2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include <linux/kernel.h>
40 #include "ecryptfs_kernel.h"
47 * @dst: Buffer to take the bytes from src hex; must be at least of
49 * @src: Buffer to be converted from a hex string representation to raw value
50 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
52 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
57 for (x
= 0; x
< dst_size
; x
++) {
59 tmp
[1] = src
[x
* 2 + 1];
60 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
64 static int ecryptfs_hash_digest(struct crypto_shash
*tfm
,
65 char *src
, int len
, char *dst
)
67 SHASH_DESC_ON_STACK(desc
, tfm
);
71 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
72 err
= crypto_shash_digest(desc
, src
, len
, dst
);
73 shash_desc_zero(desc
);
78 * ecryptfs_calculate_md5 - calculates the md5 of @src
79 * @dst: Pointer to 16 bytes of allocated memory
80 * @crypt_stat: Pointer to crypt_stat struct for the current inode
81 * @src: Data to be md5'd
82 * @len: Length of @src
84 * Uses the allocated crypto context that crypt_stat references to
85 * generate the MD5 sum of the contents of src.
87 static int ecryptfs_calculate_md5(char *dst
,
88 struct ecryptfs_crypt_stat
*crypt_stat
,
91 struct crypto_shash
*tfm
;
94 tfm
= crypt_stat
->hash_tfm
;
95 rc
= ecryptfs_hash_digest(tfm
, src
, len
, dst
);
98 "%s: Error computing crypto hash; rc = [%d]\n",
106 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
108 char *chaining_modifier
)
110 int cipher_name_len
= strlen(cipher_name
);
111 int chaining_modifier_len
= strlen(chaining_modifier
);
112 int algified_name_len
;
115 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
116 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
117 if (!(*algified_name
)) {
121 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
122 chaining_modifier
, cipher_name
);
130 * @iv: destination for the derived iv vale
131 * @crypt_stat: Pointer to crypt_stat struct for the current inode
132 * @offset: Offset of the extent whose IV we are to derive
134 * Generate the initialization vector from the given root IV and page
137 * Returns zero on success; non-zero on error.
139 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
143 char dst
[MD5_DIGEST_SIZE
];
144 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
146 if (unlikely(ecryptfs_verbosity
> 0)) {
147 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
148 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
150 /* TODO: It is probably secure to just cast the least
151 * significant bits of the root IV into an unsigned long and
152 * add the offset to that rather than go through all this
153 * hashing business. -Halcrow */
154 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
155 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
156 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
157 if (unlikely(ecryptfs_verbosity
> 0)) {
158 ecryptfs_printk(KERN_DEBUG
, "source:\n");
159 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
161 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
162 (crypt_stat
->iv_bytes
+ 16));
164 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
165 "MD5 while generating IV for a page\n");
168 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
169 if (unlikely(ecryptfs_verbosity
> 0)) {
170 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
171 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
178 * ecryptfs_init_crypt_stat
179 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
181 * Initialize the crypt_stat structure.
183 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
185 struct crypto_shash
*tfm
;
188 tfm
= crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH
, 0, 0);
191 ecryptfs_printk(KERN_ERR
, "Error attempting to "
192 "allocate crypto context; rc = [%d]\n",
197 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
198 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
199 mutex_init(&crypt_stat
->keysig_list_mutex
);
200 mutex_init(&crypt_stat
->cs_mutex
);
201 mutex_init(&crypt_stat
->cs_tfm_mutex
);
202 crypt_stat
->hash_tfm
= tfm
;
203 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
209 * ecryptfs_destroy_crypt_stat
210 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212 * Releases all memory associated with a crypt_stat struct.
214 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
216 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
218 crypto_free_skcipher(crypt_stat
->tfm
);
219 crypto_free_shash(crypt_stat
->hash_tfm
);
220 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
221 &crypt_stat
->keysig_list
, crypt_stat_list
) {
222 list_del(&key_sig
->crypt_stat_list
);
223 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
225 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
228 void ecryptfs_destroy_mount_crypt_stat(
229 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
231 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
233 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
235 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
236 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
237 &mount_crypt_stat
->global_auth_tok_list
,
238 mount_crypt_stat_list
) {
239 list_del(&auth_tok
->mount_crypt_stat_list
);
240 if (!(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
241 key_put(auth_tok
->global_auth_tok_key
);
242 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
244 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
245 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
249 * virt_to_scatterlist
250 * @addr: Virtual address
251 * @size: Size of data; should be an even multiple of the block size
252 * @sg: Pointer to scatterlist array; set to NULL to obtain only
253 * the number of scatterlist structs required in array
254 * @sg_size: Max array size
256 * Fills in a scatterlist array with page references for a passed
259 * Returns the number of scatterlist structs in array used
261 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
267 int remainder_of_page
;
269 sg_init_table(sg
, sg_size
);
271 while (size
> 0 && i
< sg_size
) {
272 pg
= virt_to_page(addr
);
273 offset
= offset_in_page(addr
);
274 sg_set_page(&sg
[i
], pg
, 0, offset
);
275 remainder_of_page
= PAGE_SIZE
- offset
;
276 if (size
>= remainder_of_page
) {
277 sg
[i
].length
= remainder_of_page
;
278 addr
+= remainder_of_page
;
279 size
-= remainder_of_page
;
292 struct extent_crypt_result
{
293 struct completion completion
;
297 static void extent_crypt_complete(struct crypto_async_request
*req
, int rc
)
299 struct extent_crypt_result
*ecr
= req
->data
;
301 if (rc
== -EINPROGRESS
)
305 complete(&ecr
->completion
);
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dst_sg: Destination of the data after performing the crypto operation
312 * @src_sg: Data to be encrypted or decrypted
313 * @size: Length of data
315 * @op: ENCRYPT or DECRYPT to indicate the desired operation
317 * Returns the number of bytes encrypted or decrypted; negative value on error
319 static int crypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
320 struct scatterlist
*dst_sg
,
321 struct scatterlist
*src_sg
, int size
,
322 unsigned char *iv
, int op
)
324 struct skcipher_request
*req
= NULL
;
325 struct extent_crypt_result ecr
;
328 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
329 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
330 if (unlikely(ecryptfs_verbosity
> 0)) {
331 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
332 crypt_stat
->key_size
);
333 ecryptfs_dump_hex(crypt_stat
->key
,
334 crypt_stat
->key_size
);
337 init_completion(&ecr
.completion
);
339 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
340 req
= skcipher_request_alloc(crypt_stat
->tfm
, GFP_NOFS
);
342 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
347 skcipher_request_set_callback(req
,
348 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
349 extent_crypt_complete
, &ecr
);
350 /* Consider doing this once, when the file is opened */
351 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
352 rc
= crypto_skcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
353 crypt_stat
->key_size
);
355 ecryptfs_printk(KERN_ERR
,
356 "Error setting key; rc = [%d]\n",
358 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
362 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
364 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
365 skcipher_request_set_crypt(req
, src_sg
, dst_sg
, size
, iv
);
366 rc
= op
== ENCRYPT
? crypto_skcipher_encrypt(req
) :
367 crypto_skcipher_decrypt(req
);
368 if (rc
== -EINPROGRESS
|| rc
== -EBUSY
) {
369 struct extent_crypt_result
*ecr
= req
->base
.data
;
371 wait_for_completion(&ecr
->completion
);
373 reinit_completion(&ecr
->completion
);
376 skcipher_request_free(req
);
381 * lower_offset_for_page
383 * Convert an eCryptfs page index into a lower byte offset
385 static loff_t
lower_offset_for_page(struct ecryptfs_crypt_stat
*crypt_stat
,
388 return ecryptfs_lower_header_size(crypt_stat
) +
389 ((loff_t
)page
->index
<< PAGE_SHIFT
);
394 * @crypt_stat: crypt_stat containing cryptographic context for the
395 * encryption operation
396 * @dst_page: The page to write the result into
397 * @src_page: The page to read from
398 * @extent_offset: Page extent offset for use in generating IV
399 * @op: ENCRYPT or DECRYPT to indicate the desired operation
401 * Encrypts or decrypts one extent of data.
403 * Return zero on success; non-zero otherwise
405 static int crypt_extent(struct ecryptfs_crypt_stat
*crypt_stat
,
406 struct page
*dst_page
,
407 struct page
*src_page
,
408 unsigned long extent_offset
, int op
)
410 pgoff_t page_index
= op
== ENCRYPT
? src_page
->index
: dst_page
->index
;
412 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
413 struct scatterlist src_sg
, dst_sg
;
414 size_t extent_size
= crypt_stat
->extent_size
;
417 extent_base
= (((loff_t
)page_index
) * (PAGE_SIZE
/ extent_size
));
418 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
419 (extent_base
+ extent_offset
));
421 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
422 "extent [0x%.16llx]; rc = [%d]\n",
423 (unsigned long long)(extent_base
+ extent_offset
), rc
);
427 sg_init_table(&src_sg
, 1);
428 sg_init_table(&dst_sg
, 1);
430 sg_set_page(&src_sg
, src_page
, extent_size
,
431 extent_offset
* extent_size
);
432 sg_set_page(&dst_sg
, dst_page
, extent_size
,
433 extent_offset
* extent_size
);
435 rc
= crypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, extent_size
,
438 printk(KERN_ERR
"%s: Error attempting to crypt page with "
439 "page_index = [%ld], extent_offset = [%ld]; "
440 "rc = [%d]\n", __func__
, page_index
, extent_offset
, rc
);
449 * ecryptfs_encrypt_page
450 * @page: Page mapped from the eCryptfs inode for the file; contains
451 * decrypted content that needs to be encrypted (to a temporary
452 * page; not in place) and written out to the lower file
454 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
455 * that eCryptfs pages may straddle the lower pages -- for instance,
456 * if the file was created on a machine with an 8K page size
457 * (resulting in an 8K header), and then the file is copied onto a
458 * host with a 32K page size, then when reading page 0 of the eCryptfs
459 * file, 24K of page 0 of the lower file will be read and decrypted,
460 * and then 8K of page 1 of the lower file will be read and decrypted.
462 * Returns zero on success; negative on error
464 int ecryptfs_encrypt_page(struct page
*page
)
466 struct inode
*ecryptfs_inode
;
467 struct ecryptfs_crypt_stat
*crypt_stat
;
468 char *enc_extent_virt
;
469 struct page
*enc_extent_page
= NULL
;
470 loff_t extent_offset
;
474 ecryptfs_inode
= page
->mapping
->host
;
476 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
477 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
478 enc_extent_page
= alloc_page(GFP_USER
);
479 if (!enc_extent_page
) {
481 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
482 "encrypted extent\n");
486 for (extent_offset
= 0;
487 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
489 rc
= crypt_extent(crypt_stat
, enc_extent_page
, page
,
490 extent_offset
, ENCRYPT
);
492 printk(KERN_ERR
"%s: Error encrypting extent; "
493 "rc = [%d]\n", __func__
, rc
);
498 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
499 enc_extent_virt
= kmap(enc_extent_page
);
500 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
, lower_offset
,
502 kunmap(enc_extent_page
);
504 ecryptfs_printk(KERN_ERR
,
505 "Error attempting to write lower page; rc = [%d]\n",
511 if (enc_extent_page
) {
512 __free_page(enc_extent_page
);
518 * ecryptfs_decrypt_page
519 * @page: Page mapped from the eCryptfs inode for the file; data read
520 * and decrypted from the lower file will be written into this
523 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
524 * that eCryptfs pages may straddle the lower pages -- for instance,
525 * if the file was created on a machine with an 8K page size
526 * (resulting in an 8K header), and then the file is copied onto a
527 * host with a 32K page size, then when reading page 0 of the eCryptfs
528 * file, 24K of page 0 of the lower file will be read and decrypted,
529 * and then 8K of page 1 of the lower file will be read and decrypted.
531 * Returns zero on success; negative on error
533 int ecryptfs_decrypt_page(struct page
*page
)
535 struct inode
*ecryptfs_inode
;
536 struct ecryptfs_crypt_stat
*crypt_stat
;
538 unsigned long extent_offset
;
542 ecryptfs_inode
= page
->mapping
->host
;
544 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
545 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
547 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
548 page_virt
= kmap(page
);
549 rc
= ecryptfs_read_lower(page_virt
, lower_offset
, PAGE_SIZE
,
553 ecryptfs_printk(KERN_ERR
,
554 "Error attempting to read lower page; rc = [%d]\n",
559 for (extent_offset
= 0;
560 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
562 rc
= crypt_extent(crypt_stat
, page
, page
,
563 extent_offset
, DECRYPT
);
565 printk(KERN_ERR
"%s: Error encrypting extent; "
566 "rc = [%d]\n", __func__
, rc
);
574 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
577 * ecryptfs_init_crypt_ctx
578 * @crypt_stat: Uninitialized crypt stats structure
580 * Initialize the crypto context.
582 * TODO: Performance: Keep a cache of initialized cipher contexts;
583 * only init if needed
585 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
590 ecryptfs_printk(KERN_DEBUG
,
591 "Initializing cipher [%s]; strlen = [%d]; "
592 "key_size_bits = [%zd]\n",
593 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
594 crypt_stat
->key_size
<< 3);
595 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
596 if (crypt_stat
->tfm
) {
600 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
601 crypt_stat
->cipher
, "cbc");
604 crypt_stat
->tfm
= crypto_alloc_skcipher(full_alg_name
, 0, 0);
605 if (IS_ERR(crypt_stat
->tfm
)) {
606 rc
= PTR_ERR(crypt_stat
->tfm
);
607 crypt_stat
->tfm
= NULL
;
608 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
609 "Error initializing cipher [%s]\n",
613 crypto_skcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
616 kfree(full_alg_name
);
618 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
622 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
626 crypt_stat
->extent_mask
= 0xFFFFFFFF;
627 crypt_stat
->extent_shift
= 0;
628 if (crypt_stat
->extent_size
== 0)
630 extent_size_tmp
= crypt_stat
->extent_size
;
631 while ((extent_size_tmp
& 0x01) == 0) {
632 extent_size_tmp
>>= 1;
633 crypt_stat
->extent_mask
<<= 1;
634 crypt_stat
->extent_shift
++;
638 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
640 /* Default values; may be overwritten as we are parsing the
642 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
643 set_extent_mask_and_shift(crypt_stat
);
644 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
645 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
646 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
648 if (PAGE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
649 crypt_stat
->metadata_size
=
650 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
652 crypt_stat
->metadata_size
= PAGE_SIZE
;
657 * ecryptfs_compute_root_iv
660 * On error, sets the root IV to all 0's.
662 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
665 char dst
[MD5_DIGEST_SIZE
];
667 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
668 BUG_ON(crypt_stat
->iv_bytes
<= 0);
669 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
671 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
672 "cannot generate root IV\n");
675 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
676 crypt_stat
->key_size
);
678 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
679 "MD5 while generating root IV\n");
682 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
685 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
686 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
691 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
693 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
694 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
695 ecryptfs_compute_root_iv(crypt_stat
);
696 if (unlikely(ecryptfs_verbosity
> 0)) {
697 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
698 ecryptfs_dump_hex(crypt_stat
->key
,
699 crypt_stat
->key_size
);
704 * ecryptfs_copy_mount_wide_flags_to_inode_flags
705 * @crypt_stat: The inode's cryptographic context
706 * @mount_crypt_stat: The mount point's cryptographic context
708 * This function propagates the mount-wide flags to individual inode
711 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
712 struct ecryptfs_crypt_stat
*crypt_stat
,
713 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
715 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
716 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
717 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
718 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
719 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
720 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
721 if (mount_crypt_stat
->flags
722 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
723 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
724 else if (mount_crypt_stat
->flags
725 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
726 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
730 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
731 struct ecryptfs_crypt_stat
*crypt_stat
,
732 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
734 struct ecryptfs_global_auth_tok
*global_auth_tok
;
737 mutex_lock(&crypt_stat
->keysig_list_mutex
);
738 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
740 list_for_each_entry(global_auth_tok
,
741 &mount_crypt_stat
->global_auth_tok_list
,
742 mount_crypt_stat_list
) {
743 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
745 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
747 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
753 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
754 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
759 * ecryptfs_set_default_crypt_stat_vals
760 * @crypt_stat: The inode's cryptographic context
761 * @mount_crypt_stat: The mount point's cryptographic context
763 * Default values in the event that policy does not override them.
765 static void ecryptfs_set_default_crypt_stat_vals(
766 struct ecryptfs_crypt_stat
*crypt_stat
,
767 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
769 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
771 ecryptfs_set_default_sizes(crypt_stat
);
772 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
773 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
774 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
775 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
776 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
780 * ecryptfs_new_file_context
781 * @ecryptfs_inode: The eCryptfs inode
783 * If the crypto context for the file has not yet been established,
784 * this is where we do that. Establishing a new crypto context
785 * involves the following decisions:
786 * - What cipher to use?
787 * - What set of authentication tokens to use?
788 * Here we just worry about getting enough information into the
789 * authentication tokens so that we know that they are available.
790 * We associate the available authentication tokens with the new file
791 * via the set of signatures in the crypt_stat struct. Later, when
792 * the headers are actually written out, we may again defer to
793 * userspace to perform the encryption of the session key; for the
794 * foreseeable future, this will be the case with public key packets.
796 * Returns zero on success; non-zero otherwise
798 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
800 struct ecryptfs_crypt_stat
*crypt_stat
=
801 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
802 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
803 &ecryptfs_superblock_to_private(
804 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
808 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
809 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
810 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
812 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
815 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
816 "to the inode key sigs; rc = [%d]\n", rc
);
820 strlen(mount_crypt_stat
->global_default_cipher_name
);
821 memcpy(crypt_stat
->cipher
,
822 mount_crypt_stat
->global_default_cipher_name
,
824 crypt_stat
->cipher
[cipher_name_len
] = '\0';
825 crypt_stat
->key_size
=
826 mount_crypt_stat
->global_default_cipher_key_size
;
827 ecryptfs_generate_new_key(crypt_stat
);
828 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
830 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
831 "context for cipher [%s]: rc = [%d]\n",
832 crypt_stat
->cipher
, rc
);
838 * ecryptfs_validate_marker - check for the ecryptfs marker
839 * @data: The data block in which to check
841 * Returns zero if marker found; -EINVAL if not found
843 static int ecryptfs_validate_marker(char *data
)
847 m_1
= get_unaligned_be32(data
);
848 m_2
= get_unaligned_be32(data
+ 4);
849 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
851 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
852 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
853 MAGIC_ECRYPTFS_MARKER
);
854 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
855 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
859 struct ecryptfs_flag_map_elem
{
864 /* Add support for additional flags by adding elements here. */
865 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
866 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
867 {0x00000002, ECRYPTFS_ENCRYPTED
},
868 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
869 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
873 * ecryptfs_process_flags
874 * @crypt_stat: The cryptographic context
875 * @page_virt: Source data to be parsed
876 * @bytes_read: Updated with the number of bytes read
878 * Returns zero on success; non-zero if the flag set is invalid
880 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
881 char *page_virt
, int *bytes_read
)
887 flags
= get_unaligned_be32(page_virt
);
888 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_flag_map
); i
++)
889 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
890 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
892 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
893 /* Version is in top 8 bits of the 32-bit flag vector */
894 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
900 * write_ecryptfs_marker
901 * @page_virt: The pointer to in a page to begin writing the marker
902 * @written: Number of bytes written
904 * Marker = 0x3c81b7f5
906 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
910 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
911 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
912 put_unaligned_be32(m_1
, page_virt
);
913 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
914 put_unaligned_be32(m_2
, page_virt
);
915 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
918 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
919 struct ecryptfs_crypt_stat
*crypt_stat
,
925 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_flag_map
); i
++)
926 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
927 flags
|= ecryptfs_flag_map
[i
].file_flag
;
928 /* Version is in top 8 bits of the 32-bit flag vector */
929 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
930 put_unaligned_be32(flags
, page_virt
);
934 struct ecryptfs_cipher_code_str_map_elem
{
939 /* Add support for additional ciphers by adding elements here. The
940 * cipher_code is whatever OpenPGP applications use to identify the
941 * ciphers. List in order of probability. */
942 static struct ecryptfs_cipher_code_str_map_elem
943 ecryptfs_cipher_code_str_map
[] = {
944 {"aes",RFC2440_CIPHER_AES_128
},
945 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
946 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
947 {"cast5", RFC2440_CIPHER_CAST_5
},
948 {"twofish", RFC2440_CIPHER_TWOFISH
},
949 {"cast6", RFC2440_CIPHER_CAST_6
},
950 {"aes", RFC2440_CIPHER_AES_192
},
951 {"aes", RFC2440_CIPHER_AES_256
}
955 * ecryptfs_code_for_cipher_string
956 * @cipher_name: The string alias for the cipher
957 * @key_bytes: Length of key in bytes; used for AES code selection
959 * Returns zero on no match, or the cipher code on match
961 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
965 struct ecryptfs_cipher_code_str_map_elem
*map
=
966 ecryptfs_cipher_code_str_map
;
968 if (strcmp(cipher_name
, "aes") == 0) {
971 code
= RFC2440_CIPHER_AES_128
;
974 code
= RFC2440_CIPHER_AES_192
;
977 code
= RFC2440_CIPHER_AES_256
;
980 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
981 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
982 code
= map
[i
].cipher_code
;
990 * ecryptfs_cipher_code_to_string
991 * @str: Destination to write out the cipher name
992 * @cipher_code: The code to convert to cipher name string
994 * Returns zero on success
996 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1002 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1003 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1004 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1005 if (str
[0] == '\0') {
1006 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1007 "[%d]\n", cipher_code
);
1013 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1015 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1016 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1019 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1021 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1022 return rc
>= 0 ? -EINVAL
: rc
;
1023 rc
= ecryptfs_validate_marker(marker
);
1025 ecryptfs_i_size_init(file_size
, inode
);
1030 ecryptfs_write_header_metadata(char *virt
,
1031 struct ecryptfs_crypt_stat
*crypt_stat
,
1034 u32 header_extent_size
;
1035 u16 num_header_extents_at_front
;
1037 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1038 num_header_extents_at_front
=
1039 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1040 put_unaligned_be32(header_extent_size
, virt
);
1042 put_unaligned_be16(num_header_extents_at_front
, virt
);
1046 struct kmem_cache
*ecryptfs_header_cache
;
1049 * ecryptfs_write_headers_virt
1050 * @page_virt: The virtual address to write the headers to
1051 * @max: The size of memory allocated at page_virt
1052 * @size: Set to the number of bytes written by this function
1053 * @crypt_stat: The cryptographic context
1054 * @ecryptfs_dentry: The eCryptfs dentry
1059 * Octets 0-7: Unencrypted file size (big-endian)
1060 * Octets 8-15: eCryptfs special marker
1061 * Octets 16-19: Flags
1062 * Octet 16: File format version number (between 0 and 255)
1063 * Octets 17-18: Reserved
1064 * Octet 19: Bit 1 (lsb): Reserved
1066 * Bits 3-8: Reserved
1067 * Octets 20-23: Header extent size (big-endian)
1068 * Octets 24-25: Number of header extents at front of file
1070 * Octet 26: Begin RFC 2440 authentication token packet set
1072 * Lower data (CBC encrypted)
1074 * Lower data (CBC encrypted)
1077 * Returns zero on success
1079 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1081 struct ecryptfs_crypt_stat
*crypt_stat
,
1082 struct dentry
*ecryptfs_dentry
)
1088 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1089 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1091 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1094 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1097 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1098 ecryptfs_dentry
, &written
,
1101 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1102 "set; rc = [%d]\n", rc
);
1111 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1112 char *virt
, size_t virt_len
)
1116 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1119 printk(KERN_ERR
"%s: Error attempting to write header "
1120 "information to lower file; rc = [%d]\n", __func__
, rc
);
1127 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1128 struct inode
*ecryptfs_inode
,
1129 char *page_virt
, size_t size
)
1133 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ecryptfs_inode
,
1134 ECRYPTFS_XATTR_NAME
, page_virt
, size
, 0);
1138 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1143 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1145 return (unsigned long) page_address(page
);
1150 * ecryptfs_write_metadata
1151 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1152 * @ecryptfs_inode: The newly created eCryptfs inode
1154 * Write the file headers out. This will likely involve a userspace
1155 * callout, in which the session key is encrypted with one or more
1156 * public keys and/or the passphrase necessary to do the encryption is
1157 * retrieved via a prompt. Exactly what happens at this point should
1158 * be policy-dependent.
1160 * Returns zero on success; non-zero on error
1162 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1163 struct inode
*ecryptfs_inode
)
1165 struct ecryptfs_crypt_stat
*crypt_stat
=
1166 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1173 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1174 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1175 printk(KERN_ERR
"Key is invalid; bailing out\n");
1180 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1185 virt_len
= crypt_stat
->metadata_size
;
1186 order
= get_order(virt_len
);
1187 /* Released in this function */
1188 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1190 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1194 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1195 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1198 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1202 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1203 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, ecryptfs_inode
,
1206 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1209 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1210 "rc = [%d]\n", __func__
, rc
);
1214 free_pages((unsigned long)virt
, order
);
1219 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1220 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1221 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1222 char *virt
, int *bytes_read
,
1223 int validate_header_size
)
1226 u32 header_extent_size
;
1227 u16 num_header_extents_at_front
;
1229 header_extent_size
= get_unaligned_be32(virt
);
1230 virt
+= sizeof(__be32
);
1231 num_header_extents_at_front
= get_unaligned_be16(virt
);
1232 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1233 * (size_t)header_extent_size
));
1234 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1235 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1236 && (crypt_stat
->metadata_size
1237 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1239 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1240 crypt_stat
->metadata_size
);
1246 * set_default_header_data
1247 * @crypt_stat: The cryptographic context
1249 * For version 0 file format; this function is only for backwards
1250 * compatibility for files created with the prior versions of
1253 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1255 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1258 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1260 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1261 struct ecryptfs_crypt_stat
*crypt_stat
;
1264 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1266 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1267 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1268 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1269 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1270 file_size
+= crypt_stat
->metadata_size
;
1272 file_size
= get_unaligned_be64(page_virt
);
1273 i_size_write(inode
, (loff_t
)file_size
);
1274 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1278 * ecryptfs_read_headers_virt
1279 * @page_virt: The virtual address into which to read the headers
1280 * @crypt_stat: The cryptographic context
1281 * @ecryptfs_dentry: The eCryptfs dentry
1282 * @validate_header_size: Whether to validate the header size while reading
1284 * Read/parse the header data. The header format is detailed in the
1285 * comment block for the ecryptfs_write_headers_virt() function.
1287 * Returns zero on success
1289 static int ecryptfs_read_headers_virt(char *page_virt
,
1290 struct ecryptfs_crypt_stat
*crypt_stat
,
1291 struct dentry
*ecryptfs_dentry
,
1292 int validate_header_size
)
1298 ecryptfs_set_default_sizes(crypt_stat
);
1299 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1300 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1301 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1302 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1305 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1306 ecryptfs_i_size_init(page_virt
, d_inode(ecryptfs_dentry
));
1307 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1308 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1311 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1314 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1315 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1316 "file version [%d] is supported by this "
1317 "version of eCryptfs\n",
1318 crypt_stat
->file_version
,
1319 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1323 offset
+= bytes_read
;
1324 if (crypt_stat
->file_version
>= 1) {
1325 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1326 &bytes_read
, validate_header_size
);
1328 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1329 "metadata; rc = [%d]\n", rc
);
1331 offset
+= bytes_read
;
1333 set_default_header_data(crypt_stat
);
1334 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1341 * ecryptfs_read_xattr_region
1342 * @page_virt: The vitual address into which to read the xattr data
1343 * @ecryptfs_inode: The eCryptfs inode
1345 * Attempts to read the crypto metadata from the extended attribute
1346 * region of the lower file.
1348 * Returns zero on success; non-zero on error
1350 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1352 struct dentry
*lower_dentry
=
1353 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_path
.dentry
;
1357 size
= ecryptfs_getxattr_lower(lower_dentry
,
1358 ecryptfs_inode_to_lower(ecryptfs_inode
),
1359 ECRYPTFS_XATTR_NAME
,
1360 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1362 if (unlikely(ecryptfs_verbosity
> 0))
1363 printk(KERN_INFO
"Error attempting to read the [%s] "
1364 "xattr from the lower file; return value = "
1365 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1373 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1374 struct inode
*inode
)
1376 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1377 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1380 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1381 ecryptfs_inode_to_lower(inode
),
1382 ECRYPTFS_XATTR_NAME
, file_size
,
1383 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1384 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1385 return rc
>= 0 ? -EINVAL
: rc
;
1386 rc
= ecryptfs_validate_marker(marker
);
1388 ecryptfs_i_size_init(file_size
, inode
);
1393 * ecryptfs_read_metadata
1395 * Common entry point for reading file metadata. From here, we could
1396 * retrieve the header information from the header region of the file,
1397 * the xattr region of the file, or some other repository that is
1398 * stored separately from the file itself. The current implementation
1399 * supports retrieving the metadata information from the file contents
1400 * and from the xattr region.
1402 * Returns zero if valid headers found and parsed; non-zero otherwise
1404 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1408 struct inode
*ecryptfs_inode
= d_inode(ecryptfs_dentry
);
1409 struct ecryptfs_crypt_stat
*crypt_stat
=
1410 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1411 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1412 &ecryptfs_superblock_to_private(
1413 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1415 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1417 /* Read the first page from the underlying file */
1418 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1423 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1426 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1428 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1430 /* metadata is not in the file header, so try xattrs */
1431 memset(page_virt
, 0, PAGE_SIZE
);
1432 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1434 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1435 "file header region or xattr region, inode %lu\n",
1436 ecryptfs_inode
->i_ino
);
1440 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1442 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1444 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1445 "file xattr region either, inode %lu\n",
1446 ecryptfs_inode
->i_ino
);
1449 if (crypt_stat
->mount_crypt_stat
->flags
1450 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1451 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1453 printk(KERN_WARNING
"Attempt to access file with "
1454 "crypto metadata only in the extended attribute "
1455 "region, but eCryptfs was mounted without "
1456 "xattr support enabled. eCryptfs will not treat "
1457 "this like an encrypted file, inode %lu\n",
1458 ecryptfs_inode
->i_ino
);
1464 memset(page_virt
, 0, PAGE_SIZE
);
1465 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1471 * ecryptfs_encrypt_filename - encrypt filename
1473 * CBC-encrypts the filename. We do not want to encrypt the same
1474 * filename with the same key and IV, which may happen with hard
1475 * links, so we prepend random bits to each filename.
1477 * Returns zero on success; non-zero otherwise
1480 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1481 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1485 filename
->encrypted_filename
= NULL
;
1486 filename
->encrypted_filename_size
= 0;
1487 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1488 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1490 size_t remaining_bytes
;
1492 rc
= ecryptfs_write_tag_70_packet(
1494 &filename
->encrypted_filename_size
,
1495 mount_crypt_stat
, NULL
,
1496 filename
->filename_size
);
1498 printk(KERN_ERR
"%s: Error attempting to get packet "
1499 "size for tag 72; rc = [%d]\n", __func__
,
1501 filename
->encrypted_filename_size
= 0;
1504 filename
->encrypted_filename
=
1505 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1506 if (!filename
->encrypted_filename
) {
1510 remaining_bytes
= filename
->encrypted_filename_size
;
1511 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1516 filename
->filename_size
);
1518 printk(KERN_ERR
"%s: Error attempting to generate "
1519 "tag 70 packet; rc = [%d]\n", __func__
,
1521 kfree(filename
->encrypted_filename
);
1522 filename
->encrypted_filename
= NULL
;
1523 filename
->encrypted_filename_size
= 0;
1526 filename
->encrypted_filename_size
= packet_size
;
1528 printk(KERN_ERR
"%s: No support for requested filename "
1529 "encryption method in this release\n", __func__
);
1537 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1538 const char *name
, size_t name_size
)
1542 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1543 if (!(*copied_name
)) {
1547 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1548 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1549 * in printing out the
1552 (*copied_name_size
) = name_size
;
1558 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1559 * @key_tfm: Crypto context for key material, set by this function
1560 * @cipher_name: Name of the cipher
1561 * @key_size: Size of the key in bytes
1563 * Returns zero on success. Any crypto_tfm structs allocated here
1564 * should be released by other functions, such as on a superblock put
1565 * event, regardless of whether this function succeeds for fails.
1568 ecryptfs_process_key_cipher(struct crypto_skcipher
**key_tfm
,
1569 char *cipher_name
, size_t *key_size
)
1571 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1572 char *full_alg_name
= NULL
;
1576 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1578 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1579 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1582 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1586 *key_tfm
= crypto_alloc_skcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1587 if (IS_ERR(*key_tfm
)) {
1588 rc
= PTR_ERR(*key_tfm
);
1589 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1590 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1593 crypto_skcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1595 *key_size
= crypto_skcipher_default_keysize(*key_tfm
);
1596 get_random_bytes(dummy_key
, *key_size
);
1597 rc
= crypto_skcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1599 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1600 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1606 kfree(full_alg_name
);
1610 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1611 static struct list_head key_tfm_list
;
1612 struct mutex key_tfm_list_mutex
;
1614 int __init
ecryptfs_init_crypto(void)
1616 mutex_init(&key_tfm_list_mutex
);
1617 INIT_LIST_HEAD(&key_tfm_list
);
1622 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1624 * Called only at module unload time
1626 int ecryptfs_destroy_crypto(void)
1628 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1630 mutex_lock(&key_tfm_list_mutex
);
1631 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1633 list_del(&key_tfm
->key_tfm_list
);
1634 crypto_free_skcipher(key_tfm
->key_tfm
);
1635 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1637 mutex_unlock(&key_tfm_list_mutex
);
1642 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1645 struct ecryptfs_key_tfm
*tmp_tfm
;
1648 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1650 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1652 (*key_tfm
) = tmp_tfm
;
1657 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1658 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1659 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1660 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1661 tmp_tfm
->key_size
= key_size
;
1662 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1663 tmp_tfm
->cipher_name
,
1664 &tmp_tfm
->key_size
);
1666 printk(KERN_ERR
"Error attempting to initialize key TFM "
1667 "cipher with name = [%s]; rc = [%d]\n",
1668 tmp_tfm
->cipher_name
, rc
);
1669 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1674 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1680 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1681 * @cipher_name: the name of the cipher to search for
1682 * @key_tfm: set to corresponding tfm if found
1684 * Searches for cached key_tfm matching @cipher_name
1685 * Must be called with &key_tfm_list_mutex held
1686 * Returns 1 if found, with @key_tfm set
1687 * Returns 0 if not found, with @key_tfm set to NULL
1689 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1691 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1693 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1695 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1696 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1698 (*key_tfm
) = tmp_key_tfm
;
1708 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1710 * @tfm: set to cached tfm found, or new tfm created
1711 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1712 * @cipher_name: the name of the cipher to search for and/or add
1714 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1715 * Searches for cached item first, and creates new if not found.
1716 * Returns 0 on success, non-zero if adding new cipher failed
1718 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher
**tfm
,
1719 struct mutex
**tfm_mutex
,
1722 struct ecryptfs_key_tfm
*key_tfm
;
1726 (*tfm_mutex
) = NULL
;
1728 mutex_lock(&key_tfm_list_mutex
);
1729 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1730 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1732 printk(KERN_ERR
"Error adding new key_tfm to list; "
1737 (*tfm
) = key_tfm
->key_tfm
;
1738 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1740 mutex_unlock(&key_tfm_list_mutex
);
1744 /* 64 characters forming a 6-bit target field */
1745 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1748 "klmnopqrstuvwxyz");
1750 /* We could either offset on every reverse map or just pad some 0x00's
1751 * at the front here */
1752 static const unsigned char filename_rev_map
[256] = {
1753 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1754 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1755 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1756 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1757 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1758 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1759 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1760 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1761 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1762 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1763 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1764 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1765 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1766 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1767 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1768 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1772 * ecryptfs_encode_for_filename
1773 * @dst: Destination location for encoded filename
1774 * @dst_size: Size of the encoded filename in bytes
1775 * @src: Source location for the filename to encode
1776 * @src_size: Size of the source in bytes
1778 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1779 unsigned char *src
, size_t src_size
)
1782 size_t block_num
= 0;
1783 size_t dst_offset
= 0;
1784 unsigned char last_block
[3];
1786 if (src_size
== 0) {
1790 num_blocks
= (src_size
/ 3);
1791 if ((src_size
% 3) == 0) {
1792 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1795 last_block
[2] = 0x00;
1796 switch (src_size
% 3) {
1798 last_block
[0] = src
[src_size
- 1];
1799 last_block
[1] = 0x00;
1802 last_block
[0] = src
[src_size
- 2];
1803 last_block
[1] = src
[src_size
- 1];
1806 (*dst_size
) = (num_blocks
* 4);
1809 while (block_num
< num_blocks
) {
1810 unsigned char *src_block
;
1811 unsigned char dst_block
[4];
1813 if (block_num
== (num_blocks
- 1))
1814 src_block
= last_block
;
1816 src_block
= &src
[block_num
* 3];
1817 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1818 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1819 | ((src_block
[1] >> 4) & 0x0F));
1820 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1821 | ((src_block
[2] >> 6) & 0x03));
1822 dst_block
[3] = (src_block
[2] & 0x3F);
1823 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1824 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1825 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1826 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1833 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1835 /* Not exact; conservatively long. Every block of 4
1836 * encoded characters decodes into a block of 3
1837 * decoded characters. This segment of code provides
1838 * the caller with the maximum amount of allocated
1839 * space that @dst will need to point to in a
1840 * subsequent call. */
1841 return ((encoded_size
+ 1) * 3) / 4;
1845 * ecryptfs_decode_from_filename
1846 * @dst: If NULL, this function only sets @dst_size and returns. If
1847 * non-NULL, this function decodes the encoded octets in @src
1848 * into the memory that @dst points to.
1849 * @dst_size: Set to the size of the decoded string.
1850 * @src: The encoded set of octets to decode.
1851 * @src_size: The size of the encoded set of octets to decode.
1854 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
1855 const unsigned char *src
, size_t src_size
)
1857 u8 current_bit_offset
= 0;
1858 size_t src_byte_offset
= 0;
1859 size_t dst_byte_offset
= 0;
1862 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
1865 while (src_byte_offset
< src_size
) {
1866 unsigned char src_byte
=
1867 filename_rev_map
[(int)src
[src_byte_offset
]];
1869 switch (current_bit_offset
) {
1871 dst
[dst_byte_offset
] = (src_byte
<< 2);
1872 current_bit_offset
= 6;
1875 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
1876 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
1878 current_bit_offset
= 4;
1881 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
1882 dst
[dst_byte_offset
] = (src_byte
<< 6);
1883 current_bit_offset
= 2;
1886 dst
[dst_byte_offset
++] |= (src_byte
);
1887 current_bit_offset
= 0;
1892 (*dst_size
) = dst_byte_offset
;
1898 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1899 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1900 * @name: The plaintext name
1901 * @length: The length of the plaintext
1902 * @encoded_name: The encypted name
1904 * Encrypts and encodes a filename into something that constitutes a
1905 * valid filename for a filesystem, with printable characters.
1907 * We assume that we have a properly initialized crypto context,
1908 * pointed to by crypt_stat->tfm.
1910 * Returns zero on success; non-zero on otherwise
1912 int ecryptfs_encrypt_and_encode_filename(
1913 char **encoded_name
,
1914 size_t *encoded_name_size
,
1915 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
1916 const char *name
, size_t name_size
)
1918 size_t encoded_name_no_prefix_size
;
1921 (*encoded_name
) = NULL
;
1922 (*encoded_name_size
) = 0;
1923 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1924 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
1925 struct ecryptfs_filename
*filename
;
1927 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
1932 filename
->filename
= (char *)name
;
1933 filename
->filename_size
= name_size
;
1934 rc
= ecryptfs_encrypt_filename(filename
, mount_crypt_stat
);
1936 printk(KERN_ERR
"%s: Error attempting to encrypt "
1937 "filename; rc = [%d]\n", __func__
, rc
);
1941 ecryptfs_encode_for_filename(
1942 NULL
, &encoded_name_no_prefix_size
,
1943 filename
->encrypted_filename
,
1944 filename
->encrypted_filename_size
);
1945 if (mount_crypt_stat
1946 && (mount_crypt_stat
->flags
1947 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))
1948 (*encoded_name_size
) =
1949 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1950 + encoded_name_no_prefix_size
);
1952 (*encoded_name_size
) =
1953 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954 + encoded_name_no_prefix_size
);
1955 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
1956 if (!(*encoded_name
)) {
1958 kfree(filename
->encrypted_filename
);
1962 if (mount_crypt_stat
1963 && (mount_crypt_stat
->flags
1964 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1965 memcpy((*encoded_name
),
1966 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
1967 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
1968 ecryptfs_encode_for_filename(
1970 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
1971 &encoded_name_no_prefix_size
,
1972 filename
->encrypted_filename
,
1973 filename
->encrypted_filename_size
);
1974 (*encoded_name_size
) =
1975 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976 + encoded_name_no_prefix_size
);
1977 (*encoded_name
)[(*encoded_name_size
)] = '\0';
1982 printk(KERN_ERR
"%s: Error attempting to encode "
1983 "encrypted filename; rc = [%d]\n", __func__
,
1985 kfree((*encoded_name
));
1986 (*encoded_name
) = NULL
;
1987 (*encoded_name_size
) = 0;
1989 kfree(filename
->encrypted_filename
);
1992 rc
= ecryptfs_copy_filename(encoded_name
,
2001 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2002 * @plaintext_name: The plaintext name
2003 * @plaintext_name_size: The plaintext name size
2004 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2005 * @name: The filename in cipher text
2006 * @name_size: The cipher text name size
2008 * Decrypts and decodes the filename.
2010 * Returns zero on error; non-zero otherwise
2012 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2013 size_t *plaintext_name_size
,
2014 struct super_block
*sb
,
2015 const char *name
, size_t name_size
)
2017 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2018 &ecryptfs_superblock_to_private(sb
)->mount_crypt_stat
;
2020 size_t decoded_name_size
;
2024 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2025 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2026 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2027 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2028 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2029 const char *orig_name
= name
;
2030 size_t orig_name_size
= name_size
;
2032 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2033 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2034 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2036 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2037 if (!decoded_name
) {
2041 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2043 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2044 plaintext_name_size
,
2050 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2051 "from filename; copying through filename "
2052 "as-is\n", __func__
);
2053 rc
= ecryptfs_copy_filename(plaintext_name
,
2054 plaintext_name_size
,
2055 orig_name
, orig_name_size
);
2059 rc
= ecryptfs_copy_filename(plaintext_name
,
2060 plaintext_name_size
,
2065 kfree(decoded_name
);
2070 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2072 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2073 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2075 struct crypto_skcipher
*tfm
;
2076 struct mutex
*tfm_mutex
;
2077 size_t cipher_blocksize
;
2080 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2081 (*namelen
) = lower_namelen
;
2085 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm
, &tfm_mutex
,
2086 mount_crypt_stat
->global_default_fn_cipher_name
);
2092 mutex_lock(tfm_mutex
);
2093 cipher_blocksize
= crypto_skcipher_blocksize(tfm
);
2094 mutex_unlock(tfm_mutex
);
2096 /* Return an exact amount for the common cases */
2097 if (lower_namelen
== NAME_MAX
2098 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2099 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2103 /* Return a safe estimate for the uncommon cases */
2104 (*namelen
) = lower_namelen
;
2105 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2106 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2107 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2108 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2109 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2110 /* Worst case is that the filename is padded nearly a full block size */
2111 (*namelen
) -= cipher_blocksize
- 1;