mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / drivers / md / dm-table.c
blob0589a4da12bbed66420052174d3818d3c2b4ff6c
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
25 #define DM_MSG_PREFIX "table"
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32 struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
46 struct target_type *immutable_target_type;
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
58 fmode_t mode;
60 /* a list of devices used by this table */
61 struct list_head devices;
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
67 struct dm_md_mempools *mempools;
69 struct list_head target_callbacks;
73 * Similar to ceiling(log_size(n))
75 static unsigned int int_log(unsigned int n, unsigned int base)
77 int result = 0;
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
84 return result;
88 * Calculate the index of the child node of the n'th node k'th key.
90 static inline unsigned int get_child(unsigned int n, unsigned int k)
92 return (n * CHILDREN_PER_NODE) + k;
96 * Return the n'th node of level l from table t.
98 static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
101 return t->index[l] + (n * KEYS_PER_NODE);
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
123 static int setup_btree_index(unsigned int l, struct dm_table *t)
125 unsigned int n, k;
126 sector_t *node;
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
135 return 0;
138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
140 unsigned long size;
141 void *addr;
144 * Check that we're not going to overflow.
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
152 return addr;
154 EXPORT_SYMBOL(dm_vcalloc);
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
160 static int alloc_targets(struct dm_table *t, unsigned int num)
162 sector_t *n_highs;
163 struct dm_target *n_targets;
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
175 n_targets = (struct dm_target *) (n_highs + num);
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
184 return 0;
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
192 if (!t)
193 return -ENOMEM;
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
220 static void free_devices(struct list_head *devices, struct mapped_device *md)
222 struct list_head *tmp, *next;
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
234 void dm_table_destroy(struct dm_table *t)
236 unsigned int i;
238 if (!t)
239 return;
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
252 dm_put_target_type(tgt->type);
255 vfree(t->highs);
257 /* free the device list */
258 free_devices(&t->devices, t->md);
260 dm_free_md_mempools(t->mempools);
262 kfree(t);
266 * See if we've already got a device in the list.
268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
270 struct dm_dev_internal *dd;
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
276 return NULL;
280 * If possible, this checks an area of a destination device is invalid.
282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
310 if (!dev_size)
311 return 0;
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
356 if (logical_block_size_sectors <= 1)
357 return 0;
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
377 return 0;
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
389 int r;
390 struct dm_dev *old_dev, *new_dev;
392 old_dev = dd->dm_dev;
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
402 return 0;
406 * Convert the path to a device
408 dev_t dm_get_dev_t(const char *path)
410 dev_t dev;
411 struct block_device *bdev;
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
421 return dev;
423 EXPORT_SYMBOL_GPL(dm_get_dev_t);
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
437 BUG_ON(!t);
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
454 refcount_set(&dd->count, 1);
455 list_add(&dd->list, &t->devices);
456 goto out;
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
463 refcount_inc(&dd->count);
464 out:
465 *result = dd->dm_dev;
466 return 0;
468 EXPORT_SYMBOL(dm_get_device);
470 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
494 limits->zoned = blk_queue_zoned_model(q);
496 return 0;
500 * Decrement a device's use count and remove it if necessary.
502 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
519 if (refcount_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
525 EXPORT_SYMBOL(dm_put_device);
528 * Checks to see if the target joins onto the end of the table.
530 static int adjoin(struct dm_table *table, struct dm_target *ti)
532 struct dm_target *prev;
534 if (!table->num_targets)
535 return !ti->begin;
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
542 * Used to dynamically allocate the arg array.
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
551 static char **realloc_argv(unsigned *array_size, char **old_argv)
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
557 if (*array_size) {
558 new_size = *array_size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
564 argv = kmalloc(new_size * sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 *array_size = new_size;
570 kfree(old_argv);
571 return argv;
575 * Destructively splits up the argument list to pass to ctr.
577 int dm_split_args(int *argc, char ***argvp, char *input)
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
582 *argc = 0;
584 if (!input) {
585 *argvp = NULL;
586 return 0;
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
597 if (!*start)
598 break; /* success, we hit the end */
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
610 if (isspace(*end))
611 break; /* end of token */
613 *out++ = *end++;
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
623 /* we know this is whitespace */
624 if (*end)
625 end++;
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
633 *argvp = argv;
634 return 0;
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
644 static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
655 * Offset of the start of the next table entry, mod logical_block_size.
657 unsigned short next_target_start = 0;
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
663 unsigned short remaining = 0;
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
670 * Check each entry in the table in turn.
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
675 blk_set_stacking_limits(&ti_limits);
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
708 return 0;
711 int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
724 BUG_ON(t->num_targets >= t->num_allocated);
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
745 t->singleton = true;
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
763 t->immutable_target_type = tgt->type;
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
775 * Does this target adjoin the previous one ?
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
799 return 0;
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
808 * Target argument parsing helpers.
810 static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
826 return 0;
829 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
832 return validate_next_arg(arg, arg_set, value, error, 0);
834 EXPORT_SYMBOL(dm_read_arg);
836 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
839 return validate_next_arg(arg, arg_set, value, error, 1);
841 EXPORT_SYMBOL(dm_read_arg_group);
843 const char *dm_shift_arg(struct dm_arg_set *as)
845 char *r;
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
854 return NULL;
856 EXPORT_SYMBOL(dm_shift_arg);
858 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
864 EXPORT_SYMBOL(dm_consume_args);
866 static bool __table_type_bio_based(enum dm_queue_mode table_type)
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED ||
870 table_type == DM_TYPE_NVME_BIO_BASED);
873 static bool __table_type_request_based(enum dm_queue_mode table_type)
875 return (table_type == DM_TYPE_REQUEST_BASED ||
876 table_type == DM_TYPE_MQ_REQUEST_BASED);
879 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
881 t->type = type;
883 EXPORT_SYMBOL_GPL(dm_table_set_type);
885 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 sector_t start, sector_t len, void *data)
888 struct request_queue *q = bdev_get_queue(dev->bdev);
890 return q && blk_queue_dax(q);
893 static bool dm_table_supports_dax(struct dm_table *t)
895 struct dm_target *ti;
896 unsigned i;
898 /* Ensure that all targets support DAX. */
899 for (i = 0; i < dm_table_get_num_targets(t); i++) {
900 ti = dm_table_get_target(t, i);
902 if (!ti->type->direct_access)
903 return false;
905 if (!ti->type->iterate_devices ||
906 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
907 return false;
910 return true;
913 static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
915 struct verify_rq_based_data {
916 unsigned sq_count;
917 unsigned mq_count;
920 static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
921 sector_t start, sector_t len, void *data)
923 struct request_queue *q = bdev_get_queue(dev->bdev);
924 struct verify_rq_based_data *v = data;
926 if (q->mq_ops)
927 v->mq_count++;
928 else
929 v->sq_count++;
931 return queue_is_rq_based(q);
934 static int dm_table_determine_type(struct dm_table *t)
936 unsigned i;
937 unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
939 struct dm_target *tgt;
940 struct list_head *devices = dm_table_get_devices(t);
941 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
943 if (t->type != DM_TYPE_NONE) {
944 /* target already set the table's type */
945 if (t->type == DM_TYPE_BIO_BASED) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based;
949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 goto verify_rq_based;
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 if (dm_target_hybrid(tgt))
957 hybrid = 1;
958 else if (dm_target_request_based(tgt))
959 request_based = 1;
960 else
961 bio_based = 1;
963 if (bio_based && request_based) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
966 return -EINVAL;
970 if (hybrid && !bio_based && !request_based) {
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
976 if (__table_type_request_based(live_md_type))
977 request_based = 1;
978 else
979 bio_based = 1;
982 if (bio_based) {
983 verify_bio_based:
984 /* We must use this table as bio-based */
985 t->type = DM_TYPE_BIO_BASED;
986 if (dm_table_supports_dax(t) ||
987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 t->type = DM_TYPE_DAX_BIO_BASED;
989 } else {
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt = dm_table_get_immutable_target(t);
992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 t->type = DM_TYPE_NVME_BIO_BASED;
994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 t->type = DM_TYPE_NVME_BIO_BASED;
999 return 0;
1002 BUG_ON(!request_based); /* No targets in this table */
1005 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1006 * having a compatible target use dm_table_set_type.
1008 t->type = DM_TYPE_REQUEST_BASED;
1010 verify_rq_based:
1012 * Request-based dm supports only tables that have a single target now.
1013 * To support multiple targets, request splitting support is needed,
1014 * and that needs lots of changes in the block-layer.
1015 * (e.g. request completion process for partial completion.)
1017 if (t->num_targets > 1) {
1018 DMERR("%s DM doesn't support multiple targets",
1019 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1020 return -EINVAL;
1023 if (list_empty(devices)) {
1024 int srcu_idx;
1025 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1027 /* inherit live table's type and all_blk_mq */
1028 if (live_table) {
1029 t->type = live_table->type;
1030 t->all_blk_mq = live_table->all_blk_mq;
1032 dm_put_live_table(t->md, srcu_idx);
1033 return 0;
1036 tgt = dm_table_get_immutable_target(t);
1037 if (!tgt) {
1038 DMERR("table load rejected: immutable target is required");
1039 return -EINVAL;
1040 } else if (tgt->max_io_len) {
1041 DMERR("table load rejected: immutable target that splits IO is not supported");
1042 return -EINVAL;
1045 /* Non-request-stackable devices can't be used for request-based dm */
1046 if (!tgt->type->iterate_devices ||
1047 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1048 DMERR("table load rejected: including non-request-stackable devices");
1049 return -EINVAL;
1051 if (v.sq_count && v.mq_count) {
1052 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1053 return -EINVAL;
1055 t->all_blk_mq = v.mq_count > 0;
1057 if (!t->all_blk_mq &&
1058 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1059 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1060 return -EINVAL;
1063 return 0;
1066 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1068 return t->type;
1071 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1073 return t->immutable_target_type;
1076 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1078 /* Immutable target is implicitly a singleton */
1079 if (t->num_targets > 1 ||
1080 !dm_target_is_immutable(t->targets[0].type))
1081 return NULL;
1083 return t->targets;
1086 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1088 struct dm_target *ti;
1089 unsigned i;
1091 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1092 ti = dm_table_get_target(t, i);
1093 if (dm_target_is_wildcard(ti->type))
1094 return ti;
1097 return NULL;
1100 bool dm_table_bio_based(struct dm_table *t)
1102 return __table_type_bio_based(dm_table_get_type(t));
1105 bool dm_table_request_based(struct dm_table *t)
1107 return __table_type_request_based(dm_table_get_type(t));
1110 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1112 return t->all_blk_mq;
1115 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1117 enum dm_queue_mode type = dm_table_get_type(t);
1118 unsigned per_io_data_size = 0;
1119 unsigned min_pool_size = 0;
1120 struct dm_target *ti;
1121 unsigned i;
1123 if (unlikely(type == DM_TYPE_NONE)) {
1124 DMWARN("no table type is set, can't allocate mempools");
1125 return -EINVAL;
1128 if (__table_type_bio_based(type))
1129 for (i = 0; i < t->num_targets; i++) {
1130 ti = t->targets + i;
1131 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1132 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1135 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1136 per_io_data_size, min_pool_size);
1137 if (!t->mempools)
1138 return -ENOMEM;
1140 return 0;
1143 void dm_table_free_md_mempools(struct dm_table *t)
1145 dm_free_md_mempools(t->mempools);
1146 t->mempools = NULL;
1149 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1151 return t->mempools;
1154 static int setup_indexes(struct dm_table *t)
1156 int i;
1157 unsigned int total = 0;
1158 sector_t *indexes;
1160 /* allocate the space for *all* the indexes */
1161 for (i = t->depth - 2; i >= 0; i--) {
1162 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1163 total += t->counts[i];
1166 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1167 if (!indexes)
1168 return -ENOMEM;
1170 /* set up internal nodes, bottom-up */
1171 for (i = t->depth - 2; i >= 0; i--) {
1172 t->index[i] = indexes;
1173 indexes += (KEYS_PER_NODE * t->counts[i]);
1174 setup_btree_index(i, t);
1177 return 0;
1181 * Builds the btree to index the map.
1183 static int dm_table_build_index(struct dm_table *t)
1185 int r = 0;
1186 unsigned int leaf_nodes;
1188 /* how many indexes will the btree have ? */
1189 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1190 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1192 /* leaf layer has already been set up */
1193 t->counts[t->depth - 1] = leaf_nodes;
1194 t->index[t->depth - 1] = t->highs;
1196 if (t->depth >= 2)
1197 r = setup_indexes(t);
1199 return r;
1202 static bool integrity_profile_exists(struct gendisk *disk)
1204 return !!blk_get_integrity(disk);
1208 * Get a disk whose integrity profile reflects the table's profile.
1209 * Returns NULL if integrity support was inconsistent or unavailable.
1211 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1213 struct list_head *devices = dm_table_get_devices(t);
1214 struct dm_dev_internal *dd = NULL;
1215 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1216 unsigned i;
1218 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1219 struct dm_target *ti = dm_table_get_target(t, i);
1220 if (!dm_target_passes_integrity(ti->type))
1221 goto no_integrity;
1224 list_for_each_entry(dd, devices, list) {
1225 template_disk = dd->dm_dev->bdev->bd_disk;
1226 if (!integrity_profile_exists(template_disk))
1227 goto no_integrity;
1228 else if (prev_disk &&
1229 blk_integrity_compare(prev_disk, template_disk) < 0)
1230 goto no_integrity;
1231 prev_disk = template_disk;
1234 return template_disk;
1236 no_integrity:
1237 if (prev_disk)
1238 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1239 dm_device_name(t->md),
1240 prev_disk->disk_name,
1241 template_disk->disk_name);
1242 return NULL;
1246 * Register the mapped device for blk_integrity support if the
1247 * underlying devices have an integrity profile. But all devices may
1248 * not have matching profiles (checking all devices isn't reliable
1249 * during table load because this table may use other DM device(s) which
1250 * must be resumed before they will have an initialized integity
1251 * profile). Consequently, stacked DM devices force a 2 stage integrity
1252 * profile validation: First pass during table load, final pass during
1253 * resume.
1255 static int dm_table_register_integrity(struct dm_table *t)
1257 struct mapped_device *md = t->md;
1258 struct gendisk *template_disk = NULL;
1260 /* If target handles integrity itself do not register it here. */
1261 if (t->integrity_added)
1262 return 0;
1264 template_disk = dm_table_get_integrity_disk(t);
1265 if (!template_disk)
1266 return 0;
1268 if (!integrity_profile_exists(dm_disk(md))) {
1269 t->integrity_supported = true;
1271 * Register integrity profile during table load; we can do
1272 * this because the final profile must match during resume.
1274 blk_integrity_register(dm_disk(md),
1275 blk_get_integrity(template_disk));
1276 return 0;
1280 * If DM device already has an initialized integrity
1281 * profile the new profile should not conflict.
1283 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1284 DMWARN("%s: conflict with existing integrity profile: "
1285 "%s profile mismatch",
1286 dm_device_name(t->md),
1287 template_disk->disk_name);
1288 return 1;
1291 /* Preserve existing integrity profile */
1292 t->integrity_supported = true;
1293 return 0;
1297 * Prepares the table for use by building the indices,
1298 * setting the type, and allocating mempools.
1300 int dm_table_complete(struct dm_table *t)
1302 int r;
1304 r = dm_table_determine_type(t);
1305 if (r) {
1306 DMERR("unable to determine table type");
1307 return r;
1310 r = dm_table_build_index(t);
1311 if (r) {
1312 DMERR("unable to build btrees");
1313 return r;
1316 r = dm_table_register_integrity(t);
1317 if (r) {
1318 DMERR("could not register integrity profile.");
1319 return r;
1322 r = dm_table_alloc_md_mempools(t, t->md);
1323 if (r)
1324 DMERR("unable to allocate mempools");
1326 return r;
1329 static DEFINE_MUTEX(_event_lock);
1330 void dm_table_event_callback(struct dm_table *t,
1331 void (*fn)(void *), void *context)
1333 mutex_lock(&_event_lock);
1334 t->event_fn = fn;
1335 t->event_context = context;
1336 mutex_unlock(&_event_lock);
1339 void dm_table_event(struct dm_table *t)
1342 * You can no longer call dm_table_event() from interrupt
1343 * context, use a bottom half instead.
1345 BUG_ON(in_interrupt());
1347 mutex_lock(&_event_lock);
1348 if (t->event_fn)
1349 t->event_fn(t->event_context);
1350 mutex_unlock(&_event_lock);
1352 EXPORT_SYMBOL(dm_table_event);
1354 sector_t dm_table_get_size(struct dm_table *t)
1356 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1358 EXPORT_SYMBOL(dm_table_get_size);
1360 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1362 if (index >= t->num_targets)
1363 return NULL;
1365 return t->targets + index;
1369 * Search the btree for the correct target.
1371 * Caller should check returned pointer with dm_target_is_valid()
1372 * to trap I/O beyond end of device.
1374 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1376 unsigned int l, n = 0, k = 0;
1377 sector_t *node;
1379 for (l = 0; l < t->depth; l++) {
1380 n = get_child(n, k);
1381 node = get_node(t, l, n);
1383 for (k = 0; k < KEYS_PER_NODE; k++)
1384 if (node[k] >= sector)
1385 break;
1388 return &t->targets[(KEYS_PER_NODE * n) + k];
1391 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1392 sector_t start, sector_t len, void *data)
1394 unsigned *num_devices = data;
1396 (*num_devices)++;
1398 return 0;
1402 * Check whether a table has no data devices attached using each
1403 * target's iterate_devices method.
1404 * Returns false if the result is unknown because a target doesn't
1405 * support iterate_devices.
1407 bool dm_table_has_no_data_devices(struct dm_table *table)
1409 struct dm_target *ti;
1410 unsigned i, num_devices;
1412 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1413 ti = dm_table_get_target(table, i);
1415 if (!ti->type->iterate_devices)
1416 return false;
1418 num_devices = 0;
1419 ti->type->iterate_devices(ti, count_device, &num_devices);
1420 if (num_devices)
1421 return false;
1424 return true;
1427 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1428 sector_t start, sector_t len, void *data)
1430 struct request_queue *q = bdev_get_queue(dev->bdev);
1431 enum blk_zoned_model *zoned_model = data;
1433 return q && blk_queue_zoned_model(q) == *zoned_model;
1436 static bool dm_table_supports_zoned_model(struct dm_table *t,
1437 enum blk_zoned_model zoned_model)
1439 struct dm_target *ti;
1440 unsigned i;
1442 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1443 ti = dm_table_get_target(t, i);
1445 if (zoned_model == BLK_ZONED_HM &&
1446 !dm_target_supports_zoned_hm(ti->type))
1447 return false;
1449 if (!ti->type->iterate_devices ||
1450 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1451 return false;
1454 return true;
1457 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1458 sector_t start, sector_t len, void *data)
1460 struct request_queue *q = bdev_get_queue(dev->bdev);
1461 unsigned int *zone_sectors = data;
1463 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1466 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1467 unsigned int zone_sectors)
1469 struct dm_target *ti;
1470 unsigned i;
1472 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1473 ti = dm_table_get_target(t, i);
1475 if (!ti->type->iterate_devices ||
1476 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1477 return false;
1480 return true;
1483 static int validate_hardware_zoned_model(struct dm_table *table,
1484 enum blk_zoned_model zoned_model,
1485 unsigned int zone_sectors)
1487 if (zoned_model == BLK_ZONED_NONE)
1488 return 0;
1490 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1491 DMERR("%s: zoned model is not consistent across all devices",
1492 dm_device_name(table->md));
1493 return -EINVAL;
1496 /* Check zone size validity and compatibility */
1497 if (!zone_sectors || !is_power_of_2(zone_sectors))
1498 return -EINVAL;
1500 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1501 DMERR("%s: zone sectors is not consistent across all devices",
1502 dm_device_name(table->md));
1503 return -EINVAL;
1506 return 0;
1510 * Establish the new table's queue_limits and validate them.
1512 int dm_calculate_queue_limits(struct dm_table *table,
1513 struct queue_limits *limits)
1515 struct dm_target *ti;
1516 struct queue_limits ti_limits;
1517 unsigned i;
1518 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1519 unsigned int zone_sectors = 0;
1521 blk_set_stacking_limits(limits);
1523 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1524 blk_set_stacking_limits(&ti_limits);
1526 ti = dm_table_get_target(table, i);
1528 if (!ti->type->iterate_devices)
1529 goto combine_limits;
1532 * Combine queue limits of all the devices this target uses.
1534 ti->type->iterate_devices(ti, dm_set_device_limits,
1535 &ti_limits);
1537 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1539 * After stacking all limits, validate all devices
1540 * in table support this zoned model and zone sectors.
1542 zoned_model = ti_limits.zoned;
1543 zone_sectors = ti_limits.chunk_sectors;
1546 /* Set I/O hints portion of queue limits */
1547 if (ti->type->io_hints)
1548 ti->type->io_hints(ti, &ti_limits);
1551 * Check each device area is consistent with the target's
1552 * overall queue limits.
1554 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1555 &ti_limits))
1556 return -EINVAL;
1558 combine_limits:
1560 * Merge this target's queue limits into the overall limits
1561 * for the table.
1563 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1564 DMWARN("%s: adding target device "
1565 "(start sect %llu len %llu) "
1566 "caused an alignment inconsistency",
1567 dm_device_name(table->md),
1568 (unsigned long long) ti->begin,
1569 (unsigned long long) ti->len);
1572 * FIXME: this should likely be moved to blk_stack_limits(), would
1573 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1575 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1577 * By default, the stacked limits zoned model is set to
1578 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1579 * this model using the first target model reported
1580 * that is not BLK_ZONED_NONE. This will be either the
1581 * first target device zoned model or the model reported
1582 * by the target .io_hints.
1584 limits->zoned = ti_limits.zoned;
1589 * Verify that the zoned model and zone sectors, as determined before
1590 * any .io_hints override, are the same across all devices in the table.
1591 * - this is especially relevant if .io_hints is emulating a disk-managed
1592 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1593 * BUT...
1595 if (limits->zoned != BLK_ZONED_NONE) {
1597 * ...IF the above limits stacking determined a zoned model
1598 * validate that all of the table's devices conform to it.
1600 zoned_model = limits->zoned;
1601 zone_sectors = limits->chunk_sectors;
1603 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1604 return -EINVAL;
1606 return validate_hardware_logical_block_alignment(table, limits);
1610 * Verify that all devices have an integrity profile that matches the
1611 * DM device's registered integrity profile. If the profiles don't
1612 * match then unregister the DM device's integrity profile.
1614 static void dm_table_verify_integrity(struct dm_table *t)
1616 struct gendisk *template_disk = NULL;
1618 if (t->integrity_added)
1619 return;
1621 if (t->integrity_supported) {
1623 * Verify that the original integrity profile
1624 * matches all the devices in this table.
1626 template_disk = dm_table_get_integrity_disk(t);
1627 if (template_disk &&
1628 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1629 return;
1632 if (integrity_profile_exists(dm_disk(t->md))) {
1633 DMWARN("%s: unable to establish an integrity profile",
1634 dm_device_name(t->md));
1635 blk_integrity_unregister(dm_disk(t->md));
1639 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1642 unsigned long flush = (unsigned long) data;
1643 struct request_queue *q = bdev_get_queue(dev->bdev);
1645 return q && (q->queue_flags & flush);
1648 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1650 struct dm_target *ti;
1651 unsigned i;
1654 * Require at least one underlying device to support flushes.
1655 * t->devices includes internal dm devices such as mirror logs
1656 * so we need to use iterate_devices here, which targets
1657 * supporting flushes must provide.
1659 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1660 ti = dm_table_get_target(t, i);
1662 if (!ti->num_flush_bios)
1663 continue;
1665 if (ti->flush_supported)
1666 return true;
1668 if (ti->type->iterate_devices &&
1669 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1670 return true;
1673 return false;
1676 static int device_dax_write_cache_enabled(struct dm_target *ti,
1677 struct dm_dev *dev, sector_t start,
1678 sector_t len, void *data)
1680 struct dax_device *dax_dev = dev->dax_dev;
1682 if (!dax_dev)
1683 return false;
1685 if (dax_write_cache_enabled(dax_dev))
1686 return true;
1687 return false;
1690 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1692 struct dm_target *ti;
1693 unsigned i;
1695 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696 ti = dm_table_get_target(t, i);
1698 if (ti->type->iterate_devices &&
1699 ti->type->iterate_devices(ti,
1700 device_dax_write_cache_enabled, NULL))
1701 return true;
1704 return false;
1707 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1712 return q && blk_queue_nonrot(q);
1715 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1716 sector_t start, sector_t len, void *data)
1718 struct request_queue *q = bdev_get_queue(dev->bdev);
1720 return q && !blk_queue_add_random(q);
1723 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1724 sector_t start, sector_t len, void *data)
1726 struct request_queue *q = bdev_get_queue(dev->bdev);
1728 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1731 static bool dm_table_all_devices_attribute(struct dm_table *t,
1732 iterate_devices_callout_fn func)
1734 struct dm_target *ti;
1735 unsigned i;
1737 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738 ti = dm_table_get_target(t, i);
1740 if (!ti->type->iterate_devices ||
1741 !ti->type->iterate_devices(ti, func, NULL))
1742 return false;
1745 return true;
1748 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1749 sector_t start, sector_t len, void *data)
1751 char b[BDEVNAME_SIZE];
1753 /* For now, NVMe devices are the only devices of this class */
1754 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1757 static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1759 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1762 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1767 return q && !q->limits.max_write_same_sectors;
1770 static bool dm_table_supports_write_same(struct dm_table *t)
1772 struct dm_target *ti;
1773 unsigned i;
1775 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 ti = dm_table_get_target(t, i);
1778 if (!ti->num_write_same_bios)
1779 return false;
1781 if (!ti->type->iterate_devices ||
1782 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1783 return false;
1786 return true;
1789 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1790 sector_t start, sector_t len, void *data)
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1794 return q && !q->limits.max_write_zeroes_sectors;
1797 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1799 struct dm_target *ti;
1800 unsigned i = 0;
1802 while (i < dm_table_get_num_targets(t)) {
1803 ti = dm_table_get_target(t, i++);
1805 if (!ti->num_write_zeroes_bios)
1806 return false;
1808 if (!ti->type->iterate_devices ||
1809 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1810 return false;
1813 return true;
1816 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1817 sector_t start, sector_t len, void *data)
1819 struct request_queue *q = bdev_get_queue(dev->bdev);
1821 return q && !blk_queue_discard(q);
1824 static bool dm_table_supports_discards(struct dm_table *t)
1826 struct dm_target *ti;
1827 unsigned i;
1829 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1830 ti = dm_table_get_target(t, i);
1832 if (!ti->num_discard_bios)
1833 return false;
1836 * Either the target provides discard support (as implied by setting
1837 * 'discards_supported') or it relies on _all_ data devices having
1838 * discard support.
1840 if (!ti->discards_supported &&
1841 (!ti->type->iterate_devices ||
1842 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1843 return false;
1846 return true;
1849 static int device_not_secure_erase_capable(struct dm_target *ti,
1850 struct dm_dev *dev, sector_t start,
1851 sector_t len, void *data)
1853 struct request_queue *q = bdev_get_queue(dev->bdev);
1855 return q && !blk_queue_secure_erase(q);
1858 static bool dm_table_supports_secure_erase(struct dm_table *t)
1860 struct dm_target *ti;
1861 unsigned int i;
1863 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864 ti = dm_table_get_target(t, i);
1866 if (!ti->num_secure_erase_bios)
1867 return false;
1869 if (!ti->type->iterate_devices ||
1870 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1871 return false;
1874 return true;
1877 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1878 struct queue_limits *limits)
1880 bool wc = false, fua = false;
1883 * Copy table's limits to the DM device's request_queue
1885 q->limits = *limits;
1887 if (!dm_table_supports_discards(t)) {
1888 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1889 /* Must also clear discard limits... */
1890 q->limits.max_discard_sectors = 0;
1891 q->limits.max_hw_discard_sectors = 0;
1892 q->limits.discard_granularity = 0;
1893 q->limits.discard_alignment = 0;
1894 q->limits.discard_misaligned = 0;
1895 } else
1896 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1898 if (dm_table_supports_secure_erase(t))
1899 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1902 wc = true;
1903 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1904 fua = true;
1906 blk_queue_write_cache(q, wc, fua);
1908 if (dm_table_supports_dax(t))
1909 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1910 if (dm_table_supports_dax_write_cache(t))
1911 dax_write_cache(t->md->dax_dev, true);
1913 /* Ensure that all underlying devices are non-rotational. */
1914 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1915 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1916 else
1917 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1919 if (!dm_table_supports_write_same(t))
1920 q->limits.max_write_same_sectors = 0;
1921 if (!dm_table_supports_write_zeroes(t))
1922 q->limits.max_write_zeroes_sectors = 0;
1924 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1925 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1926 else
1927 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1929 dm_table_verify_integrity(t);
1932 * Determine whether or not this queue's I/O timings contribute
1933 * to the entropy pool, Only request-based targets use this.
1934 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1935 * have it set.
1937 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1938 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1941 unsigned int dm_table_get_num_targets(struct dm_table *t)
1943 return t->num_targets;
1946 struct list_head *dm_table_get_devices(struct dm_table *t)
1948 return &t->devices;
1951 fmode_t dm_table_get_mode(struct dm_table *t)
1953 return t->mode;
1955 EXPORT_SYMBOL(dm_table_get_mode);
1957 enum suspend_mode {
1958 PRESUSPEND,
1959 PRESUSPEND_UNDO,
1960 POSTSUSPEND,
1963 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1965 int i = t->num_targets;
1966 struct dm_target *ti = t->targets;
1968 lockdep_assert_held(&t->md->suspend_lock);
1970 while (i--) {
1971 switch (mode) {
1972 case PRESUSPEND:
1973 if (ti->type->presuspend)
1974 ti->type->presuspend(ti);
1975 break;
1976 case PRESUSPEND_UNDO:
1977 if (ti->type->presuspend_undo)
1978 ti->type->presuspend_undo(ti);
1979 break;
1980 case POSTSUSPEND:
1981 if (ti->type->postsuspend)
1982 ti->type->postsuspend(ti);
1983 break;
1985 ti++;
1989 void dm_table_presuspend_targets(struct dm_table *t)
1991 if (!t)
1992 return;
1994 suspend_targets(t, PRESUSPEND);
1997 void dm_table_presuspend_undo_targets(struct dm_table *t)
1999 if (!t)
2000 return;
2002 suspend_targets(t, PRESUSPEND_UNDO);
2005 void dm_table_postsuspend_targets(struct dm_table *t)
2007 if (!t)
2008 return;
2010 suspend_targets(t, POSTSUSPEND);
2013 int dm_table_resume_targets(struct dm_table *t)
2015 int i, r = 0;
2017 lockdep_assert_held(&t->md->suspend_lock);
2019 for (i = 0; i < t->num_targets; i++) {
2020 struct dm_target *ti = t->targets + i;
2022 if (!ti->type->preresume)
2023 continue;
2025 r = ti->type->preresume(ti);
2026 if (r) {
2027 DMERR("%s: %s: preresume failed, error = %d",
2028 dm_device_name(t->md), ti->type->name, r);
2029 return r;
2033 for (i = 0; i < t->num_targets; i++) {
2034 struct dm_target *ti = t->targets + i;
2036 if (ti->type->resume)
2037 ti->type->resume(ti);
2040 return 0;
2043 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2045 list_add(&cb->list, &t->target_callbacks);
2047 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2049 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2051 struct dm_dev_internal *dd;
2052 struct list_head *devices = dm_table_get_devices(t);
2053 struct dm_target_callbacks *cb;
2054 int r = 0;
2056 list_for_each_entry(dd, devices, list) {
2057 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2058 char b[BDEVNAME_SIZE];
2060 if (likely(q))
2061 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2062 else
2063 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2064 dm_device_name(t->md),
2065 bdevname(dd->dm_dev->bdev, b));
2068 list_for_each_entry(cb, &t->target_callbacks, list)
2069 if (cb->congested_fn)
2070 r |= cb->congested_fn(cb, bdi_bits);
2072 return r;
2075 struct mapped_device *dm_table_get_md(struct dm_table *t)
2077 return t->md;
2079 EXPORT_SYMBOL(dm_table_get_md);
2081 void dm_table_run_md_queue_async(struct dm_table *t)
2083 struct mapped_device *md;
2084 struct request_queue *queue;
2085 unsigned long flags;
2087 if (!dm_table_request_based(t))
2088 return;
2090 md = dm_table_get_md(t);
2091 queue = dm_get_md_queue(md);
2092 if (queue) {
2093 if (queue->mq_ops)
2094 blk_mq_run_hw_queues(queue, true);
2095 else {
2096 spin_lock_irqsave(queue->queue_lock, flags);
2097 blk_run_queue_async(queue);
2098 spin_unlock_irqrestore(queue->queue_lock, flags);
2102 EXPORT_SYMBOL(dm_table_run_md_queue_async);