mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / arch / arm64 / mm / fault.c
blob4165485e8b6ecbc60f161d98c20139992877c416
1 /*
2 * Based on arch/arm/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
41 #include <asm/esr.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/traps.h>
48 #include <acpi/ghes.h>
50 struct fault_info {
51 int (*fn)(unsigned long addr, unsigned int esr,
52 struct pt_regs *regs);
53 int sig;
54 int code;
55 const char *name;
58 static const struct fault_info fault_info[];
60 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
62 return fault_info + (esr & 63);
65 #ifdef CONFIG_KPROBES
66 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
68 int ret = 0;
70 /* kprobe_running() needs smp_processor_id() */
71 if (!user_mode(regs)) {
72 preempt_disable();
73 if (kprobe_running() && kprobe_fault_handler(regs, esr))
74 ret = 1;
75 preempt_enable();
78 return ret;
80 #else
81 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
83 return 0;
85 #endif
87 static void data_abort_decode(unsigned int esr)
89 pr_alert("Data abort info:\n");
91 if (esr & ESR_ELx_ISV) {
92 pr_alert(" Access size = %u byte(s)\n",
93 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
94 pr_alert(" SSE = %lu, SRT = %lu\n",
95 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
96 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
97 pr_alert(" SF = %lu, AR = %lu\n",
98 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
99 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
100 } else {
101 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
104 pr_alert(" CM = %lu, WnR = %lu\n",
105 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
106 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
109 static void mem_abort_decode(unsigned int esr)
111 pr_alert("Mem abort info:\n");
113 pr_alert(" ESR = 0x%08x\n", esr);
114 pr_alert(" Exception class = %s, IL = %u bits\n",
115 esr_get_class_string(esr),
116 (esr & ESR_ELx_IL) ? 32 : 16);
117 pr_alert(" SET = %lu, FnV = %lu\n",
118 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
119 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
120 pr_alert(" EA = %lu, S1PTW = %lu\n",
121 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
122 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
124 if (esr_is_data_abort(esr))
125 data_abort_decode(esr);
129 * Dump out the page tables associated with 'addr' in the currently active mm.
131 void show_pte(unsigned long addr)
133 struct mm_struct *mm;
134 pgd_t *pgdp;
135 pgd_t pgd;
137 if (addr < TASK_SIZE) {
138 /* TTBR0 */
139 mm = current->active_mm;
140 if (mm == &init_mm) {
141 pr_alert("[%016lx] user address but active_mm is swapper\n",
142 addr);
143 return;
145 } else if (addr >= VA_START) {
146 /* TTBR1 */
147 mm = &init_mm;
148 } else {
149 pr_alert("[%016lx] address between user and kernel address ranges\n",
150 addr);
151 return;
154 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
155 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
156 VA_BITS, mm->pgd);
157 pgdp = pgd_offset(mm, addr);
158 pgd = READ_ONCE(*pgdp);
159 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
161 do {
162 pud_t *pudp, pud;
163 pmd_t *pmdp, pmd;
164 pte_t *ptep, pte;
166 if (pgd_none(pgd) || pgd_bad(pgd))
167 break;
169 pudp = pud_offset(pgdp, addr);
170 pud = READ_ONCE(*pudp);
171 pr_cont(", pud=%016llx", pud_val(pud));
172 if (pud_none(pud) || pud_bad(pud))
173 break;
175 pmdp = pmd_offset(pudp, addr);
176 pmd = READ_ONCE(*pmdp);
177 pr_cont(", pmd=%016llx", pmd_val(pmd));
178 if (pmd_none(pmd) || pmd_bad(pmd))
179 break;
181 ptep = pte_offset_map(pmdp, addr);
182 pte = READ_ONCE(*ptep);
183 pr_cont(", pte=%016llx", pte_val(pte));
184 pte_unmap(ptep);
185 } while(0);
187 pr_cont("\n");
191 * This function sets the access flags (dirty, accessed), as well as write
192 * permission, and only to a more permissive setting.
194 * It needs to cope with hardware update of the accessed/dirty state by other
195 * agents in the system and can safely skip the __sync_icache_dcache() call as,
196 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
198 * Returns whether or not the PTE actually changed.
200 int ptep_set_access_flags(struct vm_area_struct *vma,
201 unsigned long address, pte_t *ptep,
202 pte_t entry, int dirty)
204 pteval_t old_pteval, pteval;
205 pte_t pte = READ_ONCE(*ptep);
207 if (pte_same(pte, entry))
208 return 0;
210 /* only preserve the access flags and write permission */
211 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
214 * Setting the flags must be done atomically to avoid racing with the
215 * hardware update of the access/dirty state. The PTE_RDONLY bit must
216 * be set to the most permissive (lowest value) of *ptep and entry
217 * (calculated as: a & b == ~(~a | ~b)).
219 pte_val(entry) ^= PTE_RDONLY;
220 pteval = pte_val(pte);
221 do {
222 old_pteval = pteval;
223 pteval ^= PTE_RDONLY;
224 pteval |= pte_val(entry);
225 pteval ^= PTE_RDONLY;
226 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
227 } while (pteval != old_pteval);
229 flush_tlb_fix_spurious_fault(vma, address);
230 return 1;
233 static bool is_el1_instruction_abort(unsigned int esr)
235 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
238 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
239 unsigned long addr)
241 unsigned int ec = ESR_ELx_EC(esr);
242 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
244 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
245 return false;
247 if (fsc_type == ESR_ELx_FSC_PERM)
248 return true;
250 if (addr < TASK_SIZE && system_uses_ttbr0_pan())
251 return fsc_type == ESR_ELx_FSC_FAULT &&
252 (regs->pstate & PSR_PAN_BIT);
254 return false;
257 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
258 struct pt_regs *regs)
260 const char *msg;
263 * Are we prepared to handle this kernel fault?
264 * We are almost certainly not prepared to handle instruction faults.
266 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
267 return;
269 bust_spinlocks(1);
271 if (is_permission_fault(esr, regs, addr)) {
272 if (esr & ESR_ELx_WNR)
273 msg = "write to read-only memory";
274 else
275 msg = "read from unreadable memory";
276 } else if (addr < PAGE_SIZE) {
277 msg = "NULL pointer dereference";
278 } else {
279 msg = "paging request";
282 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
283 addr);
285 mem_abort_decode(esr);
287 show_pte(addr);
288 die("Oops", regs, esr);
289 bust_spinlocks(0);
290 do_exit(SIGKILL);
293 static void __do_user_fault(struct siginfo *info, unsigned int esr)
295 current->thread.fault_address = (unsigned long)info->si_addr;
296 current->thread.fault_code = esr;
297 arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
300 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
303 * If we are in kernel mode at this point, we have no context to
304 * handle this fault with.
306 if (user_mode(regs)) {
307 const struct fault_info *inf = esr_to_fault_info(esr);
308 struct siginfo si = {
309 .si_signo = inf->sig,
310 .si_code = inf->code,
311 .si_addr = (void __user *)addr,
314 __do_user_fault(&si, esr);
315 } else {
316 __do_kernel_fault(addr, esr, regs);
320 #define VM_FAULT_BADMAP 0x010000
321 #define VM_FAULT_BADACCESS 0x020000
323 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
324 unsigned int mm_flags, unsigned long vm_flags,
325 struct task_struct *tsk)
327 struct vm_area_struct *vma;
328 int fault;
330 vma = find_vma(mm, addr);
331 fault = VM_FAULT_BADMAP;
332 if (unlikely(!vma))
333 goto out;
334 if (unlikely(vma->vm_start > addr))
335 goto check_stack;
338 * Ok, we have a good vm_area for this memory access, so we can handle
339 * it.
341 good_area:
343 * Check that the permissions on the VMA allow for the fault which
344 * occurred.
346 if (!(vma->vm_flags & vm_flags)) {
347 fault = VM_FAULT_BADACCESS;
348 goto out;
351 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
353 check_stack:
354 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
355 goto good_area;
356 out:
357 return fault;
360 static bool is_el0_instruction_abort(unsigned int esr)
362 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
365 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
366 struct pt_regs *regs)
368 struct task_struct *tsk;
369 struct mm_struct *mm;
370 struct siginfo si;
371 int fault, major = 0;
372 unsigned long vm_flags = VM_READ | VM_WRITE;
373 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
375 if (notify_page_fault(regs, esr))
376 return 0;
378 tsk = current;
379 mm = tsk->mm;
382 * If we're in an interrupt or have no user context, we must not take
383 * the fault.
385 if (faulthandler_disabled() || !mm)
386 goto no_context;
388 if (user_mode(regs))
389 mm_flags |= FAULT_FLAG_USER;
391 if (is_el0_instruction_abort(esr)) {
392 vm_flags = VM_EXEC;
393 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
394 vm_flags = VM_WRITE;
395 mm_flags |= FAULT_FLAG_WRITE;
398 if (addr < TASK_SIZE && is_permission_fault(esr, regs, addr)) {
399 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
400 if (regs->orig_addr_limit == KERNEL_DS)
401 die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
403 if (is_el1_instruction_abort(esr))
404 die("Attempting to execute userspace memory", regs, esr);
406 if (!search_exception_tables(regs->pc))
407 die("Accessing user space memory outside uaccess.h routines", regs, esr);
410 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
413 * As per x86, we may deadlock here. However, since the kernel only
414 * validly references user space from well defined areas of the code,
415 * we can bug out early if this is from code which shouldn't.
417 if (!down_read_trylock(&mm->mmap_sem)) {
418 if (!user_mode(regs) && !search_exception_tables(regs->pc))
419 goto no_context;
420 retry:
421 down_read(&mm->mmap_sem);
422 } else {
424 * The above down_read_trylock() might have succeeded in which
425 * case, we'll have missed the might_sleep() from down_read().
427 might_sleep();
428 #ifdef CONFIG_DEBUG_VM
429 if (!user_mode(regs) && !search_exception_tables(regs->pc))
430 goto no_context;
431 #endif
434 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
435 major |= fault & VM_FAULT_MAJOR;
437 if (fault & VM_FAULT_RETRY) {
439 * If we need to retry but a fatal signal is pending,
440 * handle the signal first. We do not need to release
441 * the mmap_sem because it would already be released
442 * in __lock_page_or_retry in mm/filemap.c.
444 if (fatal_signal_pending(current)) {
445 if (!user_mode(regs))
446 goto no_context;
447 return 0;
451 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
452 * starvation.
454 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
455 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
456 mm_flags |= FAULT_FLAG_TRIED;
457 goto retry;
460 up_read(&mm->mmap_sem);
463 * Handle the "normal" (no error) case first.
465 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
466 VM_FAULT_BADACCESS)))) {
468 * Major/minor page fault accounting is only done
469 * once. If we go through a retry, it is extremely
470 * likely that the page will be found in page cache at
471 * that point.
473 if (major) {
474 tsk->maj_flt++;
475 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
476 addr);
477 } else {
478 tsk->min_flt++;
479 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
480 addr);
483 return 0;
487 * If we are in kernel mode at this point, we have no context to
488 * handle this fault with.
490 if (!user_mode(regs))
491 goto no_context;
493 if (fault & VM_FAULT_OOM) {
495 * We ran out of memory, call the OOM killer, and return to
496 * userspace (which will retry the fault, or kill us if we got
497 * oom-killed).
499 pagefault_out_of_memory();
500 return 0;
503 clear_siginfo(&si);
504 si.si_addr = (void __user *)addr;
506 if (fault & VM_FAULT_SIGBUS) {
508 * We had some memory, but were unable to successfully fix up
509 * this page fault.
511 si.si_signo = SIGBUS;
512 si.si_code = BUS_ADRERR;
513 } else if (fault & VM_FAULT_HWPOISON_LARGE) {
514 unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
516 si.si_signo = SIGBUS;
517 si.si_code = BUS_MCEERR_AR;
518 si.si_addr_lsb = hstate_index_to_shift(hindex);
519 } else if (fault & VM_FAULT_HWPOISON) {
520 si.si_signo = SIGBUS;
521 si.si_code = BUS_MCEERR_AR;
522 si.si_addr_lsb = PAGE_SHIFT;
523 } else {
525 * Something tried to access memory that isn't in our memory
526 * map.
528 si.si_signo = SIGSEGV;
529 si.si_code = fault == VM_FAULT_BADACCESS ?
530 SEGV_ACCERR : SEGV_MAPERR;
533 __do_user_fault(&si, esr);
534 return 0;
536 no_context:
537 __do_kernel_fault(addr, esr, regs);
538 return 0;
541 static int __kprobes do_translation_fault(unsigned long addr,
542 unsigned int esr,
543 struct pt_regs *regs)
545 if (addr < TASK_SIZE)
546 return do_page_fault(addr, esr, regs);
548 do_bad_area(addr, esr, regs);
549 return 0;
552 static int do_alignment_fault(unsigned long addr, unsigned int esr,
553 struct pt_regs *regs)
555 do_bad_area(addr, esr, regs);
556 return 0;
559 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
561 return 1; /* "fault" */
564 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
566 struct siginfo info;
567 const struct fault_info *inf;
569 inf = esr_to_fault_info(esr);
572 * Synchronous aborts may interrupt code which had interrupts masked.
573 * Before calling out into the wider kernel tell the interested
574 * subsystems.
576 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
577 if (interrupts_enabled(regs))
578 nmi_enter();
580 ghes_notify_sea();
582 if (interrupts_enabled(regs))
583 nmi_exit();
586 info.si_signo = inf->sig;
587 info.si_errno = 0;
588 info.si_code = inf->code;
589 if (esr & ESR_ELx_FnV)
590 info.si_addr = NULL;
591 else
592 info.si_addr = (void __user *)addr;
593 arm64_notify_die(inf->name, regs, &info, esr);
595 return 0;
598 static const struct fault_info fault_info[] = {
599 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
600 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
601 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
602 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
603 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
604 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
605 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
606 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
607 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
608 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
609 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
610 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
611 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
612 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
613 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
614 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
615 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
616 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
617 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
618 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
619 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
620 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
621 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
622 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
623 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
624 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
625 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
626 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
627 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
628 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
629 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
630 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
631 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
632 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
633 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
634 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
635 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
636 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
637 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
638 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
639 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
640 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
641 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
642 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
643 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
644 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
645 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
646 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
647 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
648 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
649 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
650 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
651 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
652 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
653 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
654 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
655 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
656 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
657 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
658 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
659 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
660 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
661 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
662 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
665 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
667 int ret = -ENOENT;
669 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
670 ret = ghes_notify_sea();
672 return ret;
675 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
676 struct pt_regs *regs)
678 const struct fault_info *inf = esr_to_fault_info(esr);
679 struct siginfo info;
681 if (!inf->fn(addr, esr, regs))
682 return;
684 if (!user_mode(regs)) {
685 pr_alert("Unhandled fault at 0x%016lx\n", addr);
686 mem_abort_decode(esr);
687 show_pte(addr);
690 info.si_signo = inf->sig;
691 info.si_errno = 0;
692 info.si_code = inf->code;
693 info.si_addr = (void __user *)addr;
694 arm64_notify_die(inf->name, regs, &info, esr);
697 asmlinkage void __exception do_el0_irq_bp_hardening(void)
699 /* PC has already been checked in entry.S */
700 arm64_apply_bp_hardening();
703 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
704 unsigned int esr,
705 struct pt_regs *regs)
708 * We've taken an instruction abort from userspace and not yet
709 * re-enabled IRQs. If the address is a kernel address, apply
710 * BP hardening prior to enabling IRQs and pre-emption.
712 if (addr > TASK_SIZE)
713 arm64_apply_bp_hardening();
715 local_irq_enable();
716 do_mem_abort(addr, esr, regs);
720 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
721 unsigned int esr,
722 struct pt_regs *regs)
724 struct siginfo info;
726 if (user_mode(regs)) {
727 if (instruction_pointer(regs) > TASK_SIZE)
728 arm64_apply_bp_hardening();
729 local_irq_enable();
732 info.si_signo = SIGBUS;
733 info.si_errno = 0;
734 info.si_code = BUS_ADRALN;
735 info.si_addr = (void __user *)addr;
736 arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
739 int __init early_brk64(unsigned long addr, unsigned int esr,
740 struct pt_regs *regs);
743 * __refdata because early_brk64 is __init, but the reference to it is
744 * clobbered at arch_initcall time.
745 * See traps.c and debug-monitors.c:debug_traps_init().
747 static struct fault_info __refdata debug_fault_info[] = {
748 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
749 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
750 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
751 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
752 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
753 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
754 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
755 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
758 void __init hook_debug_fault_code(int nr,
759 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
760 int sig, int code, const char *name)
762 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
764 debug_fault_info[nr].fn = fn;
765 debug_fault_info[nr].sig = sig;
766 debug_fault_info[nr].code = code;
767 debug_fault_info[nr].name = name;
770 asmlinkage int __exception do_debug_exception(unsigned long addr,
771 unsigned int esr,
772 struct pt_regs *regs)
774 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
775 struct siginfo info;
776 int rv;
779 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
780 * already disabled to preserve the last enabled/disabled addresses.
782 if (interrupts_enabled(regs))
783 trace_hardirqs_off();
785 if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
786 arm64_apply_bp_hardening();
788 if (!inf->fn(addr, esr, regs)) {
789 rv = 1;
790 } else {
791 info.si_signo = inf->sig;
792 info.si_errno = 0;
793 info.si_code = inf->code;
794 info.si_addr = (void __user *)addr;
795 arm64_notify_die(inf->name, regs, &info, esr);
796 rv = 0;
799 if (interrupts_enabled(regs))
800 trace_hardirqs_on();
802 return rv;
804 NOKPROBE_SYMBOL(do_debug_exception);
806 #ifdef CONFIG_ARM64_PAN
807 void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
810 * We modify PSTATE. This won't work from irq context as the PSTATE
811 * is discarded once we return from the exception.
813 WARN_ON_ONCE(in_interrupt());
815 config_sctlr_el1(SCTLR_EL1_SPAN, 0);
816 asm(SET_PSTATE_PAN(1));
818 #endif /* CONFIG_ARM64_PAN */