mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / fs / proc / task_mmu.c
blobec6d2983a5cb65e5c46a40c5b6a18da11db10749
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
22 #include <asm/elf.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include "internal.h"
27 void task_mem(struct seq_file *m, struct mm_struct *mm)
29 unsigned long text, lib, swap, anon, file, shmem;
30 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
32 anon = get_mm_counter(mm, MM_ANONPAGES);
33 file = get_mm_counter(mm, MM_FILEPAGES);
34 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
37 * Note: to minimize their overhead, mm maintains hiwater_vm and
38 * hiwater_rss only when about to *lower* total_vm or rss. Any
39 * collector of these hiwater stats must therefore get total_vm
40 * and rss too, which will usually be the higher. Barriers? not
41 * worth the effort, such snapshots can always be inconsistent.
43 hiwater_vm = total_vm = mm->total_vm;
44 if (hiwater_vm < mm->hiwater_vm)
45 hiwater_vm = mm->hiwater_vm;
46 hiwater_rss = total_rss = anon + file + shmem;
47 if (hiwater_rss < mm->hiwater_rss)
48 hiwater_rss = mm->hiwater_rss;
50 /* split executable areas between text and lib */
51 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
52 text = min(text, mm->exec_vm << PAGE_SHIFT);
53 lib = (mm->exec_vm << PAGE_SHIFT) - text;
55 swap = get_mm_counter(mm, MM_SWAPENTS);
56 seq_printf(m,
57 "VmPeak:\t%8lu kB\n"
58 "VmSize:\t%8lu kB\n"
59 "VmLck:\t%8lu kB\n"
60 "VmPin:\t%8lu kB\n"
61 "VmHWM:\t%8lu kB\n"
62 "VmRSS:\t%8lu kB\n"
63 "RssAnon:\t%8lu kB\n"
64 "RssFile:\t%8lu kB\n"
65 "RssShmem:\t%8lu kB\n"
66 "VmData:\t%8lu kB\n"
67 "VmStk:\t%8lu kB\n"
68 "VmExe:\t%8lu kB\n"
69 "VmLib:\t%8lu kB\n"
70 "VmPTE:\t%8lu kB\n"
71 "VmSwap:\t%8lu kB\n",
72 hiwater_vm << (PAGE_SHIFT-10),
73 total_vm << (PAGE_SHIFT-10),
74 mm->locked_vm << (PAGE_SHIFT-10),
75 mm->pinned_vm << (PAGE_SHIFT-10),
76 hiwater_rss << (PAGE_SHIFT-10),
77 total_rss << (PAGE_SHIFT-10),
78 anon << (PAGE_SHIFT-10),
79 file << (PAGE_SHIFT-10),
80 shmem << (PAGE_SHIFT-10),
81 mm->data_vm << (PAGE_SHIFT-10),
82 mm->stack_vm << (PAGE_SHIFT-10),
83 text >> 10,
84 lib >> 10,
85 mm_pgtables_bytes(mm) >> 10,
86 swap << (PAGE_SHIFT-10));
87 hugetlb_report_usage(m, mm);
90 unsigned long task_vsize(struct mm_struct *mm)
92 return PAGE_SIZE * mm->total_vm;
95 unsigned long task_statm(struct mm_struct *mm,
96 unsigned long *shared, unsigned long *text,
97 unsigned long *data, unsigned long *resident)
99 *shared = get_mm_counter(mm, MM_FILEPAGES) +
100 get_mm_counter(mm, MM_SHMEMPAGES);
101 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
102 >> PAGE_SHIFT;
103 *data = mm->data_vm + mm->stack_vm;
104 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
105 return mm->total_vm;
108 #ifdef CONFIG_NUMA
110 * Save get_task_policy() for show_numa_map().
112 static void hold_task_mempolicy(struct proc_maps_private *priv)
114 struct task_struct *task = priv->task;
116 task_lock(task);
117 priv->task_mempolicy = get_task_policy(task);
118 mpol_get(priv->task_mempolicy);
119 task_unlock(task);
121 static void release_task_mempolicy(struct proc_maps_private *priv)
123 mpol_put(priv->task_mempolicy);
125 #else
126 static void hold_task_mempolicy(struct proc_maps_private *priv)
129 static void release_task_mempolicy(struct proc_maps_private *priv)
132 #endif
134 static void vma_stop(struct proc_maps_private *priv)
136 struct mm_struct *mm = priv->mm;
138 release_task_mempolicy(priv);
139 up_read(&mm->mmap_sem);
140 mmput(mm);
143 static struct vm_area_struct *
144 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
146 if (vma == priv->tail_vma)
147 return NULL;
148 return vma->vm_next ?: priv->tail_vma;
151 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
153 if (m->count < m->size) /* vma is copied successfully */
154 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
157 static void *m_start(struct seq_file *m, loff_t *ppos)
159 struct proc_maps_private *priv = m->private;
160 unsigned long last_addr = m->version;
161 struct mm_struct *mm;
162 struct vm_area_struct *vma;
163 unsigned int pos = *ppos;
165 /* See m_cache_vma(). Zero at the start or after lseek. */
166 if (last_addr == -1UL)
167 return NULL;
169 priv->task = get_proc_task(priv->inode);
170 if (!priv->task)
171 return ERR_PTR(-ESRCH);
173 mm = priv->mm;
174 if (!mm || !mmget_not_zero(mm))
175 return NULL;
177 down_read(&mm->mmap_sem);
178 hold_task_mempolicy(priv);
179 priv->tail_vma = get_gate_vma(mm);
181 if (last_addr) {
182 vma = find_vma(mm, last_addr - 1);
183 if (vma && vma->vm_start <= last_addr)
184 vma = m_next_vma(priv, vma);
185 if (vma)
186 return vma;
189 m->version = 0;
190 if (pos < mm->map_count) {
191 for (vma = mm->mmap; pos; pos--) {
192 m->version = vma->vm_start;
193 vma = vma->vm_next;
195 return vma;
198 /* we do not bother to update m->version in this case */
199 if (pos == mm->map_count && priv->tail_vma)
200 return priv->tail_vma;
202 vma_stop(priv);
203 return NULL;
206 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
208 struct proc_maps_private *priv = m->private;
209 struct vm_area_struct *next;
211 (*pos)++;
212 next = m_next_vma(priv, v);
213 if (!next)
214 vma_stop(priv);
215 return next;
218 static void m_stop(struct seq_file *m, void *v)
220 struct proc_maps_private *priv = m->private;
222 if (!IS_ERR_OR_NULL(v))
223 vma_stop(priv);
224 if (priv->task) {
225 put_task_struct(priv->task);
226 priv->task = NULL;
230 static int proc_maps_open(struct inode *inode, struct file *file,
231 const struct seq_operations *ops, int psize)
233 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
235 if (!priv)
236 return -ENOMEM;
238 priv->inode = inode;
239 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
240 if (IS_ERR(priv->mm)) {
241 int err = PTR_ERR(priv->mm);
243 seq_release_private(inode, file);
244 return err;
247 return 0;
250 static int proc_map_release(struct inode *inode, struct file *file)
252 struct seq_file *seq = file->private_data;
253 struct proc_maps_private *priv = seq->private;
255 if (priv->mm)
256 mmdrop(priv->mm);
258 kfree(priv->rollup);
259 return seq_release_private(inode, file);
262 static int do_maps_open(struct inode *inode, struct file *file,
263 const struct seq_operations *ops)
265 return proc_maps_open(inode, file, ops,
266 sizeof(struct proc_maps_private));
270 * Indicate if the VMA is a stack for the given task; for
271 * /proc/PID/maps that is the stack of the main task.
273 static int is_stack(struct vm_area_struct *vma)
276 * We make no effort to guess what a given thread considers to be
277 * its "stack". It's not even well-defined for programs written
278 * languages like Go.
280 return vma->vm_start <= vma->vm_mm->start_stack &&
281 vma->vm_end >= vma->vm_mm->start_stack;
284 static void show_vma_header_prefix(struct seq_file *m,
285 unsigned long start, unsigned long end,
286 vm_flags_t flags, unsigned long long pgoff,
287 dev_t dev, unsigned long ino)
289 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
290 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
291 start,
292 end,
293 flags & VM_READ ? 'r' : '-',
294 flags & VM_WRITE ? 'w' : '-',
295 flags & VM_EXEC ? 'x' : '-',
296 flags & VM_MAYSHARE ? 's' : 'p',
297 pgoff,
298 MAJOR(dev), MINOR(dev), ino);
301 static void
302 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
304 struct mm_struct *mm = vma->vm_mm;
305 struct file *file = vma->vm_file;
306 vm_flags_t flags = vma->vm_flags;
307 unsigned long ino = 0;
308 unsigned long long pgoff = 0;
309 unsigned long start, end;
310 dev_t dev = 0;
311 const char *name = NULL;
313 if (file) {
314 struct inode *inode = file_inode(vma->vm_file);
315 dev = inode->i_sb->s_dev;
316 ino = inode->i_ino;
317 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
320 start = vma->vm_start;
321 end = vma->vm_end;
322 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
325 * Print the dentry name for named mappings, and a
326 * special [heap] marker for the heap:
328 if (file) {
329 seq_pad(m, ' ');
330 seq_file_path(m, file, "\n");
331 goto done;
334 if (vma->vm_ops && vma->vm_ops->name) {
335 name = vma->vm_ops->name(vma);
336 if (name)
337 goto done;
340 name = arch_vma_name(vma);
341 if (!name) {
342 if (!mm) {
343 name = "[vdso]";
344 goto done;
347 if (vma->vm_start <= mm->brk &&
348 vma->vm_end >= mm->start_brk) {
349 name = "[heap]";
350 goto done;
353 if (is_stack(vma))
354 name = "[stack]";
357 done:
358 if (name) {
359 seq_pad(m, ' ');
360 seq_puts(m, name);
362 seq_putc(m, '\n');
365 static int show_map(struct seq_file *m, void *v, int is_pid)
367 show_map_vma(m, v, is_pid);
368 m_cache_vma(m, v);
369 return 0;
372 static int show_pid_map(struct seq_file *m, void *v)
374 return show_map(m, v, 1);
377 static int show_tid_map(struct seq_file *m, void *v)
379 return show_map(m, v, 0);
382 static const struct seq_operations proc_pid_maps_op = {
383 .start = m_start,
384 .next = m_next,
385 .stop = m_stop,
386 .show = show_pid_map
389 static const struct seq_operations proc_tid_maps_op = {
390 .start = m_start,
391 .next = m_next,
392 .stop = m_stop,
393 .show = show_tid_map
396 static int pid_maps_open(struct inode *inode, struct file *file)
398 return do_maps_open(inode, file, &proc_pid_maps_op);
401 static int tid_maps_open(struct inode *inode, struct file *file)
403 return do_maps_open(inode, file, &proc_tid_maps_op);
406 const struct file_operations proc_pid_maps_operations = {
407 .open = pid_maps_open,
408 .read = seq_read,
409 .llseek = seq_lseek,
410 .release = proc_map_release,
413 const struct file_operations proc_tid_maps_operations = {
414 .open = tid_maps_open,
415 .read = seq_read,
416 .llseek = seq_lseek,
417 .release = proc_map_release,
421 * Proportional Set Size(PSS): my share of RSS.
423 * PSS of a process is the count of pages it has in memory, where each
424 * page is divided by the number of processes sharing it. So if a
425 * process has 1000 pages all to itself, and 1000 shared with one other
426 * process, its PSS will be 1500.
428 * To keep (accumulated) division errors low, we adopt a 64bit
429 * fixed-point pss counter to minimize division errors. So (pss >>
430 * PSS_SHIFT) would be the real byte count.
432 * A shift of 12 before division means (assuming 4K page size):
433 * - 1M 3-user-pages add up to 8KB errors;
434 * - supports mapcount up to 2^24, or 16M;
435 * - supports PSS up to 2^52 bytes, or 4PB.
437 #define PSS_SHIFT 12
439 #ifdef CONFIG_PROC_PAGE_MONITOR
440 struct mem_size_stats {
441 bool first;
442 unsigned long resident;
443 unsigned long shared_clean;
444 unsigned long shared_dirty;
445 unsigned long private_clean;
446 unsigned long private_dirty;
447 unsigned long referenced;
448 unsigned long anonymous;
449 unsigned long lazyfree;
450 unsigned long anonymous_thp;
451 unsigned long shmem_thp;
452 unsigned long swap;
453 unsigned long shared_hugetlb;
454 unsigned long private_hugetlb;
455 unsigned long first_vma_start;
456 u64 pss;
457 u64 pss_locked;
458 u64 swap_pss;
459 bool check_shmem_swap;
462 static void smaps_account(struct mem_size_stats *mss, struct page *page,
463 bool compound, bool young, bool dirty)
465 int i, nr = compound ? 1 << compound_order(page) : 1;
466 unsigned long size = nr * PAGE_SIZE;
468 if (PageAnon(page)) {
469 mss->anonymous += size;
470 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
471 mss->lazyfree += size;
474 mss->resident += size;
475 /* Accumulate the size in pages that have been accessed. */
476 if (young || page_is_young(page) || PageReferenced(page))
477 mss->referenced += size;
480 * page_count(page) == 1 guarantees the page is mapped exactly once.
481 * If any subpage of the compound page mapped with PTE it would elevate
482 * page_count().
484 if (page_count(page) == 1) {
485 if (dirty || PageDirty(page))
486 mss->private_dirty += size;
487 else
488 mss->private_clean += size;
489 mss->pss += (u64)size << PSS_SHIFT;
490 return;
493 for (i = 0; i < nr; i++, page++) {
494 int mapcount = page_mapcount(page);
496 if (mapcount >= 2) {
497 if (dirty || PageDirty(page))
498 mss->shared_dirty += PAGE_SIZE;
499 else
500 mss->shared_clean += PAGE_SIZE;
501 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
502 } else {
503 if (dirty || PageDirty(page))
504 mss->private_dirty += PAGE_SIZE;
505 else
506 mss->private_clean += PAGE_SIZE;
507 mss->pss += PAGE_SIZE << PSS_SHIFT;
512 #ifdef CONFIG_SHMEM
513 static int smaps_pte_hole(unsigned long addr, unsigned long end,
514 struct mm_walk *walk)
516 struct mem_size_stats *mss = walk->private;
518 mss->swap += shmem_partial_swap_usage(
519 walk->vma->vm_file->f_mapping, addr, end);
521 return 0;
523 #endif
525 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
526 struct mm_walk *walk)
528 struct mem_size_stats *mss = walk->private;
529 struct vm_area_struct *vma = walk->vma;
530 struct page *page = NULL;
532 if (pte_present(*pte)) {
533 page = vm_normal_page(vma, addr, *pte);
534 } else if (is_swap_pte(*pte)) {
535 swp_entry_t swpent = pte_to_swp_entry(*pte);
537 if (!non_swap_entry(swpent)) {
538 int mapcount;
540 mss->swap += PAGE_SIZE;
541 mapcount = swp_swapcount(swpent);
542 if (mapcount >= 2) {
543 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
545 do_div(pss_delta, mapcount);
546 mss->swap_pss += pss_delta;
547 } else {
548 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
550 } else if (is_migration_entry(swpent))
551 page = migration_entry_to_page(swpent);
552 else if (is_device_private_entry(swpent))
553 page = device_private_entry_to_page(swpent);
554 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
555 && pte_none(*pte))) {
556 page = find_get_entry(vma->vm_file->f_mapping,
557 linear_page_index(vma, addr));
558 if (!page)
559 return;
561 if (radix_tree_exceptional_entry(page))
562 mss->swap += PAGE_SIZE;
563 else
564 put_page(page);
566 return;
569 if (!page)
570 return;
572 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
575 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
576 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
577 struct mm_walk *walk)
579 struct mem_size_stats *mss = walk->private;
580 struct vm_area_struct *vma = walk->vma;
581 struct page *page;
583 /* FOLL_DUMP will return -EFAULT on huge zero page */
584 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
585 if (IS_ERR_OR_NULL(page))
586 return;
587 if (PageAnon(page))
588 mss->anonymous_thp += HPAGE_PMD_SIZE;
589 else if (PageSwapBacked(page))
590 mss->shmem_thp += HPAGE_PMD_SIZE;
591 else if (is_zone_device_page(page))
592 /* pass */;
593 else
594 VM_BUG_ON_PAGE(1, page);
595 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
597 #else
598 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
599 struct mm_walk *walk)
602 #endif
604 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
605 struct mm_walk *walk)
607 struct vm_area_struct *vma = walk->vma;
608 pte_t *pte;
609 spinlock_t *ptl;
611 ptl = pmd_trans_huge_lock(pmd, vma);
612 if (ptl) {
613 if (pmd_present(*pmd))
614 smaps_pmd_entry(pmd, addr, walk);
615 spin_unlock(ptl);
616 goto out;
619 if (pmd_trans_unstable(pmd))
620 goto out;
622 * The mmap_sem held all the way back in m_start() is what
623 * keeps khugepaged out of here and from collapsing things
624 * in here.
626 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
627 for (; addr != end; pte++, addr += PAGE_SIZE)
628 smaps_pte_entry(pte, addr, walk);
629 pte_unmap_unlock(pte - 1, ptl);
630 out:
631 cond_resched();
632 return 0;
635 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
638 * Don't forget to update Documentation/ on changes.
640 static const char mnemonics[BITS_PER_LONG][2] = {
642 * In case if we meet a flag we don't know about.
644 [0 ... (BITS_PER_LONG-1)] = "??",
646 [ilog2(VM_READ)] = "rd",
647 [ilog2(VM_WRITE)] = "wr",
648 [ilog2(VM_EXEC)] = "ex",
649 [ilog2(VM_SHARED)] = "sh",
650 [ilog2(VM_MAYREAD)] = "mr",
651 [ilog2(VM_MAYWRITE)] = "mw",
652 [ilog2(VM_MAYEXEC)] = "me",
653 [ilog2(VM_MAYSHARE)] = "ms",
654 [ilog2(VM_GROWSDOWN)] = "gd",
655 [ilog2(VM_PFNMAP)] = "pf",
656 [ilog2(VM_DENYWRITE)] = "dw",
657 #ifdef CONFIG_X86_INTEL_MPX
658 [ilog2(VM_MPX)] = "mp",
659 #endif
660 [ilog2(VM_LOCKED)] = "lo",
661 [ilog2(VM_IO)] = "io",
662 [ilog2(VM_SEQ_READ)] = "sr",
663 [ilog2(VM_RAND_READ)] = "rr",
664 [ilog2(VM_DONTCOPY)] = "dc",
665 [ilog2(VM_DONTEXPAND)] = "de",
666 [ilog2(VM_ACCOUNT)] = "ac",
667 [ilog2(VM_NORESERVE)] = "nr",
668 [ilog2(VM_HUGETLB)] = "ht",
669 [ilog2(VM_SYNC)] = "sf",
670 [ilog2(VM_ARCH_1)] = "ar",
671 [ilog2(VM_WIPEONFORK)] = "wf",
672 [ilog2(VM_DONTDUMP)] = "dd",
673 #ifdef CONFIG_MEM_SOFT_DIRTY
674 [ilog2(VM_SOFTDIRTY)] = "sd",
675 #endif
676 [ilog2(VM_MIXEDMAP)] = "mm",
677 [ilog2(VM_HUGEPAGE)] = "hg",
678 [ilog2(VM_NOHUGEPAGE)] = "nh",
679 [ilog2(VM_MERGEABLE)] = "mg",
680 [ilog2(VM_UFFD_MISSING)]= "um",
681 [ilog2(VM_UFFD_WP)] = "uw",
682 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
683 /* These come out via ProtectionKey: */
684 [ilog2(VM_PKEY_BIT0)] = "",
685 [ilog2(VM_PKEY_BIT1)] = "",
686 [ilog2(VM_PKEY_BIT2)] = "",
687 [ilog2(VM_PKEY_BIT3)] = "",
688 #endif
690 size_t i;
692 seq_puts(m, "VmFlags: ");
693 for (i = 0; i < BITS_PER_LONG; i++) {
694 if (!mnemonics[i][0])
695 continue;
696 if (vma->vm_flags & (1UL << i)) {
697 seq_printf(m, "%c%c ",
698 mnemonics[i][0], mnemonics[i][1]);
701 seq_putc(m, '\n');
704 #ifdef CONFIG_HUGETLB_PAGE
705 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
706 unsigned long addr, unsigned long end,
707 struct mm_walk *walk)
709 struct mem_size_stats *mss = walk->private;
710 struct vm_area_struct *vma = walk->vma;
711 struct page *page = NULL;
713 if (pte_present(*pte)) {
714 page = vm_normal_page(vma, addr, *pte);
715 } else if (is_swap_pte(*pte)) {
716 swp_entry_t swpent = pte_to_swp_entry(*pte);
718 if (is_migration_entry(swpent))
719 page = migration_entry_to_page(swpent);
720 else if (is_device_private_entry(swpent))
721 page = device_private_entry_to_page(swpent);
723 if (page) {
724 int mapcount = page_mapcount(page);
726 if (mapcount >= 2)
727 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
728 else
729 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
731 return 0;
733 #endif /* HUGETLB_PAGE */
735 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
739 static int show_smap(struct seq_file *m, void *v, int is_pid)
741 struct proc_maps_private *priv = m->private;
742 struct vm_area_struct *vma = v;
743 struct mem_size_stats mss_stack;
744 struct mem_size_stats *mss;
745 struct mm_walk smaps_walk = {
746 .pmd_entry = smaps_pte_range,
747 #ifdef CONFIG_HUGETLB_PAGE
748 .hugetlb_entry = smaps_hugetlb_range,
749 #endif
750 .mm = vma->vm_mm,
752 int ret = 0;
753 bool rollup_mode;
754 bool last_vma;
756 if (priv->rollup) {
757 rollup_mode = true;
758 mss = priv->rollup;
759 if (mss->first) {
760 mss->first_vma_start = vma->vm_start;
761 mss->first = false;
763 last_vma = !m_next_vma(priv, vma);
764 } else {
765 rollup_mode = false;
766 memset(&mss_stack, 0, sizeof(mss_stack));
767 mss = &mss_stack;
770 smaps_walk.private = mss;
772 #ifdef CONFIG_SHMEM
773 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
775 * For shared or readonly shmem mappings we know that all
776 * swapped out pages belong to the shmem object, and we can
777 * obtain the swap value much more efficiently. For private
778 * writable mappings, we might have COW pages that are
779 * not affected by the parent swapped out pages of the shmem
780 * object, so we have to distinguish them during the page walk.
781 * Unless we know that the shmem object (or the part mapped by
782 * our VMA) has no swapped out pages at all.
784 unsigned long shmem_swapped = shmem_swap_usage(vma);
786 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
787 !(vma->vm_flags & VM_WRITE)) {
788 mss->swap = shmem_swapped;
789 } else {
790 mss->check_shmem_swap = true;
791 smaps_walk.pte_hole = smaps_pte_hole;
794 #endif
796 /* mmap_sem is held in m_start */
797 walk_page_vma(vma, &smaps_walk);
798 if (vma->vm_flags & VM_LOCKED)
799 mss->pss_locked += mss->pss;
801 if (!rollup_mode) {
802 show_map_vma(m, vma, is_pid);
803 } else if (last_vma) {
804 show_vma_header_prefix(
805 m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
806 seq_pad(m, ' ');
807 seq_puts(m, "[rollup]\n");
808 } else {
809 ret = SEQ_SKIP;
812 if (!rollup_mode)
813 seq_printf(m,
814 "Size: %8lu kB\n"
815 "KernelPageSize: %8lu kB\n"
816 "MMUPageSize: %8lu kB\n",
817 (vma->vm_end - vma->vm_start) >> 10,
818 vma_kernel_pagesize(vma) >> 10,
819 vma_mmu_pagesize(vma) >> 10);
822 if (!rollup_mode || last_vma)
823 seq_printf(m,
824 "Rss: %8lu kB\n"
825 "Pss: %8lu kB\n"
826 "Shared_Clean: %8lu kB\n"
827 "Shared_Dirty: %8lu kB\n"
828 "Private_Clean: %8lu kB\n"
829 "Private_Dirty: %8lu kB\n"
830 "Referenced: %8lu kB\n"
831 "Anonymous: %8lu kB\n"
832 "LazyFree: %8lu kB\n"
833 "AnonHugePages: %8lu kB\n"
834 "ShmemPmdMapped: %8lu kB\n"
835 "Shared_Hugetlb: %8lu kB\n"
836 "Private_Hugetlb: %7lu kB\n"
837 "Swap: %8lu kB\n"
838 "SwapPss: %8lu kB\n"
839 "Locked: %8lu kB\n",
840 mss->resident >> 10,
841 (unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
842 mss->shared_clean >> 10,
843 mss->shared_dirty >> 10,
844 mss->private_clean >> 10,
845 mss->private_dirty >> 10,
846 mss->referenced >> 10,
847 mss->anonymous >> 10,
848 mss->lazyfree >> 10,
849 mss->anonymous_thp >> 10,
850 mss->shmem_thp >> 10,
851 mss->shared_hugetlb >> 10,
852 mss->private_hugetlb >> 10,
853 mss->swap >> 10,
854 (unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)),
855 (unsigned long)(mss->pss >> (10 + PSS_SHIFT)));
857 if (!rollup_mode) {
858 arch_show_smap(m, vma);
859 show_smap_vma_flags(m, vma);
861 m_cache_vma(m, vma);
862 return ret;
865 static int show_pid_smap(struct seq_file *m, void *v)
867 return show_smap(m, v, 1);
870 static int show_tid_smap(struct seq_file *m, void *v)
872 return show_smap(m, v, 0);
875 static const struct seq_operations proc_pid_smaps_op = {
876 .start = m_start,
877 .next = m_next,
878 .stop = m_stop,
879 .show = show_pid_smap
882 static const struct seq_operations proc_tid_smaps_op = {
883 .start = m_start,
884 .next = m_next,
885 .stop = m_stop,
886 .show = show_tid_smap
889 static int pid_smaps_open(struct inode *inode, struct file *file)
891 return do_maps_open(inode, file, &proc_pid_smaps_op);
894 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
896 struct seq_file *seq;
897 struct proc_maps_private *priv;
898 int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
900 if (ret < 0)
901 return ret;
902 seq = file->private_data;
903 priv = seq->private;
904 priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
905 if (!priv->rollup) {
906 proc_map_release(inode, file);
907 return -ENOMEM;
909 priv->rollup->first = true;
910 return 0;
913 static int tid_smaps_open(struct inode *inode, struct file *file)
915 return do_maps_open(inode, file, &proc_tid_smaps_op);
918 const struct file_operations proc_pid_smaps_operations = {
919 .open = pid_smaps_open,
920 .read = seq_read,
921 .llseek = seq_lseek,
922 .release = proc_map_release,
925 const struct file_operations proc_pid_smaps_rollup_operations = {
926 .open = pid_smaps_rollup_open,
927 .read = seq_read,
928 .llseek = seq_lseek,
929 .release = proc_map_release,
932 const struct file_operations proc_tid_smaps_operations = {
933 .open = tid_smaps_open,
934 .read = seq_read,
935 .llseek = seq_lseek,
936 .release = proc_map_release,
939 enum clear_refs_types {
940 CLEAR_REFS_ALL = 1,
941 CLEAR_REFS_ANON,
942 CLEAR_REFS_MAPPED,
943 CLEAR_REFS_SOFT_DIRTY,
944 CLEAR_REFS_MM_HIWATER_RSS,
945 CLEAR_REFS_LAST,
948 struct clear_refs_private {
949 enum clear_refs_types type;
952 #ifdef CONFIG_MEM_SOFT_DIRTY
953 static inline void clear_soft_dirty(struct vm_area_struct *vma,
954 unsigned long addr, pte_t *pte)
957 * The soft-dirty tracker uses #PF-s to catch writes
958 * to pages, so write-protect the pte as well. See the
959 * Documentation/vm/soft-dirty.txt for full description
960 * of how soft-dirty works.
962 pte_t ptent = *pte;
964 if (pte_present(ptent)) {
965 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
966 ptent = pte_wrprotect(ptent);
967 ptent = pte_clear_soft_dirty(ptent);
968 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
969 } else if (is_swap_pte(ptent)) {
970 ptent = pte_swp_clear_soft_dirty(ptent);
971 set_pte_at(vma->vm_mm, addr, pte, ptent);
974 #else
975 static inline void clear_soft_dirty(struct vm_area_struct *vma,
976 unsigned long addr, pte_t *pte)
979 #endif
981 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
982 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
983 unsigned long addr, pmd_t *pmdp)
985 pmd_t old, pmd = *pmdp;
987 if (pmd_present(pmd)) {
988 /* See comment in change_huge_pmd() */
989 old = pmdp_invalidate(vma, addr, pmdp);
990 if (pmd_dirty(old))
991 pmd = pmd_mkdirty(pmd);
992 if (pmd_young(old))
993 pmd = pmd_mkyoung(pmd);
995 pmd = pmd_wrprotect(pmd);
996 pmd = pmd_clear_soft_dirty(pmd);
998 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
999 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1000 pmd = pmd_swp_clear_soft_dirty(pmd);
1001 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1004 #else
1005 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1006 unsigned long addr, pmd_t *pmdp)
1009 #endif
1011 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1012 unsigned long end, struct mm_walk *walk)
1014 struct clear_refs_private *cp = walk->private;
1015 struct vm_area_struct *vma = walk->vma;
1016 pte_t *pte, ptent;
1017 spinlock_t *ptl;
1018 struct page *page;
1020 ptl = pmd_trans_huge_lock(pmd, vma);
1021 if (ptl) {
1022 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1023 clear_soft_dirty_pmd(vma, addr, pmd);
1024 goto out;
1027 if (!pmd_present(*pmd))
1028 goto out;
1030 page = pmd_page(*pmd);
1032 /* Clear accessed and referenced bits. */
1033 pmdp_test_and_clear_young(vma, addr, pmd);
1034 test_and_clear_page_young(page);
1035 ClearPageReferenced(page);
1036 out:
1037 spin_unlock(ptl);
1038 return 0;
1041 if (pmd_trans_unstable(pmd))
1042 return 0;
1044 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1045 for (; addr != end; pte++, addr += PAGE_SIZE) {
1046 ptent = *pte;
1048 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1049 clear_soft_dirty(vma, addr, pte);
1050 continue;
1053 if (!pte_present(ptent))
1054 continue;
1056 page = vm_normal_page(vma, addr, ptent);
1057 if (!page)
1058 continue;
1060 /* Clear accessed and referenced bits. */
1061 ptep_test_and_clear_young(vma, addr, pte);
1062 test_and_clear_page_young(page);
1063 ClearPageReferenced(page);
1065 pte_unmap_unlock(pte - 1, ptl);
1066 cond_resched();
1067 return 0;
1070 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1071 struct mm_walk *walk)
1073 struct clear_refs_private *cp = walk->private;
1074 struct vm_area_struct *vma = walk->vma;
1076 if (vma->vm_flags & VM_PFNMAP)
1077 return 1;
1080 * Writing 1 to /proc/pid/clear_refs affects all pages.
1081 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1082 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1083 * Writing 4 to /proc/pid/clear_refs affects all pages.
1085 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1086 return 1;
1087 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1088 return 1;
1089 return 0;
1092 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1093 size_t count, loff_t *ppos)
1095 struct task_struct *task;
1096 char buffer[PROC_NUMBUF];
1097 struct mm_struct *mm;
1098 struct vm_area_struct *vma;
1099 enum clear_refs_types type;
1100 struct mmu_gather tlb;
1101 int itype;
1102 int rv;
1104 memset(buffer, 0, sizeof(buffer));
1105 if (count > sizeof(buffer) - 1)
1106 count = sizeof(buffer) - 1;
1107 if (copy_from_user(buffer, buf, count))
1108 return -EFAULT;
1109 rv = kstrtoint(strstrip(buffer), 10, &itype);
1110 if (rv < 0)
1111 return rv;
1112 type = (enum clear_refs_types)itype;
1113 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1114 return -EINVAL;
1116 task = get_proc_task(file_inode(file));
1117 if (!task)
1118 return -ESRCH;
1119 mm = get_task_mm(task);
1120 if (mm) {
1121 struct clear_refs_private cp = {
1122 .type = type,
1124 struct mm_walk clear_refs_walk = {
1125 .pmd_entry = clear_refs_pte_range,
1126 .test_walk = clear_refs_test_walk,
1127 .mm = mm,
1128 .private = &cp,
1131 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1132 if (down_write_killable(&mm->mmap_sem)) {
1133 count = -EINTR;
1134 goto out_mm;
1138 * Writing 5 to /proc/pid/clear_refs resets the peak
1139 * resident set size to this mm's current rss value.
1141 reset_mm_hiwater_rss(mm);
1142 up_write(&mm->mmap_sem);
1143 goto out_mm;
1146 down_read(&mm->mmap_sem);
1147 tlb_gather_mmu(&tlb, mm, 0, -1);
1148 if (type == CLEAR_REFS_SOFT_DIRTY) {
1149 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1150 if (!(vma->vm_flags & VM_SOFTDIRTY))
1151 continue;
1152 up_read(&mm->mmap_sem);
1153 if (down_write_killable(&mm->mmap_sem)) {
1154 count = -EINTR;
1155 goto out_mm;
1157 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1158 vma->vm_flags &= ~VM_SOFTDIRTY;
1159 vma_set_page_prot(vma);
1161 downgrade_write(&mm->mmap_sem);
1162 break;
1164 mmu_notifier_invalidate_range_start(mm, 0, -1);
1166 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1167 if (type == CLEAR_REFS_SOFT_DIRTY)
1168 mmu_notifier_invalidate_range_end(mm, 0, -1);
1169 tlb_finish_mmu(&tlb, 0, -1);
1170 up_read(&mm->mmap_sem);
1171 out_mm:
1172 mmput(mm);
1174 put_task_struct(task);
1176 return count;
1179 const struct file_operations proc_clear_refs_operations = {
1180 .write = clear_refs_write,
1181 .llseek = noop_llseek,
1184 typedef struct {
1185 u64 pme;
1186 } pagemap_entry_t;
1188 struct pagemapread {
1189 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1190 pagemap_entry_t *buffer;
1191 bool show_pfn;
1194 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1195 #define PAGEMAP_WALK_MASK (PMD_MASK)
1197 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1198 #define PM_PFRAME_BITS 55
1199 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1200 #define PM_SOFT_DIRTY BIT_ULL(55)
1201 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1202 #define PM_FILE BIT_ULL(61)
1203 #define PM_SWAP BIT_ULL(62)
1204 #define PM_PRESENT BIT_ULL(63)
1206 #define PM_END_OF_BUFFER 1
1208 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1210 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1213 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1214 struct pagemapread *pm)
1216 pm->buffer[pm->pos++] = *pme;
1217 if (pm->pos >= pm->len)
1218 return PM_END_OF_BUFFER;
1219 return 0;
1222 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1223 struct mm_walk *walk)
1225 struct pagemapread *pm = walk->private;
1226 unsigned long addr = start;
1227 int err = 0;
1229 while (addr < end) {
1230 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1231 pagemap_entry_t pme = make_pme(0, 0);
1232 /* End of address space hole, which we mark as non-present. */
1233 unsigned long hole_end;
1235 if (vma)
1236 hole_end = min(end, vma->vm_start);
1237 else
1238 hole_end = end;
1240 for (; addr < hole_end; addr += PAGE_SIZE) {
1241 err = add_to_pagemap(addr, &pme, pm);
1242 if (err)
1243 goto out;
1246 if (!vma)
1247 break;
1249 /* Addresses in the VMA. */
1250 if (vma->vm_flags & VM_SOFTDIRTY)
1251 pme = make_pme(0, PM_SOFT_DIRTY);
1252 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1253 err = add_to_pagemap(addr, &pme, pm);
1254 if (err)
1255 goto out;
1258 out:
1259 return err;
1262 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1263 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1265 u64 frame = 0, flags = 0;
1266 struct page *page = NULL;
1268 if (pte_present(pte)) {
1269 if (pm->show_pfn)
1270 frame = pte_pfn(pte);
1271 flags |= PM_PRESENT;
1272 page = _vm_normal_page(vma, addr, pte, true);
1273 if (pte_soft_dirty(pte))
1274 flags |= PM_SOFT_DIRTY;
1275 } else if (is_swap_pte(pte)) {
1276 swp_entry_t entry;
1277 if (pte_swp_soft_dirty(pte))
1278 flags |= PM_SOFT_DIRTY;
1279 entry = pte_to_swp_entry(pte);
1280 frame = swp_type(entry) |
1281 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1282 flags |= PM_SWAP;
1283 if (is_migration_entry(entry))
1284 page = migration_entry_to_page(entry);
1286 if (is_device_private_entry(entry))
1287 page = device_private_entry_to_page(entry);
1290 if (page && !PageAnon(page))
1291 flags |= PM_FILE;
1292 if (page && page_mapcount(page) == 1)
1293 flags |= PM_MMAP_EXCLUSIVE;
1294 if (vma->vm_flags & VM_SOFTDIRTY)
1295 flags |= PM_SOFT_DIRTY;
1297 return make_pme(frame, flags);
1300 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1301 struct mm_walk *walk)
1303 struct vm_area_struct *vma = walk->vma;
1304 struct pagemapread *pm = walk->private;
1305 spinlock_t *ptl;
1306 pte_t *pte, *orig_pte;
1307 int err = 0;
1309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310 ptl = pmd_trans_huge_lock(pmdp, vma);
1311 if (ptl) {
1312 u64 flags = 0, frame = 0;
1313 pmd_t pmd = *pmdp;
1314 struct page *page = NULL;
1316 if (vma->vm_flags & VM_SOFTDIRTY)
1317 flags |= PM_SOFT_DIRTY;
1319 if (pmd_present(pmd)) {
1320 page = pmd_page(pmd);
1322 flags |= PM_PRESENT;
1323 if (pmd_soft_dirty(pmd))
1324 flags |= PM_SOFT_DIRTY;
1325 if (pm->show_pfn)
1326 frame = pmd_pfn(pmd) +
1327 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1330 else if (is_swap_pmd(pmd)) {
1331 swp_entry_t entry = pmd_to_swp_entry(pmd);
1333 frame = swp_type(entry) |
1334 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1335 flags |= PM_SWAP;
1336 if (pmd_swp_soft_dirty(pmd))
1337 flags |= PM_SOFT_DIRTY;
1338 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1339 page = migration_entry_to_page(entry);
1341 #endif
1343 if (page && page_mapcount(page) == 1)
1344 flags |= PM_MMAP_EXCLUSIVE;
1346 for (; addr != end; addr += PAGE_SIZE) {
1347 pagemap_entry_t pme = make_pme(frame, flags);
1349 err = add_to_pagemap(addr, &pme, pm);
1350 if (err)
1351 break;
1352 if (pm->show_pfn && (flags & PM_PRESENT))
1353 frame++;
1355 spin_unlock(ptl);
1356 return err;
1359 if (pmd_trans_unstable(pmdp))
1360 return 0;
1361 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1364 * We can assume that @vma always points to a valid one and @end never
1365 * goes beyond vma->vm_end.
1367 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1368 for (; addr < end; pte++, addr += PAGE_SIZE) {
1369 pagemap_entry_t pme;
1371 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1372 err = add_to_pagemap(addr, &pme, pm);
1373 if (err)
1374 break;
1376 pte_unmap_unlock(orig_pte, ptl);
1378 cond_resched();
1380 return err;
1383 #ifdef CONFIG_HUGETLB_PAGE
1384 /* This function walks within one hugetlb entry in the single call */
1385 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1386 unsigned long addr, unsigned long end,
1387 struct mm_walk *walk)
1389 struct pagemapread *pm = walk->private;
1390 struct vm_area_struct *vma = walk->vma;
1391 u64 flags = 0, frame = 0;
1392 int err = 0;
1393 pte_t pte;
1395 if (vma->vm_flags & VM_SOFTDIRTY)
1396 flags |= PM_SOFT_DIRTY;
1398 pte = huge_ptep_get(ptep);
1399 if (pte_present(pte)) {
1400 struct page *page = pte_page(pte);
1402 if (!PageAnon(page))
1403 flags |= PM_FILE;
1405 if (page_mapcount(page) == 1)
1406 flags |= PM_MMAP_EXCLUSIVE;
1408 flags |= PM_PRESENT;
1409 if (pm->show_pfn)
1410 frame = pte_pfn(pte) +
1411 ((addr & ~hmask) >> PAGE_SHIFT);
1414 for (; addr != end; addr += PAGE_SIZE) {
1415 pagemap_entry_t pme = make_pme(frame, flags);
1417 err = add_to_pagemap(addr, &pme, pm);
1418 if (err)
1419 return err;
1420 if (pm->show_pfn && (flags & PM_PRESENT))
1421 frame++;
1424 cond_resched();
1426 return err;
1428 #endif /* HUGETLB_PAGE */
1431 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1433 * For each page in the address space, this file contains one 64-bit entry
1434 * consisting of the following:
1436 * Bits 0-54 page frame number (PFN) if present
1437 * Bits 0-4 swap type if swapped
1438 * Bits 5-54 swap offset if swapped
1439 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1440 * Bit 56 page exclusively mapped
1441 * Bits 57-60 zero
1442 * Bit 61 page is file-page or shared-anon
1443 * Bit 62 page swapped
1444 * Bit 63 page present
1446 * If the page is not present but in swap, then the PFN contains an
1447 * encoding of the swap file number and the page's offset into the
1448 * swap. Unmapped pages return a null PFN. This allows determining
1449 * precisely which pages are mapped (or in swap) and comparing mapped
1450 * pages between processes.
1452 * Efficient users of this interface will use /proc/pid/maps to
1453 * determine which areas of memory are actually mapped and llseek to
1454 * skip over unmapped regions.
1456 static ssize_t pagemap_read(struct file *file, char __user *buf,
1457 size_t count, loff_t *ppos)
1459 struct mm_struct *mm = file->private_data;
1460 struct pagemapread pm;
1461 struct mm_walk pagemap_walk = {};
1462 unsigned long src;
1463 unsigned long svpfn;
1464 unsigned long start_vaddr;
1465 unsigned long end_vaddr;
1466 int ret = 0, copied = 0;
1468 if (!mm || !mmget_not_zero(mm))
1469 goto out;
1471 ret = -EINVAL;
1472 /* file position must be aligned */
1473 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1474 goto out_mm;
1476 ret = 0;
1477 if (!count)
1478 goto out_mm;
1480 /* do not disclose physical addresses: attack vector */
1481 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1483 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1484 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
1485 ret = -ENOMEM;
1486 if (!pm.buffer)
1487 goto out_mm;
1489 pagemap_walk.pmd_entry = pagemap_pmd_range;
1490 pagemap_walk.pte_hole = pagemap_pte_hole;
1491 #ifdef CONFIG_HUGETLB_PAGE
1492 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1493 #endif
1494 pagemap_walk.mm = mm;
1495 pagemap_walk.private = &pm;
1497 src = *ppos;
1498 svpfn = src / PM_ENTRY_BYTES;
1499 start_vaddr = svpfn << PAGE_SHIFT;
1500 end_vaddr = mm->task_size;
1502 /* watch out for wraparound */
1503 if (svpfn > mm->task_size >> PAGE_SHIFT)
1504 start_vaddr = end_vaddr;
1507 * The odds are that this will stop walking way
1508 * before end_vaddr, because the length of the
1509 * user buffer is tracked in "pm", and the walk
1510 * will stop when we hit the end of the buffer.
1512 ret = 0;
1513 while (count && (start_vaddr < end_vaddr)) {
1514 int len;
1515 unsigned long end;
1517 pm.pos = 0;
1518 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1519 /* overflow ? */
1520 if (end < start_vaddr || end > end_vaddr)
1521 end = end_vaddr;
1522 down_read(&mm->mmap_sem);
1523 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1524 up_read(&mm->mmap_sem);
1525 start_vaddr = end;
1527 len = min(count, PM_ENTRY_BYTES * pm.pos);
1528 if (copy_to_user(buf, pm.buffer, len)) {
1529 ret = -EFAULT;
1530 goto out_free;
1532 copied += len;
1533 buf += len;
1534 count -= len;
1536 *ppos += copied;
1537 if (!ret || ret == PM_END_OF_BUFFER)
1538 ret = copied;
1540 out_free:
1541 kfree(pm.buffer);
1542 out_mm:
1543 mmput(mm);
1544 out:
1545 return ret;
1548 static int pagemap_open(struct inode *inode, struct file *file)
1550 struct mm_struct *mm;
1552 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1553 if (IS_ERR(mm))
1554 return PTR_ERR(mm);
1555 file->private_data = mm;
1556 return 0;
1559 static int pagemap_release(struct inode *inode, struct file *file)
1561 struct mm_struct *mm = file->private_data;
1563 if (mm)
1564 mmdrop(mm);
1565 return 0;
1568 const struct file_operations proc_pagemap_operations = {
1569 .llseek = mem_lseek, /* borrow this */
1570 .read = pagemap_read,
1571 .open = pagemap_open,
1572 .release = pagemap_release,
1574 #endif /* CONFIG_PROC_PAGE_MONITOR */
1576 #ifdef CONFIG_NUMA
1578 struct numa_maps {
1579 unsigned long pages;
1580 unsigned long anon;
1581 unsigned long active;
1582 unsigned long writeback;
1583 unsigned long mapcount_max;
1584 unsigned long dirty;
1585 unsigned long swapcache;
1586 unsigned long node[MAX_NUMNODES];
1589 struct numa_maps_private {
1590 struct proc_maps_private proc_maps;
1591 struct numa_maps md;
1594 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1595 unsigned long nr_pages)
1597 int count = page_mapcount(page);
1599 md->pages += nr_pages;
1600 if (pte_dirty || PageDirty(page))
1601 md->dirty += nr_pages;
1603 if (PageSwapCache(page))
1604 md->swapcache += nr_pages;
1606 if (PageActive(page) || PageUnevictable(page))
1607 md->active += nr_pages;
1609 if (PageWriteback(page))
1610 md->writeback += nr_pages;
1612 if (PageAnon(page))
1613 md->anon += nr_pages;
1615 if (count > md->mapcount_max)
1616 md->mapcount_max = count;
1618 md->node[page_to_nid(page)] += nr_pages;
1621 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1622 unsigned long addr)
1624 struct page *page;
1625 int nid;
1627 if (!pte_present(pte))
1628 return NULL;
1630 page = vm_normal_page(vma, addr, pte);
1631 if (!page)
1632 return NULL;
1634 if (PageReserved(page))
1635 return NULL;
1637 nid = page_to_nid(page);
1638 if (!node_isset(nid, node_states[N_MEMORY]))
1639 return NULL;
1641 return page;
1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1645 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1646 struct vm_area_struct *vma,
1647 unsigned long addr)
1649 struct page *page;
1650 int nid;
1652 if (!pmd_present(pmd))
1653 return NULL;
1655 page = vm_normal_page_pmd(vma, addr, pmd);
1656 if (!page)
1657 return NULL;
1659 if (PageReserved(page))
1660 return NULL;
1662 nid = page_to_nid(page);
1663 if (!node_isset(nid, node_states[N_MEMORY]))
1664 return NULL;
1666 return page;
1668 #endif
1670 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1671 unsigned long end, struct mm_walk *walk)
1673 struct numa_maps *md = walk->private;
1674 struct vm_area_struct *vma = walk->vma;
1675 spinlock_t *ptl;
1676 pte_t *orig_pte;
1677 pte_t *pte;
1679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1680 ptl = pmd_trans_huge_lock(pmd, vma);
1681 if (ptl) {
1682 struct page *page;
1684 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1685 if (page)
1686 gather_stats(page, md, pmd_dirty(*pmd),
1687 HPAGE_PMD_SIZE/PAGE_SIZE);
1688 spin_unlock(ptl);
1689 return 0;
1692 if (pmd_trans_unstable(pmd))
1693 return 0;
1694 #endif
1695 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1696 do {
1697 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1698 if (!page)
1699 continue;
1700 gather_stats(page, md, pte_dirty(*pte), 1);
1702 } while (pte++, addr += PAGE_SIZE, addr != end);
1703 pte_unmap_unlock(orig_pte, ptl);
1704 cond_resched();
1705 return 0;
1707 #ifdef CONFIG_HUGETLB_PAGE
1708 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1709 unsigned long addr, unsigned long end, struct mm_walk *walk)
1711 pte_t huge_pte = huge_ptep_get(pte);
1712 struct numa_maps *md;
1713 struct page *page;
1715 if (!pte_present(huge_pte))
1716 return 0;
1718 page = pte_page(huge_pte);
1719 if (!page)
1720 return 0;
1722 md = walk->private;
1723 gather_stats(page, md, pte_dirty(huge_pte), 1);
1724 return 0;
1727 #else
1728 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1729 unsigned long addr, unsigned long end, struct mm_walk *walk)
1731 return 0;
1733 #endif
1736 * Display pages allocated per node and memory policy via /proc.
1738 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1740 struct numa_maps_private *numa_priv = m->private;
1741 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1742 struct vm_area_struct *vma = v;
1743 struct numa_maps *md = &numa_priv->md;
1744 struct file *file = vma->vm_file;
1745 struct mm_struct *mm = vma->vm_mm;
1746 struct mm_walk walk = {
1747 .hugetlb_entry = gather_hugetlb_stats,
1748 .pmd_entry = gather_pte_stats,
1749 .private = md,
1750 .mm = mm,
1752 struct mempolicy *pol;
1753 char buffer[64];
1754 int nid;
1756 if (!mm)
1757 return 0;
1759 /* Ensure we start with an empty set of numa_maps statistics. */
1760 memset(md, 0, sizeof(*md));
1762 pol = __get_vma_policy(vma, vma->vm_start);
1763 if (pol) {
1764 mpol_to_str(buffer, sizeof(buffer), pol);
1765 mpol_cond_put(pol);
1766 } else {
1767 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1770 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1772 if (file) {
1773 seq_puts(m, " file=");
1774 seq_file_path(m, file, "\n\t= ");
1775 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1776 seq_puts(m, " heap");
1777 } else if (is_stack(vma)) {
1778 seq_puts(m, " stack");
1781 if (is_vm_hugetlb_page(vma))
1782 seq_puts(m, " huge");
1784 /* mmap_sem is held by m_start */
1785 walk_page_vma(vma, &walk);
1787 if (!md->pages)
1788 goto out;
1790 if (md->anon)
1791 seq_printf(m, " anon=%lu", md->anon);
1793 if (md->dirty)
1794 seq_printf(m, " dirty=%lu", md->dirty);
1796 if (md->pages != md->anon && md->pages != md->dirty)
1797 seq_printf(m, " mapped=%lu", md->pages);
1799 if (md->mapcount_max > 1)
1800 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1802 if (md->swapcache)
1803 seq_printf(m, " swapcache=%lu", md->swapcache);
1805 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1806 seq_printf(m, " active=%lu", md->active);
1808 if (md->writeback)
1809 seq_printf(m, " writeback=%lu", md->writeback);
1811 for_each_node_state(nid, N_MEMORY)
1812 if (md->node[nid])
1813 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1815 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1816 out:
1817 seq_putc(m, '\n');
1818 m_cache_vma(m, vma);
1819 return 0;
1822 static int show_pid_numa_map(struct seq_file *m, void *v)
1824 return show_numa_map(m, v, 1);
1827 static int show_tid_numa_map(struct seq_file *m, void *v)
1829 return show_numa_map(m, v, 0);
1832 static const struct seq_operations proc_pid_numa_maps_op = {
1833 .start = m_start,
1834 .next = m_next,
1835 .stop = m_stop,
1836 .show = show_pid_numa_map,
1839 static const struct seq_operations proc_tid_numa_maps_op = {
1840 .start = m_start,
1841 .next = m_next,
1842 .stop = m_stop,
1843 .show = show_tid_numa_map,
1846 static int numa_maps_open(struct inode *inode, struct file *file,
1847 const struct seq_operations *ops)
1849 return proc_maps_open(inode, file, ops,
1850 sizeof(struct numa_maps_private));
1853 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1855 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1858 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1860 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1863 const struct file_operations proc_pid_numa_maps_operations = {
1864 .open = pid_numa_maps_open,
1865 .read = seq_read,
1866 .llseek = seq_lseek,
1867 .release = proc_map_release,
1870 const struct file_operations proc_tid_numa_maps_operations = {
1871 .open = tid_numa_maps_open,
1872 .read = seq_read,
1873 .llseek = seq_lseek,
1874 .release = proc_map_release,
1876 #endif /* CONFIG_NUMA */