mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / drivers / hv / vmbus_drv.c
blobb10fe26c48917983951e443d83584cd49295853d
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
48 struct vmbus_dynid {
49 struct list_head node;
50 struct hv_vmbus_device_id id;
53 static struct acpi_device *hv_acpi_dev;
55 static struct completion probe_event;
57 static int hyperv_cpuhp_online;
59 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
60 void *args)
62 struct pt_regs *regs;
64 regs = current_pt_regs();
66 hyperv_report_panic(regs, val);
67 return NOTIFY_DONE;
70 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
71 void *args)
73 struct die_args *die = (struct die_args *)args;
74 struct pt_regs *regs = die->regs;
76 hyperv_report_panic(regs, val);
77 return NOTIFY_DONE;
80 static struct notifier_block hyperv_die_block = {
81 .notifier_call = hyperv_die_event,
83 static struct notifier_block hyperv_panic_block = {
84 .notifier_call = hyperv_panic_event,
87 static const char *fb_mmio_name = "fb_range";
88 static struct resource *fb_mmio;
89 static struct resource *hyperv_mmio;
90 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
92 static int vmbus_exists(void)
94 if (hv_acpi_dev == NULL)
95 return -ENODEV;
97 return 0;
100 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
101 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
103 int i;
104 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
105 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 static u8 channel_monitor_group(const struct vmbus_channel *channel)
110 return (u8)channel->offermsg.monitorid / 32;
113 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
115 return (u8)channel->offermsg.monitorid % 32;
118 static u32 channel_pending(const struct vmbus_channel *channel,
119 const struct hv_monitor_page *monitor_page)
121 u8 monitor_group = channel_monitor_group(channel);
123 return monitor_page->trigger_group[monitor_group].pending;
126 static u32 channel_latency(const struct vmbus_channel *channel,
127 const struct hv_monitor_page *monitor_page)
129 u8 monitor_group = channel_monitor_group(channel);
130 u8 monitor_offset = channel_monitor_offset(channel);
132 return monitor_page->latency[monitor_group][monitor_offset];
135 static u32 channel_conn_id(struct vmbus_channel *channel,
136 struct hv_monitor_page *monitor_page)
138 u8 monitor_group = channel_monitor_group(channel);
139 u8 monitor_offset = channel_monitor_offset(channel);
140 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144 char *buf)
146 struct hv_device *hv_dev = device_to_hv_device(dev);
148 if (!hv_dev->channel)
149 return -ENODEV;
150 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
152 static DEVICE_ATTR_RO(id);
154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155 char *buf)
157 struct hv_device *hv_dev = device_to_hv_device(dev);
159 if (!hv_dev->channel)
160 return -ENODEV;
161 return sprintf(buf, "%d\n", hv_dev->channel->state);
163 static DEVICE_ATTR_RO(state);
165 static ssize_t monitor_id_show(struct device *dev,
166 struct device_attribute *dev_attr, char *buf)
168 struct hv_device *hv_dev = device_to_hv_device(dev);
170 if (!hv_dev->channel)
171 return -ENODEV;
172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
174 static DEVICE_ATTR_RO(monitor_id);
176 static ssize_t class_id_show(struct device *dev,
177 struct device_attribute *dev_attr, char *buf)
179 struct hv_device *hv_dev = device_to_hv_device(dev);
181 if (!hv_dev->channel)
182 return -ENODEV;
183 return sprintf(buf, "{%pUl}\n",
184 hv_dev->channel->offermsg.offer.if_type.b);
186 static DEVICE_ATTR_RO(class_id);
188 static ssize_t device_id_show(struct device *dev,
189 struct device_attribute *dev_attr, char *buf)
191 struct hv_device *hv_dev = device_to_hv_device(dev);
193 if (!hv_dev->channel)
194 return -ENODEV;
195 return sprintf(buf, "{%pUl}\n",
196 hv_dev->channel->offermsg.offer.if_instance.b);
198 static DEVICE_ATTR_RO(device_id);
200 static ssize_t modalias_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
203 struct hv_device *hv_dev = device_to_hv_device(dev);
204 char alias_name[VMBUS_ALIAS_LEN + 1];
206 print_alias_name(hv_dev, alias_name);
207 return sprintf(buf, "vmbus:%s\n", alias_name);
209 static DEVICE_ATTR_RO(modalias);
211 static ssize_t server_monitor_pending_show(struct device *dev,
212 struct device_attribute *dev_attr,
213 char *buf)
215 struct hv_device *hv_dev = device_to_hv_device(dev);
217 if (!hv_dev->channel)
218 return -ENODEV;
219 return sprintf(buf, "%d\n",
220 channel_pending(hv_dev->channel,
221 vmbus_connection.monitor_pages[1]));
223 static DEVICE_ATTR_RO(server_monitor_pending);
225 static ssize_t client_monitor_pending_show(struct device *dev,
226 struct device_attribute *dev_attr,
227 char *buf)
229 struct hv_device *hv_dev = device_to_hv_device(dev);
231 if (!hv_dev->channel)
232 return -ENODEV;
233 return sprintf(buf, "%d\n",
234 channel_pending(hv_dev->channel,
235 vmbus_connection.monitor_pages[1]));
237 static DEVICE_ATTR_RO(client_monitor_pending);
239 static ssize_t server_monitor_latency_show(struct device *dev,
240 struct device_attribute *dev_attr,
241 char *buf)
243 struct hv_device *hv_dev = device_to_hv_device(dev);
245 if (!hv_dev->channel)
246 return -ENODEV;
247 return sprintf(buf, "%d\n",
248 channel_latency(hv_dev->channel,
249 vmbus_connection.monitor_pages[0]));
251 static DEVICE_ATTR_RO(server_monitor_latency);
253 static ssize_t client_monitor_latency_show(struct device *dev,
254 struct device_attribute *dev_attr,
255 char *buf)
257 struct hv_device *hv_dev = device_to_hv_device(dev);
259 if (!hv_dev->channel)
260 return -ENODEV;
261 return sprintf(buf, "%d\n",
262 channel_latency(hv_dev->channel,
263 vmbus_connection.monitor_pages[1]));
265 static DEVICE_ATTR_RO(client_monitor_latency);
267 static ssize_t server_monitor_conn_id_show(struct device *dev,
268 struct device_attribute *dev_attr,
269 char *buf)
271 struct hv_device *hv_dev = device_to_hv_device(dev);
273 if (!hv_dev->channel)
274 return -ENODEV;
275 return sprintf(buf, "%d\n",
276 channel_conn_id(hv_dev->channel,
277 vmbus_connection.monitor_pages[0]));
279 static DEVICE_ATTR_RO(server_monitor_conn_id);
281 static ssize_t client_monitor_conn_id_show(struct device *dev,
282 struct device_attribute *dev_attr,
283 char *buf)
285 struct hv_device *hv_dev = device_to_hv_device(dev);
287 if (!hv_dev->channel)
288 return -ENODEV;
289 return sprintf(buf, "%d\n",
290 channel_conn_id(hv_dev->channel,
291 vmbus_connection.monitor_pages[1]));
293 static DEVICE_ATTR_RO(client_monitor_conn_id);
295 static ssize_t out_intr_mask_show(struct device *dev,
296 struct device_attribute *dev_attr, char *buf)
298 struct hv_device *hv_dev = device_to_hv_device(dev);
299 struct hv_ring_buffer_debug_info outbound;
301 if (!hv_dev->channel)
302 return -ENODEV;
303 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
304 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
306 static DEVICE_ATTR_RO(out_intr_mask);
308 static ssize_t out_read_index_show(struct device *dev,
309 struct device_attribute *dev_attr, char *buf)
311 struct hv_device *hv_dev = device_to_hv_device(dev);
312 struct hv_ring_buffer_debug_info outbound;
314 if (!hv_dev->channel)
315 return -ENODEV;
316 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
317 return sprintf(buf, "%d\n", outbound.current_read_index);
319 static DEVICE_ATTR_RO(out_read_index);
321 static ssize_t out_write_index_show(struct device *dev,
322 struct device_attribute *dev_attr,
323 char *buf)
325 struct hv_device *hv_dev = device_to_hv_device(dev);
326 struct hv_ring_buffer_debug_info outbound;
328 if (!hv_dev->channel)
329 return -ENODEV;
330 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
331 return sprintf(buf, "%d\n", outbound.current_write_index);
333 static DEVICE_ATTR_RO(out_write_index);
335 static ssize_t out_read_bytes_avail_show(struct device *dev,
336 struct device_attribute *dev_attr,
337 char *buf)
339 struct hv_device *hv_dev = device_to_hv_device(dev);
340 struct hv_ring_buffer_debug_info outbound;
342 if (!hv_dev->channel)
343 return -ENODEV;
344 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
345 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
347 static DEVICE_ATTR_RO(out_read_bytes_avail);
349 static ssize_t out_write_bytes_avail_show(struct device *dev,
350 struct device_attribute *dev_attr,
351 char *buf)
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
356 if (!hv_dev->channel)
357 return -ENODEV;
358 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
359 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
361 static DEVICE_ATTR_RO(out_write_bytes_avail);
363 static ssize_t in_intr_mask_show(struct device *dev,
364 struct device_attribute *dev_attr, char *buf)
366 struct hv_device *hv_dev = device_to_hv_device(dev);
367 struct hv_ring_buffer_debug_info inbound;
369 if (!hv_dev->channel)
370 return -ENODEV;
371 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
372 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
374 static DEVICE_ATTR_RO(in_intr_mask);
376 static ssize_t in_read_index_show(struct device *dev,
377 struct device_attribute *dev_attr, char *buf)
379 struct hv_device *hv_dev = device_to_hv_device(dev);
380 struct hv_ring_buffer_debug_info inbound;
382 if (!hv_dev->channel)
383 return -ENODEV;
384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
385 return sprintf(buf, "%d\n", inbound.current_read_index);
387 static DEVICE_ATTR_RO(in_read_index);
389 static ssize_t in_write_index_show(struct device *dev,
390 struct device_attribute *dev_attr, char *buf)
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info inbound;
395 if (!hv_dev->channel)
396 return -ENODEV;
397 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
398 return sprintf(buf, "%d\n", inbound.current_write_index);
400 static DEVICE_ATTR_RO(in_write_index);
402 static ssize_t in_read_bytes_avail_show(struct device *dev,
403 struct device_attribute *dev_attr,
404 char *buf)
406 struct hv_device *hv_dev = device_to_hv_device(dev);
407 struct hv_ring_buffer_debug_info inbound;
409 if (!hv_dev->channel)
410 return -ENODEV;
411 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
412 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
414 static DEVICE_ATTR_RO(in_read_bytes_avail);
416 static ssize_t in_write_bytes_avail_show(struct device *dev,
417 struct device_attribute *dev_attr,
418 char *buf)
420 struct hv_device *hv_dev = device_to_hv_device(dev);
421 struct hv_ring_buffer_debug_info inbound;
423 if (!hv_dev->channel)
424 return -ENODEV;
425 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
426 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
428 static DEVICE_ATTR_RO(in_write_bytes_avail);
430 static ssize_t channel_vp_mapping_show(struct device *dev,
431 struct device_attribute *dev_attr,
432 char *buf)
434 struct hv_device *hv_dev = device_to_hv_device(dev);
435 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
436 unsigned long flags;
437 int buf_size = PAGE_SIZE, n_written, tot_written;
438 struct list_head *cur;
440 if (!channel)
441 return -ENODEV;
443 tot_written = snprintf(buf, buf_size, "%u:%u\n",
444 channel->offermsg.child_relid, channel->target_cpu);
446 spin_lock_irqsave(&channel->lock, flags);
448 list_for_each(cur, &channel->sc_list) {
449 if (tot_written >= buf_size - 1)
450 break;
452 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
453 n_written = scnprintf(buf + tot_written,
454 buf_size - tot_written,
455 "%u:%u\n",
456 cur_sc->offermsg.child_relid,
457 cur_sc->target_cpu);
458 tot_written += n_written;
461 spin_unlock_irqrestore(&channel->lock, flags);
463 return tot_written;
465 static DEVICE_ATTR_RO(channel_vp_mapping);
467 static ssize_t vendor_show(struct device *dev,
468 struct device_attribute *dev_attr,
469 char *buf)
471 struct hv_device *hv_dev = device_to_hv_device(dev);
472 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
474 static DEVICE_ATTR_RO(vendor);
476 static ssize_t device_show(struct device *dev,
477 struct device_attribute *dev_attr,
478 char *buf)
480 struct hv_device *hv_dev = device_to_hv_device(dev);
481 return sprintf(buf, "0x%x\n", hv_dev->device_id);
483 static DEVICE_ATTR_RO(device);
485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
486 static struct attribute *vmbus_dev_attrs[] = {
487 &dev_attr_id.attr,
488 &dev_attr_state.attr,
489 &dev_attr_monitor_id.attr,
490 &dev_attr_class_id.attr,
491 &dev_attr_device_id.attr,
492 &dev_attr_modalias.attr,
493 &dev_attr_server_monitor_pending.attr,
494 &dev_attr_client_monitor_pending.attr,
495 &dev_attr_server_monitor_latency.attr,
496 &dev_attr_client_monitor_latency.attr,
497 &dev_attr_server_monitor_conn_id.attr,
498 &dev_attr_client_monitor_conn_id.attr,
499 &dev_attr_out_intr_mask.attr,
500 &dev_attr_out_read_index.attr,
501 &dev_attr_out_write_index.attr,
502 &dev_attr_out_read_bytes_avail.attr,
503 &dev_attr_out_write_bytes_avail.attr,
504 &dev_attr_in_intr_mask.attr,
505 &dev_attr_in_read_index.attr,
506 &dev_attr_in_write_index.attr,
507 &dev_attr_in_read_bytes_avail.attr,
508 &dev_attr_in_write_bytes_avail.attr,
509 &dev_attr_channel_vp_mapping.attr,
510 &dev_attr_vendor.attr,
511 &dev_attr_device.attr,
512 NULL,
514 ATTRIBUTE_GROUPS(vmbus_dev);
517 * vmbus_uevent - add uevent for our device
519 * This routine is invoked when a device is added or removed on the vmbus to
520 * generate a uevent to udev in the userspace. The udev will then look at its
521 * rule and the uevent generated here to load the appropriate driver
523 * The alias string will be of the form vmbus:guid where guid is the string
524 * representation of the device guid (each byte of the guid will be
525 * represented with two hex characters.
527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
529 struct hv_device *dev = device_to_hv_device(device);
530 int ret;
531 char alias_name[VMBUS_ALIAS_LEN + 1];
533 print_alias_name(dev, alias_name);
534 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
535 return ret;
538 static const uuid_le null_guid;
540 static inline bool is_null_guid(const uuid_le *guid)
542 if (uuid_le_cmp(*guid, null_guid))
543 return false;
544 return true;
548 * Return a matching hv_vmbus_device_id pointer.
549 * If there is no match, return NULL.
551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
552 const uuid_le *guid)
554 const struct hv_vmbus_device_id *id = NULL;
555 struct vmbus_dynid *dynid;
557 /* Look at the dynamic ids first, before the static ones */
558 spin_lock(&drv->dynids.lock);
559 list_for_each_entry(dynid, &drv->dynids.list, node) {
560 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
561 id = &dynid->id;
562 break;
565 spin_unlock(&drv->dynids.lock);
567 if (id)
568 return id;
570 id = drv->id_table;
571 if (id == NULL)
572 return NULL; /* empty device table */
574 for (; !is_null_guid(&id->guid); id++)
575 if (!uuid_le_cmp(id->guid, *guid))
576 return id;
578 return NULL;
581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
584 struct vmbus_dynid *dynid;
586 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
587 if (!dynid)
588 return -ENOMEM;
590 dynid->id.guid = *guid;
592 spin_lock(&drv->dynids.lock);
593 list_add_tail(&dynid->node, &drv->dynids.list);
594 spin_unlock(&drv->dynids.lock);
596 return driver_attach(&drv->driver);
599 static void vmbus_free_dynids(struct hv_driver *drv)
601 struct vmbus_dynid *dynid, *n;
603 spin_lock(&drv->dynids.lock);
604 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
605 list_del(&dynid->node);
606 kfree(dynid);
608 spin_unlock(&drv->dynids.lock);
612 * store_new_id - sysfs frontend to vmbus_add_dynid()
614 * Allow GUIDs to be added to an existing driver via sysfs.
616 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
617 size_t count)
619 struct hv_driver *drv = drv_to_hv_drv(driver);
620 uuid_le guid;
621 ssize_t retval;
623 retval = uuid_le_to_bin(buf, &guid);
624 if (retval)
625 return retval;
627 if (hv_vmbus_get_id(drv, &guid))
628 return -EEXIST;
630 retval = vmbus_add_dynid(drv, &guid);
631 if (retval)
632 return retval;
633 return count;
635 static DRIVER_ATTR_WO(new_id);
638 * store_remove_id - remove a PCI device ID from this driver
640 * Removes a dynamic pci device ID to this driver.
642 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
643 size_t count)
645 struct hv_driver *drv = drv_to_hv_drv(driver);
646 struct vmbus_dynid *dynid, *n;
647 uuid_le guid;
648 ssize_t retval;
650 retval = uuid_le_to_bin(buf, &guid);
651 if (retval)
652 return retval;
654 retval = -ENODEV;
655 spin_lock(&drv->dynids.lock);
656 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
657 struct hv_vmbus_device_id *id = &dynid->id;
659 if (!uuid_le_cmp(id->guid, guid)) {
660 list_del(&dynid->node);
661 kfree(dynid);
662 retval = count;
663 break;
666 spin_unlock(&drv->dynids.lock);
668 return retval;
670 static DRIVER_ATTR_WO(remove_id);
672 static struct attribute *vmbus_drv_attrs[] = {
673 &driver_attr_new_id.attr,
674 &driver_attr_remove_id.attr,
675 NULL,
677 ATTRIBUTE_GROUPS(vmbus_drv);
681 * vmbus_match - Attempt to match the specified device to the specified driver
683 static int vmbus_match(struct device *device, struct device_driver *driver)
685 struct hv_driver *drv = drv_to_hv_drv(driver);
686 struct hv_device *hv_dev = device_to_hv_device(device);
688 /* The hv_sock driver handles all hv_sock offers. */
689 if (is_hvsock_channel(hv_dev->channel))
690 return drv->hvsock;
692 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
693 return 1;
695 return 0;
699 * vmbus_probe - Add the new vmbus's child device
701 static int vmbus_probe(struct device *child_device)
703 int ret = 0;
704 struct hv_driver *drv =
705 drv_to_hv_drv(child_device->driver);
706 struct hv_device *dev = device_to_hv_device(child_device);
707 const struct hv_vmbus_device_id *dev_id;
709 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
710 if (drv->probe) {
711 ret = drv->probe(dev, dev_id);
712 if (ret != 0)
713 pr_err("probe failed for device %s (%d)\n",
714 dev_name(child_device), ret);
716 } else {
717 pr_err("probe not set for driver %s\n",
718 dev_name(child_device));
719 ret = -ENODEV;
721 return ret;
725 * vmbus_remove - Remove a vmbus device
727 static int vmbus_remove(struct device *child_device)
729 struct hv_driver *drv;
730 struct hv_device *dev = device_to_hv_device(child_device);
732 if (child_device->driver) {
733 drv = drv_to_hv_drv(child_device->driver);
734 if (drv->remove)
735 drv->remove(dev);
738 return 0;
743 * vmbus_shutdown - Shutdown a vmbus device
745 static void vmbus_shutdown(struct device *child_device)
747 struct hv_driver *drv;
748 struct hv_device *dev = device_to_hv_device(child_device);
751 /* The device may not be attached yet */
752 if (!child_device->driver)
753 return;
755 drv = drv_to_hv_drv(child_device->driver);
757 if (drv->shutdown)
758 drv->shutdown(dev);
763 * vmbus_device_release - Final callback release of the vmbus child device
765 static void vmbus_device_release(struct device *device)
767 struct hv_device *hv_dev = device_to_hv_device(device);
768 struct vmbus_channel *channel = hv_dev->channel;
770 mutex_lock(&vmbus_connection.channel_mutex);
771 hv_process_channel_removal(channel->offermsg.child_relid);
772 mutex_unlock(&vmbus_connection.channel_mutex);
773 kfree(hv_dev);
777 /* The one and only one */
778 static struct bus_type hv_bus = {
779 .name = "vmbus",
780 .match = vmbus_match,
781 .shutdown = vmbus_shutdown,
782 .remove = vmbus_remove,
783 .probe = vmbus_probe,
784 .uevent = vmbus_uevent,
785 .dev_groups = vmbus_dev_groups,
786 .drv_groups = vmbus_drv_groups,
789 struct onmessage_work_context {
790 struct work_struct work;
791 struct hv_message msg;
794 static void vmbus_onmessage_work(struct work_struct *work)
796 struct onmessage_work_context *ctx;
798 /* Do not process messages if we're in DISCONNECTED state */
799 if (vmbus_connection.conn_state == DISCONNECTED)
800 return;
802 ctx = container_of(work, struct onmessage_work_context,
803 work);
804 vmbus_onmessage(&ctx->msg);
805 kfree(ctx);
808 static void hv_process_timer_expiration(struct hv_message *msg,
809 struct hv_per_cpu_context *hv_cpu)
811 struct clock_event_device *dev = hv_cpu->clk_evt;
813 if (dev->event_handler)
814 dev->event_handler(dev);
816 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
819 void vmbus_on_msg_dpc(unsigned long data)
821 struct hv_per_cpu_context *hv_cpu = (void *)data;
822 void *page_addr = hv_cpu->synic_message_page;
823 struct hv_message *msg = (struct hv_message *)page_addr +
824 VMBUS_MESSAGE_SINT;
825 struct vmbus_channel_message_header *hdr;
826 const struct vmbus_channel_message_table_entry *entry;
827 struct onmessage_work_context *ctx;
828 u32 message_type = msg->header.message_type;
830 if (message_type == HVMSG_NONE)
831 /* no msg */
832 return;
834 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
836 trace_vmbus_on_msg_dpc(hdr);
838 if (hdr->msgtype >= CHANNELMSG_COUNT) {
839 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
840 goto msg_handled;
843 entry = &channel_message_table[hdr->msgtype];
844 if (entry->handler_type == VMHT_BLOCKING) {
845 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
846 if (ctx == NULL)
847 return;
849 INIT_WORK(&ctx->work, vmbus_onmessage_work);
850 memcpy(&ctx->msg, msg, sizeof(*msg));
853 * The host can generate a rescind message while we
854 * may still be handling the original offer. We deal with
855 * this condition by ensuring the processing is done on the
856 * same CPU.
858 switch (hdr->msgtype) {
859 case CHANNELMSG_RESCIND_CHANNELOFFER:
861 * If we are handling the rescind message;
862 * schedule the work on the global work queue.
864 schedule_work_on(vmbus_connection.connect_cpu,
865 &ctx->work);
866 break;
868 case CHANNELMSG_OFFERCHANNEL:
869 atomic_inc(&vmbus_connection.offer_in_progress);
870 queue_work_on(vmbus_connection.connect_cpu,
871 vmbus_connection.work_queue,
872 &ctx->work);
873 break;
875 default:
876 queue_work(vmbus_connection.work_queue, &ctx->work);
878 } else
879 entry->message_handler(hdr);
881 msg_handled:
882 vmbus_signal_eom(msg, message_type);
887 * Direct callback for channels using other deferred processing
889 static void vmbus_channel_isr(struct vmbus_channel *channel)
891 void (*callback_fn)(void *);
893 callback_fn = READ_ONCE(channel->onchannel_callback);
894 if (likely(callback_fn != NULL))
895 (*callback_fn)(channel->channel_callback_context);
899 * Schedule all channels with events pending
901 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
903 unsigned long *recv_int_page;
904 u32 maxbits, relid;
906 if (vmbus_proto_version < VERSION_WIN8) {
907 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
908 recv_int_page = vmbus_connection.recv_int_page;
909 } else {
911 * When the host is win8 and beyond, the event page
912 * can be directly checked to get the id of the channel
913 * that has the interrupt pending.
915 void *page_addr = hv_cpu->synic_event_page;
916 union hv_synic_event_flags *event
917 = (union hv_synic_event_flags *)page_addr +
918 VMBUS_MESSAGE_SINT;
920 maxbits = HV_EVENT_FLAGS_COUNT;
921 recv_int_page = event->flags;
924 if (unlikely(!recv_int_page))
925 return;
927 for_each_set_bit(relid, recv_int_page, maxbits) {
928 struct vmbus_channel *channel;
930 if (!sync_test_and_clear_bit(relid, recv_int_page))
931 continue;
933 /* Special case - vmbus channel protocol msg */
934 if (relid == 0)
935 continue;
937 rcu_read_lock();
939 /* Find channel based on relid */
940 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
941 if (channel->offermsg.child_relid != relid)
942 continue;
944 if (channel->rescind)
945 continue;
947 trace_vmbus_chan_sched(channel);
949 ++channel->interrupts;
951 switch (channel->callback_mode) {
952 case HV_CALL_ISR:
953 vmbus_channel_isr(channel);
954 break;
956 case HV_CALL_BATCHED:
957 hv_begin_read(&channel->inbound);
958 /* fallthrough */
959 case HV_CALL_DIRECT:
960 tasklet_schedule(&channel->callback_event);
964 rcu_read_unlock();
968 static void vmbus_isr(void)
970 struct hv_per_cpu_context *hv_cpu
971 = this_cpu_ptr(hv_context.cpu_context);
972 void *page_addr = hv_cpu->synic_event_page;
973 struct hv_message *msg;
974 union hv_synic_event_flags *event;
975 bool handled = false;
977 if (unlikely(page_addr == NULL))
978 return;
980 event = (union hv_synic_event_flags *)page_addr +
981 VMBUS_MESSAGE_SINT;
983 * Check for events before checking for messages. This is the order
984 * in which events and messages are checked in Windows guests on
985 * Hyper-V, and the Windows team suggested we do the same.
988 if ((vmbus_proto_version == VERSION_WS2008) ||
989 (vmbus_proto_version == VERSION_WIN7)) {
991 /* Since we are a child, we only need to check bit 0 */
992 if (sync_test_and_clear_bit(0, event->flags))
993 handled = true;
994 } else {
996 * Our host is win8 or above. The signaling mechanism
997 * has changed and we can directly look at the event page.
998 * If bit n is set then we have an interrup on the channel
999 * whose id is n.
1001 handled = true;
1004 if (handled)
1005 vmbus_chan_sched(hv_cpu);
1007 page_addr = hv_cpu->synic_message_page;
1008 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1010 /* Check if there are actual msgs to be processed */
1011 if (msg->header.message_type != HVMSG_NONE) {
1012 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1013 hv_process_timer_expiration(msg, hv_cpu);
1014 else
1015 tasklet_schedule(&hv_cpu->msg_dpc);
1018 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1023 * vmbus_bus_init -Main vmbus driver initialization routine.
1025 * Here, we
1026 * - initialize the vmbus driver context
1027 * - invoke the vmbus hv main init routine
1028 * - retrieve the channel offers
1030 static int vmbus_bus_init(void)
1032 int ret;
1034 /* Hypervisor initialization...setup hypercall page..etc */
1035 ret = hv_init();
1036 if (ret != 0) {
1037 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1038 return ret;
1041 ret = bus_register(&hv_bus);
1042 if (ret)
1043 return ret;
1045 hv_setup_vmbus_irq(vmbus_isr);
1047 ret = hv_synic_alloc();
1048 if (ret)
1049 goto err_alloc;
1051 * Initialize the per-cpu interrupt state and
1052 * connect to the host.
1054 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1055 hv_synic_init, hv_synic_cleanup);
1056 if (ret < 0)
1057 goto err_alloc;
1058 hyperv_cpuhp_online = ret;
1060 ret = vmbus_connect();
1061 if (ret)
1062 goto err_connect;
1065 * Only register if the crash MSRs are available
1067 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1068 register_die_notifier(&hyperv_die_block);
1069 atomic_notifier_chain_register(&panic_notifier_list,
1070 &hyperv_panic_block);
1073 vmbus_request_offers();
1075 return 0;
1077 err_connect:
1078 cpuhp_remove_state(hyperv_cpuhp_online);
1079 err_alloc:
1080 hv_synic_free();
1081 hv_remove_vmbus_irq();
1083 bus_unregister(&hv_bus);
1085 return ret;
1089 * __vmbus_child_driver_register() - Register a vmbus's driver
1090 * @hv_driver: Pointer to driver structure you want to register
1091 * @owner: owner module of the drv
1092 * @mod_name: module name string
1094 * Registers the given driver with Linux through the 'driver_register()' call
1095 * and sets up the hyper-v vmbus handling for this driver.
1096 * It will return the state of the 'driver_register()' call.
1099 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1101 int ret;
1103 pr_info("registering driver %s\n", hv_driver->name);
1105 ret = vmbus_exists();
1106 if (ret < 0)
1107 return ret;
1109 hv_driver->driver.name = hv_driver->name;
1110 hv_driver->driver.owner = owner;
1111 hv_driver->driver.mod_name = mod_name;
1112 hv_driver->driver.bus = &hv_bus;
1114 spin_lock_init(&hv_driver->dynids.lock);
1115 INIT_LIST_HEAD(&hv_driver->dynids.list);
1117 ret = driver_register(&hv_driver->driver);
1119 return ret;
1121 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1124 * vmbus_driver_unregister() - Unregister a vmbus's driver
1125 * @hv_driver: Pointer to driver structure you want to
1126 * un-register
1128 * Un-register the given driver that was previous registered with a call to
1129 * vmbus_driver_register()
1131 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1133 pr_info("unregistering driver %s\n", hv_driver->name);
1135 if (!vmbus_exists()) {
1136 driver_unregister(&hv_driver->driver);
1137 vmbus_free_dynids(hv_driver);
1140 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1144 * Called when last reference to channel is gone.
1146 static void vmbus_chan_release(struct kobject *kobj)
1148 struct vmbus_channel *channel
1149 = container_of(kobj, struct vmbus_channel, kobj);
1151 kfree_rcu(channel, rcu);
1154 struct vmbus_chan_attribute {
1155 struct attribute attr;
1156 ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1157 ssize_t (*store)(struct vmbus_channel *chan,
1158 const char *buf, size_t count);
1160 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1161 struct vmbus_chan_attribute chan_attr_##_name \
1162 = __ATTR(_name, _mode, _show, _store)
1163 #define VMBUS_CHAN_ATTR_RW(_name) \
1164 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1165 #define VMBUS_CHAN_ATTR_RO(_name) \
1166 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1167 #define VMBUS_CHAN_ATTR_WO(_name) \
1168 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1170 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1171 struct attribute *attr, char *buf)
1173 const struct vmbus_chan_attribute *attribute
1174 = container_of(attr, struct vmbus_chan_attribute, attr);
1175 const struct vmbus_channel *chan
1176 = container_of(kobj, struct vmbus_channel, kobj);
1178 if (!attribute->show)
1179 return -EIO;
1181 return attribute->show(chan, buf);
1184 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1185 .show = vmbus_chan_attr_show,
1188 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1190 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1192 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1194 static VMBUS_CHAN_ATTR_RO(out_mask);
1196 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1198 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1200 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1202 static VMBUS_CHAN_ATTR_RO(in_mask);
1204 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1206 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1208 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1210 static VMBUS_CHAN_ATTR_RO(read_avail);
1212 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1214 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1216 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1218 static VMBUS_CHAN_ATTR_RO(write_avail);
1220 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1222 return sprintf(buf, "%u\n", channel->target_cpu);
1224 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1226 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1227 char *buf)
1229 return sprintf(buf, "%d\n",
1230 channel_pending(channel,
1231 vmbus_connection.monitor_pages[1]));
1233 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1235 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1236 char *buf)
1238 return sprintf(buf, "%d\n",
1239 channel_latency(channel,
1240 vmbus_connection.monitor_pages[1]));
1242 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1244 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1246 return sprintf(buf, "%llu\n", channel->interrupts);
1248 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1250 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1252 return sprintf(buf, "%llu\n", channel->sig_events);
1254 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1256 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1257 char *buf)
1259 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1261 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1263 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1264 char *buf)
1266 return sprintf(buf, "%u\n",
1267 channel->offermsg.offer.sub_channel_index);
1269 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1271 static struct attribute *vmbus_chan_attrs[] = {
1272 &chan_attr_out_mask.attr,
1273 &chan_attr_in_mask.attr,
1274 &chan_attr_read_avail.attr,
1275 &chan_attr_write_avail.attr,
1276 &chan_attr_cpu.attr,
1277 &chan_attr_pending.attr,
1278 &chan_attr_latency.attr,
1279 &chan_attr_interrupts.attr,
1280 &chan_attr_events.attr,
1281 &chan_attr_monitor_id.attr,
1282 &chan_attr_subchannel_id.attr,
1283 NULL
1286 static struct kobj_type vmbus_chan_ktype = {
1287 .sysfs_ops = &vmbus_chan_sysfs_ops,
1288 .release = vmbus_chan_release,
1289 .default_attrs = vmbus_chan_attrs,
1293 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1295 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1297 struct kobject *kobj = &channel->kobj;
1298 u32 relid = channel->offermsg.child_relid;
1299 int ret;
1301 kobj->kset = dev->channels_kset;
1302 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1303 "%u", relid);
1304 if (ret)
1305 return ret;
1307 kobject_uevent(kobj, KOBJ_ADD);
1309 return 0;
1313 * vmbus_device_create - Creates and registers a new child device
1314 * on the vmbus.
1316 struct hv_device *vmbus_device_create(const uuid_le *type,
1317 const uuid_le *instance,
1318 struct vmbus_channel *channel)
1320 struct hv_device *child_device_obj;
1322 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1323 if (!child_device_obj) {
1324 pr_err("Unable to allocate device object for child device\n");
1325 return NULL;
1328 child_device_obj->channel = channel;
1329 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1330 memcpy(&child_device_obj->dev_instance, instance,
1331 sizeof(uuid_le));
1332 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1335 return child_device_obj;
1339 * vmbus_device_register - Register the child device
1341 int vmbus_device_register(struct hv_device *child_device_obj)
1343 struct kobject *kobj = &child_device_obj->device.kobj;
1344 int ret;
1346 dev_set_name(&child_device_obj->device, "%pUl",
1347 child_device_obj->channel->offermsg.offer.if_instance.b);
1349 child_device_obj->device.bus = &hv_bus;
1350 child_device_obj->device.parent = &hv_acpi_dev->dev;
1351 child_device_obj->device.release = vmbus_device_release;
1354 * Register with the LDM. This will kick off the driver/device
1355 * binding...which will eventually call vmbus_match() and vmbus_probe()
1357 ret = device_register(&child_device_obj->device);
1358 if (ret) {
1359 pr_err("Unable to register child device\n");
1360 return ret;
1363 child_device_obj->channels_kset = kset_create_and_add("channels",
1364 NULL, kobj);
1365 if (!child_device_obj->channels_kset) {
1366 ret = -ENOMEM;
1367 goto err_dev_unregister;
1370 ret = vmbus_add_channel_kobj(child_device_obj,
1371 child_device_obj->channel);
1372 if (ret) {
1373 pr_err("Unable to register primary channeln");
1374 goto err_kset_unregister;
1377 return 0;
1379 err_kset_unregister:
1380 kset_unregister(child_device_obj->channels_kset);
1382 err_dev_unregister:
1383 device_unregister(&child_device_obj->device);
1384 return ret;
1388 * vmbus_device_unregister - Remove the specified child device
1389 * from the vmbus.
1391 void vmbus_device_unregister(struct hv_device *device_obj)
1393 pr_debug("child device %s unregistered\n",
1394 dev_name(&device_obj->device));
1396 kset_unregister(device_obj->channels_kset);
1399 * Kick off the process of unregistering the device.
1400 * This will call vmbus_remove() and eventually vmbus_device_release()
1402 device_unregister(&device_obj->device);
1407 * VMBUS is an acpi enumerated device. Get the information we
1408 * need from DSDT.
1410 #define VTPM_BASE_ADDRESS 0xfed40000
1411 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1413 resource_size_t start = 0;
1414 resource_size_t end = 0;
1415 struct resource *new_res;
1416 struct resource **old_res = &hyperv_mmio;
1417 struct resource **prev_res = NULL;
1419 switch (res->type) {
1422 * "Address" descriptors are for bus windows. Ignore
1423 * "memory" descriptors, which are for registers on
1424 * devices.
1426 case ACPI_RESOURCE_TYPE_ADDRESS32:
1427 start = res->data.address32.address.minimum;
1428 end = res->data.address32.address.maximum;
1429 break;
1431 case ACPI_RESOURCE_TYPE_ADDRESS64:
1432 start = res->data.address64.address.minimum;
1433 end = res->data.address64.address.maximum;
1434 break;
1436 default:
1437 /* Unused resource type */
1438 return AE_OK;
1442 * Ignore ranges that are below 1MB, as they're not
1443 * necessary or useful here.
1445 if (end < 0x100000)
1446 return AE_OK;
1448 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1449 if (!new_res)
1450 return AE_NO_MEMORY;
1452 /* If this range overlaps the virtual TPM, truncate it. */
1453 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1454 end = VTPM_BASE_ADDRESS;
1456 new_res->name = "hyperv mmio";
1457 new_res->flags = IORESOURCE_MEM;
1458 new_res->start = start;
1459 new_res->end = end;
1462 * If two ranges are adjacent, merge them.
1464 do {
1465 if (!*old_res) {
1466 *old_res = new_res;
1467 break;
1470 if (((*old_res)->end + 1) == new_res->start) {
1471 (*old_res)->end = new_res->end;
1472 kfree(new_res);
1473 break;
1476 if ((*old_res)->start == new_res->end + 1) {
1477 (*old_res)->start = new_res->start;
1478 kfree(new_res);
1479 break;
1482 if ((*old_res)->start > new_res->end) {
1483 new_res->sibling = *old_res;
1484 if (prev_res)
1485 (*prev_res)->sibling = new_res;
1486 *old_res = new_res;
1487 break;
1490 prev_res = old_res;
1491 old_res = &(*old_res)->sibling;
1493 } while (1);
1495 return AE_OK;
1498 static int vmbus_acpi_remove(struct acpi_device *device)
1500 struct resource *cur_res;
1501 struct resource *next_res;
1503 if (hyperv_mmio) {
1504 if (fb_mmio) {
1505 __release_region(hyperv_mmio, fb_mmio->start,
1506 resource_size(fb_mmio));
1507 fb_mmio = NULL;
1510 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1511 next_res = cur_res->sibling;
1512 kfree(cur_res);
1516 return 0;
1519 static void vmbus_reserve_fb(void)
1521 int size;
1523 * Make a claim for the frame buffer in the resource tree under the
1524 * first node, which will be the one below 4GB. The length seems to
1525 * be underreported, particularly in a Generation 1 VM. So start out
1526 * reserving a larger area and make it smaller until it succeeds.
1529 if (screen_info.lfb_base) {
1530 if (efi_enabled(EFI_BOOT))
1531 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1532 else
1533 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1535 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1536 fb_mmio = __request_region(hyperv_mmio,
1537 screen_info.lfb_base, size,
1538 fb_mmio_name, 0);
1544 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1545 * @new: If successful, supplied a pointer to the
1546 * allocated MMIO space.
1547 * @device_obj: Identifies the caller
1548 * @min: Minimum guest physical address of the
1549 * allocation
1550 * @max: Maximum guest physical address
1551 * @size: Size of the range to be allocated
1552 * @align: Alignment of the range to be allocated
1553 * @fb_overlap_ok: Whether this allocation can be allowed
1554 * to overlap the video frame buffer.
1556 * This function walks the resources granted to VMBus by the
1557 * _CRS object in the ACPI namespace underneath the parent
1558 * "bridge" whether that's a root PCI bus in the Generation 1
1559 * case or a Module Device in the Generation 2 case. It then
1560 * attempts to allocate from the global MMIO pool in a way that
1561 * matches the constraints supplied in these parameters and by
1562 * that _CRS.
1564 * Return: 0 on success, -errno on failure
1566 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1567 resource_size_t min, resource_size_t max,
1568 resource_size_t size, resource_size_t align,
1569 bool fb_overlap_ok)
1571 struct resource *iter, *shadow;
1572 resource_size_t range_min, range_max, start;
1573 const char *dev_n = dev_name(&device_obj->device);
1574 int retval;
1576 retval = -ENXIO;
1577 down(&hyperv_mmio_lock);
1580 * If overlaps with frame buffers are allowed, then first attempt to
1581 * make the allocation from within the reserved region. Because it
1582 * is already reserved, no shadow allocation is necessary.
1584 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1585 !(max < fb_mmio->start)) {
1587 range_min = fb_mmio->start;
1588 range_max = fb_mmio->end;
1589 start = (range_min + align - 1) & ~(align - 1);
1590 for (; start + size - 1 <= range_max; start += align) {
1591 *new = request_mem_region_exclusive(start, size, dev_n);
1592 if (*new) {
1593 retval = 0;
1594 goto exit;
1599 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1600 if ((iter->start >= max) || (iter->end <= min))
1601 continue;
1603 range_min = iter->start;
1604 range_max = iter->end;
1605 start = (range_min + align - 1) & ~(align - 1);
1606 for (; start + size - 1 <= range_max; start += align) {
1607 shadow = __request_region(iter, start, size, NULL,
1608 IORESOURCE_BUSY);
1609 if (!shadow)
1610 continue;
1612 *new = request_mem_region_exclusive(start, size, dev_n);
1613 if (*new) {
1614 shadow->name = (char *)*new;
1615 retval = 0;
1616 goto exit;
1619 __release_region(iter, start, size);
1623 exit:
1624 up(&hyperv_mmio_lock);
1625 return retval;
1627 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1630 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1631 * @start: Base address of region to release.
1632 * @size: Size of the range to be allocated
1634 * This function releases anything requested by
1635 * vmbus_mmio_allocate().
1637 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1639 struct resource *iter;
1641 down(&hyperv_mmio_lock);
1642 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1643 if ((iter->start >= start + size) || (iter->end <= start))
1644 continue;
1646 __release_region(iter, start, size);
1648 release_mem_region(start, size);
1649 up(&hyperv_mmio_lock);
1652 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1654 static int vmbus_acpi_add(struct acpi_device *device)
1656 acpi_status result;
1657 int ret_val = -ENODEV;
1658 struct acpi_device *ancestor;
1660 hv_acpi_dev = device;
1662 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1663 vmbus_walk_resources, NULL);
1665 if (ACPI_FAILURE(result))
1666 goto acpi_walk_err;
1668 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1669 * firmware) is the VMOD that has the mmio ranges. Get that.
1671 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1672 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1673 vmbus_walk_resources, NULL);
1675 if (ACPI_FAILURE(result))
1676 continue;
1677 if (hyperv_mmio) {
1678 vmbus_reserve_fb();
1679 break;
1682 ret_val = 0;
1684 acpi_walk_err:
1685 complete(&probe_event);
1686 if (ret_val)
1687 vmbus_acpi_remove(device);
1688 return ret_val;
1691 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1692 {"VMBUS", 0},
1693 {"VMBus", 0},
1694 {"", 0},
1696 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1698 static struct acpi_driver vmbus_acpi_driver = {
1699 .name = "vmbus",
1700 .ids = vmbus_acpi_device_ids,
1701 .ops = {
1702 .add = vmbus_acpi_add,
1703 .remove = vmbus_acpi_remove,
1707 static void hv_kexec_handler(void)
1709 hv_synic_clockevents_cleanup();
1710 vmbus_initiate_unload(false);
1711 vmbus_connection.conn_state = DISCONNECTED;
1712 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1713 mb();
1714 cpuhp_remove_state(hyperv_cpuhp_online);
1715 hyperv_cleanup();
1718 static void hv_crash_handler(struct pt_regs *regs)
1720 vmbus_initiate_unload(true);
1722 * In crash handler we can't schedule synic cleanup for all CPUs,
1723 * doing the cleanup for current CPU only. This should be sufficient
1724 * for kdump.
1726 vmbus_connection.conn_state = DISCONNECTED;
1727 hv_synic_cleanup(smp_processor_id());
1728 hyperv_cleanup();
1731 static int __init hv_acpi_init(void)
1733 int ret, t;
1735 if (!hv_is_hyperv_initialized())
1736 return -ENODEV;
1738 init_completion(&probe_event);
1741 * Get ACPI resources first.
1743 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1745 if (ret)
1746 return ret;
1748 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1749 if (t == 0) {
1750 ret = -ETIMEDOUT;
1751 goto cleanup;
1754 ret = vmbus_bus_init();
1755 if (ret)
1756 goto cleanup;
1758 hv_setup_kexec_handler(hv_kexec_handler);
1759 hv_setup_crash_handler(hv_crash_handler);
1761 return 0;
1763 cleanup:
1764 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1765 hv_acpi_dev = NULL;
1766 return ret;
1769 static void __exit vmbus_exit(void)
1771 int cpu;
1773 hv_remove_kexec_handler();
1774 hv_remove_crash_handler();
1775 vmbus_connection.conn_state = DISCONNECTED;
1776 hv_synic_clockevents_cleanup();
1777 vmbus_disconnect();
1778 hv_remove_vmbus_irq();
1779 for_each_online_cpu(cpu) {
1780 struct hv_per_cpu_context *hv_cpu
1781 = per_cpu_ptr(hv_context.cpu_context, cpu);
1783 tasklet_kill(&hv_cpu->msg_dpc);
1785 vmbus_free_channels();
1787 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1788 unregister_die_notifier(&hyperv_die_block);
1789 atomic_notifier_chain_unregister(&panic_notifier_list,
1790 &hyperv_panic_block);
1792 bus_unregister(&hv_bus);
1794 cpuhp_remove_state(hyperv_cpuhp_online);
1795 hv_synic_free();
1796 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1800 MODULE_LICENSE("GPL");
1802 subsys_initcall(hv_acpi_init);
1803 module_exit(vmbus_exit);