1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
9 * This CRC-32 implementation algorithm is bitreflected and processes
10 * the least-significant bit first (Little-Endian).
12 * Copyright IBM Corp. 2015
13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
16 #include <linux/linkage.h>
17 #include <asm/vx-insn.h>
19 /* Vector register range containing CRC-32 constants */
20 #define CONST_PERM_LE2BE %v9
21 #define CONST_R2R1 %v10
22 #define CONST_R4R3 %v11
24 #define CONST_RU_POLY %v13
25 #define CONST_CRC_POLY %v14
31 * The CRC-32 constant block contains reduction constants to fold and
32 * process particular chunks of the input data stream in parallel.
34 * For the CRC-32 variants, the constants are precomputed according to
37 * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
38 * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
39 * R3 = [(x128+32 mod P'(x) << 32)]' << 1
40 * R4 = [(x128-32 mod P'(x) << 32)]' << 1
41 * R5 = [(x64 mod P'(x) << 32)]' << 1
42 * R6 = [(x32 mod P'(x) << 32)]' << 1
44 * The bitreflected Barret reduction constant, u', is defined as
45 * the bit reversal of floor(x**64 / P(x)).
47 * where P(x) is the polynomial in the normal domain and the P'(x) is the
48 * polynomial in the reversed (bitreflected) domain.
50 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
55 * CRC-32C (Castagnoli) polynomials:
61 .Lconstants_CRC_32_LE:
62 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
63 .quad 0x1c6e41596, 0x154442bd4 # R2, R1
64 .quad 0x0ccaa009e, 0x1751997d0 # R4, R3
65 .octa 0x163cd6124 # R5
66 .octa 0x1F7011641 # u'
67 .octa 0x1DB710641 # P'(x) << 1
69 .Lconstants_CRC_32C_LE:
70 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
71 .quad 0x09e4addf8, 0x740eef02 # R2, R1
72 .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
73 .octa 0x0dd45aab8 # R5
74 .octa 0x0dea713f1 # u'
75 .octa 0x105ec76f0 # P'(x) << 1
83 * The CRC-32 functions use these calling conventions:
87 * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
88 * %r3: Input buffer pointer, performance might be improved if the
89 * buffer is on a doubleword boundary.
90 * %r4: Length of the buffer, must be 64 bytes or greater.
94 * %r5: CRC-32 constant pool base pointer.
95 * V0: Initial CRC value and intermediate constants and results.
96 * V1..V4: Data for CRC computation.
97 * V5..V8: Next data chunks that are fetched from the input buffer.
98 * V9: Constant for BE->LE conversion and shift operations
100 * V10..V14: CRC-32 constants.
103 ENTRY(crc32_le_vgfm_16)
104 larl %r5,.Lconstants_CRC_32_LE
105 j crc32_le_vgfm_generic
107 ENTRY(crc32c_le_vgfm_16)
108 larl %r5,.Lconstants_CRC_32C_LE
109 j crc32_le_vgfm_generic
112 crc32_le_vgfm_generic:
113 /* Load CRC-32 constants */
114 VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
117 * Load the initial CRC value.
119 * The CRC value is loaded into the rightmost word of the
120 * vector register and is later XORed with the LSB portion
121 * of the loaded input data.
123 VZERO %v0 /* Clear V0 */
124 VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
126 /* Load a 64-byte data chunk and XOR with CRC */
127 VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
128 VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
129 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
130 VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
131 VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
133 VX %v1,%v0,%v1 /* V1 ^= CRC */
134 aghi %r3,64 /* BUF = BUF + 64 */
135 aghi %r4,-64 /* LEN = LEN - 64 */
138 jl .Lless_than_64bytes
141 /* Load the next 64-byte data chunk into V5 to V8 */
143 VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
144 VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
145 VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
146 VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
149 * Perform a GF(2) multiplication of the doublewords in V1 with
150 * the R1 and R2 reduction constants in V0. The intermediate result
151 * is then folded (accumulated) with the next data chunk in V5 and
152 * stored in V1. Repeat this step for the register contents
153 * in V2, V3, and V4 respectively.
155 VGFMAG %v1,CONST_R2R1,%v1,%v5
156 VGFMAG %v2,CONST_R2R1,%v2,%v6
157 VGFMAG %v3,CONST_R2R1,%v3,%v7
158 VGFMAG %v4,CONST_R2R1,%v4,%v8
160 aghi %r3,64 /* BUF = BUF + 64 */
161 aghi %r4,-64 /* LEN = LEN - 64 */
164 jnl .Lfold_64bytes_loop
168 * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
169 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
172 VGFMAG %v1,CONST_R4R3,%v1,%v2
173 VGFMAG %v1,CONST_R4R3,%v1,%v3
174 VGFMAG %v1,CONST_R4R3,%v1,%v4
181 VL %v2,0,,%r3 /* Load next data chunk */
182 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
183 VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
189 jnl .Lfold_16bytes_loop
193 * Set up a vector register for byte shifts. The shift value must
194 * be loaded in bits 1-4 in byte element 7 of a vector register.
195 * Shift by 8 bytes: 0x40
196 * Shift by 4 bytes: 0x20
201 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
202 * to move R4 into the rightmost doubleword and set the leftmost
205 VSRLB %v0,CONST_R4R3,%v9
209 * Compute GF(2) product of V1 and V0. The rightmost doubleword
210 * of V1 is multiplied with R4. The leftmost doubleword of V1 is
211 * multiplied by 0x1 and is then XORed with rightmost product.
212 * Implicitly, the intermediate leftmost product becomes padded
217 * Now do the final 32-bit fold by multiplying the rightmost word
218 * in V1 with R5 and XOR the result with the remaining bits in V1.
220 * To achieve this by a single VGFMAG, right shift V1 by a word
221 * and store the result in V2 which is then accumulated. Use the
222 * vector unpack instruction to load the rightmost half of the
223 * doubleword into the rightmost doubleword element of V1; the other
224 * half is loaded in the leftmost doubleword.
225 * The vector register with CONST_R5 contains the R5 constant in the
226 * rightmost doubleword and the leftmost doubleword is zero to ignore
227 * the leftmost product of V1.
229 VLEIB %v9,0x20,7 /* Shift by words */
230 VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
231 VUPLLF %v1,%v1 /* Split rightmost doubleword */
232 VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
235 * Apply a Barret reduction to compute the final 32-bit CRC value.
237 * The input values to the Barret reduction are the degree-63 polynomial
238 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
239 * constant u. The Barret reduction result is the CRC value of R(x) mod
242 * The Barret reduction algorithm is defined as:
244 * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
245 * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
246 * 3. C(x) = R(x) XOR T2(x) mod x^32
248 * Note: The leftmost doubleword of vector register containing
249 * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
250 * is zero and does not contribute to the final result.
253 /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
255 VGFMG %v2,CONST_RU_POLY,%v2
258 * Compute the GF(2) product of the CRC polynomial with T1(x) in
259 * V2 and XOR the intermediate result, T2(x), with the value in V1.
260 * The final result is stored in word element 2 of V2.
263 VGFMAG %v2,CONST_CRC_POLY,%v2,%v1