mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / drivers / crypto / ccree / cc_cipher.c
blobdf98f7afe645d876a09d4273fcc89dcddb35c759
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/skcipher.h>
8 #include <crypto/des.h>
9 #include <crypto/xts.h>
10 #include <crypto/scatterwalk.h>
12 #include "cc_driver.h"
13 #include "cc_lli_defs.h"
14 #include "cc_buffer_mgr.h"
15 #include "cc_cipher.h"
16 #include "cc_request_mgr.h"
18 #define MAX_ABLKCIPHER_SEQ_LEN 6
20 #define template_skcipher template_u.skcipher
22 #define CC_MIN_AES_XTS_SIZE 0x10
23 #define CC_MAX_AES_XTS_SIZE 0x2000
24 struct cc_cipher_handle {
25 struct list_head alg_list;
28 struct cc_user_key_info {
29 u8 *key;
30 dma_addr_t key_dma_addr;
33 struct cc_hw_key_info {
34 enum cc_hw_crypto_key key1_slot;
35 enum cc_hw_crypto_key key2_slot;
38 struct cc_cipher_ctx {
39 struct cc_drvdata *drvdata;
40 int keylen;
41 int key_round_number;
42 int cipher_mode;
43 int flow_mode;
44 unsigned int flags;
45 struct cc_user_key_info user;
46 struct cc_hw_key_info hw;
47 struct crypto_shash *shash_tfm;
50 static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
52 static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
54 switch (ctx_p->flow_mode) {
55 case S_DIN_to_AES:
56 switch (size) {
57 case CC_AES_128_BIT_KEY_SIZE:
58 case CC_AES_192_BIT_KEY_SIZE:
59 if (ctx_p->cipher_mode != DRV_CIPHER_XTS &&
60 ctx_p->cipher_mode != DRV_CIPHER_ESSIV &&
61 ctx_p->cipher_mode != DRV_CIPHER_BITLOCKER)
62 return 0;
63 break;
64 case CC_AES_256_BIT_KEY_SIZE:
65 return 0;
66 case (CC_AES_192_BIT_KEY_SIZE * 2):
67 case (CC_AES_256_BIT_KEY_SIZE * 2):
68 if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
69 ctx_p->cipher_mode == DRV_CIPHER_ESSIV ||
70 ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER)
71 return 0;
72 break;
73 default:
74 break;
76 case S_DIN_to_DES:
77 if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
78 return 0;
79 break;
80 default:
81 break;
83 return -EINVAL;
86 static int validate_data_size(struct cc_cipher_ctx *ctx_p,
87 unsigned int size)
89 switch (ctx_p->flow_mode) {
90 case S_DIN_to_AES:
91 switch (ctx_p->cipher_mode) {
92 case DRV_CIPHER_XTS:
93 if (size >= CC_MIN_AES_XTS_SIZE &&
94 size <= CC_MAX_AES_XTS_SIZE &&
95 IS_ALIGNED(size, AES_BLOCK_SIZE))
96 return 0;
97 break;
98 case DRV_CIPHER_CBC_CTS:
99 if (size >= AES_BLOCK_SIZE)
100 return 0;
101 break;
102 case DRV_CIPHER_OFB:
103 case DRV_CIPHER_CTR:
104 return 0;
105 case DRV_CIPHER_ECB:
106 case DRV_CIPHER_CBC:
107 case DRV_CIPHER_ESSIV:
108 case DRV_CIPHER_BITLOCKER:
109 if (IS_ALIGNED(size, AES_BLOCK_SIZE))
110 return 0;
111 break;
112 default:
113 break;
115 break;
116 case S_DIN_to_DES:
117 if (IS_ALIGNED(size, DES_BLOCK_SIZE))
118 return 0;
119 break;
120 default:
121 break;
123 return -EINVAL;
126 static int cc_cipher_init(struct crypto_tfm *tfm)
128 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
129 struct cc_crypto_alg *cc_alg =
130 container_of(tfm->__crt_alg, struct cc_crypto_alg,
131 skcipher_alg.base);
132 struct device *dev = drvdata_to_dev(cc_alg->drvdata);
133 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
134 int rc = 0;
136 dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
137 crypto_tfm_alg_name(tfm));
139 crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
140 sizeof(struct cipher_req_ctx));
142 ctx_p->cipher_mode = cc_alg->cipher_mode;
143 ctx_p->flow_mode = cc_alg->flow_mode;
144 ctx_p->drvdata = cc_alg->drvdata;
146 /* Allocate key buffer, cache line aligned */
147 ctx_p->user.key = kmalloc(max_key_buf_size, GFP_KERNEL);
148 if (!ctx_p->user.key)
149 return -ENOMEM;
151 dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
152 ctx_p->user.key);
154 /* Map key buffer */
155 ctx_p->user.key_dma_addr = dma_map_single(dev, (void *)ctx_p->user.key,
156 max_key_buf_size,
157 DMA_TO_DEVICE);
158 if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
159 dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
160 max_key_buf_size, ctx_p->user.key);
161 return -ENOMEM;
163 dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
164 max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
166 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
167 /* Alloc hash tfm for essiv */
168 ctx_p->shash_tfm = crypto_alloc_shash("sha256-generic", 0, 0);
169 if (IS_ERR(ctx_p->shash_tfm)) {
170 dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
171 return PTR_ERR(ctx_p->shash_tfm);
175 return rc;
178 static void cc_cipher_exit(struct crypto_tfm *tfm)
180 struct crypto_alg *alg = tfm->__crt_alg;
181 struct cc_crypto_alg *cc_alg =
182 container_of(alg, struct cc_crypto_alg,
183 skcipher_alg.base);
184 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
185 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
186 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
188 dev_dbg(dev, "Clearing context @%p for %s\n",
189 crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
191 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
192 /* Free hash tfm for essiv */
193 crypto_free_shash(ctx_p->shash_tfm);
194 ctx_p->shash_tfm = NULL;
197 /* Unmap key buffer */
198 dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
199 DMA_TO_DEVICE);
200 dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
201 &ctx_p->user.key_dma_addr);
203 /* Free key buffer in context */
204 kzfree(ctx_p->user.key);
205 dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
208 struct tdes_keys {
209 u8 key1[DES_KEY_SIZE];
210 u8 key2[DES_KEY_SIZE];
211 u8 key3[DES_KEY_SIZE];
214 static enum cc_hw_crypto_key hw_key_to_cc_hw_key(int slot_num)
216 switch (slot_num) {
217 case 0:
218 return KFDE0_KEY;
219 case 1:
220 return KFDE1_KEY;
221 case 2:
222 return KFDE2_KEY;
223 case 3:
224 return KFDE3_KEY;
226 return END_OF_KEYS;
229 static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
230 unsigned int keylen)
232 struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
233 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
234 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
235 u32 tmp[DES3_EDE_EXPKEY_WORDS];
236 struct cc_crypto_alg *cc_alg =
237 container_of(tfm->__crt_alg, struct cc_crypto_alg,
238 skcipher_alg.base);
239 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
241 dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
242 ctx_p, crypto_tfm_alg_name(tfm), keylen);
243 dump_byte_array("key", (u8 *)key, keylen);
245 /* STAT_PHASE_0: Init and sanity checks */
247 if (validate_keys_sizes(ctx_p, keylen)) {
248 dev_err(dev, "Unsupported key size %d.\n", keylen);
249 crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
250 return -EINVAL;
253 if (cc_is_hw_key(tfm)) {
254 /* setting HW key slots */
255 struct arm_hw_key_info *hki = (struct arm_hw_key_info *)key;
257 if (ctx_p->flow_mode != S_DIN_to_AES) {
258 dev_err(dev, "HW key not supported for non-AES flows\n");
259 return -EINVAL;
262 ctx_p->hw.key1_slot = hw_key_to_cc_hw_key(hki->hw_key1);
263 if (ctx_p->hw.key1_slot == END_OF_KEYS) {
264 dev_err(dev, "Unsupported hw key1 number (%d)\n",
265 hki->hw_key1);
266 return -EINVAL;
269 if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
270 ctx_p->cipher_mode == DRV_CIPHER_ESSIV ||
271 ctx_p->cipher_mode == DRV_CIPHER_BITLOCKER) {
272 if (hki->hw_key1 == hki->hw_key2) {
273 dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
274 hki->hw_key1, hki->hw_key2);
275 return -EINVAL;
277 ctx_p->hw.key2_slot =
278 hw_key_to_cc_hw_key(hki->hw_key2);
279 if (ctx_p->hw.key2_slot == END_OF_KEYS) {
280 dev_err(dev, "Unsupported hw key2 number (%d)\n",
281 hki->hw_key2);
282 return -EINVAL;
286 ctx_p->keylen = keylen;
287 dev_dbg(dev, "cc_is_hw_key ret 0");
289 return 0;
293 * Verify DES weak keys
294 * Note that we're dropping the expanded key since the
295 * HW does the expansion on its own.
297 if (ctx_p->flow_mode == S_DIN_to_DES) {
298 if (keylen == DES3_EDE_KEY_SIZE &&
299 __des3_ede_setkey(tmp, &tfm->crt_flags, key,
300 DES3_EDE_KEY_SIZE)) {
301 dev_dbg(dev, "weak 3DES key");
302 return -EINVAL;
303 } else if (!des_ekey(tmp, key) &&
304 (crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_WEAK_KEY)) {
305 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
306 dev_dbg(dev, "weak DES key");
307 return -EINVAL;
311 if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
312 xts_check_key(tfm, key, keylen)) {
313 dev_dbg(dev, "weak XTS key");
314 return -EINVAL;
317 /* STAT_PHASE_1: Copy key to ctx */
318 dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
319 max_key_buf_size, DMA_TO_DEVICE);
321 memcpy(ctx_p->user.key, key, keylen);
322 if (keylen == 24)
323 memset(ctx_p->user.key + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
325 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
326 /* sha256 for key2 - use sw implementation */
327 int key_len = keylen >> 1;
328 int err;
330 SHASH_DESC_ON_STACK(desc, ctx_p->shash_tfm);
332 desc->tfm = ctx_p->shash_tfm;
334 err = crypto_shash_digest(desc, ctx_p->user.key, key_len,
335 ctx_p->user.key + key_len);
336 if (err) {
337 dev_err(dev, "Failed to hash ESSIV key.\n");
338 return err;
341 dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
342 max_key_buf_size, DMA_TO_DEVICE);
343 ctx_p->keylen = keylen;
345 dev_dbg(dev, "return safely");
346 return 0;
349 static void cc_setup_cipher_desc(struct crypto_tfm *tfm,
350 struct cipher_req_ctx *req_ctx,
351 unsigned int ivsize, unsigned int nbytes,
352 struct cc_hw_desc desc[],
353 unsigned int *seq_size)
355 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
356 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
357 int cipher_mode = ctx_p->cipher_mode;
358 int flow_mode = ctx_p->flow_mode;
359 int direction = req_ctx->gen_ctx.op_type;
360 dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
361 unsigned int key_len = ctx_p->keylen;
362 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
363 unsigned int du_size = nbytes;
365 struct cc_crypto_alg *cc_alg =
366 container_of(tfm->__crt_alg, struct cc_crypto_alg,
367 skcipher_alg.base);
369 if (cc_alg->data_unit)
370 du_size = cc_alg->data_unit;
372 switch (cipher_mode) {
373 case DRV_CIPHER_CBC:
374 case DRV_CIPHER_CBC_CTS:
375 case DRV_CIPHER_CTR:
376 case DRV_CIPHER_OFB:
377 /* Load cipher state */
378 hw_desc_init(&desc[*seq_size]);
379 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
380 NS_BIT);
381 set_cipher_config0(&desc[*seq_size], direction);
382 set_flow_mode(&desc[*seq_size], flow_mode);
383 set_cipher_mode(&desc[*seq_size], cipher_mode);
384 if (cipher_mode == DRV_CIPHER_CTR ||
385 cipher_mode == DRV_CIPHER_OFB) {
386 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
387 } else {
388 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
390 (*seq_size)++;
391 /*FALLTHROUGH*/
392 case DRV_CIPHER_ECB:
393 /* Load key */
394 hw_desc_init(&desc[*seq_size]);
395 set_cipher_mode(&desc[*seq_size], cipher_mode);
396 set_cipher_config0(&desc[*seq_size], direction);
397 if (flow_mode == S_DIN_to_AES) {
398 if (cc_is_hw_key(tfm)) {
399 set_hw_crypto_key(&desc[*seq_size],
400 ctx_p->hw.key1_slot);
401 } else {
402 set_din_type(&desc[*seq_size], DMA_DLLI,
403 key_dma_addr, ((key_len == 24) ?
404 AES_MAX_KEY_SIZE :
405 key_len), NS_BIT);
407 set_key_size_aes(&desc[*seq_size], key_len);
408 } else {
409 /*des*/
410 set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
411 key_len, NS_BIT);
412 set_key_size_des(&desc[*seq_size], key_len);
414 set_flow_mode(&desc[*seq_size], flow_mode);
415 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
416 (*seq_size)++;
417 break;
418 case DRV_CIPHER_XTS:
419 case DRV_CIPHER_ESSIV:
420 case DRV_CIPHER_BITLOCKER:
421 /* Load AES key */
422 hw_desc_init(&desc[*seq_size]);
423 set_cipher_mode(&desc[*seq_size], cipher_mode);
424 set_cipher_config0(&desc[*seq_size], direction);
425 if (cc_is_hw_key(tfm)) {
426 set_hw_crypto_key(&desc[*seq_size],
427 ctx_p->hw.key1_slot);
428 } else {
429 set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
430 (key_len / 2), NS_BIT);
432 set_key_size_aes(&desc[*seq_size], (key_len / 2));
433 set_flow_mode(&desc[*seq_size], flow_mode);
434 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
435 (*seq_size)++;
437 /* load XEX key */
438 hw_desc_init(&desc[*seq_size]);
439 set_cipher_mode(&desc[*seq_size], cipher_mode);
440 set_cipher_config0(&desc[*seq_size], direction);
441 if (cc_is_hw_key(tfm)) {
442 set_hw_crypto_key(&desc[*seq_size],
443 ctx_p->hw.key2_slot);
444 } else {
445 set_din_type(&desc[*seq_size], DMA_DLLI,
446 (key_dma_addr + (key_len / 2)),
447 (key_len / 2), NS_BIT);
449 set_xex_data_unit_size(&desc[*seq_size], du_size);
450 set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
451 set_key_size_aes(&desc[*seq_size], (key_len / 2));
452 set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
453 (*seq_size)++;
455 /* Set state */
456 hw_desc_init(&desc[*seq_size]);
457 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
458 set_cipher_mode(&desc[*seq_size], cipher_mode);
459 set_cipher_config0(&desc[*seq_size], direction);
460 set_key_size_aes(&desc[*seq_size], (key_len / 2));
461 set_flow_mode(&desc[*seq_size], flow_mode);
462 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
463 CC_AES_BLOCK_SIZE, NS_BIT);
464 (*seq_size)++;
465 break;
466 default:
467 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
471 static void cc_setup_cipher_data(struct crypto_tfm *tfm,
472 struct cipher_req_ctx *req_ctx,
473 struct scatterlist *dst,
474 struct scatterlist *src, unsigned int nbytes,
475 void *areq, struct cc_hw_desc desc[],
476 unsigned int *seq_size)
478 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
479 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
480 unsigned int flow_mode = ctx_p->flow_mode;
482 switch (ctx_p->flow_mode) {
483 case S_DIN_to_AES:
484 flow_mode = DIN_AES_DOUT;
485 break;
486 case S_DIN_to_DES:
487 flow_mode = DIN_DES_DOUT;
488 break;
489 default:
490 dev_err(dev, "invalid flow mode, flow_mode = %d\n", flow_mode);
491 return;
493 /* Process */
494 if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
495 dev_dbg(dev, " data params addr %pad length 0x%X\n",
496 &sg_dma_address(src), nbytes);
497 dev_dbg(dev, " data params addr %pad length 0x%X\n",
498 &sg_dma_address(dst), nbytes);
499 hw_desc_init(&desc[*seq_size]);
500 set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
501 nbytes, NS_BIT);
502 set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
503 nbytes, NS_BIT, (!areq ? 0 : 1));
504 if (areq)
505 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
507 set_flow_mode(&desc[*seq_size], flow_mode);
508 (*seq_size)++;
509 } else {
510 /* bypass */
511 dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
512 &req_ctx->mlli_params.mlli_dma_addr,
513 req_ctx->mlli_params.mlli_len,
514 (unsigned int)ctx_p->drvdata->mlli_sram_addr);
515 hw_desc_init(&desc[*seq_size]);
516 set_din_type(&desc[*seq_size], DMA_DLLI,
517 req_ctx->mlli_params.mlli_dma_addr,
518 req_ctx->mlli_params.mlli_len, NS_BIT);
519 set_dout_sram(&desc[*seq_size],
520 ctx_p->drvdata->mlli_sram_addr,
521 req_ctx->mlli_params.mlli_len);
522 set_flow_mode(&desc[*seq_size], BYPASS);
523 (*seq_size)++;
525 hw_desc_init(&desc[*seq_size]);
526 set_din_type(&desc[*seq_size], DMA_MLLI,
527 ctx_p->drvdata->mlli_sram_addr,
528 req_ctx->in_mlli_nents, NS_BIT);
529 if (req_ctx->out_nents == 0) {
530 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
531 (unsigned int)ctx_p->drvdata->mlli_sram_addr,
532 (unsigned int)ctx_p->drvdata->mlli_sram_addr);
533 set_dout_mlli(&desc[*seq_size],
534 ctx_p->drvdata->mlli_sram_addr,
535 req_ctx->in_mlli_nents, NS_BIT,
536 (!areq ? 0 : 1));
537 } else {
538 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
539 (unsigned int)ctx_p->drvdata->mlli_sram_addr,
540 (unsigned int)ctx_p->drvdata->mlli_sram_addr +
541 (u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
542 set_dout_mlli(&desc[*seq_size],
543 (ctx_p->drvdata->mlli_sram_addr +
544 (LLI_ENTRY_BYTE_SIZE *
545 req_ctx->in_mlli_nents)),
546 req_ctx->out_mlli_nents, NS_BIT,
547 (!areq ? 0 : 1));
549 if (areq)
550 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
552 set_flow_mode(&desc[*seq_size], flow_mode);
553 (*seq_size)++;
557 static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
559 struct skcipher_request *req = (struct skcipher_request *)cc_req;
560 struct scatterlist *dst = req->dst;
561 struct scatterlist *src = req->src;
562 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
563 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
564 unsigned int ivsize = crypto_skcipher_ivsize(tfm);
566 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
567 kzfree(req_ctx->iv);
570 * The crypto API expects us to set the req->iv to the last
571 * ciphertext block. For encrypt, simply copy from the result.
572 * For decrypt, we must copy from a saved buffer since this
573 * could be an in-place decryption operation and the src is
574 * lost by this point.
576 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
577 memcpy(req->iv, req_ctx->backup_info, ivsize);
578 kzfree(req_ctx->backup_info);
579 } else if (!err) {
580 scatterwalk_map_and_copy(req->iv, req->dst,
581 (req->cryptlen - ivsize),
582 ivsize, 0);
585 skcipher_request_complete(req, err);
588 static int cc_cipher_process(struct skcipher_request *req,
589 enum drv_crypto_direction direction)
591 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
592 struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
593 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
594 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
595 struct scatterlist *dst = req->dst;
596 struct scatterlist *src = req->src;
597 unsigned int nbytes = req->cryptlen;
598 void *iv = req->iv;
599 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
600 struct device *dev = drvdata_to_dev(ctx_p->drvdata);
601 struct cc_hw_desc desc[MAX_ABLKCIPHER_SEQ_LEN];
602 struct cc_crypto_req cc_req = {};
603 int rc, cts_restore_flag = 0;
604 unsigned int seq_len = 0;
605 gfp_t flags = cc_gfp_flags(&req->base);
607 dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
608 ((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
609 "Encrypt" : "Decrypt"), req, iv, nbytes);
611 /* STAT_PHASE_0: Init and sanity checks */
613 /* TODO: check data length according to mode */
614 if (validate_data_size(ctx_p, nbytes)) {
615 dev_err(dev, "Unsupported data size %d.\n", nbytes);
616 crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
617 rc = -EINVAL;
618 goto exit_process;
620 if (nbytes == 0) {
621 /* No data to process is valid */
622 rc = 0;
623 goto exit_process;
626 /* The IV we are handed may be allocted from the stack so
627 * we must copy it to a DMAable buffer before use.
629 req_ctx->iv = kmemdup(iv, ivsize, flags);
630 if (!req_ctx->iv) {
631 rc = -ENOMEM;
632 goto exit_process;
635 /*For CTS in case of data size aligned to 16 use CBC mode*/
636 if (((nbytes % AES_BLOCK_SIZE) == 0) &&
637 ctx_p->cipher_mode == DRV_CIPHER_CBC_CTS) {
638 ctx_p->cipher_mode = DRV_CIPHER_CBC;
639 cts_restore_flag = 1;
642 /* Setup request structure */
643 cc_req.user_cb = (void *)cc_cipher_complete;
644 cc_req.user_arg = (void *)req;
646 #ifdef ENABLE_CYCLE_COUNT
647 cc_req.op_type = (direction == DRV_CRYPTO_DIRECTION_DECRYPT) ?
648 STAT_OP_TYPE_DECODE : STAT_OP_TYPE_ENCODE;
650 #endif
652 /* Setup request context */
653 req_ctx->gen_ctx.op_type = direction;
655 /* STAT_PHASE_1: Map buffers */
657 rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
658 req_ctx->iv, src, dst, flags);
659 if (rc) {
660 dev_err(dev, "map_request() failed\n");
661 goto exit_process;
664 /* STAT_PHASE_2: Create sequence */
666 /* Setup processing */
667 cc_setup_cipher_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
668 /* Data processing */
669 cc_setup_cipher_data(tfm, req_ctx, dst, src, nbytes, req, desc,
670 &seq_len);
672 /* do we need to generate IV? */
673 if (req_ctx->is_giv) {
674 cc_req.ivgen_dma_addr[0] = req_ctx->gen_ctx.iv_dma_addr;
675 cc_req.ivgen_dma_addr_len = 1;
676 /* set the IV size (8/16 B long)*/
677 cc_req.ivgen_size = ivsize;
680 /* STAT_PHASE_3: Lock HW and push sequence */
682 rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
683 &req->base);
684 if (rc != -EINPROGRESS && rc != -EBUSY) {
685 /* Failed to send the request or request completed
686 * synchronously
688 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
691 exit_process:
692 if (cts_restore_flag)
693 ctx_p->cipher_mode = DRV_CIPHER_CBC_CTS;
695 if (rc != -EINPROGRESS && rc != -EBUSY) {
696 kzfree(req_ctx->backup_info);
697 kzfree(req_ctx->iv);
700 return rc;
703 static int cc_cipher_encrypt(struct skcipher_request *req)
705 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
707 req_ctx->is_giv = false;
708 req_ctx->backup_info = NULL;
710 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
713 static int cc_cipher_decrypt(struct skcipher_request *req)
715 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
716 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
717 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
718 gfp_t flags = cc_gfp_flags(&req->base);
721 * Allocate and save the last IV sized bytes of the source, which will
722 * be lost in case of in-place decryption and might be needed for CTS.
724 req_ctx->backup_info = kmalloc(ivsize, flags);
725 if (!req_ctx->backup_info)
726 return -ENOMEM;
728 scatterwalk_map_and_copy(req_ctx->backup_info, req->src,
729 (req->cryptlen - ivsize), ivsize, 0);
730 req_ctx->is_giv = false;
732 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
735 /* Block cipher alg */
736 static const struct cc_alg_template skcipher_algs[] = {
738 .name = "xts(aes)",
739 .driver_name = "xts-aes-ccree",
740 .blocksize = AES_BLOCK_SIZE,
741 .template_skcipher = {
742 .setkey = cc_cipher_setkey,
743 .encrypt = cc_cipher_encrypt,
744 .decrypt = cc_cipher_decrypt,
745 .min_keysize = AES_MIN_KEY_SIZE * 2,
746 .max_keysize = AES_MAX_KEY_SIZE * 2,
747 .ivsize = AES_BLOCK_SIZE,
749 .cipher_mode = DRV_CIPHER_XTS,
750 .flow_mode = S_DIN_to_AES,
751 .min_hw_rev = CC_HW_REV_630,
754 .name = "xts512(aes)",
755 .driver_name = "xts-aes-du512-ccree",
756 .blocksize = AES_BLOCK_SIZE,
757 .template_skcipher = {
758 .setkey = cc_cipher_setkey,
759 .encrypt = cc_cipher_encrypt,
760 .decrypt = cc_cipher_decrypt,
761 .min_keysize = AES_MIN_KEY_SIZE * 2,
762 .max_keysize = AES_MAX_KEY_SIZE * 2,
763 .ivsize = AES_BLOCK_SIZE,
765 .cipher_mode = DRV_CIPHER_XTS,
766 .flow_mode = S_DIN_to_AES,
767 .data_unit = 512,
768 .min_hw_rev = CC_HW_REV_712,
771 .name = "xts4096(aes)",
772 .driver_name = "xts-aes-du4096-ccree",
773 .blocksize = AES_BLOCK_SIZE,
774 .template_skcipher = {
775 .setkey = cc_cipher_setkey,
776 .encrypt = cc_cipher_encrypt,
777 .decrypt = cc_cipher_decrypt,
778 .min_keysize = AES_MIN_KEY_SIZE * 2,
779 .max_keysize = AES_MAX_KEY_SIZE * 2,
780 .ivsize = AES_BLOCK_SIZE,
782 .cipher_mode = DRV_CIPHER_XTS,
783 .flow_mode = S_DIN_to_AES,
784 .data_unit = 4096,
785 .min_hw_rev = CC_HW_REV_712,
788 .name = "essiv(aes)",
789 .driver_name = "essiv-aes-ccree",
790 .blocksize = AES_BLOCK_SIZE,
791 .template_skcipher = {
792 .setkey = cc_cipher_setkey,
793 .encrypt = cc_cipher_encrypt,
794 .decrypt = cc_cipher_decrypt,
795 .min_keysize = AES_MIN_KEY_SIZE * 2,
796 .max_keysize = AES_MAX_KEY_SIZE * 2,
797 .ivsize = AES_BLOCK_SIZE,
799 .cipher_mode = DRV_CIPHER_ESSIV,
800 .flow_mode = S_DIN_to_AES,
801 .min_hw_rev = CC_HW_REV_712,
804 .name = "essiv512(aes)",
805 .driver_name = "essiv-aes-du512-ccree",
806 .blocksize = AES_BLOCK_SIZE,
807 .template_skcipher = {
808 .setkey = cc_cipher_setkey,
809 .encrypt = cc_cipher_encrypt,
810 .decrypt = cc_cipher_decrypt,
811 .min_keysize = AES_MIN_KEY_SIZE * 2,
812 .max_keysize = AES_MAX_KEY_SIZE * 2,
813 .ivsize = AES_BLOCK_SIZE,
815 .cipher_mode = DRV_CIPHER_ESSIV,
816 .flow_mode = S_DIN_to_AES,
817 .data_unit = 512,
818 .min_hw_rev = CC_HW_REV_712,
821 .name = "essiv4096(aes)",
822 .driver_name = "essiv-aes-du4096-ccree",
823 .blocksize = AES_BLOCK_SIZE,
824 .template_skcipher = {
825 .setkey = cc_cipher_setkey,
826 .encrypt = cc_cipher_encrypt,
827 .decrypt = cc_cipher_decrypt,
828 .min_keysize = AES_MIN_KEY_SIZE * 2,
829 .max_keysize = AES_MAX_KEY_SIZE * 2,
830 .ivsize = AES_BLOCK_SIZE,
832 .cipher_mode = DRV_CIPHER_ESSIV,
833 .flow_mode = S_DIN_to_AES,
834 .data_unit = 4096,
835 .min_hw_rev = CC_HW_REV_712,
838 .name = "bitlocker(aes)",
839 .driver_name = "bitlocker-aes-ccree",
840 .blocksize = AES_BLOCK_SIZE,
841 .template_skcipher = {
842 .setkey = cc_cipher_setkey,
843 .encrypt = cc_cipher_encrypt,
844 .decrypt = cc_cipher_decrypt,
845 .min_keysize = AES_MIN_KEY_SIZE * 2,
846 .max_keysize = AES_MAX_KEY_SIZE * 2,
847 .ivsize = AES_BLOCK_SIZE,
849 .cipher_mode = DRV_CIPHER_BITLOCKER,
850 .flow_mode = S_DIN_to_AES,
851 .min_hw_rev = CC_HW_REV_712,
854 .name = "bitlocker512(aes)",
855 .driver_name = "bitlocker-aes-du512-ccree",
856 .blocksize = AES_BLOCK_SIZE,
857 .template_skcipher = {
858 .setkey = cc_cipher_setkey,
859 .encrypt = cc_cipher_encrypt,
860 .decrypt = cc_cipher_decrypt,
861 .min_keysize = AES_MIN_KEY_SIZE * 2,
862 .max_keysize = AES_MAX_KEY_SIZE * 2,
863 .ivsize = AES_BLOCK_SIZE,
865 .cipher_mode = DRV_CIPHER_BITLOCKER,
866 .flow_mode = S_DIN_to_AES,
867 .data_unit = 512,
868 .min_hw_rev = CC_HW_REV_712,
871 .name = "bitlocker4096(aes)",
872 .driver_name = "bitlocker-aes-du4096-ccree",
873 .blocksize = AES_BLOCK_SIZE,
874 .template_skcipher = {
875 .setkey = cc_cipher_setkey,
876 .encrypt = cc_cipher_encrypt,
877 .decrypt = cc_cipher_decrypt,
878 .min_keysize = AES_MIN_KEY_SIZE * 2,
879 .max_keysize = AES_MAX_KEY_SIZE * 2,
880 .ivsize = AES_BLOCK_SIZE,
882 .cipher_mode = DRV_CIPHER_BITLOCKER,
883 .flow_mode = S_DIN_to_AES,
884 .data_unit = 4096,
885 .min_hw_rev = CC_HW_REV_712,
888 .name = "ecb(aes)",
889 .driver_name = "ecb-aes-ccree",
890 .blocksize = AES_BLOCK_SIZE,
891 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
892 .template_skcipher = {
893 .setkey = cc_cipher_setkey,
894 .encrypt = cc_cipher_encrypt,
895 .decrypt = cc_cipher_decrypt,
896 .min_keysize = AES_MIN_KEY_SIZE,
897 .max_keysize = AES_MAX_KEY_SIZE,
898 .ivsize = 0,
900 .cipher_mode = DRV_CIPHER_ECB,
901 .flow_mode = S_DIN_to_AES,
902 .min_hw_rev = CC_HW_REV_630,
905 .name = "cbc(aes)",
906 .driver_name = "cbc-aes-ccree",
907 .blocksize = AES_BLOCK_SIZE,
908 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
909 .template_skcipher = {
910 .setkey = cc_cipher_setkey,
911 .encrypt = cc_cipher_encrypt,
912 .decrypt = cc_cipher_decrypt,
913 .min_keysize = AES_MIN_KEY_SIZE,
914 .max_keysize = AES_MAX_KEY_SIZE,
915 .ivsize = AES_BLOCK_SIZE,
917 .cipher_mode = DRV_CIPHER_CBC,
918 .flow_mode = S_DIN_to_AES,
919 .min_hw_rev = CC_HW_REV_630,
922 .name = "ofb(aes)",
923 .driver_name = "ofb-aes-ccree",
924 .blocksize = AES_BLOCK_SIZE,
925 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
926 .template_skcipher = {
927 .setkey = cc_cipher_setkey,
928 .encrypt = cc_cipher_encrypt,
929 .decrypt = cc_cipher_decrypt,
930 .min_keysize = AES_MIN_KEY_SIZE,
931 .max_keysize = AES_MAX_KEY_SIZE,
932 .ivsize = AES_BLOCK_SIZE,
934 .cipher_mode = DRV_CIPHER_OFB,
935 .flow_mode = S_DIN_to_AES,
936 .min_hw_rev = CC_HW_REV_630,
939 .name = "cts1(cbc(aes))",
940 .driver_name = "cts1-cbc-aes-ccree",
941 .blocksize = AES_BLOCK_SIZE,
942 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
943 .template_skcipher = {
944 .setkey = cc_cipher_setkey,
945 .encrypt = cc_cipher_encrypt,
946 .decrypt = cc_cipher_decrypt,
947 .min_keysize = AES_MIN_KEY_SIZE,
948 .max_keysize = AES_MAX_KEY_SIZE,
949 .ivsize = AES_BLOCK_SIZE,
951 .cipher_mode = DRV_CIPHER_CBC_CTS,
952 .flow_mode = S_DIN_to_AES,
953 .min_hw_rev = CC_HW_REV_630,
956 .name = "ctr(aes)",
957 .driver_name = "ctr-aes-ccree",
958 .blocksize = 1,
959 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
960 .template_skcipher = {
961 .setkey = cc_cipher_setkey,
962 .encrypt = cc_cipher_encrypt,
963 .decrypt = cc_cipher_decrypt,
964 .min_keysize = AES_MIN_KEY_SIZE,
965 .max_keysize = AES_MAX_KEY_SIZE,
966 .ivsize = AES_BLOCK_SIZE,
968 .cipher_mode = DRV_CIPHER_CTR,
969 .flow_mode = S_DIN_to_AES,
970 .min_hw_rev = CC_HW_REV_630,
973 .name = "cbc(des3_ede)",
974 .driver_name = "cbc-3des-ccree",
975 .blocksize = DES3_EDE_BLOCK_SIZE,
976 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
977 .template_skcipher = {
978 .setkey = cc_cipher_setkey,
979 .encrypt = cc_cipher_encrypt,
980 .decrypt = cc_cipher_decrypt,
981 .min_keysize = DES3_EDE_KEY_SIZE,
982 .max_keysize = DES3_EDE_KEY_SIZE,
983 .ivsize = DES3_EDE_BLOCK_SIZE,
985 .cipher_mode = DRV_CIPHER_CBC,
986 .flow_mode = S_DIN_to_DES,
987 .min_hw_rev = CC_HW_REV_630,
990 .name = "ecb(des3_ede)",
991 .driver_name = "ecb-3des-ccree",
992 .blocksize = DES3_EDE_BLOCK_SIZE,
993 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
994 .template_skcipher = {
995 .setkey = cc_cipher_setkey,
996 .encrypt = cc_cipher_encrypt,
997 .decrypt = cc_cipher_decrypt,
998 .min_keysize = DES3_EDE_KEY_SIZE,
999 .max_keysize = DES3_EDE_KEY_SIZE,
1000 .ivsize = 0,
1002 .cipher_mode = DRV_CIPHER_ECB,
1003 .flow_mode = S_DIN_to_DES,
1004 .min_hw_rev = CC_HW_REV_630,
1007 .name = "cbc(des)",
1008 .driver_name = "cbc-des-ccree",
1009 .blocksize = DES_BLOCK_SIZE,
1010 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
1011 .template_skcipher = {
1012 .setkey = cc_cipher_setkey,
1013 .encrypt = cc_cipher_encrypt,
1014 .decrypt = cc_cipher_decrypt,
1015 .min_keysize = DES_KEY_SIZE,
1016 .max_keysize = DES_KEY_SIZE,
1017 .ivsize = DES_BLOCK_SIZE,
1019 .cipher_mode = DRV_CIPHER_CBC,
1020 .flow_mode = S_DIN_to_DES,
1021 .min_hw_rev = CC_HW_REV_630,
1024 .name = "ecb(des)",
1025 .driver_name = "ecb-des-ccree",
1026 .blocksize = DES_BLOCK_SIZE,
1027 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
1028 .template_skcipher = {
1029 .setkey = cc_cipher_setkey,
1030 .encrypt = cc_cipher_encrypt,
1031 .decrypt = cc_cipher_decrypt,
1032 .min_keysize = DES_KEY_SIZE,
1033 .max_keysize = DES_KEY_SIZE,
1034 .ivsize = 0,
1036 .cipher_mode = DRV_CIPHER_ECB,
1037 .flow_mode = S_DIN_to_DES,
1038 .min_hw_rev = CC_HW_REV_630,
1042 static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1043 struct device *dev)
1045 struct cc_crypto_alg *t_alg;
1046 struct skcipher_alg *alg;
1048 t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
1049 if (!t_alg)
1050 return ERR_PTR(-ENOMEM);
1052 alg = &t_alg->skcipher_alg;
1054 memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1056 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1057 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1058 tmpl->driver_name);
1059 alg->base.cra_module = THIS_MODULE;
1060 alg->base.cra_priority = CC_CRA_PRIO;
1061 alg->base.cra_blocksize = tmpl->blocksize;
1062 alg->base.cra_alignmask = 0;
1063 alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1065 alg->base.cra_init = cc_cipher_init;
1066 alg->base.cra_exit = cc_cipher_exit;
1067 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1068 CRYPTO_ALG_TYPE_SKCIPHER;
1070 t_alg->cipher_mode = tmpl->cipher_mode;
1071 t_alg->flow_mode = tmpl->flow_mode;
1072 t_alg->data_unit = tmpl->data_unit;
1074 return t_alg;
1077 int cc_cipher_free(struct cc_drvdata *drvdata)
1079 struct cc_crypto_alg *t_alg, *n;
1080 struct cc_cipher_handle *cipher_handle = drvdata->cipher_handle;
1082 if (cipher_handle) {
1083 /* Remove registered algs */
1084 list_for_each_entry_safe(t_alg, n, &cipher_handle->alg_list,
1085 entry) {
1086 crypto_unregister_skcipher(&t_alg->skcipher_alg);
1087 list_del(&t_alg->entry);
1088 kfree(t_alg);
1090 kfree(cipher_handle);
1091 drvdata->cipher_handle = NULL;
1093 return 0;
1096 int cc_cipher_alloc(struct cc_drvdata *drvdata)
1098 struct cc_cipher_handle *cipher_handle;
1099 struct cc_crypto_alg *t_alg;
1100 struct device *dev = drvdata_to_dev(drvdata);
1101 int rc = -ENOMEM;
1102 int alg;
1104 cipher_handle = kmalloc(sizeof(*cipher_handle), GFP_KERNEL);
1105 if (!cipher_handle)
1106 return -ENOMEM;
1108 INIT_LIST_HEAD(&cipher_handle->alg_list);
1109 drvdata->cipher_handle = cipher_handle;
1111 /* Linux crypto */
1112 dev_dbg(dev, "Number of algorithms = %zu\n",
1113 ARRAY_SIZE(skcipher_algs));
1114 for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1115 if (skcipher_algs[alg].min_hw_rev > drvdata->hw_rev)
1116 continue;
1118 dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1119 t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1120 if (IS_ERR(t_alg)) {
1121 rc = PTR_ERR(t_alg);
1122 dev_err(dev, "%s alg allocation failed\n",
1123 skcipher_algs[alg].driver_name);
1124 goto fail0;
1126 t_alg->drvdata = drvdata;
1128 dev_dbg(dev, "registering %s\n",
1129 skcipher_algs[alg].driver_name);
1130 rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1131 dev_dbg(dev, "%s alg registration rc = %x\n",
1132 t_alg->skcipher_alg.base.cra_driver_name, rc);
1133 if (rc) {
1134 dev_err(dev, "%s alg registration failed\n",
1135 t_alg->skcipher_alg.base.cra_driver_name);
1136 kfree(t_alg);
1137 goto fail0;
1138 } else {
1139 list_add_tail(&t_alg->entry,
1140 &cipher_handle->alg_list);
1141 dev_dbg(dev, "Registered %s\n",
1142 t_alg->skcipher_alg.base.cra_driver_name);
1145 return 0;
1147 fail0:
1148 cc_cipher_free(drvdata);
1149 return rc;