
554 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
555 sve_init_vq_map();
559 * Detect and enable early CPU capabilities based on the boot CPU,
560 * after we have initialised the CPU feature infrastructure.
562 setup_boot_cpu_capabilities();
565 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
567 const struct arm64_ftr_bits *ftrp;
569 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
570 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
571 s64 ftr_new = arm64_ftr_value(ftrp, new);
573 if (ftr_cur == ftr_new)
574 continue;
575 /* Find a safe value */
576 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
577 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
582 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
584 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
586 BUG_ON(!regp);
587 update_cpu_ftr_reg(regp, val);
588 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
589 return 0;
590 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
591 regp->name, boot, cpu, val);
592 return 1;
596 * Update system wide CPU feature registers with the values from a
597 * non-boot CPU. Also performs SANITY checks to make sure that there
598 * aren't any insane variations from that of the boot CPU.
600 void update_cpu_features(int cpu,
601 struct cpuinfo_arm64 *info,
602 struct cpuinfo_arm64 *boot)
604 int taint = 0;
607 * The kernel can handle differing I-cache policies, but otherwise
608 * caches should look identical. Userspace JITs will make use of
609 * *minLine.
611 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
612 info->reg_ctr, boot->reg_ctr);
615 * Userspace may perform DC ZVA instructions. Mismatched block sizes
616 * could result in too much or too little memory being zeroed if a
617 * process is preempted and migrated between CPUs.
619 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
620 info->reg_dczid, boot->reg_dczid);
622 /* If different, timekeeping will be broken (especially with KVM) */
623 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
624 info->reg_cntfrq, boot->reg_cntfrq);
627 * The kernel uses self-hosted debug features and expects CPUs to
628 * support identical debug features. We presently need CTX_CMPs, WRPs,
629 * and BRPs to be identical.
630 * ID_AA64DFR1 is currently RES0.
632 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
633 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
634 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
635 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
637 * Even in big.LITTLE, processors should be identical instruction-set
638 * wise.
640 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
641 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
642 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
643 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
646 * Differing PARange support is fine as long as all peripherals and
647 * memory are mapped within the minimum PARange of all CPUs.
648 * Linux should not care about secure memory.
650 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
651 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
652 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
653 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
654 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
655 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
658 * EL3 is not our concern.
659 * ID_AA64PFR1 is currently RES0.
661 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
662 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
663 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
664 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
666 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
667 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
670 * If we have AArch32, we care about 32-bit features for compat.
671 * If the system doesn't support AArch32, don't update them.
673 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
674 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
676 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
677 info->reg_id_dfr0, boot->reg_id_dfr0);
678 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
679 info->reg_id_isar0, boot->reg_id_isar0);
680 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
681 info->reg_id_isar1, boot->reg_id_isar1);
682 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
683 info->reg_id_isar2, boot->reg_id_isar2);
684 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
685 info->reg_id_isar3, boot->reg_id_isar3);
686 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
687 info->reg_id_isar4, boot->reg_id_isar4);
688 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
689 info->reg_id_isar5, boot->reg_id_isar5);
692 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
693 * ACTLR formats could differ across CPUs and therefore would have to
694 * be trapped for virtualization anyway.
696 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
697 info->reg_id_mmfr0, boot->reg_id_mmfr0);
698 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
699 info->reg_id_mmfr1, boot->reg_id_mmfr1);
700 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
701 info->reg_id_mmfr2, boot->reg_id_mmfr2);
702 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
703 info->reg_id_mmfr3, boot->reg_id_mmfr3);
704 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
705 info->reg_id_pfr0, boot->reg_id_pfr0);
706 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
707 info->reg_id_pfr1, boot->reg_id_pfr1);
708 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
709 info->reg_mvfr0, boot->reg_mvfr0);
710 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
711 info->reg_mvfr1, boot->reg_mvfr1);
712 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
713 info->reg_mvfr2, boot->reg_mvfr2);
716 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
717 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
718 info->reg_zcr, boot->reg_zcr);
720 /* Probe vector lengths, unless we already gave up on SVE */
721 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
722 !sys_caps_initialised)
723 sve_update_vq_map();
727 * Mismatched CPU features are a recipe for disaster. Don't even
728 * pretend to support them.
730 if (taint) {
731 pr_warn_once("Unsupported CPU feature variation detected.\n");
732 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
736 u64 read_sanitised_ftr_reg(u32 id)
738 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
740 /* We shouldn't get a request for an unsupported register */
741 BUG_ON(!regp);
742 return regp->sys_val;
745 #define read_sysreg_case(r) \
746 case r: return read_sysreg_s(r)
749 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
750 * Read the system register on the current CPU
752 static u64 __read_sysreg_by_encoding(u32 sys_id)
754 switch (sys_id) {
755 read_sysreg_case(SYS_ID_PFR0_EL1);
756 read_sysreg_case(SYS_ID_PFR1_EL1);
757 read_sysreg_case(SYS_ID_DFR0_EL1);
758 read_sysreg_case(SYS_ID_MMFR0_EL1);
759 read_sysreg_case(SYS_ID_MMFR1_EL1);
760 read_sysreg_case(SYS_ID_MMFR2_EL1);
761 read_sysreg_case(SYS_ID_MMFR3_EL1);
762 read_sysreg_case(SYS_ID_ISAR0_EL1);
763 read_sysreg_case(SYS_ID_ISAR1_EL1);
764 read_sysreg_case(SYS_ID_ISAR2_EL1);
765 read_sysreg_case(SYS_ID_ISAR3_EL1);
766 read_sysreg_case(SYS_ID_ISAR4_EL1);
767 read_sysreg_case(SYS_ID_ISAR5_EL1);
768 read_sysreg_case(SYS_MVFR0_EL1);
769 read_sysreg_case(SYS_MVFR1_EL1);
770 read_sysreg_case(SYS_MVFR2_EL1);
772 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
773 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
774 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
775 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
776 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
777 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
778 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
779 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
780 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
782 read_sysreg_case(SYS_CNTFRQ_EL0);
783 read_sysreg_case(SYS_CTR_EL0);
784 read_sysreg_case(SYS_DCZID_EL0);
786 default:
787 BUG();
788 return 0;
792 #include <linux/irqchip/arm-gic-v3.h>
794 static bool
795 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
797 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
799 return val >= entry->min_field_value;
802 static bool
803 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
805 u64 val;
807 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
808 if (scope == SCOPE_SYSTEM)
809 val = read_sanitised_ftr_reg(entry->sys_reg);
810 else
811 val = __read_sysreg_by_encoding(entry->sys_reg);
813 return feature_matches(val, entry);
816 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
818 bool has_sre;
820 if (!has_cpuid_feature(entry, scope))
821 return false;
823 has_sre = gic_enable_sre();
824 if (!has_sre)
825 pr_warn_once("%s present but disabled by higher exception level\n",
826 entry->desc);
828 return has_sre;
831 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
833 u32 midr = read_cpuid_id();
835 /* Cavium ThunderX pass 1.x and 2.x */
836 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
837 MIDR_CPU_VAR_REV(0, 0),
838 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
843 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
845 return cpuid_feature_extract_signed_field(pfr0,
846 ID_AA64PFR0_FP_SHIFT) < 0;
849 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
850 int __unused)
852 return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT);
855 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
856 int __unused)
858 return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT);
861 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
862 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
864 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
865 int scope)
867 /* List of CPUs that are not vulnerable and don't need KPTI */
868 static const struct midr_range kpti_safe_list[] = {
869 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
870 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
872 char const *str = "command line option";
875 * For reasons that aren't entirely clear, enabling KPTI on Cavium
876 * ThunderX leads to apparent I-cache corruption of kernel text, which
877 * ends as well as you might imagine. Don't even try.
879 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
880 str = "ARM64_WORKAROUND_CAVIUM_27456";
881 __kpti_forced = -1;
884 /* Forced? */
885 if (__kpti_forced) {
886 pr_info_once("kernel page table isolation forced %s by %s\n",
887 __kpti_forced > 0 ? "ON" : "OFF", str);
888 return __kpti_forced > 0;
891 /* Useful for KASLR robustness */
892 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
893 return true;
895 /* Don't force KPTI for CPUs that are not vulnerable */
896 if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
897 return false;
899 /* Defer to CPU feature registers */
900 return !has_cpuid_feature(entry, scope);
903 static void
904 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
906 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
907 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
908 kpti_remap_fn *remap_fn;
910 static bool kpti_applied = false;
911 int cpu = smp_processor_id();
913 if (kpti_applied)
914 return;
916 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
918 cpu_install_idmap();
919 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
920 cpu_uninstall_idmap();
922 if (!cpu)
923 kpti_applied = true;
925 return;
928 static int __init parse_kpti(char *str)
930 bool enabled;
931 int ret = strtobool(str, &enabled);
933 if (ret)
934 return ret;
936 __kpti_forced = enabled ? 1 : -1;
937 return 0;
939 __setup("kpti=", parse_kpti);
940 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
942 #ifdef CONFIG_ARM64_HW_AFDBM
943 static inline void __cpu_enable_hw_dbm(void)
945 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
947 write_sysreg(tcr, tcr_el1);
948 isb();
951 static bool cpu_has_broken_dbm(void)
953 /* List of CPUs which have broken DBM support. */
954 static const struct midr_range cpus[] = {
955 #ifdef CONFIG_ARM64_ERRATUM_1024718
956 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
957 #endif
961 return is_midr_in_range_list(read_cpuid_id(), cpus);
964 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
966 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
967 !cpu_has_broken_dbm();
970 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
972 if (cpu_can_use_dbm(cap))
973 __cpu_enable_hw_dbm();
976 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
977 int __unused)
979 static bool detected = false;
981 * DBM is a non-conflicting feature. i.e, the kernel can safely
982 * run a mix of CPUs with and without the feature. So, we
983 * unconditionally enable the capability to allow any late CPU
984 * to use the feature. We only enable the control bits on the
985 * CPU, if it actually supports.
987 * We have to make sure we print the "feature" detection only
988 * when at least one CPU actually uses it. So check if this CPU
989 * can actually use it and print the message exactly once.
991 * This is safe as all CPUs (including secondary CPUs - due to the
992 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
993 * goes through the "matches" check exactly once. Also if a CPU
994 * matches the criteria, it is guaranteed that the CPU will turn
995 * the DBM on, as the capability is unconditionally enabled.
997 if (!detected && cpu_can_use_dbm(cap)) {
998 detected = true;
999 pr_info("detected: Hardware dirty bit management\n");
1002 return true;
1005 #endif
1007 #ifdef CONFIG_ARM64_VHE
1008 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1010 return is_kernel_in_hyp_mode();
1013 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1016 * Copy register values that aren't redirected by hardware.
1018 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1019 * this value to tpidr_el2 before we patch the code. Once we've done
1020 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1021 * do anything here.
1023 if (!alternatives_applied)
1024 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1026 #endif
1028 static const struct arm64_cpu_capabilities arm64_features[] = {
1030 .desc = "GIC system register CPU interface",
1031 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1032 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1033 .matches = has_useable_gicv3_cpuif,
1034 .sys_reg = SYS_ID_AA64PFR0_EL1,
1035 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1036 .sign = FTR_UNSIGNED,
1037 .min_field_value = 1,
1039 #ifdef CONFIG_ARM64_PAN
1041 .desc = "Privileged Access Never",
1042 .capability = ARM64_HAS_PAN,
1043 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1044 .matches = has_cpuid_feature,
1045 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1046 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1047 .sign = FTR_UNSIGNED,
1048 .min_field_value = 1,
1049 .cpu_enable = cpu_enable_pan,
1051 #endif /* CONFIG_ARM64_PAN */
1052 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1054 .desc = "LSE atomic instructions",
1055 .capability = ARM64_HAS_LSE_ATOMICS,
1056 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1057 .matches = has_cpuid_feature,
1058 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1059 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1060 .sign = FTR_UNSIGNED,
1061 .min_field_value = 2,
1063 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1065 .desc = "Software prefetching using PRFM",
1066 .capability = ARM64_HAS_NO_HW_PREFETCH,
1067 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1068 .matches = has_no_hw_prefetch,
1070 #ifdef CONFIG_ARM64_UAO
1072 .desc = "User Access Override",
1073 .capability = ARM64_HAS_UAO,
1074 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1075 .matches = has_cpuid_feature,
1076 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1077 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1078 .min_field_value = 1,
1080 * We rely on stop_machine() calling uao_thread_switch() to set
1081 * UAO immediately after patching.
1084 #endif /* CONFIG_ARM64_UAO */
1085 #ifdef CONFIG_ARM64_PAN
1087 .capability = ARM64_ALT_PAN_NOT_UAO,
1088 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1089 .matches = cpufeature_pan_not_uao,
1091 #endif /* CONFIG_ARM64_PAN */
1092 #ifdef CONFIG_ARM64_VHE
1094 .desc = "Virtualization Host Extensions",
1095 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1096 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1097 .matches = runs_at_el2,
1098 .cpu_enable = cpu_copy_el2regs,
1100 #endif /* CONFIG_ARM64_VHE */
1102 .desc = "32-bit EL0 Support",
1103 .capability = ARM64_HAS_32BIT_EL0,
1104 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1105 .matches = has_cpuid_feature,
1106 .sys_reg = SYS_ID_AA64PFR0_EL1,
1107 .sign = FTR_UNSIGNED,
1108 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1109 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1111 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1113 .desc = "Kernel page table isolation (KPTI)",
1114 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1115 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1117 * The ID feature fields below are used to indicate that
1118 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1119 * more details.
1121 .sys_reg = SYS_ID_AA64PFR0_EL1,
1122 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1123 .min_field_value = 1,
1124 .matches = unmap_kernel_at_el0,
1125 .cpu_enable = kpti_install_ng_mappings,
1127 #endif
1129 /* FP/SIMD is not implemented */
1130 .capability = ARM64_HAS_NO_FPSIMD,
1131 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1132 .min_field_value = 0,
1133 .matches = has_no_fpsimd,
1135 #ifdef CONFIG_ARM64_PMEM
1137 .desc = "Data cache clean to Point of Persistence",
1138 .capability = ARM64_HAS_DCPOP,
1139 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1140 .matches = has_cpuid_feature,
1141 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1142 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1143 .min_field_value = 1,
1145 #endif
1146 #ifdef CONFIG_ARM64_SVE
1148 .desc = "Scalable Vector Extension",
1149 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1150 .capability = ARM64_SVE,
1151 .sys_reg = SYS_ID_AA64PFR0_EL1,
1152 .sign = FTR_UNSIGNED,
1153 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1154 .min_field_value = ID_AA64PFR0_SVE,
1155 .matches = has_cpuid_feature,
1156 .cpu_enable = sve_kernel_enable,
1158 #endif /* CONFIG_ARM64_SVE */
1159 #ifdef CONFIG_ARM64_RAS_EXTN
1161 .desc = "RAS Extension Support",
1162 .capability = ARM64_HAS_RAS_EXTN,
1163 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1164 .matches = has_cpuid_feature,
1165 .sys_reg = SYS_ID_AA64PFR0_EL1,
1166 .sign = FTR_UNSIGNED,
1167 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1168 .min_field_value = ID_AA64PFR0_RAS_V1,
1169 .cpu_enable = cpu_clear_disr,
1171 #endif /* CONFIG_ARM64_RAS_EXTN */
1173 .desc = "Data cache clean to the PoU not required for I/D coherence",
1174 .capability = ARM64_HAS_CACHE_IDC,
1175 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1176 .matches = has_cache_idc,
1179 .desc = "Instruction cache invalidation not required for I/D coherence",
1180 .capability = ARM64_HAS_CACHE_DIC,
1181 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1182 .matches = has_cache_dic,
1184 #ifdef CONFIG_ARM64_HW_AFDBM
1187 * Since we turn this on always, we don't want the user to
1188 * think that the feature is available when it may not be.
1189 * So hide the description.
1191 * .desc = "Hardware pagetable Dirty Bit Management",
1194 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1195 .capability = ARM64_HW_DBM,
1196 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1197 .sign = FTR_UNSIGNED,
1198 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1199 .min_field_value = 2,
1200 .matches = has_hw_dbm,
1201 .cpu_enable = cpu_enable_hw_dbm,
1203 #endif
1207 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1209 .desc = #cap, \
1210 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1211 .matches = has_cpuid_feature, \
1212 .sys_reg = reg, \
1213 .field_pos = field, \
1214 .sign = s, \
1215 .min_field_value = min_value, \
1216 .hwcap_type = cap_type, \
1217 .hwcap = cap, \
1220 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1221 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1222 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1223 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1224 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1225 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1226 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1227 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1228 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1229 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1230 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1231 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1232 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1233 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1234 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1235 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1236 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1237 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1238 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1239 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1240 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1241 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1242 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1243 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1244 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1245 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1246 #ifdef CONFIG_ARM64_SVE
1247 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1248 #endif
1252 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1253 #ifdef CONFIG_COMPAT
1254 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1255 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1256 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1257 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1258 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1259 #endif
1263 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1265 switch (cap->hwcap_type) {
1266 case CAP_HWCAP:
1267 elf_hwcap |= cap->hwcap;
1268 break;
1269 #ifdef CONFIG_COMPAT
1270 case CAP_COMPAT_HWCAP:
1271 compat_elf_hwcap |= (u32)cap->hwcap;
1272 break;
1273 case CAP_COMPAT_HWCAP2:
1274 compat_elf_hwcap2 |= (u32)cap->hwcap;
1275 break;
1276 #endif
1277 default:
1278 WARN_ON(1);
1279 break;
1283 /* Check if we have a particular HWCAP enabled */
1284 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1286 bool rc;
1288 switch (cap->hwcap_type) {
1289 case CAP_HWCAP:
1290 rc = (elf_hwcap & cap->hwcap) != 0;
1291 break;
1292 #ifdef CONFIG_COMPAT
1293 case CAP_COMPAT_HWCAP:
1294 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1295 break;
1296 case CAP_COMPAT_HWCAP2:
1297 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1298 break;
1299 #endif
1300 default:
1301 WARN_ON(1);
1302 rc = false;
1305 return rc;
1308 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1310 /* We support emulation of accesses to CPU ID feature registers */
1311 elf_hwcap |= HWCAP_CPUID;
1312 for (; hwcaps->matches; hwcaps++)
1313 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1314 cap_set_elf_hwcap(hwcaps);
1318 * Check if the current CPU has a given feature capability.
1319 * Should be called from non-preemptible context.
1321 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1322 unsigned int cap)
1324 const struct arm64_cpu_capabilities *caps;
1326 if (WARN_ON(preemptible()))
1327 return false;
1329 for (caps = cap_array; caps->matches; caps++)
1330 if (caps->capability == cap)
1331 return caps->matches(caps, SCOPE_LOCAL_CPU);
1333 return false;
1336 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1337 u16 scope_mask, const char *info)
1339 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1340 for (; caps->matches; caps++) {
1341 if (!(caps->type & scope_mask) ||
1342 !caps->matches(caps, cpucap_default_scope(caps)))
1343 continue;
1345 if (!cpus_have_cap(caps->capability) && caps->desc)
1346 pr_info("%s %s\n", info, caps->desc);
1347 cpus_set_cap(caps->capability);
1351 static void update_cpu_capabilities(u16 scope_mask)
1353 __update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1354 __update_cpu_capabilities(arm64_errata, scope_mask,
1355 "enabling workaround for");
1358 static int __enable_cpu_capability(void *arg)
1360 const struct arm64_cpu_capabilities *cap = arg;
1362 cap->cpu_enable(cap);
1363 return 0;
1367 * Run through the enabled capabilities and enable() it on all active
1368 * CPUs
1370 static void __init
1371 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1372 u16 scope_mask)
1374 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1375 for (; caps->matches; caps++) {
1376 unsigned int num = caps->capability;
1378 if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1379 continue;
1381 /* Ensure cpus_have_const_cap(num) works */
1382 static_branch_enable(&cpu_hwcap_keys[num]);
1384 if (caps->cpu_enable) {
1386 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1387 * before any secondary CPU boots. Thus, each secondary
1388 * will enable the capability as appropriate via
1389 * check_local_cpu_capabilities(). The only exception is
1390 * the boot CPU, for which the capability must be
1391 * enabled here. This approach avoids costly
1392 * stop_machine() calls for this case.
1394 * Otherwise, use stop_machine() as it schedules the
1395 * work allowing us to modify PSTATE, instead of
1396 * on_each_cpu() which uses an IPI, giving us a PSTATE
1397 * that disappears when we return.
1399 if (scope_mask & SCOPE_BOOT_CPU)
1400 caps->cpu_enable(caps);
1401 else
1402 stop_machine(__enable_cpu_capability,
1403 (void *)caps, cpu_online_mask);
1408 static void __init enable_cpu_capabilities(u16 scope_mask)
1410 __enable_cpu_capabilities(arm64_features, scope_mask);
1411 __enable_cpu_capabilities(arm64_errata, scope_mask);
1415 * Run through the list of capabilities to check for conflicts.
1416 * If the system has already detected a capability, take necessary
1417 * action on this CPU.
1419 * Returns "false" on conflicts.
1421 static bool
1422 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1423 u16 scope_mask)
1425 bool cpu_has_cap, system_has_cap;
1427 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1429 for (; caps->matches; caps++) {
1430 if (!(caps->type & scope_mask))
1431 continue;
1433 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1434 system_has_cap = cpus_have_cap(caps->capability);
1436 if (system_has_cap) {
1438 * Check if the new CPU misses an advertised feature,
1439 * which is not safe to miss.
1441 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1442 break;
1444 * We have to issue cpu_enable() irrespective of
1445 * whether the CPU has it or not, as it is enabeld
1446 * system wide. It is upto the call back to take
1447 * appropriate action on this CPU.
1449 if (caps->cpu_enable)
1450 caps->cpu_enable(caps);
1451 } else {
1453 * Check if the CPU has this capability if it isn't
1454 * safe to have when the system doesn't.
1456 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1457 break;
1461 if (caps->matches) {
1462 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1463 smp_processor_id(), caps->capability,
1464 caps->desc, system_has_cap, cpu_has_cap);
1465 return false;
1468 return true;
1471 static bool verify_local_cpu_caps(u16 scope_mask)
1473 return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1474 __verify_local_cpu_caps(arm64_features, scope_mask);
1478 * Check for CPU features that are used in early boot
1479 * based on the Boot CPU value.
1481 static void check_early_cpu_features(void)
1483 verify_cpu_asid_bits();
1485 * Early features are used by the kernel already. If there
1486 * is a conflict, we cannot proceed further.
1488 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1489 cpu_panic_kernel();
1492 static void
1493 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1496 for (; caps->matches; caps++)
1497 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1498 pr_crit("CPU%d: missing HWCAP: %s\n",
1499 smp_processor_id(), caps->desc);
1500 cpu_die_early();
1504 static void verify_sve_features(void)
1506 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1507 u64 zcr = read_zcr_features();
1509 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1510 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1512 if (len < safe_len || sve_verify_vq_map()) {
1513 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1514 smp_processor_id());
1515 cpu_die_early();
1518 /* Add checks on other ZCR bits here if necessary */
1523 * Run through the enabled system capabilities and enable() it on this CPU.
1524 * The capabilities were decided based on the available CPUs at the boot time.
1525 * Any new CPU should match the system wide status of the capability. If the
1526 * new CPU doesn't have a capability which the system now has enabled, we
1527 * cannot do anything to fix it up and could cause unexpected failures. So
1528 * we park the CPU.
1530 static void verify_local_cpu_capabilities(void)
1533 * The capabilities with SCOPE_BOOT_CPU are checked from
1534 * check_early_cpu_features(), as they need to be verified
1535 * on all secondary CPUs.
1537 if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1538 cpu_die_early();
1540 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1542 if (system_supports_32bit_el0())
1543 verify_local_elf_hwcaps(compat_elf_hwcaps);
1545 if (system_supports_sve())
1546 verify_sve_features();
1549 void check_local_cpu_capabilities(void)
1552 * All secondary CPUs should conform to the early CPU features
1553 * in use by the kernel based on boot CPU.
1555 check_early_cpu_features();
1558 * If we haven't finalised the system capabilities, this CPU gets
1559 * a chance to update the errata work arounds and local features.
1560 * Otherwise, this CPU should verify that it has all the system
1561 * advertised capabilities.
1563 if (!sys_caps_initialised)
1564 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1565 else
1566 verify_local_cpu_capabilities();
1569 static void __init setup_boot_cpu_capabilities(void)
1571 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1572 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1573 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1574 enable_cpu_capabilities(SCOPE_BOOT_CPU);
1577 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1578 EXPORT_SYMBOL(arm64_const_caps_ready);
1580 static void __init mark_const_caps_ready(void)
1582 static_branch_enable(&arm64_const_caps_ready);
1585 extern const struct arm64_cpu_capabilities arm64_errata[];
1587 bool this_cpu_has_cap(unsigned int cap)
1589 return (__this_cpu_has_cap(arm64_features, cap) ||
1590 __this_cpu_has_cap(arm64_errata, cap));
1593 static void __init setup_system_capabilities(void)
1596 * We have finalised the system-wide safe feature
1597 * registers, finalise the capabilities that depend
1598 * on it. Also enable all the available capabilities,
1599 * that are not enabled already.
1601 update_cpu_capabilities(SCOPE_SYSTEM);
1602 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1605 void __init setup_cpu_features(void)
1607 u32 cwg;
1608 int cls;
1610 setup_system_capabilities();
1611 mark_const_caps_ready();
1612 setup_elf_hwcaps(arm64_elf_hwcaps);
1614 if (system_supports_32bit_el0())
1615 setup_elf_hwcaps(compat_elf_hwcaps);
1617 if (system_uses_ttbr0_pan())
1618 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1620 sve_setup();
1622 /* Advertise that we have computed the system capabilities */
1623 set_sys_caps_initialised();
1626 * Check for sane CTR_EL0.CWG value.
1628 cwg = cache_type_cwg();
1629 cls = cache_line_size();
1630 if (!cwg)
1631 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1632 cls);
1633 if (L1_CACHE_BYTES < cls)
1634 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1635 L1_CACHE_BYTES, cls);
1638 static bool __maybe_unused
1639 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1641 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1645 * We emulate only the following system register space.
1646 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1647 * See Table C5-6 System instruction encodings for System register accesses,
1648 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1650 static inline bool __attribute_const__ is_emulated(u32 id)
1652 return (sys_reg_Op0(id) == 0x3 &&
1653 sys_reg_CRn(id) == 0x0 &&
1654 sys_reg_Op1(id) == 0x0 &&
1655 (sys_reg_CRm(id) == 0 ||
1656 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1660 * With CRm == 0, reg should be one of :
1661 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1663 static inline int emulate_id_reg(u32 id, u64 *valp)
1665 switch (id) {
1666 case SYS_MIDR_EL1:
1667 *valp = read_cpuid_id();
1668 break;
1669 case SYS_MPIDR_EL1:
1670 *valp = SYS_MPIDR_SAFE_VAL;
1671 break;
1672 case SYS_REVIDR_EL1:
1673 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1674 *valp = 0;
1675 break;
1676 default:
1677 return -EINVAL;
1680 return 0;
1683 static int emulate_sys_reg(u32 id, u64 *valp)
1685 struct arm64_ftr_reg *regp;
1687 if (!is_emulated(id))
1688 return -EINVAL;
1690 if (sys_reg_CRm(id) == 0)
1691 return emulate_id_reg(id, valp);
1693 regp = get_arm64_ftr_reg(id);
1694 if (regp)
1695 *valp = arm64_ftr_reg_user_value(regp);
1696 else
1698 * The untracked registers are either IMPLEMENTATION DEFINED
1699 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1701 *valp = 0;
1702 return 0;
1705 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1707 int rc;
1708 u32 sys_reg, dst;
1709 u64 val;
1712 * sys_reg values are defined as used in mrs/msr instruction.
1713 * shift the imm value to get the encoding.
1715 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1716 rc = emulate_sys_reg(sys_reg, &val);
1717 if (!rc) {
1718 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1719 pt_regs_write_reg(regs, dst, val);
1720 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1723 return rc;
1726 static struct undef_hook mrs_hook = {
1727 .instr_mask = 0xfff00000,
1728 .instr_val = 0xd5300000,
1729 .pstate_mask = COMPAT_PSR_MODE_MASK,
1730 .pstate_val = PSR_MODE_EL0t,
1731 .fn = emulate_mrs,
1734 static int __init enable_mrs_emulation(void)
1736 register_undef_hook(&mrs_hook);
1737 return 0;
1740 core_initcall(enable_mrs_emulation);
1742 void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1744 /* Firmware may have left a deferred SError in this register. */
1745 write_sysreg_s(0, SYS_DISR_EL1);