mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / fs / proc / base.c
blobd53246863cfbdea26fecae460d44192b67bbd61e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * proc base directory handling functions
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
51 #include <linux/uaccess.h>
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
101 #include "../../lib/kstrtox.h"
103 /* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
116 struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
125 #define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
134 #define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
154 unsigned int i;
155 unsigned int count;
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
163 return count;
166 static int get_task_root(struct task_struct *task, struct path *root)
168 int result = -ENOENT;
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
175 task_unlock(task);
176 return result;
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
190 task_unlock(task);
191 put_task_struct(task);
193 return result;
196 static int proc_root_link(struct dentry *dentry, struct path *path)
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
205 return result;
208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
209 size_t _count, loff_t *pos)
211 struct task_struct *tsk;
212 struct mm_struct *mm;
213 char *page;
214 unsigned long count = _count;
215 unsigned long arg_start, arg_end, env_start, env_end;
216 unsigned long len1, len2, len;
217 unsigned long p;
218 char c;
219 ssize_t rv;
221 BUG_ON(*pos < 0);
223 tsk = get_proc_task(file_inode(file));
224 if (!tsk)
225 return -ESRCH;
226 mm = get_task_mm(tsk);
227 put_task_struct(tsk);
228 if (!mm)
229 return 0;
230 /* Check if process spawned far enough to have cmdline. */
231 if (!mm->env_end) {
232 rv = 0;
233 goto out_mmput;
236 page = (char *)__get_free_page(GFP_KERNEL);
237 if (!page) {
238 rv = -ENOMEM;
239 goto out_mmput;
242 down_read(&mm->mmap_sem);
243 arg_start = mm->arg_start;
244 arg_end = mm->arg_end;
245 env_start = mm->env_start;
246 env_end = mm->env_end;
247 up_read(&mm->mmap_sem);
249 BUG_ON(arg_start > arg_end);
250 BUG_ON(env_start > env_end);
252 len1 = arg_end - arg_start;
253 len2 = env_end - env_start;
255 /* Empty ARGV. */
256 if (len1 == 0) {
257 rv = 0;
258 goto out_free_page;
261 * Inherently racy -- command line shares address space
262 * with code and data.
264 rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
265 if (rv <= 0)
266 goto out_free_page;
268 rv = 0;
270 if (c == '\0') {
271 /* Command line (set of strings) occupies whole ARGV. */
272 if (len1 <= *pos)
273 goto out_free_page;
275 p = arg_start + *pos;
276 len = len1 - *pos;
277 while (count > 0 && len > 0) {
278 unsigned int _count;
279 int nr_read;
281 _count = min3(count, len, PAGE_SIZE);
282 nr_read = access_remote_vm(mm, p, page, _count, 0);
283 if (nr_read < 0)
284 rv = nr_read;
285 if (nr_read <= 0)
286 goto out_free_page;
288 if (copy_to_user(buf, page, nr_read)) {
289 rv = -EFAULT;
290 goto out_free_page;
293 p += nr_read;
294 len -= nr_read;
295 buf += nr_read;
296 count -= nr_read;
297 rv += nr_read;
299 } else {
301 * Command line (1 string) occupies ARGV and
302 * extends into ENVP.
304 struct {
305 unsigned long p;
306 unsigned long len;
307 } cmdline[2] = {
308 { .p = arg_start, .len = len1 },
309 { .p = env_start, .len = len2 },
311 loff_t pos1 = *pos;
312 unsigned int i;
314 i = 0;
315 while (i < 2 && pos1 >= cmdline[i].len) {
316 pos1 -= cmdline[i].len;
317 i++;
319 while (i < 2) {
320 p = cmdline[i].p + pos1;
321 len = cmdline[i].len - pos1;
322 while (count > 0 && len > 0) {
323 unsigned int _count, l;
324 int nr_read;
325 bool final;
327 _count = min3(count, len, PAGE_SIZE);
328 nr_read = access_remote_vm(mm, p, page, _count, 0);
329 if (nr_read < 0)
330 rv = nr_read;
331 if (nr_read <= 0)
332 goto out_free_page;
335 * Command line can be shorter than whole ARGV
336 * even if last "marker" byte says it is not.
338 final = false;
339 l = strnlen(page, nr_read);
340 if (l < nr_read) {
341 nr_read = l;
342 final = true;
345 if (copy_to_user(buf, page, nr_read)) {
346 rv = -EFAULT;
347 goto out_free_page;
350 p += nr_read;
351 len -= nr_read;
352 buf += nr_read;
353 count -= nr_read;
354 rv += nr_read;
356 if (final)
357 goto out_free_page;
360 /* Only first chunk can be read partially. */
361 pos1 = 0;
362 i++;
366 out_free_page:
367 free_page((unsigned long)page);
368 out_mmput:
369 mmput(mm);
370 if (rv > 0)
371 *pos += rv;
372 return rv;
375 static const struct file_operations proc_pid_cmdline_ops = {
376 .read = proc_pid_cmdline_read,
377 .llseek = generic_file_llseek,
380 #ifdef CONFIG_KALLSYMS
382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383 * Returns the resolved symbol. If that fails, simply return the address.
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 struct pid *pid, struct task_struct *task)
388 unsigned long wchan;
389 char symname[KSYM_NAME_LEN];
391 wchan = get_wchan(task);
393 if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
394 && !lookup_symbol_name(wchan, symname))
395 seq_printf(m, "%s", symname);
396 else
397 seq_putc(m, '0');
399 return 0;
401 #endif /* CONFIG_KALLSYMS */
403 static int lock_trace(struct task_struct *task)
405 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
406 if (err)
407 return err;
408 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
409 mutex_unlock(&task->signal->cred_guard_mutex);
410 return -EPERM;
412 return 0;
415 static void unlock_trace(struct task_struct *task)
417 mutex_unlock(&task->signal->cred_guard_mutex);
420 #ifdef CONFIG_STACKTRACE
422 #define MAX_STACK_TRACE_DEPTH 64
424 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
425 struct pid *pid, struct task_struct *task)
427 struct stack_trace trace;
428 unsigned long *entries;
429 int err;
430 int i;
432 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
433 if (!entries)
434 return -ENOMEM;
436 trace.nr_entries = 0;
437 trace.max_entries = MAX_STACK_TRACE_DEPTH;
438 trace.entries = entries;
439 trace.skip = 0;
441 err = lock_trace(task);
442 if (!err) {
443 save_stack_trace_tsk(task, &trace);
445 for (i = 0; i < trace.nr_entries; i++) {
446 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
448 unlock_trace(task);
450 kfree(entries);
452 return err;
454 #endif
456 #ifdef CONFIG_SCHED_INFO
458 * Provides /proc/PID/schedstat
460 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
461 struct pid *pid, struct task_struct *task)
463 if (unlikely(!sched_info_on()))
464 seq_printf(m, "0 0 0\n");
465 else
466 seq_printf(m, "%llu %llu %lu\n",
467 (unsigned long long)task->se.sum_exec_runtime,
468 (unsigned long long)task->sched_info.run_delay,
469 task->sched_info.pcount);
471 return 0;
473 #endif
475 #ifdef CONFIG_LATENCYTOP
476 static int lstats_show_proc(struct seq_file *m, void *v)
478 int i;
479 struct inode *inode = m->private;
480 struct task_struct *task = get_proc_task(inode);
482 if (!task)
483 return -ESRCH;
484 seq_puts(m, "Latency Top version : v0.1\n");
485 for (i = 0; i < 32; i++) {
486 struct latency_record *lr = &task->latency_record[i];
487 if (lr->backtrace[0]) {
488 int q;
489 seq_printf(m, "%i %li %li",
490 lr->count, lr->time, lr->max);
491 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
492 unsigned long bt = lr->backtrace[q];
493 if (!bt)
494 break;
495 if (bt == ULONG_MAX)
496 break;
497 seq_printf(m, " %ps", (void *)bt);
499 seq_putc(m, '\n');
503 put_task_struct(task);
504 return 0;
507 static int lstats_open(struct inode *inode, struct file *file)
509 return single_open(file, lstats_show_proc, inode);
512 static ssize_t lstats_write(struct file *file, const char __user *buf,
513 size_t count, loff_t *offs)
515 struct task_struct *task = get_proc_task(file_inode(file));
517 if (!task)
518 return -ESRCH;
519 clear_all_latency_tracing(task);
520 put_task_struct(task);
522 return count;
525 static const struct file_operations proc_lstats_operations = {
526 .open = lstats_open,
527 .read = seq_read,
528 .write = lstats_write,
529 .llseek = seq_lseek,
530 .release = single_release,
533 #endif
535 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
536 struct pid *pid, struct task_struct *task)
538 unsigned long totalpages = totalram_pages + total_swap_pages;
539 unsigned long points = 0;
541 points = oom_badness(task, NULL, NULL, totalpages) *
542 1000 / totalpages;
543 seq_printf(m, "%lu\n", points);
545 return 0;
548 struct limit_names {
549 const char *name;
550 const char *unit;
553 static const struct limit_names lnames[RLIM_NLIMITS] = {
554 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
555 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
556 [RLIMIT_DATA] = {"Max data size", "bytes"},
557 [RLIMIT_STACK] = {"Max stack size", "bytes"},
558 [RLIMIT_CORE] = {"Max core file size", "bytes"},
559 [RLIMIT_RSS] = {"Max resident set", "bytes"},
560 [RLIMIT_NPROC] = {"Max processes", "processes"},
561 [RLIMIT_NOFILE] = {"Max open files", "files"},
562 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
563 [RLIMIT_AS] = {"Max address space", "bytes"},
564 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
565 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
566 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
567 [RLIMIT_NICE] = {"Max nice priority", NULL},
568 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
569 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
572 /* Display limits for a process */
573 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
574 struct pid *pid, struct task_struct *task)
576 unsigned int i;
577 unsigned long flags;
579 struct rlimit rlim[RLIM_NLIMITS];
581 if (!lock_task_sighand(task, &flags))
582 return 0;
583 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
584 unlock_task_sighand(task, &flags);
587 * print the file header
589 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
590 "Limit", "Soft Limit", "Hard Limit", "Units");
592 for (i = 0; i < RLIM_NLIMITS; i++) {
593 if (rlim[i].rlim_cur == RLIM_INFINITY)
594 seq_printf(m, "%-25s %-20s ",
595 lnames[i].name, "unlimited");
596 else
597 seq_printf(m, "%-25s %-20lu ",
598 lnames[i].name, rlim[i].rlim_cur);
600 if (rlim[i].rlim_max == RLIM_INFINITY)
601 seq_printf(m, "%-20s ", "unlimited");
602 else
603 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
605 if (lnames[i].unit)
606 seq_printf(m, "%-10s\n", lnames[i].unit);
607 else
608 seq_putc(m, '\n');
611 return 0;
614 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
615 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
616 struct pid *pid, struct task_struct *task)
618 long nr;
619 unsigned long args[6], sp, pc;
620 int res;
622 res = lock_trace(task);
623 if (res)
624 return res;
626 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
627 seq_puts(m, "running\n");
628 else if (nr < 0)
629 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
630 else
631 seq_printf(m,
632 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
634 args[0], args[1], args[2], args[3], args[4], args[5],
635 sp, pc);
636 unlock_trace(task);
638 return 0;
640 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
642 /************************************************************************/
643 /* Here the fs part begins */
644 /************************************************************************/
646 /* permission checks */
647 static int proc_fd_access_allowed(struct inode *inode)
649 struct task_struct *task;
650 int allowed = 0;
651 /* Allow access to a task's file descriptors if it is us or we
652 * may use ptrace attach to the process and find out that
653 * information.
655 task = get_proc_task(inode);
656 if (task) {
657 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
658 put_task_struct(task);
660 return allowed;
663 int proc_setattr(struct dentry *dentry, struct iattr *attr)
665 int error;
666 struct inode *inode = d_inode(dentry);
668 if (attr->ia_valid & ATTR_MODE)
669 return -EPERM;
671 error = setattr_prepare(dentry, attr);
672 if (error)
673 return error;
675 setattr_copy(inode, attr);
676 mark_inode_dirty(inode);
677 return 0;
681 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
682 * or euid/egid (for hide_pid_min=2)?
684 static bool has_pid_permissions(struct pid_namespace *pid,
685 struct task_struct *task,
686 int hide_pid_min)
688 if (pid->hide_pid < hide_pid_min)
689 return true;
690 if (in_group_p(pid->pid_gid))
691 return true;
692 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
696 static int proc_pid_permission(struct inode *inode, int mask)
698 struct pid_namespace *pid = inode->i_sb->s_fs_info;
699 struct task_struct *task;
700 bool has_perms;
702 task = get_proc_task(inode);
703 if (!task)
704 return -ESRCH;
705 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
706 put_task_struct(task);
708 if (!has_perms) {
709 if (pid->hide_pid == HIDEPID_INVISIBLE) {
711 * Let's make getdents(), stat(), and open()
712 * consistent with each other. If a process
713 * may not stat() a file, it shouldn't be seen
714 * in procfs at all.
716 return -ENOENT;
719 return -EPERM;
721 return generic_permission(inode, mask);
726 static const struct inode_operations proc_def_inode_operations = {
727 .setattr = proc_setattr,
730 static int proc_single_show(struct seq_file *m, void *v)
732 struct inode *inode = m->private;
733 struct pid_namespace *ns;
734 struct pid *pid;
735 struct task_struct *task;
736 int ret;
738 ns = inode->i_sb->s_fs_info;
739 pid = proc_pid(inode);
740 task = get_pid_task(pid, PIDTYPE_PID);
741 if (!task)
742 return -ESRCH;
744 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
746 put_task_struct(task);
747 return ret;
750 static int proc_single_open(struct inode *inode, struct file *filp)
752 return single_open(filp, proc_single_show, inode);
755 static const struct file_operations proc_single_file_operations = {
756 .open = proc_single_open,
757 .read = seq_read,
758 .llseek = seq_lseek,
759 .release = single_release,
763 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
765 struct task_struct *task = get_proc_task(inode);
766 struct mm_struct *mm = ERR_PTR(-ESRCH);
768 if (task) {
769 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
770 put_task_struct(task);
772 if (!IS_ERR_OR_NULL(mm)) {
773 /* ensure this mm_struct can't be freed */
774 mmgrab(mm);
775 /* but do not pin its memory */
776 mmput(mm);
780 return mm;
783 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
785 struct mm_struct *mm = proc_mem_open(inode, mode);
787 if (IS_ERR(mm))
788 return PTR_ERR(mm);
790 file->private_data = mm;
791 return 0;
794 static int mem_open(struct inode *inode, struct file *file)
796 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
798 /* OK to pass negative loff_t, we can catch out-of-range */
799 file->f_mode |= FMODE_UNSIGNED_OFFSET;
801 return ret;
804 static ssize_t mem_rw(struct file *file, char __user *buf,
805 size_t count, loff_t *ppos, int write)
807 struct mm_struct *mm = file->private_data;
808 unsigned long addr = *ppos;
809 ssize_t copied;
810 char *page;
811 unsigned int flags;
813 if (!mm)
814 return 0;
816 page = (char *)__get_free_page(GFP_KERNEL);
817 if (!page)
818 return -ENOMEM;
820 copied = 0;
821 if (!mmget_not_zero(mm))
822 goto free;
824 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
826 while (count > 0) {
827 int this_len = min_t(int, count, PAGE_SIZE);
829 if (write && copy_from_user(page, buf, this_len)) {
830 copied = -EFAULT;
831 break;
834 this_len = access_remote_vm(mm, addr, page, this_len, flags);
835 if (!this_len) {
836 if (!copied)
837 copied = -EIO;
838 break;
841 if (!write && copy_to_user(buf, page, this_len)) {
842 copied = -EFAULT;
843 break;
846 buf += this_len;
847 addr += this_len;
848 copied += this_len;
849 count -= this_len;
851 *ppos = addr;
853 mmput(mm);
854 free:
855 free_page((unsigned long) page);
856 return copied;
859 static ssize_t mem_read(struct file *file, char __user *buf,
860 size_t count, loff_t *ppos)
862 return mem_rw(file, buf, count, ppos, 0);
865 static ssize_t mem_write(struct file *file, const char __user *buf,
866 size_t count, loff_t *ppos)
868 return mem_rw(file, (char __user*)buf, count, ppos, 1);
871 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
873 switch (orig) {
874 case 0:
875 file->f_pos = offset;
876 break;
877 case 1:
878 file->f_pos += offset;
879 break;
880 default:
881 return -EINVAL;
883 force_successful_syscall_return();
884 return file->f_pos;
887 static int mem_release(struct inode *inode, struct file *file)
889 struct mm_struct *mm = file->private_data;
890 if (mm)
891 mmdrop(mm);
892 return 0;
895 static const struct file_operations proc_mem_operations = {
896 .llseek = mem_lseek,
897 .read = mem_read,
898 .write = mem_write,
899 .open = mem_open,
900 .release = mem_release,
903 static int environ_open(struct inode *inode, struct file *file)
905 return __mem_open(inode, file, PTRACE_MODE_READ);
908 static ssize_t environ_read(struct file *file, char __user *buf,
909 size_t count, loff_t *ppos)
911 char *page;
912 unsigned long src = *ppos;
913 int ret = 0;
914 struct mm_struct *mm = file->private_data;
915 unsigned long env_start, env_end;
917 /* Ensure the process spawned far enough to have an environment. */
918 if (!mm || !mm->env_end)
919 return 0;
921 page = (char *)__get_free_page(GFP_KERNEL);
922 if (!page)
923 return -ENOMEM;
925 ret = 0;
926 if (!mmget_not_zero(mm))
927 goto free;
929 down_read(&mm->mmap_sem);
930 env_start = mm->env_start;
931 env_end = mm->env_end;
932 up_read(&mm->mmap_sem);
934 while (count > 0) {
935 size_t this_len, max_len;
936 int retval;
938 if (src >= (env_end - env_start))
939 break;
941 this_len = env_end - (env_start + src);
943 max_len = min_t(size_t, PAGE_SIZE, count);
944 this_len = min(max_len, this_len);
946 retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
948 if (retval <= 0) {
949 ret = retval;
950 break;
953 if (copy_to_user(buf, page, retval)) {
954 ret = -EFAULT;
955 break;
958 ret += retval;
959 src += retval;
960 buf += retval;
961 count -= retval;
963 *ppos = src;
964 mmput(mm);
966 free:
967 free_page((unsigned long) page);
968 return ret;
971 static const struct file_operations proc_environ_operations = {
972 .open = environ_open,
973 .read = environ_read,
974 .llseek = generic_file_llseek,
975 .release = mem_release,
978 static int auxv_open(struct inode *inode, struct file *file)
980 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
983 static ssize_t auxv_read(struct file *file, char __user *buf,
984 size_t count, loff_t *ppos)
986 struct mm_struct *mm = file->private_data;
987 unsigned int nwords = 0;
989 if (!mm)
990 return 0;
991 do {
992 nwords += 2;
993 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
994 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
995 nwords * sizeof(mm->saved_auxv[0]));
998 static const struct file_operations proc_auxv_operations = {
999 .open = auxv_open,
1000 .read = auxv_read,
1001 .llseek = generic_file_llseek,
1002 .release = mem_release,
1005 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1006 loff_t *ppos)
1008 struct task_struct *task = get_proc_task(file_inode(file));
1009 char buffer[PROC_NUMBUF];
1010 int oom_adj = OOM_ADJUST_MIN;
1011 size_t len;
1013 if (!task)
1014 return -ESRCH;
1015 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1016 oom_adj = OOM_ADJUST_MAX;
1017 else
1018 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1019 OOM_SCORE_ADJ_MAX;
1020 put_task_struct(task);
1021 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1022 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1025 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1027 static DEFINE_MUTEX(oom_adj_mutex);
1028 struct mm_struct *mm = NULL;
1029 struct task_struct *task;
1030 int err = 0;
1032 task = get_proc_task(file_inode(file));
1033 if (!task)
1034 return -ESRCH;
1036 mutex_lock(&oom_adj_mutex);
1037 if (legacy) {
1038 if (oom_adj < task->signal->oom_score_adj &&
1039 !capable(CAP_SYS_RESOURCE)) {
1040 err = -EACCES;
1041 goto err_unlock;
1044 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1045 * /proc/pid/oom_score_adj instead.
1047 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1048 current->comm, task_pid_nr(current), task_pid_nr(task),
1049 task_pid_nr(task));
1050 } else {
1051 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1052 !capable(CAP_SYS_RESOURCE)) {
1053 err = -EACCES;
1054 goto err_unlock;
1059 * Make sure we will check other processes sharing the mm if this is
1060 * not vfrok which wants its own oom_score_adj.
1061 * pin the mm so it doesn't go away and get reused after task_unlock
1063 if (!task->vfork_done) {
1064 struct task_struct *p = find_lock_task_mm(task);
1066 if (p) {
1067 if (atomic_read(&p->mm->mm_users) > 1) {
1068 mm = p->mm;
1069 mmgrab(mm);
1071 task_unlock(p);
1075 task->signal->oom_score_adj = oom_adj;
1076 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1077 task->signal->oom_score_adj_min = (short)oom_adj;
1078 trace_oom_score_adj_update(task);
1080 if (mm) {
1081 struct task_struct *p;
1083 rcu_read_lock();
1084 for_each_process(p) {
1085 if (same_thread_group(task, p))
1086 continue;
1088 /* do not touch kernel threads or the global init */
1089 if (p->flags & PF_KTHREAD || is_global_init(p))
1090 continue;
1092 task_lock(p);
1093 if (!p->vfork_done && process_shares_mm(p, mm)) {
1094 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1095 task_pid_nr(p), p->comm,
1096 p->signal->oom_score_adj, oom_adj,
1097 task_pid_nr(task), task->comm);
1098 p->signal->oom_score_adj = oom_adj;
1099 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1100 p->signal->oom_score_adj_min = (short)oom_adj;
1102 task_unlock(p);
1104 rcu_read_unlock();
1105 mmdrop(mm);
1107 err_unlock:
1108 mutex_unlock(&oom_adj_mutex);
1109 put_task_struct(task);
1110 return err;
1114 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1115 * kernels. The effective policy is defined by oom_score_adj, which has a
1116 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1117 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1118 * Processes that become oom disabled via oom_adj will still be oom disabled
1119 * with this implementation.
1121 * oom_adj cannot be removed since existing userspace binaries use it.
1123 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1124 size_t count, loff_t *ppos)
1126 char buffer[PROC_NUMBUF];
1127 int oom_adj;
1128 int err;
1130 memset(buffer, 0, sizeof(buffer));
1131 if (count > sizeof(buffer) - 1)
1132 count = sizeof(buffer) - 1;
1133 if (copy_from_user(buffer, buf, count)) {
1134 err = -EFAULT;
1135 goto out;
1138 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1139 if (err)
1140 goto out;
1141 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1142 oom_adj != OOM_DISABLE) {
1143 err = -EINVAL;
1144 goto out;
1148 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1149 * value is always attainable.
1151 if (oom_adj == OOM_ADJUST_MAX)
1152 oom_adj = OOM_SCORE_ADJ_MAX;
1153 else
1154 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1156 err = __set_oom_adj(file, oom_adj, true);
1157 out:
1158 return err < 0 ? err : count;
1161 static const struct file_operations proc_oom_adj_operations = {
1162 .read = oom_adj_read,
1163 .write = oom_adj_write,
1164 .llseek = generic_file_llseek,
1167 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1168 size_t count, loff_t *ppos)
1170 struct task_struct *task = get_proc_task(file_inode(file));
1171 char buffer[PROC_NUMBUF];
1172 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1173 size_t len;
1175 if (!task)
1176 return -ESRCH;
1177 oom_score_adj = task->signal->oom_score_adj;
1178 put_task_struct(task);
1179 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1180 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1184 size_t count, loff_t *ppos)
1186 char buffer[PROC_NUMBUF];
1187 int oom_score_adj;
1188 int err;
1190 memset(buffer, 0, sizeof(buffer));
1191 if (count > sizeof(buffer) - 1)
1192 count = sizeof(buffer) - 1;
1193 if (copy_from_user(buffer, buf, count)) {
1194 err = -EFAULT;
1195 goto out;
1198 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1199 if (err)
1200 goto out;
1201 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1202 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1203 err = -EINVAL;
1204 goto out;
1207 err = __set_oom_adj(file, oom_score_adj, false);
1208 out:
1209 return err < 0 ? err : count;
1212 static const struct file_operations proc_oom_score_adj_operations = {
1213 .read = oom_score_adj_read,
1214 .write = oom_score_adj_write,
1215 .llseek = default_llseek,
1218 #ifdef CONFIG_AUDITSYSCALL
1219 #define TMPBUFLEN 11
1220 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1221 size_t count, loff_t *ppos)
1223 struct inode * inode = file_inode(file);
1224 struct task_struct *task = get_proc_task(inode);
1225 ssize_t length;
1226 char tmpbuf[TMPBUFLEN];
1228 if (!task)
1229 return -ESRCH;
1230 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1231 from_kuid(file->f_cred->user_ns,
1232 audit_get_loginuid(task)));
1233 put_task_struct(task);
1234 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1237 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1238 size_t count, loff_t *ppos)
1240 struct inode * inode = file_inode(file);
1241 uid_t loginuid;
1242 kuid_t kloginuid;
1243 int rv;
1245 rcu_read_lock();
1246 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1247 rcu_read_unlock();
1248 return -EPERM;
1250 rcu_read_unlock();
1252 if (*ppos != 0) {
1253 /* No partial writes. */
1254 return -EINVAL;
1257 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1258 if (rv < 0)
1259 return rv;
1261 /* is userspace tring to explicitly UNSET the loginuid? */
1262 if (loginuid == AUDIT_UID_UNSET) {
1263 kloginuid = INVALID_UID;
1264 } else {
1265 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1266 if (!uid_valid(kloginuid))
1267 return -EINVAL;
1270 rv = audit_set_loginuid(kloginuid);
1271 if (rv < 0)
1272 return rv;
1273 return count;
1276 static const struct file_operations proc_loginuid_operations = {
1277 .read = proc_loginuid_read,
1278 .write = proc_loginuid_write,
1279 .llseek = generic_file_llseek,
1282 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1283 size_t count, loff_t *ppos)
1285 struct inode * inode = file_inode(file);
1286 struct task_struct *task = get_proc_task(inode);
1287 ssize_t length;
1288 char tmpbuf[TMPBUFLEN];
1290 if (!task)
1291 return -ESRCH;
1292 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1293 audit_get_sessionid(task));
1294 put_task_struct(task);
1295 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1298 static const struct file_operations proc_sessionid_operations = {
1299 .read = proc_sessionid_read,
1300 .llseek = generic_file_llseek,
1302 #endif
1304 #ifdef CONFIG_FAULT_INJECTION
1305 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1306 size_t count, loff_t *ppos)
1308 struct task_struct *task = get_proc_task(file_inode(file));
1309 char buffer[PROC_NUMBUF];
1310 size_t len;
1311 int make_it_fail;
1313 if (!task)
1314 return -ESRCH;
1315 make_it_fail = task->make_it_fail;
1316 put_task_struct(task);
1318 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1320 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1323 static ssize_t proc_fault_inject_write(struct file * file,
1324 const char __user * buf, size_t count, loff_t *ppos)
1326 struct task_struct *task;
1327 char buffer[PROC_NUMBUF];
1328 int make_it_fail;
1329 int rv;
1331 if (!capable(CAP_SYS_RESOURCE))
1332 return -EPERM;
1333 memset(buffer, 0, sizeof(buffer));
1334 if (count > sizeof(buffer) - 1)
1335 count = sizeof(buffer) - 1;
1336 if (copy_from_user(buffer, buf, count))
1337 return -EFAULT;
1338 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1339 if (rv < 0)
1340 return rv;
1341 if (make_it_fail < 0 || make_it_fail > 1)
1342 return -EINVAL;
1344 task = get_proc_task(file_inode(file));
1345 if (!task)
1346 return -ESRCH;
1347 task->make_it_fail = make_it_fail;
1348 put_task_struct(task);
1350 return count;
1353 static const struct file_operations proc_fault_inject_operations = {
1354 .read = proc_fault_inject_read,
1355 .write = proc_fault_inject_write,
1356 .llseek = generic_file_llseek,
1359 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1360 size_t count, loff_t *ppos)
1362 struct task_struct *task;
1363 int err;
1364 unsigned int n;
1366 err = kstrtouint_from_user(buf, count, 0, &n);
1367 if (err)
1368 return err;
1370 task = get_proc_task(file_inode(file));
1371 if (!task)
1372 return -ESRCH;
1373 task->fail_nth = n;
1374 put_task_struct(task);
1376 return count;
1379 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1380 size_t count, loff_t *ppos)
1382 struct task_struct *task;
1383 char numbuf[PROC_NUMBUF];
1384 ssize_t len;
1386 task = get_proc_task(file_inode(file));
1387 if (!task)
1388 return -ESRCH;
1389 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1390 len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1391 put_task_struct(task);
1393 return len;
1396 static const struct file_operations proc_fail_nth_operations = {
1397 .read = proc_fail_nth_read,
1398 .write = proc_fail_nth_write,
1400 #endif
1403 #ifdef CONFIG_SCHED_DEBUG
1405 * Print out various scheduling related per-task fields:
1407 static int sched_show(struct seq_file *m, void *v)
1409 struct inode *inode = m->private;
1410 struct pid_namespace *ns = inode->i_sb->s_fs_info;
1411 struct task_struct *p;
1413 p = get_proc_task(inode);
1414 if (!p)
1415 return -ESRCH;
1416 proc_sched_show_task(p, ns, m);
1418 put_task_struct(p);
1420 return 0;
1423 static ssize_t
1424 sched_write(struct file *file, const char __user *buf,
1425 size_t count, loff_t *offset)
1427 struct inode *inode = file_inode(file);
1428 struct task_struct *p;
1430 p = get_proc_task(inode);
1431 if (!p)
1432 return -ESRCH;
1433 proc_sched_set_task(p);
1435 put_task_struct(p);
1437 return count;
1440 static int sched_open(struct inode *inode, struct file *filp)
1442 return single_open(filp, sched_show, inode);
1445 static const struct file_operations proc_pid_sched_operations = {
1446 .open = sched_open,
1447 .read = seq_read,
1448 .write = sched_write,
1449 .llseek = seq_lseek,
1450 .release = single_release,
1453 #endif
1455 #ifdef CONFIG_SCHED_AUTOGROUP
1457 * Print out autogroup related information:
1459 static int sched_autogroup_show(struct seq_file *m, void *v)
1461 struct inode *inode = m->private;
1462 struct task_struct *p;
1464 p = get_proc_task(inode);
1465 if (!p)
1466 return -ESRCH;
1467 proc_sched_autogroup_show_task(p, m);
1469 put_task_struct(p);
1471 return 0;
1474 static ssize_t
1475 sched_autogroup_write(struct file *file, const char __user *buf,
1476 size_t count, loff_t *offset)
1478 struct inode *inode = file_inode(file);
1479 struct task_struct *p;
1480 char buffer[PROC_NUMBUF];
1481 int nice;
1482 int err;
1484 memset(buffer, 0, sizeof(buffer));
1485 if (count > sizeof(buffer) - 1)
1486 count = sizeof(buffer) - 1;
1487 if (copy_from_user(buffer, buf, count))
1488 return -EFAULT;
1490 err = kstrtoint(strstrip(buffer), 0, &nice);
1491 if (err < 0)
1492 return err;
1494 p = get_proc_task(inode);
1495 if (!p)
1496 return -ESRCH;
1498 err = proc_sched_autogroup_set_nice(p, nice);
1499 if (err)
1500 count = err;
1502 put_task_struct(p);
1504 return count;
1507 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1509 int ret;
1511 ret = single_open(filp, sched_autogroup_show, NULL);
1512 if (!ret) {
1513 struct seq_file *m = filp->private_data;
1515 m->private = inode;
1517 return ret;
1520 static const struct file_operations proc_pid_sched_autogroup_operations = {
1521 .open = sched_autogroup_open,
1522 .read = seq_read,
1523 .write = sched_autogroup_write,
1524 .llseek = seq_lseek,
1525 .release = single_release,
1528 #endif /* CONFIG_SCHED_AUTOGROUP */
1530 static ssize_t comm_write(struct file *file, const char __user *buf,
1531 size_t count, loff_t *offset)
1533 struct inode *inode = file_inode(file);
1534 struct task_struct *p;
1535 char buffer[TASK_COMM_LEN];
1536 const size_t maxlen = sizeof(buffer) - 1;
1538 memset(buffer, 0, sizeof(buffer));
1539 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1540 return -EFAULT;
1542 p = get_proc_task(inode);
1543 if (!p)
1544 return -ESRCH;
1546 if (same_thread_group(current, p))
1547 set_task_comm(p, buffer);
1548 else
1549 count = -EINVAL;
1551 put_task_struct(p);
1553 return count;
1556 static int comm_show(struct seq_file *m, void *v)
1558 struct inode *inode = m->private;
1559 struct task_struct *p;
1561 p = get_proc_task(inode);
1562 if (!p)
1563 return -ESRCH;
1565 task_lock(p);
1566 seq_printf(m, "%s\n", p->comm);
1567 task_unlock(p);
1569 put_task_struct(p);
1571 return 0;
1574 static int comm_open(struct inode *inode, struct file *filp)
1576 return single_open(filp, comm_show, inode);
1579 static const struct file_operations proc_pid_set_comm_operations = {
1580 .open = comm_open,
1581 .read = seq_read,
1582 .write = comm_write,
1583 .llseek = seq_lseek,
1584 .release = single_release,
1587 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1589 struct task_struct *task;
1590 struct file *exe_file;
1592 task = get_proc_task(d_inode(dentry));
1593 if (!task)
1594 return -ENOENT;
1595 exe_file = get_task_exe_file(task);
1596 put_task_struct(task);
1597 if (exe_file) {
1598 *exe_path = exe_file->f_path;
1599 path_get(&exe_file->f_path);
1600 fput(exe_file);
1601 return 0;
1602 } else
1603 return -ENOENT;
1606 static const char *proc_pid_get_link(struct dentry *dentry,
1607 struct inode *inode,
1608 struct delayed_call *done)
1610 struct path path;
1611 int error = -EACCES;
1613 if (!dentry)
1614 return ERR_PTR(-ECHILD);
1616 /* Are we allowed to snoop on the tasks file descriptors? */
1617 if (!proc_fd_access_allowed(inode))
1618 goto out;
1620 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1621 if (error)
1622 goto out;
1624 nd_jump_link(&path);
1625 return NULL;
1626 out:
1627 return ERR_PTR(error);
1630 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1632 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1633 char *pathname;
1634 int len;
1636 if (!tmp)
1637 return -ENOMEM;
1639 pathname = d_path(path, tmp, PAGE_SIZE);
1640 len = PTR_ERR(pathname);
1641 if (IS_ERR(pathname))
1642 goto out;
1643 len = tmp + PAGE_SIZE - 1 - pathname;
1645 if (len > buflen)
1646 len = buflen;
1647 if (copy_to_user(buffer, pathname, len))
1648 len = -EFAULT;
1649 out:
1650 free_page((unsigned long)tmp);
1651 return len;
1654 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1656 int error = -EACCES;
1657 struct inode *inode = d_inode(dentry);
1658 struct path path;
1660 /* Are we allowed to snoop on the tasks file descriptors? */
1661 if (!proc_fd_access_allowed(inode))
1662 goto out;
1664 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1665 if (error)
1666 goto out;
1668 error = do_proc_readlink(&path, buffer, buflen);
1669 path_put(&path);
1670 out:
1671 return error;
1674 const struct inode_operations proc_pid_link_inode_operations = {
1675 .readlink = proc_pid_readlink,
1676 .get_link = proc_pid_get_link,
1677 .setattr = proc_setattr,
1681 /* building an inode */
1683 void task_dump_owner(struct task_struct *task, umode_t mode,
1684 kuid_t *ruid, kgid_t *rgid)
1686 /* Depending on the state of dumpable compute who should own a
1687 * proc file for a task.
1689 const struct cred *cred;
1690 kuid_t uid;
1691 kgid_t gid;
1693 /* Default to the tasks effective ownership */
1694 rcu_read_lock();
1695 cred = __task_cred(task);
1696 uid = cred->euid;
1697 gid = cred->egid;
1698 rcu_read_unlock();
1701 * Before the /proc/pid/status file was created the only way to read
1702 * the effective uid of a /process was to stat /proc/pid. Reading
1703 * /proc/pid/status is slow enough that procps and other packages
1704 * kept stating /proc/pid. To keep the rules in /proc simple I have
1705 * made this apply to all per process world readable and executable
1706 * directories.
1708 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1709 struct mm_struct *mm;
1710 task_lock(task);
1711 mm = task->mm;
1712 /* Make non-dumpable tasks owned by some root */
1713 if (mm) {
1714 if (get_dumpable(mm) != SUID_DUMP_USER) {
1715 struct user_namespace *user_ns = mm->user_ns;
1717 uid = make_kuid(user_ns, 0);
1718 if (!uid_valid(uid))
1719 uid = GLOBAL_ROOT_UID;
1721 gid = make_kgid(user_ns, 0);
1722 if (!gid_valid(gid))
1723 gid = GLOBAL_ROOT_GID;
1725 } else {
1726 uid = GLOBAL_ROOT_UID;
1727 gid = GLOBAL_ROOT_GID;
1729 task_unlock(task);
1731 *ruid = uid;
1732 *rgid = gid;
1735 struct inode *proc_pid_make_inode(struct super_block * sb,
1736 struct task_struct *task, umode_t mode)
1738 struct inode * inode;
1739 struct proc_inode *ei;
1741 /* We need a new inode */
1743 inode = new_inode(sb);
1744 if (!inode)
1745 goto out;
1747 /* Common stuff */
1748 ei = PROC_I(inode);
1749 inode->i_mode = mode;
1750 inode->i_ino = get_next_ino();
1751 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1752 inode->i_op = &proc_def_inode_operations;
1755 * grab the reference to task.
1757 ei->pid = get_task_pid(task, PIDTYPE_PID);
1758 if (!ei->pid)
1759 goto out_unlock;
1761 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1762 security_task_to_inode(task, inode);
1764 out:
1765 return inode;
1767 out_unlock:
1768 iput(inode);
1769 return NULL;
1772 int pid_getattr(const struct path *path, struct kstat *stat,
1773 u32 request_mask, unsigned int query_flags)
1775 struct inode *inode = d_inode(path->dentry);
1776 struct task_struct *task;
1777 struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1779 generic_fillattr(inode, stat);
1781 rcu_read_lock();
1782 stat->uid = GLOBAL_ROOT_UID;
1783 stat->gid = GLOBAL_ROOT_GID;
1784 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1785 if (task) {
1786 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1787 rcu_read_unlock();
1789 * This doesn't prevent learning whether PID exists,
1790 * it only makes getattr() consistent with readdir().
1792 return -ENOENT;
1794 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1796 rcu_read_unlock();
1797 return 0;
1800 /* dentry stuff */
1803 * Exceptional case: normally we are not allowed to unhash a busy
1804 * directory. In this case, however, we can do it - no aliasing problems
1805 * due to the way we treat inodes.
1807 * Rewrite the inode's ownerships here because the owning task may have
1808 * performed a setuid(), etc.
1811 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1813 struct inode *inode;
1814 struct task_struct *task;
1816 if (flags & LOOKUP_RCU)
1817 return -ECHILD;
1819 inode = d_inode(dentry);
1820 task = get_proc_task(inode);
1822 if (task) {
1823 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1825 inode->i_mode &= ~(S_ISUID | S_ISGID);
1826 security_task_to_inode(task, inode);
1827 put_task_struct(task);
1828 return 1;
1830 return 0;
1833 static inline bool proc_inode_is_dead(struct inode *inode)
1835 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1838 int pid_delete_dentry(const struct dentry *dentry)
1840 /* Is the task we represent dead?
1841 * If so, then don't put the dentry on the lru list,
1842 * kill it immediately.
1844 return proc_inode_is_dead(d_inode(dentry));
1847 const struct dentry_operations pid_dentry_operations =
1849 .d_revalidate = pid_revalidate,
1850 .d_delete = pid_delete_dentry,
1853 /* Lookups */
1856 * Fill a directory entry.
1858 * If possible create the dcache entry and derive our inode number and
1859 * file type from dcache entry.
1861 * Since all of the proc inode numbers are dynamically generated, the inode
1862 * numbers do not exist until the inode is cache. This means creating the
1863 * the dcache entry in readdir is necessary to keep the inode numbers
1864 * reported by readdir in sync with the inode numbers reported
1865 * by stat.
1867 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1868 const char *name, int len,
1869 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1871 struct dentry *child, *dir = file->f_path.dentry;
1872 struct qstr qname = QSTR_INIT(name, len);
1873 struct inode *inode;
1874 unsigned type;
1875 ino_t ino;
1877 child = d_hash_and_lookup(dir, &qname);
1878 if (!child) {
1879 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880 child = d_alloc_parallel(dir, &qname, &wq);
1881 if (IS_ERR(child))
1882 goto end_instantiate;
1883 if (d_in_lookup(child)) {
1884 int err = instantiate(d_inode(dir), child, task, ptr);
1885 d_lookup_done(child);
1886 if (err < 0) {
1887 dput(child);
1888 goto end_instantiate;
1892 inode = d_inode(child);
1893 ino = inode->i_ino;
1894 type = inode->i_mode >> 12;
1895 dput(child);
1896 return dir_emit(ctx, name, len, ino, type);
1898 end_instantiate:
1899 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1903 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1904 * which represent vma start and end addresses.
1906 static int dname_to_vma_addr(struct dentry *dentry,
1907 unsigned long *start, unsigned long *end)
1909 const char *str = dentry->d_name.name;
1910 unsigned long long sval, eval;
1911 unsigned int len;
1913 len = _parse_integer(str, 16, &sval);
1914 if (len & KSTRTOX_OVERFLOW)
1915 return -EINVAL;
1916 if (sval != (unsigned long)sval)
1917 return -EINVAL;
1918 str += len;
1920 if (*str != '-')
1921 return -EINVAL;
1922 str++;
1924 len = _parse_integer(str, 16, &eval);
1925 if (len & KSTRTOX_OVERFLOW)
1926 return -EINVAL;
1927 if (eval != (unsigned long)eval)
1928 return -EINVAL;
1929 str += len;
1931 if (*str != '\0')
1932 return -EINVAL;
1934 *start = sval;
1935 *end = eval;
1937 return 0;
1940 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1942 unsigned long vm_start, vm_end;
1943 bool exact_vma_exists = false;
1944 struct mm_struct *mm = NULL;
1945 struct task_struct *task;
1946 struct inode *inode;
1947 int status = 0;
1949 if (flags & LOOKUP_RCU)
1950 return -ECHILD;
1952 inode = d_inode(dentry);
1953 task = get_proc_task(inode);
1954 if (!task)
1955 goto out_notask;
1957 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1958 if (IS_ERR_OR_NULL(mm))
1959 goto out;
1961 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1962 down_read(&mm->mmap_sem);
1963 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1964 up_read(&mm->mmap_sem);
1967 mmput(mm);
1969 if (exact_vma_exists) {
1970 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1972 security_task_to_inode(task, inode);
1973 status = 1;
1976 out:
1977 put_task_struct(task);
1979 out_notask:
1980 return status;
1983 static const struct dentry_operations tid_map_files_dentry_operations = {
1984 .d_revalidate = map_files_d_revalidate,
1985 .d_delete = pid_delete_dentry,
1988 static int map_files_get_link(struct dentry *dentry, struct path *path)
1990 unsigned long vm_start, vm_end;
1991 struct vm_area_struct *vma;
1992 struct task_struct *task;
1993 struct mm_struct *mm;
1994 int rc;
1996 rc = -ENOENT;
1997 task = get_proc_task(d_inode(dentry));
1998 if (!task)
1999 goto out;
2001 mm = get_task_mm(task);
2002 put_task_struct(task);
2003 if (!mm)
2004 goto out;
2006 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2007 if (rc)
2008 goto out_mmput;
2010 rc = -ENOENT;
2011 down_read(&mm->mmap_sem);
2012 vma = find_exact_vma(mm, vm_start, vm_end);
2013 if (vma && vma->vm_file) {
2014 *path = vma->vm_file->f_path;
2015 path_get(path);
2016 rc = 0;
2018 up_read(&mm->mmap_sem);
2020 out_mmput:
2021 mmput(mm);
2022 out:
2023 return rc;
2026 struct map_files_info {
2027 unsigned long start;
2028 unsigned long end;
2029 fmode_t mode;
2033 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2034 * symlinks may be used to bypass permissions on ancestor directories in the
2035 * path to the file in question.
2037 static const char *
2038 proc_map_files_get_link(struct dentry *dentry,
2039 struct inode *inode,
2040 struct delayed_call *done)
2042 if (!capable(CAP_SYS_ADMIN))
2043 return ERR_PTR(-EPERM);
2045 return proc_pid_get_link(dentry, inode, done);
2049 * Identical to proc_pid_link_inode_operations except for get_link()
2051 static const struct inode_operations proc_map_files_link_inode_operations = {
2052 .readlink = proc_pid_readlink,
2053 .get_link = proc_map_files_get_link,
2054 .setattr = proc_setattr,
2057 static int
2058 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2059 struct task_struct *task, const void *ptr)
2061 fmode_t mode = (fmode_t)(unsigned long)ptr;
2062 struct proc_inode *ei;
2063 struct inode *inode;
2065 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2066 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2067 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2068 if (!inode)
2069 return -ENOENT;
2071 ei = PROC_I(inode);
2072 ei->op.proc_get_link = map_files_get_link;
2074 inode->i_op = &proc_map_files_link_inode_operations;
2075 inode->i_size = 64;
2077 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2078 d_add(dentry, inode);
2080 return 0;
2083 static struct dentry *proc_map_files_lookup(struct inode *dir,
2084 struct dentry *dentry, unsigned int flags)
2086 unsigned long vm_start, vm_end;
2087 struct vm_area_struct *vma;
2088 struct task_struct *task;
2089 int result;
2090 struct mm_struct *mm;
2092 result = -ENOENT;
2093 task = get_proc_task(dir);
2094 if (!task)
2095 goto out;
2097 result = -EACCES;
2098 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2099 goto out_put_task;
2101 result = -ENOENT;
2102 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2103 goto out_put_task;
2105 mm = get_task_mm(task);
2106 if (!mm)
2107 goto out_put_task;
2109 down_read(&mm->mmap_sem);
2110 vma = find_exact_vma(mm, vm_start, vm_end);
2111 if (!vma)
2112 goto out_no_vma;
2114 if (vma->vm_file)
2115 result = proc_map_files_instantiate(dir, dentry, task,
2116 (void *)(unsigned long)vma->vm_file->f_mode);
2118 out_no_vma:
2119 up_read(&mm->mmap_sem);
2120 mmput(mm);
2121 out_put_task:
2122 put_task_struct(task);
2123 out:
2124 return ERR_PTR(result);
2127 static const struct inode_operations proc_map_files_inode_operations = {
2128 .lookup = proc_map_files_lookup,
2129 .permission = proc_fd_permission,
2130 .setattr = proc_setattr,
2133 static int
2134 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2136 struct vm_area_struct *vma;
2137 struct task_struct *task;
2138 struct mm_struct *mm;
2139 unsigned long nr_files, pos, i;
2140 struct flex_array *fa = NULL;
2141 struct map_files_info info;
2142 struct map_files_info *p;
2143 int ret;
2145 ret = -ENOENT;
2146 task = get_proc_task(file_inode(file));
2147 if (!task)
2148 goto out;
2150 ret = -EACCES;
2151 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2152 goto out_put_task;
2154 ret = 0;
2155 if (!dir_emit_dots(file, ctx))
2156 goto out_put_task;
2158 mm = get_task_mm(task);
2159 if (!mm)
2160 goto out_put_task;
2161 down_read(&mm->mmap_sem);
2163 nr_files = 0;
2166 * We need two passes here:
2168 * 1) Collect vmas of mapped files with mmap_sem taken
2169 * 2) Release mmap_sem and instantiate entries
2171 * otherwise we get lockdep complained, since filldir()
2172 * routine might require mmap_sem taken in might_fault().
2175 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2176 if (vma->vm_file && ++pos > ctx->pos)
2177 nr_files++;
2180 if (nr_files) {
2181 fa = flex_array_alloc(sizeof(info), nr_files,
2182 GFP_KERNEL);
2183 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2184 GFP_KERNEL)) {
2185 ret = -ENOMEM;
2186 if (fa)
2187 flex_array_free(fa);
2188 up_read(&mm->mmap_sem);
2189 mmput(mm);
2190 goto out_put_task;
2192 for (i = 0, vma = mm->mmap, pos = 2; vma;
2193 vma = vma->vm_next) {
2194 if (!vma->vm_file)
2195 continue;
2196 if (++pos <= ctx->pos)
2197 continue;
2199 info.start = vma->vm_start;
2200 info.end = vma->vm_end;
2201 info.mode = vma->vm_file->f_mode;
2202 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2203 BUG();
2206 up_read(&mm->mmap_sem);
2208 for (i = 0; i < nr_files; i++) {
2209 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2210 unsigned int len;
2212 p = flex_array_get(fa, i);
2213 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2214 if (!proc_fill_cache(file, ctx,
2215 buf, len,
2216 proc_map_files_instantiate,
2217 task,
2218 (void *)(unsigned long)p->mode))
2219 break;
2220 ctx->pos++;
2222 if (fa)
2223 flex_array_free(fa);
2224 mmput(mm);
2226 out_put_task:
2227 put_task_struct(task);
2228 out:
2229 return ret;
2232 static const struct file_operations proc_map_files_operations = {
2233 .read = generic_read_dir,
2234 .iterate_shared = proc_map_files_readdir,
2235 .llseek = generic_file_llseek,
2238 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2239 struct timers_private {
2240 struct pid *pid;
2241 struct task_struct *task;
2242 struct sighand_struct *sighand;
2243 struct pid_namespace *ns;
2244 unsigned long flags;
2247 static void *timers_start(struct seq_file *m, loff_t *pos)
2249 struct timers_private *tp = m->private;
2251 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2252 if (!tp->task)
2253 return ERR_PTR(-ESRCH);
2255 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2256 if (!tp->sighand)
2257 return ERR_PTR(-ESRCH);
2259 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2262 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2264 struct timers_private *tp = m->private;
2265 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2268 static void timers_stop(struct seq_file *m, void *v)
2270 struct timers_private *tp = m->private;
2272 if (tp->sighand) {
2273 unlock_task_sighand(tp->task, &tp->flags);
2274 tp->sighand = NULL;
2277 if (tp->task) {
2278 put_task_struct(tp->task);
2279 tp->task = NULL;
2283 static int show_timer(struct seq_file *m, void *v)
2285 struct k_itimer *timer;
2286 struct timers_private *tp = m->private;
2287 int notify;
2288 static const char * const nstr[] = {
2289 [SIGEV_SIGNAL] = "signal",
2290 [SIGEV_NONE] = "none",
2291 [SIGEV_THREAD] = "thread",
2294 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2295 notify = timer->it_sigev_notify;
2297 seq_printf(m, "ID: %d\n", timer->it_id);
2298 seq_printf(m, "signal: %d/%px\n",
2299 timer->sigq->info.si_signo,
2300 timer->sigq->info.si_value.sival_ptr);
2301 seq_printf(m, "notify: %s/%s.%d\n",
2302 nstr[notify & ~SIGEV_THREAD_ID],
2303 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2304 pid_nr_ns(timer->it_pid, tp->ns));
2305 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2307 return 0;
2310 static const struct seq_operations proc_timers_seq_ops = {
2311 .start = timers_start,
2312 .next = timers_next,
2313 .stop = timers_stop,
2314 .show = show_timer,
2317 static int proc_timers_open(struct inode *inode, struct file *file)
2319 struct timers_private *tp;
2321 tp = __seq_open_private(file, &proc_timers_seq_ops,
2322 sizeof(struct timers_private));
2323 if (!tp)
2324 return -ENOMEM;
2326 tp->pid = proc_pid(inode);
2327 tp->ns = inode->i_sb->s_fs_info;
2328 return 0;
2331 static const struct file_operations proc_timers_operations = {
2332 .open = proc_timers_open,
2333 .read = seq_read,
2334 .llseek = seq_lseek,
2335 .release = seq_release_private,
2337 #endif
2339 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2340 size_t count, loff_t *offset)
2342 struct inode *inode = file_inode(file);
2343 struct task_struct *p;
2344 u64 slack_ns;
2345 int err;
2347 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2348 if (err < 0)
2349 return err;
2351 p = get_proc_task(inode);
2352 if (!p)
2353 return -ESRCH;
2355 if (p != current) {
2356 if (!capable(CAP_SYS_NICE)) {
2357 count = -EPERM;
2358 goto out;
2361 err = security_task_setscheduler(p);
2362 if (err) {
2363 count = err;
2364 goto out;
2368 task_lock(p);
2369 if (slack_ns == 0)
2370 p->timer_slack_ns = p->default_timer_slack_ns;
2371 else
2372 p->timer_slack_ns = slack_ns;
2373 task_unlock(p);
2375 out:
2376 put_task_struct(p);
2378 return count;
2381 static int timerslack_ns_show(struct seq_file *m, void *v)
2383 struct inode *inode = m->private;
2384 struct task_struct *p;
2385 int err = 0;
2387 p = get_proc_task(inode);
2388 if (!p)
2389 return -ESRCH;
2391 if (p != current) {
2393 if (!capable(CAP_SYS_NICE)) {
2394 err = -EPERM;
2395 goto out;
2397 err = security_task_getscheduler(p);
2398 if (err)
2399 goto out;
2402 task_lock(p);
2403 seq_printf(m, "%llu\n", p->timer_slack_ns);
2404 task_unlock(p);
2406 out:
2407 put_task_struct(p);
2409 return err;
2412 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2414 return single_open(filp, timerslack_ns_show, inode);
2417 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2418 .open = timerslack_ns_open,
2419 .read = seq_read,
2420 .write = timerslack_ns_write,
2421 .llseek = seq_lseek,
2422 .release = single_release,
2425 static int proc_pident_instantiate(struct inode *dir,
2426 struct dentry *dentry, struct task_struct *task, const void *ptr)
2428 const struct pid_entry *p = ptr;
2429 struct inode *inode;
2430 struct proc_inode *ei;
2432 inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2433 if (!inode)
2434 goto out;
2436 ei = PROC_I(inode);
2437 if (S_ISDIR(inode->i_mode))
2438 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2439 if (p->iop)
2440 inode->i_op = p->iop;
2441 if (p->fop)
2442 inode->i_fop = p->fop;
2443 ei->op = p->op;
2444 d_set_d_op(dentry, &pid_dentry_operations);
2445 d_add(dentry, inode);
2446 /* Close the race of the process dying before we return the dentry */
2447 if (pid_revalidate(dentry, 0))
2448 return 0;
2449 out:
2450 return -ENOENT;
2453 static struct dentry *proc_pident_lookup(struct inode *dir,
2454 struct dentry *dentry,
2455 const struct pid_entry *ents,
2456 unsigned int nents)
2458 int error;
2459 struct task_struct *task = get_proc_task(dir);
2460 const struct pid_entry *p, *last;
2462 error = -ENOENT;
2464 if (!task)
2465 goto out_no_task;
2468 * Yes, it does not scale. And it should not. Don't add
2469 * new entries into /proc/<tgid>/ without very good reasons.
2471 last = &ents[nents];
2472 for (p = ents; p < last; p++) {
2473 if (p->len != dentry->d_name.len)
2474 continue;
2475 if (!memcmp(dentry->d_name.name, p->name, p->len))
2476 break;
2478 if (p >= last)
2479 goto out;
2481 error = proc_pident_instantiate(dir, dentry, task, p);
2482 out:
2483 put_task_struct(task);
2484 out_no_task:
2485 return ERR_PTR(error);
2488 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2489 const struct pid_entry *ents, unsigned int nents)
2491 struct task_struct *task = get_proc_task(file_inode(file));
2492 const struct pid_entry *p;
2494 if (!task)
2495 return -ENOENT;
2497 if (!dir_emit_dots(file, ctx))
2498 goto out;
2500 if (ctx->pos >= nents + 2)
2501 goto out;
2503 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2504 if (!proc_fill_cache(file, ctx, p->name, p->len,
2505 proc_pident_instantiate, task, p))
2506 break;
2507 ctx->pos++;
2509 out:
2510 put_task_struct(task);
2511 return 0;
2514 #ifdef CONFIG_SECURITY
2515 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2516 size_t count, loff_t *ppos)
2518 struct inode * inode = file_inode(file);
2519 char *p = NULL;
2520 ssize_t length;
2521 struct task_struct *task = get_proc_task(inode);
2523 if (!task)
2524 return -ESRCH;
2526 length = security_getprocattr(task,
2527 (char*)file->f_path.dentry->d_name.name,
2528 &p);
2529 put_task_struct(task);
2530 if (length > 0)
2531 length = simple_read_from_buffer(buf, count, ppos, p, length);
2532 kfree(p);
2533 return length;
2536 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2537 size_t count, loff_t *ppos)
2539 struct inode * inode = file_inode(file);
2540 void *page;
2541 ssize_t length;
2542 struct task_struct *task = get_proc_task(inode);
2544 length = -ESRCH;
2545 if (!task)
2546 goto out_no_task;
2548 /* A task may only write its own attributes. */
2549 length = -EACCES;
2550 if (current != task)
2551 goto out;
2553 if (count > PAGE_SIZE)
2554 count = PAGE_SIZE;
2556 /* No partial writes. */
2557 length = -EINVAL;
2558 if (*ppos != 0)
2559 goto out;
2561 page = memdup_user(buf, count);
2562 if (IS_ERR(page)) {
2563 length = PTR_ERR(page);
2564 goto out;
2567 /* Guard against adverse ptrace interaction */
2568 length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2569 if (length < 0)
2570 goto out_free;
2572 length = security_setprocattr(file->f_path.dentry->d_name.name,
2573 page, count);
2574 mutex_unlock(&current->signal->cred_guard_mutex);
2575 out_free:
2576 kfree(page);
2577 out:
2578 put_task_struct(task);
2579 out_no_task:
2580 return length;
2583 static const struct file_operations proc_pid_attr_operations = {
2584 .read = proc_pid_attr_read,
2585 .write = proc_pid_attr_write,
2586 .llseek = generic_file_llseek,
2589 static const struct pid_entry attr_dir_stuff[] = {
2590 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2591 REG("prev", S_IRUGO, proc_pid_attr_operations),
2592 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2593 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2594 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2595 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2598 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2600 return proc_pident_readdir(file, ctx,
2601 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2604 static const struct file_operations proc_attr_dir_operations = {
2605 .read = generic_read_dir,
2606 .iterate_shared = proc_attr_dir_readdir,
2607 .llseek = generic_file_llseek,
2610 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2611 struct dentry *dentry, unsigned int flags)
2613 return proc_pident_lookup(dir, dentry,
2614 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2617 static const struct inode_operations proc_attr_dir_inode_operations = {
2618 .lookup = proc_attr_dir_lookup,
2619 .getattr = pid_getattr,
2620 .setattr = proc_setattr,
2623 #endif
2625 #ifdef CONFIG_ELF_CORE
2626 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2627 size_t count, loff_t *ppos)
2629 struct task_struct *task = get_proc_task(file_inode(file));
2630 struct mm_struct *mm;
2631 char buffer[PROC_NUMBUF];
2632 size_t len;
2633 int ret;
2635 if (!task)
2636 return -ESRCH;
2638 ret = 0;
2639 mm = get_task_mm(task);
2640 if (mm) {
2641 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2642 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2643 MMF_DUMP_FILTER_SHIFT));
2644 mmput(mm);
2645 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2648 put_task_struct(task);
2650 return ret;
2653 static ssize_t proc_coredump_filter_write(struct file *file,
2654 const char __user *buf,
2655 size_t count,
2656 loff_t *ppos)
2658 struct task_struct *task;
2659 struct mm_struct *mm;
2660 unsigned int val;
2661 int ret;
2662 int i;
2663 unsigned long mask;
2665 ret = kstrtouint_from_user(buf, count, 0, &val);
2666 if (ret < 0)
2667 return ret;
2669 ret = -ESRCH;
2670 task = get_proc_task(file_inode(file));
2671 if (!task)
2672 goto out_no_task;
2674 mm = get_task_mm(task);
2675 if (!mm)
2676 goto out_no_mm;
2677 ret = 0;
2679 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2680 if (val & mask)
2681 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2682 else
2683 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2686 mmput(mm);
2687 out_no_mm:
2688 put_task_struct(task);
2689 out_no_task:
2690 if (ret < 0)
2691 return ret;
2692 return count;
2695 static const struct file_operations proc_coredump_filter_operations = {
2696 .read = proc_coredump_filter_read,
2697 .write = proc_coredump_filter_write,
2698 .llseek = generic_file_llseek,
2700 #endif
2702 #ifdef CONFIG_TASK_IO_ACCOUNTING
2703 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2705 struct task_io_accounting acct = task->ioac;
2706 unsigned long flags;
2707 int result;
2709 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2710 if (result)
2711 return result;
2713 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2714 result = -EACCES;
2715 goto out_unlock;
2718 if (whole && lock_task_sighand(task, &flags)) {
2719 struct task_struct *t = task;
2721 task_io_accounting_add(&acct, &task->signal->ioac);
2722 while_each_thread(task, t)
2723 task_io_accounting_add(&acct, &t->ioac);
2725 unlock_task_sighand(task, &flags);
2727 seq_printf(m,
2728 "rchar: %llu\n"
2729 "wchar: %llu\n"
2730 "syscr: %llu\n"
2731 "syscw: %llu\n"
2732 "read_bytes: %llu\n"
2733 "write_bytes: %llu\n"
2734 "cancelled_write_bytes: %llu\n",
2735 (unsigned long long)acct.rchar,
2736 (unsigned long long)acct.wchar,
2737 (unsigned long long)acct.syscr,
2738 (unsigned long long)acct.syscw,
2739 (unsigned long long)acct.read_bytes,
2740 (unsigned long long)acct.write_bytes,
2741 (unsigned long long)acct.cancelled_write_bytes);
2742 result = 0;
2744 out_unlock:
2745 mutex_unlock(&task->signal->cred_guard_mutex);
2746 return result;
2749 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2750 struct pid *pid, struct task_struct *task)
2752 return do_io_accounting(task, m, 0);
2755 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2756 struct pid *pid, struct task_struct *task)
2758 return do_io_accounting(task, m, 1);
2760 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2762 #ifdef CONFIG_USER_NS
2763 static int proc_id_map_open(struct inode *inode, struct file *file,
2764 const struct seq_operations *seq_ops)
2766 struct user_namespace *ns = NULL;
2767 struct task_struct *task;
2768 struct seq_file *seq;
2769 int ret = -EINVAL;
2771 task = get_proc_task(inode);
2772 if (task) {
2773 rcu_read_lock();
2774 ns = get_user_ns(task_cred_xxx(task, user_ns));
2775 rcu_read_unlock();
2776 put_task_struct(task);
2778 if (!ns)
2779 goto err;
2781 ret = seq_open(file, seq_ops);
2782 if (ret)
2783 goto err_put_ns;
2785 seq = file->private_data;
2786 seq->private = ns;
2788 return 0;
2789 err_put_ns:
2790 put_user_ns(ns);
2791 err:
2792 return ret;
2795 static int proc_id_map_release(struct inode *inode, struct file *file)
2797 struct seq_file *seq = file->private_data;
2798 struct user_namespace *ns = seq->private;
2799 put_user_ns(ns);
2800 return seq_release(inode, file);
2803 static int proc_uid_map_open(struct inode *inode, struct file *file)
2805 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2808 static int proc_gid_map_open(struct inode *inode, struct file *file)
2810 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2813 static int proc_projid_map_open(struct inode *inode, struct file *file)
2815 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2818 static const struct file_operations proc_uid_map_operations = {
2819 .open = proc_uid_map_open,
2820 .write = proc_uid_map_write,
2821 .read = seq_read,
2822 .llseek = seq_lseek,
2823 .release = proc_id_map_release,
2826 static const struct file_operations proc_gid_map_operations = {
2827 .open = proc_gid_map_open,
2828 .write = proc_gid_map_write,
2829 .read = seq_read,
2830 .llseek = seq_lseek,
2831 .release = proc_id_map_release,
2834 static const struct file_operations proc_projid_map_operations = {
2835 .open = proc_projid_map_open,
2836 .write = proc_projid_map_write,
2837 .read = seq_read,
2838 .llseek = seq_lseek,
2839 .release = proc_id_map_release,
2842 static int proc_setgroups_open(struct inode *inode, struct file *file)
2844 struct user_namespace *ns = NULL;
2845 struct task_struct *task;
2846 int ret;
2848 ret = -ESRCH;
2849 task = get_proc_task(inode);
2850 if (task) {
2851 rcu_read_lock();
2852 ns = get_user_ns(task_cred_xxx(task, user_ns));
2853 rcu_read_unlock();
2854 put_task_struct(task);
2856 if (!ns)
2857 goto err;
2859 if (file->f_mode & FMODE_WRITE) {
2860 ret = -EACCES;
2861 if (!ns_capable(ns, CAP_SYS_ADMIN))
2862 goto err_put_ns;
2865 ret = single_open(file, &proc_setgroups_show, ns);
2866 if (ret)
2867 goto err_put_ns;
2869 return 0;
2870 err_put_ns:
2871 put_user_ns(ns);
2872 err:
2873 return ret;
2876 static int proc_setgroups_release(struct inode *inode, struct file *file)
2878 struct seq_file *seq = file->private_data;
2879 struct user_namespace *ns = seq->private;
2880 int ret = single_release(inode, file);
2881 put_user_ns(ns);
2882 return ret;
2885 static const struct file_operations proc_setgroups_operations = {
2886 .open = proc_setgroups_open,
2887 .write = proc_setgroups_write,
2888 .read = seq_read,
2889 .llseek = seq_lseek,
2890 .release = proc_setgroups_release,
2892 #endif /* CONFIG_USER_NS */
2894 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2895 struct pid *pid, struct task_struct *task)
2897 int err = lock_trace(task);
2898 if (!err) {
2899 seq_printf(m, "%08x\n", task->personality);
2900 unlock_trace(task);
2902 return err;
2905 #ifdef CONFIG_LIVEPATCH
2906 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2907 struct pid *pid, struct task_struct *task)
2909 seq_printf(m, "%d\n", task->patch_state);
2910 return 0;
2912 #endif /* CONFIG_LIVEPATCH */
2915 * Thread groups
2917 static const struct file_operations proc_task_operations;
2918 static const struct inode_operations proc_task_inode_operations;
2920 static const struct pid_entry tgid_base_stuff[] = {
2921 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2922 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2923 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2924 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2925 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2926 #ifdef CONFIG_NET
2927 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2928 #endif
2929 REG("environ", S_IRUSR, proc_environ_operations),
2930 REG("auxv", S_IRUSR, proc_auxv_operations),
2931 ONE("status", S_IRUGO, proc_pid_status),
2932 ONE("personality", S_IRUSR, proc_pid_personality),
2933 ONE("limits", S_IRUGO, proc_pid_limits),
2934 #ifdef CONFIG_SCHED_DEBUG
2935 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2936 #endif
2937 #ifdef CONFIG_SCHED_AUTOGROUP
2938 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2939 #endif
2940 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2941 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2942 ONE("syscall", S_IRUSR, proc_pid_syscall),
2943 #endif
2944 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2945 ONE("stat", S_IRUGO, proc_tgid_stat),
2946 ONE("statm", S_IRUGO, proc_pid_statm),
2947 REG("maps", S_IRUGO, proc_pid_maps_operations),
2948 #ifdef CONFIG_NUMA
2949 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2950 #endif
2951 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2952 LNK("cwd", proc_cwd_link),
2953 LNK("root", proc_root_link),
2954 LNK("exe", proc_exe_link),
2955 REG("mounts", S_IRUGO, proc_mounts_operations),
2956 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2957 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2958 #ifdef CONFIG_PROC_PAGE_MONITOR
2959 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2960 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2961 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2962 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2963 #endif
2964 #ifdef CONFIG_SECURITY
2965 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2966 #endif
2967 #ifdef CONFIG_KALLSYMS
2968 ONE("wchan", S_IRUGO, proc_pid_wchan),
2969 #endif
2970 #ifdef CONFIG_STACKTRACE
2971 ONE("stack", S_IRUSR, proc_pid_stack),
2972 #endif
2973 #ifdef CONFIG_SCHED_INFO
2974 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2975 #endif
2976 #ifdef CONFIG_LATENCYTOP
2977 REG("latency", S_IRUGO, proc_lstats_operations),
2978 #endif
2979 #ifdef CONFIG_PROC_PID_CPUSET
2980 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2981 #endif
2982 #ifdef CONFIG_CGROUPS
2983 ONE("cgroup", S_IRUGO, proc_cgroup_show),
2984 #endif
2985 ONE("oom_score", S_IRUGO, proc_oom_score),
2986 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2987 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2988 #ifdef CONFIG_AUDITSYSCALL
2989 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2990 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2991 #endif
2992 #ifdef CONFIG_FAULT_INJECTION
2993 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2994 REG("fail-nth", 0644, proc_fail_nth_operations),
2995 #endif
2996 #ifdef CONFIG_ELF_CORE
2997 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2998 #endif
2999 #ifdef CONFIG_TASK_IO_ACCOUNTING
3000 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3001 #endif
3002 #ifdef CONFIG_USER_NS
3003 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3004 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3005 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3006 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3007 #endif
3008 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3009 REG("timers", S_IRUGO, proc_timers_operations),
3010 #endif
3011 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3012 #ifdef CONFIG_LIVEPATCH
3013 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3014 #endif
3017 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3019 return proc_pident_readdir(file, ctx,
3020 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3023 static const struct file_operations proc_tgid_base_operations = {
3024 .read = generic_read_dir,
3025 .iterate_shared = proc_tgid_base_readdir,
3026 .llseek = generic_file_llseek,
3029 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3031 return proc_pident_lookup(dir, dentry,
3032 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3035 static const struct inode_operations proc_tgid_base_inode_operations = {
3036 .lookup = proc_tgid_base_lookup,
3037 .getattr = pid_getattr,
3038 .setattr = proc_setattr,
3039 .permission = proc_pid_permission,
3042 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3044 struct dentry *dentry, *leader, *dir;
3045 char buf[10 + 1];
3046 struct qstr name;
3048 name.name = buf;
3049 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3050 /* no ->d_hash() rejects on procfs */
3051 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3052 if (dentry) {
3053 d_invalidate(dentry);
3054 dput(dentry);
3057 if (pid == tgid)
3058 return;
3060 name.name = buf;
3061 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3062 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3063 if (!leader)
3064 goto out;
3066 name.name = "task";
3067 name.len = strlen(name.name);
3068 dir = d_hash_and_lookup(leader, &name);
3069 if (!dir)
3070 goto out_put_leader;
3072 name.name = buf;
3073 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3074 dentry = d_hash_and_lookup(dir, &name);
3075 if (dentry) {
3076 d_invalidate(dentry);
3077 dput(dentry);
3080 dput(dir);
3081 out_put_leader:
3082 dput(leader);
3083 out:
3084 return;
3088 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3089 * @task: task that should be flushed.
3091 * When flushing dentries from proc, one needs to flush them from global
3092 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3093 * in. This call is supposed to do all of this job.
3095 * Looks in the dcache for
3096 * /proc/@pid
3097 * /proc/@tgid/task/@pid
3098 * if either directory is present flushes it and all of it'ts children
3099 * from the dcache.
3101 * It is safe and reasonable to cache /proc entries for a task until
3102 * that task exits. After that they just clog up the dcache with
3103 * useless entries, possibly causing useful dcache entries to be
3104 * flushed instead. This routine is proved to flush those useless
3105 * dcache entries at process exit time.
3107 * NOTE: This routine is just an optimization so it does not guarantee
3108 * that no dcache entries will exist at process exit time it
3109 * just makes it very unlikely that any will persist.
3112 void proc_flush_task(struct task_struct *task)
3114 int i;
3115 struct pid *pid, *tgid;
3116 struct upid *upid;
3118 pid = task_pid(task);
3119 tgid = task_tgid(task);
3121 for (i = 0; i <= pid->level; i++) {
3122 upid = &pid->numbers[i];
3123 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3124 tgid->numbers[i].nr);
3128 static int proc_pid_instantiate(struct inode *dir,
3129 struct dentry * dentry,
3130 struct task_struct *task, const void *ptr)
3132 struct inode *inode;
3134 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3135 if (!inode)
3136 goto out;
3138 inode->i_op = &proc_tgid_base_inode_operations;
3139 inode->i_fop = &proc_tgid_base_operations;
3140 inode->i_flags|=S_IMMUTABLE;
3142 set_nlink(inode, nlink_tgid);
3144 d_set_d_op(dentry, &pid_dentry_operations);
3146 d_add(dentry, inode);
3147 /* Close the race of the process dying before we return the dentry */
3148 if (pid_revalidate(dentry, 0))
3149 return 0;
3150 out:
3151 return -ENOENT;
3154 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3156 int result = -ENOENT;
3157 struct task_struct *task;
3158 unsigned tgid;
3159 struct pid_namespace *ns;
3161 tgid = name_to_int(&dentry->d_name);
3162 if (tgid == ~0U)
3163 goto out;
3165 ns = dentry->d_sb->s_fs_info;
3166 rcu_read_lock();
3167 task = find_task_by_pid_ns(tgid, ns);
3168 if (task)
3169 get_task_struct(task);
3170 rcu_read_unlock();
3171 if (!task)
3172 goto out;
3174 result = proc_pid_instantiate(dir, dentry, task, NULL);
3175 put_task_struct(task);
3176 out:
3177 return ERR_PTR(result);
3181 * Find the first task with tgid >= tgid
3184 struct tgid_iter {
3185 unsigned int tgid;
3186 struct task_struct *task;
3188 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3190 struct pid *pid;
3192 if (iter.task)
3193 put_task_struct(iter.task);
3194 rcu_read_lock();
3195 retry:
3196 iter.task = NULL;
3197 pid = find_ge_pid(iter.tgid, ns);
3198 if (pid) {
3199 iter.tgid = pid_nr_ns(pid, ns);
3200 iter.task = pid_task(pid, PIDTYPE_PID);
3201 /* What we to know is if the pid we have find is the
3202 * pid of a thread_group_leader. Testing for task
3203 * being a thread_group_leader is the obvious thing
3204 * todo but there is a window when it fails, due to
3205 * the pid transfer logic in de_thread.
3207 * So we perform the straight forward test of seeing
3208 * if the pid we have found is the pid of a thread
3209 * group leader, and don't worry if the task we have
3210 * found doesn't happen to be a thread group leader.
3211 * As we don't care in the case of readdir.
3213 if (!iter.task || !has_group_leader_pid(iter.task)) {
3214 iter.tgid += 1;
3215 goto retry;
3217 get_task_struct(iter.task);
3219 rcu_read_unlock();
3220 return iter;
3223 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3225 /* for the /proc/ directory itself, after non-process stuff has been done */
3226 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3228 struct tgid_iter iter;
3229 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3230 loff_t pos = ctx->pos;
3232 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3233 return 0;
3235 if (pos == TGID_OFFSET - 2) {
3236 struct inode *inode = d_inode(ns->proc_self);
3237 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3238 return 0;
3239 ctx->pos = pos = pos + 1;
3241 if (pos == TGID_OFFSET - 1) {
3242 struct inode *inode = d_inode(ns->proc_thread_self);
3243 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3244 return 0;
3245 ctx->pos = pos = pos + 1;
3247 iter.tgid = pos - TGID_OFFSET;
3248 iter.task = NULL;
3249 for (iter = next_tgid(ns, iter);
3250 iter.task;
3251 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3252 char name[10 + 1];
3253 int len;
3255 cond_resched();
3256 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3257 continue;
3259 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3260 ctx->pos = iter.tgid + TGID_OFFSET;
3261 if (!proc_fill_cache(file, ctx, name, len,
3262 proc_pid_instantiate, iter.task, NULL)) {
3263 put_task_struct(iter.task);
3264 return 0;
3267 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3268 return 0;
3272 * proc_tid_comm_permission is a special permission function exclusively
3273 * used for the node /proc/<pid>/task/<tid>/comm.
3274 * It bypasses generic permission checks in the case where a task of the same
3275 * task group attempts to access the node.
3276 * The rationale behind this is that glibc and bionic access this node for
3277 * cross thread naming (pthread_set/getname_np(!self)). However, if
3278 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3279 * which locks out the cross thread naming implementation.
3280 * This function makes sure that the node is always accessible for members of
3281 * same thread group.
3283 static int proc_tid_comm_permission(struct inode *inode, int mask)
3285 bool is_same_tgroup;
3286 struct task_struct *task;
3288 task = get_proc_task(inode);
3289 if (!task)
3290 return -ESRCH;
3291 is_same_tgroup = same_thread_group(current, task);
3292 put_task_struct(task);
3294 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3295 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3296 * read or written by the members of the corresponding
3297 * thread group.
3299 return 0;
3302 return generic_permission(inode, mask);
3305 static const struct inode_operations proc_tid_comm_inode_operations = {
3306 .permission = proc_tid_comm_permission,
3310 * Tasks
3312 static const struct pid_entry tid_base_stuff[] = {
3313 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3314 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3315 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3316 #ifdef CONFIG_NET
3317 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3318 #endif
3319 REG("environ", S_IRUSR, proc_environ_operations),
3320 REG("auxv", S_IRUSR, proc_auxv_operations),
3321 ONE("status", S_IRUGO, proc_pid_status),
3322 ONE("personality", S_IRUSR, proc_pid_personality),
3323 ONE("limits", S_IRUGO, proc_pid_limits),
3324 #ifdef CONFIG_SCHED_DEBUG
3325 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3326 #endif
3327 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3328 &proc_tid_comm_inode_operations,
3329 &proc_pid_set_comm_operations, {}),
3330 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3331 ONE("syscall", S_IRUSR, proc_pid_syscall),
3332 #endif
3333 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3334 ONE("stat", S_IRUGO, proc_tid_stat),
3335 ONE("statm", S_IRUGO, proc_pid_statm),
3336 REG("maps", S_IRUGO, proc_tid_maps_operations),
3337 #ifdef CONFIG_PROC_CHILDREN
3338 REG("children", S_IRUGO, proc_tid_children_operations),
3339 #endif
3340 #ifdef CONFIG_NUMA
3341 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3342 #endif
3343 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3344 LNK("cwd", proc_cwd_link),
3345 LNK("root", proc_root_link),
3346 LNK("exe", proc_exe_link),
3347 REG("mounts", S_IRUGO, proc_mounts_operations),
3348 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3349 #ifdef CONFIG_PROC_PAGE_MONITOR
3350 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3351 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3352 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3353 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3354 #endif
3355 #ifdef CONFIG_SECURITY
3356 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3357 #endif
3358 #ifdef CONFIG_KALLSYMS
3359 ONE("wchan", S_IRUGO, proc_pid_wchan),
3360 #endif
3361 #ifdef CONFIG_STACKTRACE
3362 ONE("stack", S_IRUSR, proc_pid_stack),
3363 #endif
3364 #ifdef CONFIG_SCHED_INFO
3365 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3366 #endif
3367 #ifdef CONFIG_LATENCYTOP
3368 REG("latency", S_IRUGO, proc_lstats_operations),
3369 #endif
3370 #ifdef CONFIG_PROC_PID_CPUSET
3371 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3372 #endif
3373 #ifdef CONFIG_CGROUPS
3374 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3375 #endif
3376 ONE("oom_score", S_IRUGO, proc_oom_score),
3377 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3378 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3379 #ifdef CONFIG_AUDITSYSCALL
3380 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3381 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3382 #endif
3383 #ifdef CONFIG_FAULT_INJECTION
3384 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3385 REG("fail-nth", 0644, proc_fail_nth_operations),
3386 #endif
3387 #ifdef CONFIG_TASK_IO_ACCOUNTING
3388 ONE("io", S_IRUSR, proc_tid_io_accounting),
3389 #endif
3390 #ifdef CONFIG_USER_NS
3391 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3392 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3393 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3394 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3395 #endif
3396 #ifdef CONFIG_LIVEPATCH
3397 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3398 #endif
3401 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3403 return proc_pident_readdir(file, ctx,
3404 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3407 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3409 return proc_pident_lookup(dir, dentry,
3410 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3413 static const struct file_operations proc_tid_base_operations = {
3414 .read = generic_read_dir,
3415 .iterate_shared = proc_tid_base_readdir,
3416 .llseek = generic_file_llseek,
3419 static const struct inode_operations proc_tid_base_inode_operations = {
3420 .lookup = proc_tid_base_lookup,
3421 .getattr = pid_getattr,
3422 .setattr = proc_setattr,
3425 static int proc_task_instantiate(struct inode *dir,
3426 struct dentry *dentry, struct task_struct *task, const void *ptr)
3428 struct inode *inode;
3429 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3431 if (!inode)
3432 goto out;
3433 inode->i_op = &proc_tid_base_inode_operations;
3434 inode->i_fop = &proc_tid_base_operations;
3435 inode->i_flags|=S_IMMUTABLE;
3437 set_nlink(inode, nlink_tid);
3439 d_set_d_op(dentry, &pid_dentry_operations);
3441 d_add(dentry, inode);
3442 /* Close the race of the process dying before we return the dentry */
3443 if (pid_revalidate(dentry, 0))
3444 return 0;
3445 out:
3446 return -ENOENT;
3449 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3451 int result = -ENOENT;
3452 struct task_struct *task;
3453 struct task_struct *leader = get_proc_task(dir);
3454 unsigned tid;
3455 struct pid_namespace *ns;
3457 if (!leader)
3458 goto out_no_task;
3460 tid = name_to_int(&dentry->d_name);
3461 if (tid == ~0U)
3462 goto out;
3464 ns = dentry->d_sb->s_fs_info;
3465 rcu_read_lock();
3466 task = find_task_by_pid_ns(tid, ns);
3467 if (task)
3468 get_task_struct(task);
3469 rcu_read_unlock();
3470 if (!task)
3471 goto out;
3472 if (!same_thread_group(leader, task))
3473 goto out_drop_task;
3475 result = proc_task_instantiate(dir, dentry, task, NULL);
3476 out_drop_task:
3477 put_task_struct(task);
3478 out:
3479 put_task_struct(leader);
3480 out_no_task:
3481 return ERR_PTR(result);
3485 * Find the first tid of a thread group to return to user space.
3487 * Usually this is just the thread group leader, but if the users
3488 * buffer was too small or there was a seek into the middle of the
3489 * directory we have more work todo.
3491 * In the case of a short read we start with find_task_by_pid.
3493 * In the case of a seek we start with the leader and walk nr
3494 * threads past it.
3496 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3497 struct pid_namespace *ns)
3499 struct task_struct *pos, *task;
3500 unsigned long nr = f_pos;
3502 if (nr != f_pos) /* 32bit overflow? */
3503 return NULL;
3505 rcu_read_lock();
3506 task = pid_task(pid, PIDTYPE_PID);
3507 if (!task)
3508 goto fail;
3510 /* Attempt to start with the tid of a thread */
3511 if (tid && nr) {
3512 pos = find_task_by_pid_ns(tid, ns);
3513 if (pos && same_thread_group(pos, task))
3514 goto found;
3517 /* If nr exceeds the number of threads there is nothing todo */
3518 if (nr >= get_nr_threads(task))
3519 goto fail;
3521 /* If we haven't found our starting place yet start
3522 * with the leader and walk nr threads forward.
3524 pos = task = task->group_leader;
3525 do {
3526 if (!nr--)
3527 goto found;
3528 } while_each_thread(task, pos);
3529 fail:
3530 pos = NULL;
3531 goto out;
3532 found:
3533 get_task_struct(pos);
3534 out:
3535 rcu_read_unlock();
3536 return pos;
3540 * Find the next thread in the thread list.
3541 * Return NULL if there is an error or no next thread.
3543 * The reference to the input task_struct is released.
3545 static struct task_struct *next_tid(struct task_struct *start)
3547 struct task_struct *pos = NULL;
3548 rcu_read_lock();
3549 if (pid_alive(start)) {
3550 pos = next_thread(start);
3551 if (thread_group_leader(pos))
3552 pos = NULL;
3553 else
3554 get_task_struct(pos);
3556 rcu_read_unlock();
3557 put_task_struct(start);
3558 return pos;
3561 /* for the /proc/TGID/task/ directories */
3562 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3564 struct inode *inode = file_inode(file);
3565 struct task_struct *task;
3566 struct pid_namespace *ns;
3567 int tid;
3569 if (proc_inode_is_dead(inode))
3570 return -ENOENT;
3572 if (!dir_emit_dots(file, ctx))
3573 return 0;
3575 /* f_version caches the tgid value that the last readdir call couldn't
3576 * return. lseek aka telldir automagically resets f_version to 0.
3578 ns = inode->i_sb->s_fs_info;
3579 tid = (int)file->f_version;
3580 file->f_version = 0;
3581 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3582 task;
3583 task = next_tid(task), ctx->pos++) {
3584 char name[10 + 1];
3585 int len;
3586 tid = task_pid_nr_ns(task, ns);
3587 len = snprintf(name, sizeof(name), "%u", tid);
3588 if (!proc_fill_cache(file, ctx, name, len,
3589 proc_task_instantiate, task, NULL)) {
3590 /* returning this tgid failed, save it as the first
3591 * pid for the next readir call */
3592 file->f_version = (u64)tid;
3593 put_task_struct(task);
3594 break;
3598 return 0;
3601 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3602 u32 request_mask, unsigned int query_flags)
3604 struct inode *inode = d_inode(path->dentry);
3605 struct task_struct *p = get_proc_task(inode);
3606 generic_fillattr(inode, stat);
3608 if (p) {
3609 stat->nlink += get_nr_threads(p);
3610 put_task_struct(p);
3613 return 0;
3616 static const struct inode_operations proc_task_inode_operations = {
3617 .lookup = proc_task_lookup,
3618 .getattr = proc_task_getattr,
3619 .setattr = proc_setattr,
3620 .permission = proc_pid_permission,
3623 static const struct file_operations proc_task_operations = {
3624 .read = generic_read_dir,
3625 .iterate_shared = proc_task_readdir,
3626 .llseek = generic_file_llseek,
3629 void __init set_proc_pid_nlink(void)
3631 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3632 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));