mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / kernel / events / core.c
blobfc1c330c6bd6ce2bb1d0bade109ea89f3b97a2f4
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
54 #include "internal.h"
56 #include <asm/irq_regs.h>
58 typedef int (*remote_function_f)(void *);
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
67 static void remote_function(void *data)
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
87 tfc->ret = tfc->func(tfc->info);
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
112 int ret;
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
120 return ret;
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
128 * Calls the function @func on the remote cpu.
130 * returns: @func return value or -ENXIO when the cpu is offline
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
141 smp_call_function_single(cpu, remote_function, &data, 1);
143 return data.ret;
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
168 #define TASK_TOMBSTONE ((void *)-1L)
170 static bool is_kernel_event(struct perf_event *event)
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
176 * On task ctx scheduling...
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
182 * This however results in two special cases:
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
203 static int event_function(void *info)
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
212 lockdep_assert_irqs_disabled();
214 perf_ctx_lock(cpuctx, task_ctx);
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
232 WARN_ON_ONCE(!ctx->is_active);
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
246 return ret;
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
259 if (!event->parent) {
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
265 lockdep_assert_held(&ctx->mutex);
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
273 if (task == TASK_TOMBSTONE)
274 return;
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
280 raw_spin_lock_irq(&ctx->lock);
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
309 lockdep_assert_irqs_disabled();
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
315 task_ctx = ctx;
318 perf_ctx_lock(cpuctx, task_ctx);
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
324 if (task) {
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
352 * branch priv levels that need permission checks
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
401 int sysctl_perf_event_paranoid __read_mostly = 2;
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
407 * max perf event sample rate
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 static void update_perf_cpu_limits(void)
423 u64 tmp = perf_sample_period_ns;
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
441 if (ret || !write)
442 return ret;
445 * If throttling is disabled don't allow the write:
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
455 return 0;
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 if (ret || !write)
467 return ret;
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
478 return 0;
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
490 static u64 __report_avg;
491 static u64 __report_allowed;
493 static void perf_duration_warn(struct irq_work *w)
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 void perf_sample_event_took(u64 sample_len_ns)
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
511 if (max_len == 0)
512 return;
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
529 __report_avg = avg_len;
530 __report_allowed = max_len;
533 * Compute a throttle threshold 25% below the current duration.
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
556 static atomic64_t perf_event_id;
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
568 void __weak perf_event_print_debug(void) { }
570 extern __weak const char *perf_pmu_name(void)
572 return "pmu";
575 static inline u64 perf_clock(void)
577 return local_clock();
580 static inline u64 perf_event_clock(struct perf_event *event)
582 return event->clock();
586 * State based event timekeeping...
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
610 struct perf_event *leader = event->group_leader;
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
615 return event->state;
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
633 static void perf_event_update_time(struct perf_event *event)
635 u64 now = perf_event_time(event);
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
642 static void perf_event_update_sibling_time(struct perf_event *leader)
644 struct perf_event *sibling;
646 for_each_sibling_event(sibling, leader)
647 perf_event_update_time(sibling);
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 if (event->state == state)
654 return;
656 perf_event_update_time(event);
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
664 WRITE_ONCE(event->state, state);
667 #ifdef CONFIG_CGROUP_PERF
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
693 static inline void perf_detach_cgroup(struct perf_event *event)
695 css_put(&event->cgrp->css);
696 event->cgrp = NULL;
699 static inline int is_cgroup_event(struct perf_event *event)
701 return event->cgrp != NULL;
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 struct perf_cgroup_info *t;
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 struct perf_cgroup_info *info;
715 u64 now;
717 now = perf_clock();
719 info = this_cpu_ptr(cgrp->info);
721 info->time += now - info->timestamp;
722 info->timestamp = now;
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 struct perf_cgroup *cgrp = cpuctx->cgrp;
728 struct cgroup_subsys_state *css;
730 if (cgrp) {
731 for (css = &cgrp->css; css; css = css->parent) {
732 cgrp = container_of(css, struct perf_cgroup, css);
733 __update_cgrp_time(cgrp);
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 struct perf_cgroup *cgrp;
743 * ensure we access cgroup data only when needed and
744 * when we know the cgroup is pinned (css_get)
746 if (!is_cgroup_event(event))
747 return;
749 cgrp = perf_cgroup_from_task(current, event->ctx);
751 * Do not update time when cgroup is not active
753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 __update_cgrp_time(event->cgrp);
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 struct perf_event_context *ctx)
761 struct perf_cgroup *cgrp;
762 struct perf_cgroup_info *info;
763 struct cgroup_subsys_state *css;
766 * ctx->lock held by caller
767 * ensure we do not access cgroup data
768 * unless we have the cgroup pinned (css_get)
770 if (!task || !ctx->nr_cgroups)
771 return;
773 cgrp = perf_cgroup_from_task(task, ctx);
775 for (css = &cgrp->css; css; css = css->parent) {
776 cgrp = container_of(css, struct perf_cgroup, css);
777 info = this_cpu_ptr(cgrp->info);
778 info->timestamp = ctx->timestamp;
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
788 * reschedule events based on the cgroup constraint of task.
790 * mode SWOUT : schedule out everything
791 * mode SWIN : schedule in based on cgroup for next
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 struct perf_cpu_context *cpuctx;
796 struct list_head *list;
797 unsigned long flags;
800 * Disable interrupts and preemption to avoid this CPU's
801 * cgrp_cpuctx_entry to change under us.
803 local_irq_save(flags);
805 list = this_cpu_ptr(&cgrp_cpuctx_list);
806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 perf_pmu_disable(cpuctx->ctx.pmu);
812 if (mode & PERF_CGROUP_SWOUT) {
813 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 * must not be done before ctxswout due
816 * to event_filter_match() in event_sched_out()
818 cpuctx->cgrp = NULL;
821 if (mode & PERF_CGROUP_SWIN) {
822 WARN_ON_ONCE(cpuctx->cgrp);
824 * set cgrp before ctxsw in to allow
825 * event_filter_match() to not have to pass
826 * task around
827 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 * because cgorup events are only per-cpu
830 cpuctx->cgrp = perf_cgroup_from_task(task,
831 &cpuctx->ctx);
832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 perf_pmu_enable(cpuctx->ctx.pmu);
835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
838 local_irq_restore(flags);
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 struct task_struct *next)
844 struct perf_cgroup *cgrp1;
845 struct perf_cgroup *cgrp2 = NULL;
847 rcu_read_lock();
849 * we come here when we know perf_cgroup_events > 0
850 * we do not need to pass the ctx here because we know
851 * we are holding the rcu lock
853 cgrp1 = perf_cgroup_from_task(task, NULL);
854 cgrp2 = perf_cgroup_from_task(next, NULL);
857 * only schedule out current cgroup events if we know
858 * that we are switching to a different cgroup. Otherwise,
859 * do no touch the cgroup events.
861 if (cgrp1 != cgrp2)
862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 rcu_read_unlock();
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 struct task_struct *task)
870 struct perf_cgroup *cgrp1;
871 struct perf_cgroup *cgrp2 = NULL;
873 rcu_read_lock();
875 * we come here when we know perf_cgroup_events > 0
876 * we do not need to pass the ctx here because we know
877 * we are holding the rcu lock
879 cgrp1 = perf_cgroup_from_task(task, NULL);
880 cgrp2 = perf_cgroup_from_task(prev, NULL);
883 * only need to schedule in cgroup events if we are changing
884 * cgroup during ctxsw. Cgroup events were not scheduled
885 * out of ctxsw out if that was not the case.
887 if (cgrp1 != cgrp2)
888 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 rcu_read_unlock();
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 struct perf_event_attr *attr,
895 struct perf_event *group_leader)
897 struct perf_cgroup *cgrp;
898 struct cgroup_subsys_state *css;
899 struct fd f = fdget(fd);
900 int ret = 0;
902 if (!f.file)
903 return -EBADF;
905 css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 &perf_event_cgrp_subsys);
907 if (IS_ERR(css)) {
908 ret = PTR_ERR(css);
909 goto out;
912 cgrp = container_of(css, struct perf_cgroup, css);
913 event->cgrp = cgrp;
916 * all events in a group must monitor
917 * the same cgroup because a task belongs
918 * to only one perf cgroup at a time
920 if (group_leader && group_leader->cgrp != cgrp) {
921 perf_detach_cgroup(event);
922 ret = -EINVAL;
924 out:
925 fdput(f);
926 return ret;
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 struct perf_cgroup_info *t;
933 t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 event->shadow_ctx_time = now - t->timestamp;
938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939 * cleared when last cgroup event is removed.
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 struct perf_event_context *ctx, bool add)
945 struct perf_cpu_context *cpuctx;
946 struct list_head *cpuctx_entry;
948 if (!is_cgroup_event(event))
949 return;
952 * Because cgroup events are always per-cpu events,
953 * this will always be called from the right CPU.
955 cpuctx = __get_cpu_context(ctx);
958 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 * matching the event's cgroup, we must do this for every new event,
960 * because if the first would mismatch, the second would not try again
961 * and we would leave cpuctx->cgrp unset.
963 if (add && !cpuctx->cgrp) {
964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 cpuctx->cgrp = cgrp;
970 if (add && ctx->nr_cgroups++)
971 return;
972 else if (!add && --ctx->nr_cgroups)
973 return;
975 /* no cgroup running */
976 if (!add)
977 cpuctx->cgrp = NULL;
979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 if (add)
981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 else
983 list_del(cpuctx_entry);
986 #else /* !CONFIG_CGROUP_PERF */
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
991 return true;
994 static inline void perf_detach_cgroup(struct perf_event *event)
997 static inline int is_cgroup_event(struct perf_event *event)
999 return 0;
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 struct task_struct *next)
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 struct task_struct *task)
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 struct perf_event_attr *attr,
1022 struct perf_event *group_leader)
1024 return -EINVAL;
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 struct perf_event_context *ctx)
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 return 0;
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050 struct perf_event_context *ctx, bool add)
1054 #endif
1057 * set default to be dependent on timer tick just
1058 * like original code
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 * function must be called with interrupts disabled
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 struct perf_cpu_context *cpuctx;
1067 bool rotations;
1069 lockdep_assert_irqs_disabled();
1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 rotations = perf_rotate_context(cpuctx);
1074 raw_spin_lock(&cpuctx->hrtimer_lock);
1075 if (rotations)
1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077 else
1078 cpuctx->hrtimer_active = 0;
1079 raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 struct hrtimer *timer = &cpuctx->hrtimer;
1087 struct pmu *pmu = cpuctx->ctx.pmu;
1088 u64 interval;
1090 /* no multiplexing needed for SW PMU */
1091 if (pmu->task_ctx_nr == perf_sw_context)
1092 return;
1095 * check default is sane, if not set then force to
1096 * default interval (1/tick)
1098 interval = pmu->hrtimer_interval_ms;
1099 if (interval < 1)
1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 timer->function = perf_mux_hrtimer_handler;
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 struct hrtimer *timer = &cpuctx->hrtimer;
1112 struct pmu *pmu = cpuctx->ctx.pmu;
1113 unsigned long flags;
1115 /* not for SW PMU */
1116 if (pmu->task_ctx_nr == perf_sw_context)
1117 return 0;
1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 if (!cpuctx->hrtimer_active) {
1121 cpuctx->hrtimer_active = 1;
1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 return 0;
1130 void perf_pmu_disable(struct pmu *pmu)
1132 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 if (!(*count)++)
1134 pmu->pmu_disable(pmu);
1137 void perf_pmu_enable(struct pmu *pmu)
1139 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 if (!--(*count))
1141 pmu->pmu_enable(pmu);
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 lockdep_assert_irqs_disabled();
1158 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 list_add(&ctx->active_ctx_list, head);
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 lockdep_assert_irqs_disabled();
1167 WARN_ON(list_empty(&ctx->active_ctx_list));
1169 list_del_init(&ctx->active_ctx_list);
1172 static void get_ctx(struct perf_event_context *ctx)
1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1177 static void free_ctx(struct rcu_head *head)
1179 struct perf_event_context *ctx;
1181 ctx = container_of(head, struct perf_event_context, rcu_head);
1182 kfree(ctx->task_ctx_data);
1183 kfree(ctx);
1186 static void put_ctx(struct perf_event_context *ctx)
1188 if (atomic_dec_and_test(&ctx->refcount)) {
1189 if (ctx->parent_ctx)
1190 put_ctx(ctx->parent_ctx);
1191 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 put_task_struct(ctx->task);
1193 call_rcu(&ctx->rcu_head, free_ctx);
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1207 * - perf_event_exit_task_context() [ child , 0 ]
1208 * perf_event_exit_event()
1209 * put_event() [ parent, 1 ]
1211 * - perf_event_init_context() [ parent, 0 ]
1212 * inherit_task_group()
1213 * inherit_group()
1214 * inherit_event()
1215 * perf_event_alloc()
1216 * perf_init_event()
1217 * perf_try_init_event() [ child , 1 ]
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1226 * interact.
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1233 * The places that change perf_event::ctx will issue:
1235 * perf_remove_from_context();
1236 * synchronize_rcu();
1237 * perf_install_in_context();
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247 * function.
1249 * Lock order:
1250 * cred_guard_mutex
1251 * task_struct::perf_event_mutex
1252 * perf_event_context::mutex
1253 * perf_event::child_mutex;
1254 * perf_event_context::lock
1255 * perf_event::mmap_mutex
1256 * mmap_sem
1258 * cpu_hotplug_lock
1259 * pmus_lock
1260 * cpuctx->mutex / perf_event_context::mutex
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1265 struct perf_event_context *ctx;
1267 again:
1268 rcu_read_lock();
1269 ctx = READ_ONCE(event->ctx);
1270 if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 rcu_read_unlock();
1272 goto again;
1274 rcu_read_unlock();
1276 mutex_lock_nested(&ctx->mutex, nesting);
1277 if (event->ctx != ctx) {
1278 mutex_unlock(&ctx->mutex);
1279 put_ctx(ctx);
1280 goto again;
1283 return ctx;
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1289 return perf_event_ctx_lock_nested(event, 0);
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 struct perf_event_context *ctx)
1295 mutex_unlock(&ctx->mutex);
1296 put_ctx(ctx);
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1307 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1309 lockdep_assert_held(&ctx->lock);
1311 if (parent_ctx)
1312 ctx->parent_ctx = NULL;
1313 ctx->generation++;
1315 return parent_ctx;
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 enum pid_type type)
1321 u32 nr;
1323 * only top level events have the pid namespace they were created in
1325 if (event->parent)
1326 event = event->parent;
1328 nr = __task_pid_nr_ns(p, type, event->ns);
1329 /* avoid -1 if it is idle thread or runs in another ns */
1330 if (!nr && !pid_alive(p))
1331 nr = -1;
1332 return nr;
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1337 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1342 return perf_event_pid_type(event, p, PIDTYPE_PID);
1346 * If we inherit events we want to return the parent event id
1347 * to userspace.
1349 static u64 primary_event_id(struct perf_event *event)
1351 u64 id = event->id;
1353 if (event->parent)
1354 id = event->parent->id;
1356 return id;
1360 * Get the perf_event_context for a task and lock it.
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1368 struct perf_event_context *ctx;
1370 retry:
1372 * One of the few rules of preemptible RCU is that one cannot do
1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 * part of the read side critical section was irqs-enabled -- see
1375 * rcu_read_unlock_special().
1377 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 * side critical section has interrupts disabled.
1380 local_irq_save(*flags);
1381 rcu_read_lock();
1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 if (ctx) {
1385 * If this context is a clone of another, it might
1386 * get swapped for another underneath us by
1387 * perf_event_task_sched_out, though the
1388 * rcu_read_lock() protects us from any context
1389 * getting freed. Lock the context and check if it
1390 * got swapped before we could get the lock, and retry
1391 * if so. If we locked the right context, then it
1392 * can't get swapped on us any more.
1394 raw_spin_lock(&ctx->lock);
1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 raw_spin_unlock(&ctx->lock);
1397 rcu_read_unlock();
1398 local_irq_restore(*flags);
1399 goto retry;
1402 if (ctx->task == TASK_TOMBSTONE ||
1403 !atomic_inc_not_zero(&ctx->refcount)) {
1404 raw_spin_unlock(&ctx->lock);
1405 ctx = NULL;
1406 } else {
1407 WARN_ON_ONCE(ctx->task != task);
1410 rcu_read_unlock();
1411 if (!ctx)
1412 local_irq_restore(*flags);
1413 return ctx;
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task. This also increments its
1419 * reference count so that the context can't get freed.
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1424 struct perf_event_context *ctx;
1425 unsigned long flags;
1427 ctx = perf_lock_task_context(task, ctxn, &flags);
1428 if (ctx) {
1429 ++ctx->pin_count;
1430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1432 return ctx;
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1437 unsigned long flags;
1439 raw_spin_lock_irqsave(&ctx->lock, flags);
1440 --ctx->pin_count;
1441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1445 * Update the record of the current time in a context.
1447 static void update_context_time(struct perf_event_context *ctx)
1449 u64 now = perf_clock();
1451 ctx->time += now - ctx->timestamp;
1452 ctx->timestamp = now;
1455 static u64 perf_event_time(struct perf_event *event)
1457 struct perf_event_context *ctx = event->ctx;
1459 if (is_cgroup_event(event))
1460 return perf_cgroup_event_time(event);
1462 return ctx ? ctx->time : 0;
1465 static enum event_type_t get_event_type(struct perf_event *event)
1467 struct perf_event_context *ctx = event->ctx;
1468 enum event_type_t event_type;
1470 lockdep_assert_held(&ctx->lock);
1473 * It's 'group type', really, because if our group leader is
1474 * pinned, so are we.
1476 if (event->group_leader != event)
1477 event = event->group_leader;
1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 if (!ctx->task)
1481 event_type |= EVENT_CPU;
1483 return event_type;
1487 * Helper function to initialize event group nodes.
1489 static void init_event_group(struct perf_event *event)
1491 RB_CLEAR_NODE(&event->group_node);
1492 event->group_index = 0;
1496 * Extract pinned or flexible groups from the context
1497 * based on event attrs bits.
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1502 if (event->attr.pinned)
1503 return &ctx->pinned_groups;
1504 else
1505 return &ctx->flexible_groups;
1509 * Helper function to initializes perf_event_group trees.
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1513 groups->tree = RB_ROOT;
1514 groups->index = 0;
1518 * Compare function for event groups;
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1526 if (left->cpu < right->cpu)
1527 return true;
1528 if (left->cpu > right->cpu)
1529 return false;
1531 if (left->group_index < right->group_index)
1532 return true;
1533 if (left->group_index > right->group_index)
1534 return false;
1536 return false;
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1542 * subtree.
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 struct perf_event *event)
1548 struct perf_event *node_event;
1549 struct rb_node *parent;
1550 struct rb_node **node;
1552 event->group_index = ++groups->index;
1554 node = &groups->tree.rb_node;
1555 parent = *node;
1557 while (*node) {
1558 parent = *node;
1559 node_event = container_of(*node, struct perf_event, group_node);
1561 if (perf_event_groups_less(event, node_event))
1562 node = &parent->rb_left;
1563 else
1564 node = &parent->rb_right;
1567 rb_link_node(&event->group_node, parent, node);
1568 rb_insert_color(&event->group_node, &groups->tree);
1572 * Helper function to insert event into the pinned or flexible groups.
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 struct perf_event_groups *groups;
1579 groups = get_event_groups(event, ctx);
1580 perf_event_groups_insert(groups, event);
1584 * Delete a group from a tree.
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 struct perf_event *event)
1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 RB_EMPTY_ROOT(&groups->tree));
1593 rb_erase(&event->group_node, &groups->tree);
1594 init_event_group(event);
1598 * Helper function to delete event from its groups.
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1603 struct perf_event_groups *groups;
1605 groups = get_event_groups(event, ctx);
1606 perf_event_groups_delete(groups, event);
1610 * Get the leftmost event in the @cpu subtree.
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1615 struct perf_event *node_event = NULL, *match = NULL;
1616 struct rb_node *node = groups->tree.rb_node;
1618 while (node) {
1619 node_event = container_of(node, struct perf_event, group_node);
1621 if (cpu < node_event->cpu) {
1622 node = node->rb_left;
1623 } else if (cpu > node_event->cpu) {
1624 node = node->rb_right;
1625 } else {
1626 match = node_event;
1627 node = node->rb_left;
1631 return match;
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1640 struct perf_event *next;
1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 if (next && next->cpu == event->cpu)
1644 return next;
1646 return NULL;
1650 * Iterate through the whole groups tree.
1652 #define perf_event_groups_for_each(event, groups) \
1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1654 typeof(*event), group_node); event; \
1655 event = rb_entry_safe(rb_next(&event->group_node), \
1656 typeof(*event), group_node))
1659 * Add a event from the lists for its context.
1660 * Must be called with ctx->mutex and ctx->lock held.
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1665 lockdep_assert_held(&ctx->lock);
1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 event->attach_state |= PERF_ATTACH_CONTEXT;
1670 event->tstamp = perf_event_time(event);
1673 * If we're a stand alone event or group leader, we go to the context
1674 * list, group events are kept attached to the group so that
1675 * perf_group_detach can, at all times, locate all siblings.
1677 if (event->group_leader == event) {
1678 event->group_caps = event->event_caps;
1679 add_event_to_groups(event, ctx);
1682 list_update_cgroup_event(event, ctx, true);
1684 list_add_rcu(&event->event_entry, &ctx->event_list);
1685 ctx->nr_events++;
1686 if (event->attr.inherit_stat)
1687 ctx->nr_stat++;
1689 ctx->generation++;
1693 * Initialize event state based on the perf_event_attr::disabled.
1695 static inline void perf_event__state_init(struct perf_event *event)
1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 PERF_EVENT_STATE_INACTIVE;
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1703 int entry = sizeof(u64); /* value */
1704 int size = 0;
1705 int nr = 1;
1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 size += sizeof(u64);
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 size += sizeof(u64);
1713 if (event->attr.read_format & PERF_FORMAT_ID)
1714 entry += sizeof(u64);
1716 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717 nr += nr_siblings;
1718 size += sizeof(u64);
1721 size += entry * nr;
1722 event->read_size = size;
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1727 struct perf_sample_data *data;
1728 u16 size = 0;
1730 if (sample_type & PERF_SAMPLE_IP)
1731 size += sizeof(data->ip);
1733 if (sample_type & PERF_SAMPLE_ADDR)
1734 size += sizeof(data->addr);
1736 if (sample_type & PERF_SAMPLE_PERIOD)
1737 size += sizeof(data->period);
1739 if (sample_type & PERF_SAMPLE_WEIGHT)
1740 size += sizeof(data->weight);
1742 if (sample_type & PERF_SAMPLE_READ)
1743 size += event->read_size;
1745 if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 size += sizeof(data->data_src.val);
1748 if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 size += sizeof(data->txn);
1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 size += sizeof(data->phys_addr);
1754 event->header_size = size;
1758 * Called at perf_event creation and when events are attached/detached from a
1759 * group.
1761 static void perf_event__header_size(struct perf_event *event)
1763 __perf_event_read_size(event,
1764 event->group_leader->nr_siblings);
1765 __perf_event_header_size(event, event->attr.sample_type);
1768 static void perf_event__id_header_size(struct perf_event *event)
1770 struct perf_sample_data *data;
1771 u64 sample_type = event->attr.sample_type;
1772 u16 size = 0;
1774 if (sample_type & PERF_SAMPLE_TID)
1775 size += sizeof(data->tid_entry);
1777 if (sample_type & PERF_SAMPLE_TIME)
1778 size += sizeof(data->time);
1780 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 size += sizeof(data->id);
1783 if (sample_type & PERF_SAMPLE_ID)
1784 size += sizeof(data->id);
1786 if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 size += sizeof(data->stream_id);
1789 if (sample_type & PERF_SAMPLE_CPU)
1790 size += sizeof(data->cpu_entry);
1792 event->id_header_size = size;
1795 static bool perf_event_validate_size(struct perf_event *event)
1798 * The values computed here will be over-written when we actually
1799 * attach the event.
1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 perf_event__id_header_size(event);
1806 * Sum the lot; should not exceed the 64k limit we have on records.
1807 * Conservative limit to allow for callchains and other variable fields.
1809 if (event->read_size + event->header_size +
1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 return false;
1813 return true;
1816 static void perf_group_attach(struct perf_event *event)
1818 struct perf_event *group_leader = event->group_leader, *pos;
1820 lockdep_assert_held(&event->ctx->lock);
1823 * We can have double attach due to group movement in perf_event_open.
1825 if (event->attach_state & PERF_ATTACH_GROUP)
1826 return;
1828 event->attach_state |= PERF_ATTACH_GROUP;
1830 if (group_leader == event)
1831 return;
1833 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1835 group_leader->group_caps &= event->event_caps;
1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 group_leader->nr_siblings++;
1840 perf_event__header_size(group_leader);
1842 for_each_sibling_event(pos, group_leader)
1843 perf_event__header_size(pos);
1847 * Remove a event from the lists for its context.
1848 * Must be called with ctx->mutex and ctx->lock held.
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1853 WARN_ON_ONCE(event->ctx != ctx);
1854 lockdep_assert_held(&ctx->lock);
1857 * We can have double detach due to exit/hot-unplug + close.
1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860 return;
1862 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1864 list_update_cgroup_event(event, ctx, false);
1866 ctx->nr_events--;
1867 if (event->attr.inherit_stat)
1868 ctx->nr_stat--;
1870 list_del_rcu(&event->event_entry);
1872 if (event->group_leader == event)
1873 del_event_from_groups(event, ctx);
1876 * If event was in error state, then keep it
1877 * that way, otherwise bogus counts will be
1878 * returned on read(). The only way to get out
1879 * of error state is by explicit re-enabling
1880 * of the event
1882 if (event->state > PERF_EVENT_STATE_OFF)
1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1885 ctx->generation++;
1888 static void perf_group_detach(struct perf_event *event)
1890 struct perf_event *sibling, *tmp;
1891 struct perf_event_context *ctx = event->ctx;
1893 lockdep_assert_held(&ctx->lock);
1896 * We can have double detach due to exit/hot-unplug + close.
1898 if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 return;
1901 event->attach_state &= ~PERF_ATTACH_GROUP;
1904 * If this is a sibling, remove it from its group.
1906 if (event->group_leader != event) {
1907 list_del_init(&event->sibling_list);
1908 event->group_leader->nr_siblings--;
1909 goto out;
1913 * If this was a group event with sibling events then
1914 * upgrade the siblings to singleton events by adding them
1915 * to whatever list we are on.
1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1919 sibling->group_leader = sibling;
1920 list_del_init(&sibling->sibling_list);
1922 /* Inherit group flags from the previous leader */
1923 sibling->group_caps = event->group_caps;
1925 if (!RB_EMPTY_NODE(&event->group_node)) {
1926 add_event_to_groups(sibling, event->ctx);
1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 struct list_head *list = sibling->attr.pinned ?
1930 &ctx->pinned_active : &ctx->flexible_active;
1932 list_add_tail(&sibling->active_list, list);
1936 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939 out:
1940 perf_event__header_size(event->group_leader);
1942 for_each_sibling_event(tmp, event->group_leader)
1943 perf_event__header_size(tmp);
1946 static bool is_orphaned_event(struct perf_event *event)
1948 return event->state == PERF_EVENT_STATE_DEAD;
1951 static inline int __pmu_filter_match(struct perf_event *event)
1953 struct pmu *pmu = event->pmu;
1954 return pmu->filter_match ? pmu->filter_match(event) : 1;
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1963 static inline int pmu_filter_match(struct perf_event *event)
1965 struct perf_event *sibling;
1967 if (!__pmu_filter_match(event))
1968 return 0;
1970 for_each_sibling_event(sibling, event) {
1971 if (!__pmu_filter_match(sibling))
1972 return 0;
1975 return 1;
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 perf_cgroup_match(event) && pmu_filter_match(event);
1985 static void
1986 event_sched_out(struct perf_event *event,
1987 struct perf_cpu_context *cpuctx,
1988 struct perf_event_context *ctx)
1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1992 WARN_ON_ONCE(event->ctx != ctx);
1993 lockdep_assert_held(&ctx->lock);
1995 if (event->state != PERF_EVENT_STATE_ACTIVE)
1996 return;
1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 * we can schedule events _OUT_ individually through things like
2001 * __perf_remove_from_context().
2003 list_del_init(&event->active_list);
2005 perf_pmu_disable(event->pmu);
2007 event->pmu->del(event, 0);
2008 event->oncpu = -1;
2010 if (event->pending_disable) {
2011 event->pending_disable = 0;
2012 state = PERF_EVENT_STATE_OFF;
2014 perf_event_set_state(event, state);
2016 if (!is_software_event(event))
2017 cpuctx->active_oncpu--;
2018 if (!--ctx->nr_active)
2019 perf_event_ctx_deactivate(ctx);
2020 if (event->attr.freq && event->attr.sample_freq)
2021 ctx->nr_freq--;
2022 if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 cpuctx->exclusive = 0;
2025 perf_pmu_enable(event->pmu);
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030 struct perf_cpu_context *cpuctx,
2031 struct perf_event_context *ctx)
2033 struct perf_event *event;
2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 return;
2038 perf_pmu_disable(ctx->pmu);
2040 event_sched_out(group_event, cpuctx, ctx);
2043 * Schedule out siblings (if any):
2045 for_each_sibling_event(event, group_event)
2046 event_sched_out(event, cpuctx, ctx);
2048 perf_pmu_enable(ctx->pmu);
2050 if (group_event->attr.exclusive)
2051 cpuctx->exclusive = 0;
2054 #define DETACH_GROUP 0x01UL
2057 * Cross CPU call to remove a performance event
2059 * We disable the event on the hardware level first. After that we
2060 * remove it from the context list.
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064 struct perf_cpu_context *cpuctx,
2065 struct perf_event_context *ctx,
2066 void *info)
2068 unsigned long flags = (unsigned long)info;
2070 if (ctx->is_active & EVENT_TIME) {
2071 update_context_time(ctx);
2072 update_cgrp_time_from_cpuctx(cpuctx);
2075 event_sched_out(event, cpuctx, ctx);
2076 if (flags & DETACH_GROUP)
2077 perf_group_detach(event);
2078 list_del_event(event, ctx);
2080 if (!ctx->nr_events && ctx->is_active) {
2081 ctx->is_active = 0;
2082 if (ctx->task) {
2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 cpuctx->task_ctx = NULL;
2090 * Remove the event from a task's (or a CPU's) list of events.
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
2094 * remains valid. This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
2096 * When called from perf_event_exit_task, it's OK because the
2097 * context has been detached from its task.
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2101 struct perf_event_context *ctx = event->ctx;
2103 lockdep_assert_held(&ctx->mutex);
2105 event_function_call(event, __perf_remove_from_context, (void *)flags);
2108 * The above event_function_call() can NO-OP when it hits
2109 * TASK_TOMBSTONE. In that case we must already have been detached
2110 * from the context (by perf_event_exit_event()) but the grouping
2111 * might still be in-tact.
2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 if ((flags & DETACH_GROUP) &&
2115 (event->attach_state & PERF_ATTACH_GROUP)) {
2117 * Since in that case we cannot possibly be scheduled, simply
2118 * detach now.
2120 raw_spin_lock_irq(&ctx->lock);
2121 perf_group_detach(event);
2122 raw_spin_unlock_irq(&ctx->lock);
2127 * Cross CPU call to disable a performance event
2129 static void __perf_event_disable(struct perf_event *event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx,
2132 void *info)
2134 if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 return;
2137 if (ctx->is_active & EVENT_TIME) {
2138 update_context_time(ctx);
2139 update_cgrp_time_from_event(event);
2142 if (event == event->group_leader)
2143 group_sched_out(event, cpuctx, ctx);
2144 else
2145 event_sched_out(event, cpuctx, ctx);
2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2151 * Disable a event.
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
2155 * remains valid. This condition is satisifed when called through
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
2158 * goes to exit will block in perf_event_exit_event().
2160 * When called from perf_pending_event it's OK because event->ctx
2161 * is the current context on this CPU and preemption is disabled,
2162 * hence we can't get into perf_event_task_sched_out for this context.
2164 static void _perf_event_disable(struct perf_event *event)
2166 struct perf_event_context *ctx = event->ctx;
2168 raw_spin_lock_irq(&ctx->lock);
2169 if (event->state <= PERF_EVENT_STATE_OFF) {
2170 raw_spin_unlock_irq(&ctx->lock);
2171 return;
2173 raw_spin_unlock_irq(&ctx->lock);
2175 event_function_call(event, __perf_event_disable, NULL);
2178 void perf_event_disable_local(struct perf_event *event)
2180 event_function_local(event, __perf_event_disable, NULL);
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2187 void perf_event_disable(struct perf_event *event)
2189 struct perf_event_context *ctx;
2191 ctx = perf_event_ctx_lock(event);
2192 _perf_event_disable(event);
2193 perf_event_ctx_unlock(event, ctx);
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2197 void perf_event_disable_inatomic(struct perf_event *event)
2199 event->pending_disable = 1;
2200 irq_work_queue(&event->pending);
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 struct perf_event_context *ctx)
2207 * use the correct time source for the time snapshot
2209 * We could get by without this by leveraging the
2210 * fact that to get to this function, the caller
2211 * has most likely already called update_context_time()
2212 * and update_cgrp_time_xx() and thus both timestamp
2213 * are identical (or very close). Given that tstamp is,
2214 * already adjusted for cgroup, we could say that:
2215 * tstamp - ctx->timestamp
2216 * is equivalent to
2217 * tstamp - cgrp->timestamp.
2219 * Then, in perf_output_read(), the calculation would
2220 * work with no changes because:
2221 * - event is guaranteed scheduled in
2222 * - no scheduled out in between
2223 * - thus the timestamp would be the same
2225 * But this is a bit hairy.
2227 * So instead, we have an explicit cgroup call to remain
2228 * within the time time source all along. We believe it
2229 * is cleaner and simpler to understand.
2231 if (is_cgroup_event(event))
2232 perf_cgroup_set_shadow_time(event, event->tstamp);
2233 else
2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2237 #define MAX_INTERRUPTS (~0ULL)
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2242 static int
2243 event_sched_in(struct perf_event *event,
2244 struct perf_cpu_context *cpuctx,
2245 struct perf_event_context *ctx)
2247 int ret = 0;
2249 lockdep_assert_held(&ctx->lock);
2251 if (event->state <= PERF_EVENT_STATE_OFF)
2252 return 0;
2254 WRITE_ONCE(event->oncpu, smp_processor_id());
2256 * Order event::oncpu write to happen before the ACTIVE state is
2257 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 * ->oncpu if it sees ACTIVE.
2260 smp_wmb();
2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2264 * Unthrottle events, since we scheduled we might have missed several
2265 * ticks already, also for a heavily scheduling task there is little
2266 * guarantee it'll get a tick in a timely manner.
2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 perf_log_throttle(event, 1);
2270 event->hw.interrupts = 0;
2273 perf_pmu_disable(event->pmu);
2275 perf_set_shadow_time(event, ctx);
2277 perf_log_itrace_start(event);
2279 if (event->pmu->add(event, PERF_EF_START)) {
2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281 event->oncpu = -1;
2282 ret = -EAGAIN;
2283 goto out;
2286 if (!is_software_event(event))
2287 cpuctx->active_oncpu++;
2288 if (!ctx->nr_active++)
2289 perf_event_ctx_activate(ctx);
2290 if (event->attr.freq && event->attr.sample_freq)
2291 ctx->nr_freq++;
2293 if (event->attr.exclusive)
2294 cpuctx->exclusive = 1;
2296 out:
2297 perf_pmu_enable(event->pmu);
2299 return ret;
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304 struct perf_cpu_context *cpuctx,
2305 struct perf_event_context *ctx)
2307 struct perf_event *event, *partial_group = NULL;
2308 struct pmu *pmu = ctx->pmu;
2310 if (group_event->state == PERF_EVENT_STATE_OFF)
2311 return 0;
2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2315 if (event_sched_in(group_event, cpuctx, ctx)) {
2316 pmu->cancel_txn(pmu);
2317 perf_mux_hrtimer_restart(cpuctx);
2318 return -EAGAIN;
2322 * Schedule in siblings as one group (if any):
2324 for_each_sibling_event(event, group_event) {
2325 if (event_sched_in(event, cpuctx, ctx)) {
2326 partial_group = event;
2327 goto group_error;
2331 if (!pmu->commit_txn(pmu))
2332 return 0;
2334 group_error:
2336 * Groups can be scheduled in as one unit only, so undo any
2337 * partial group before returning:
2338 * The events up to the failed event are scheduled out normally.
2340 for_each_sibling_event(event, group_event) {
2341 if (event == partial_group)
2342 break;
2344 event_sched_out(event, cpuctx, ctx);
2346 event_sched_out(group_event, cpuctx, ctx);
2348 pmu->cancel_txn(pmu);
2350 perf_mux_hrtimer_restart(cpuctx);
2352 return -EAGAIN;
2356 * Work out whether we can put this event group on the CPU now.
2358 static int group_can_go_on(struct perf_event *event,
2359 struct perf_cpu_context *cpuctx,
2360 int can_add_hw)
2363 * Groups consisting entirely of software events can always go on.
2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 return 1;
2368 * If an exclusive group is already on, no other hardware
2369 * events can go on.
2371 if (cpuctx->exclusive)
2372 return 0;
2374 * If this group is exclusive and there are already
2375 * events on the CPU, it can't go on.
2377 if (event->attr.exclusive && cpuctx->active_oncpu)
2378 return 0;
2380 * Otherwise, try to add it if all previous groups were able
2381 * to go on.
2383 return can_add_hw;
2386 static void add_event_to_ctx(struct perf_event *event,
2387 struct perf_event_context *ctx)
2389 list_add_event(event, ctx);
2390 perf_group_attach(event);
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 struct perf_cpu_context *cpuctx,
2399 enum event_type_t event_type,
2400 struct task_struct *task);
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 struct perf_event_context *ctx,
2404 enum event_type_t event_type)
2406 if (!cpuctx->task_ctx)
2407 return;
2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 return;
2412 ctx_sched_out(ctx, cpuctx, event_type);
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 struct perf_event_context *ctx,
2417 struct task_struct *task)
2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 if (ctx)
2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 if (ctx)
2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 * We want to maintain the following priority of scheduling:
2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 * - task pinned (EVENT_PINNED)
2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 * - task flexible (EVENT_FLEXIBLE).
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2436 * below.
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 struct perf_event_context *task_ctx,
2444 enum event_type_t event_type)
2446 enum event_type_t ctx_event_type;
2447 bool cpu_event = !!(event_type & EVENT_CPU);
2450 * If pinned groups are involved, flexible groups also need to be
2451 * scheduled out.
2453 if (event_type & EVENT_PINNED)
2454 event_type |= EVENT_FLEXIBLE;
2456 ctx_event_type = event_type & EVENT_ALL;
2458 perf_pmu_disable(cpuctx->ctx.pmu);
2459 if (task_ctx)
2460 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463 * Decide which cpu ctx groups to schedule out based on the types
2464 * of events that caused rescheduling:
2465 * - EVENT_CPU: schedule out corresponding groups;
2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 * - otherwise, do nothing more.
2469 if (cpu_event)
2470 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 else if (ctx_event_type & EVENT_PINNED)
2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2474 perf_event_sched_in(cpuctx, task_ctx, current);
2475 perf_pmu_enable(cpuctx->ctx.pmu);
2479 * Cross CPU call to install and enable a performance event
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
2484 static int __perf_install_in_context(void *info)
2486 struct perf_event *event = info;
2487 struct perf_event_context *ctx = event->ctx;
2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 bool reprogram = true;
2491 int ret = 0;
2493 raw_spin_lock(&cpuctx->ctx.lock);
2494 if (ctx->task) {
2495 raw_spin_lock(&ctx->lock);
2496 task_ctx = ctx;
2498 reprogram = (ctx->task == current);
2501 * If the task is running, it must be running on this CPU,
2502 * otherwise we cannot reprogram things.
2504 * If its not running, we don't care, ctx->lock will
2505 * serialize against it becoming runnable.
2507 if (task_curr(ctx->task) && !reprogram) {
2508 ret = -ESRCH;
2509 goto unlock;
2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 } else if (task_ctx) {
2514 raw_spin_lock(&task_ctx->lock);
2517 #ifdef CONFIG_CGROUP_PERF
2518 if (is_cgroup_event(event)) {
2520 * If the current cgroup doesn't match the event's
2521 * cgroup, we should not try to schedule it.
2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 event->cgrp->css.cgroup);
2527 #endif
2529 if (reprogram) {
2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 add_event_to_ctx(event, ctx);
2532 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 } else {
2534 add_event_to_ctx(event, ctx);
2537 unlock:
2538 perf_ctx_unlock(cpuctx, task_ctx);
2540 return ret;
2544 * Attach a performance event to a context.
2546 * Very similar to event_function_call, see comment there.
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 struct perf_event *event,
2551 int cpu)
2553 struct task_struct *task = READ_ONCE(ctx->task);
2555 lockdep_assert_held(&ctx->mutex);
2557 if (event->cpu != -1)
2558 event->cpu = cpu;
2561 * Ensures that if we can observe event->ctx, both the event and ctx
2562 * will be 'complete'. See perf_iterate_sb_cpu().
2564 smp_store_release(&event->ctx, ctx);
2566 if (!task) {
2567 cpu_function_call(cpu, __perf_install_in_context, event);
2568 return;
2572 * Should not happen, we validate the ctx is still alive before calling.
2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 return;
2578 * Installing events is tricky because we cannot rely on ctx->is_active
2579 * to be set in case this is the nr_events 0 -> 1 transition.
2581 * Instead we use task_curr(), which tells us if the task is running.
2582 * However, since we use task_curr() outside of rq::lock, we can race
2583 * against the actual state. This means the result can be wrong.
2585 * If we get a false positive, we retry, this is harmless.
2587 * If we get a false negative, things are complicated. If we are after
2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 * value must be correct. If we're before, it doesn't matter since
2590 * perf_event_context_sched_in() will program the counter.
2592 * However, this hinges on the remote context switch having observed
2593 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 * ctx::lock in perf_event_context_sched_in().
2596 * We do this by task_function_call(), if the IPI fails to hit the task
2597 * we know any future context switch of task must see the
2598 * perf_event_ctpx[] store.
2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 * task_cpu() load, such that if the IPI then does not find the task
2604 * running, a future context switch of that task must observe the
2605 * store.
2607 smp_mb();
2608 again:
2609 if (!task_function_call(task, __perf_install_in_context, event))
2610 return;
2612 raw_spin_lock_irq(&ctx->lock);
2613 task = ctx->task;
2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2616 * Cannot happen because we already checked above (which also
2617 * cannot happen), and we hold ctx->mutex, which serializes us
2618 * against perf_event_exit_task_context().
2620 raw_spin_unlock_irq(&ctx->lock);
2621 return;
2624 * If the task is not running, ctx->lock will avoid it becoming so,
2625 * thus we can safely install the event.
2627 if (task_curr(task)) {
2628 raw_spin_unlock_irq(&ctx->lock);
2629 goto again;
2631 add_event_to_ctx(event, ctx);
2632 raw_spin_unlock_irq(&ctx->lock);
2636 * Cross CPU call to enable a performance event
2638 static void __perf_event_enable(struct perf_event *event,
2639 struct perf_cpu_context *cpuctx,
2640 struct perf_event_context *ctx,
2641 void *info)
2643 struct perf_event *leader = event->group_leader;
2644 struct perf_event_context *task_ctx;
2646 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 event->state <= PERF_EVENT_STATE_ERROR)
2648 return;
2650 if (ctx->is_active)
2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2655 if (!ctx->is_active)
2656 return;
2658 if (!event_filter_match(event)) {
2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660 return;
2664 * If the event is in a group and isn't the group leader,
2665 * then don't put it on unless the group is on.
2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669 return;
2672 task_ctx = cpuctx->task_ctx;
2673 if (ctx->task)
2674 WARN_ON_ONCE(task_ctx != ctx);
2676 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2680 * Enable a event.
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
2684 * remains valid. This condition is satisfied when called through
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
2688 static void _perf_event_enable(struct perf_event *event)
2690 struct perf_event_context *ctx = event->ctx;
2692 raw_spin_lock_irq(&ctx->lock);
2693 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 event->state < PERF_EVENT_STATE_ERROR) {
2695 raw_spin_unlock_irq(&ctx->lock);
2696 return;
2700 * If the event is in error state, clear that first.
2702 * That way, if we see the event in error state below, we know that it
2703 * has gone back into error state, as distinct from the task having
2704 * been scheduled away before the cross-call arrived.
2706 if (event->state == PERF_EVENT_STATE_ERROR)
2707 event->state = PERF_EVENT_STATE_OFF;
2708 raw_spin_unlock_irq(&ctx->lock);
2710 event_function_call(event, __perf_event_enable, NULL);
2714 * See perf_event_disable();
2716 void perf_event_enable(struct perf_event *event)
2718 struct perf_event_context *ctx;
2720 ctx = perf_event_ctx_lock(event);
2721 _perf_event_enable(event);
2722 perf_event_ctx_unlock(event, ctx);
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2726 struct stop_event_data {
2727 struct perf_event *event;
2728 unsigned int restart;
2731 static int __perf_event_stop(void *info)
2733 struct stop_event_data *sd = info;
2734 struct perf_event *event = sd->event;
2736 /* if it's already INACTIVE, do nothing */
2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 return 0;
2740 /* matches smp_wmb() in event_sched_in() */
2741 smp_rmb();
2744 * There is a window with interrupts enabled before we get here,
2745 * so we need to check again lest we try to stop another CPU's event.
2747 if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 return -EAGAIN;
2750 event->pmu->stop(event, PERF_EF_UPDATE);
2753 * May race with the actual stop (through perf_pmu_output_stop()),
2754 * but it is only used for events with AUX ring buffer, and such
2755 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 * see comments in perf_aux_output_begin().
2758 * Since this is happening on a event-local CPU, no trace is lost
2759 * while restarting.
2761 if (sd->restart)
2762 event->pmu->start(event, 0);
2764 return 0;
2767 static int perf_event_stop(struct perf_event *event, int restart)
2769 struct stop_event_data sd = {
2770 .event = event,
2771 .restart = restart,
2773 int ret = 0;
2775 do {
2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 return 0;
2779 /* matches smp_wmb() in event_sched_in() */
2780 smp_rmb();
2783 * We only want to restart ACTIVE events, so if the event goes
2784 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 * fall through with ret==-ENXIO.
2787 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 __perf_event_stop, &sd);
2789 } while (ret == -EAGAIN);
2791 return ret;
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 * we update the addresses of corresponding vmas in
2800 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 * if the generation has changed since the previous call.
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2809 * ioctl;
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2812 * for reading;
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814 * of exec.
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2820 if (!has_addr_filter(event))
2821 return;
2823 raw_spin_lock(&ifh->lock);
2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 event->pmu->addr_filters_sync(event);
2826 event->hw.addr_filters_gen = event->addr_filters_gen;
2828 raw_spin_unlock(&ifh->lock);
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2835 * not supported on inherited events
2837 if (event->attr.inherit || !is_sampling_event(event))
2838 return -EINVAL;
2840 atomic_add(refresh, &event->event_limit);
2841 _perf_event_enable(event);
2843 return 0;
2847 * See perf_event_disable()
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2851 struct perf_event_context *ctx;
2852 int ret;
2854 ctx = perf_event_ctx_lock(event);
2855 ret = _perf_event_refresh(event, refresh);
2856 perf_event_ctx_unlock(event, ctx);
2858 return ret;
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 struct perf_event_attr *attr)
2865 int err;
2867 _perf_event_disable(bp);
2869 err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 if (err) {
2871 if (!bp->attr.disabled)
2872 _perf_event_enable(bp);
2874 return err;
2877 if (!attr->disabled)
2878 _perf_event_enable(bp);
2879 return 0;
2882 static int perf_event_modify_attr(struct perf_event *event,
2883 struct perf_event_attr *attr)
2885 if (event->attr.type != attr->type)
2886 return -EINVAL;
2888 switch (event->attr.type) {
2889 case PERF_TYPE_BREAKPOINT:
2890 return perf_event_modify_breakpoint(event, attr);
2891 default:
2892 /* Place holder for future additions. */
2893 return -EOPNOTSUPP;
2897 static void ctx_sched_out(struct perf_event_context *ctx,
2898 struct perf_cpu_context *cpuctx,
2899 enum event_type_t event_type)
2901 struct perf_event *event, *tmp;
2902 int is_active = ctx->is_active;
2904 lockdep_assert_held(&ctx->lock);
2906 if (likely(!ctx->nr_events)) {
2908 * See __perf_remove_from_context().
2910 WARN_ON_ONCE(ctx->is_active);
2911 if (ctx->task)
2912 WARN_ON_ONCE(cpuctx->task_ctx);
2913 return;
2916 ctx->is_active &= ~event_type;
2917 if (!(ctx->is_active & EVENT_ALL))
2918 ctx->is_active = 0;
2920 if (ctx->task) {
2921 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922 if (!ctx->is_active)
2923 cpuctx->task_ctx = NULL;
2927 * Always update time if it was set; not only when it changes.
2928 * Otherwise we can 'forget' to update time for any but the last
2929 * context we sched out. For example:
2931 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932 * ctx_sched_out(.event_type = EVENT_PINNED)
2934 * would only update time for the pinned events.
2936 if (is_active & EVENT_TIME) {
2937 /* update (and stop) ctx time */
2938 update_context_time(ctx);
2939 update_cgrp_time_from_cpuctx(cpuctx);
2942 is_active ^= ctx->is_active; /* changed bits */
2944 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945 return;
2947 perf_pmu_disable(ctx->pmu);
2948 if (is_active & EVENT_PINNED) {
2949 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950 group_sched_out(event, cpuctx, ctx);
2953 if (is_active & EVENT_FLEXIBLE) {
2954 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955 group_sched_out(event, cpuctx, ctx);
2957 perf_pmu_enable(ctx->pmu);
2961 * Test whether two contexts are equivalent, i.e. whether they have both been
2962 * cloned from the same version of the same context.
2964 * Equivalence is measured using a generation number in the context that is
2965 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966 * and list_del_event().
2968 static int context_equiv(struct perf_event_context *ctx1,
2969 struct perf_event_context *ctx2)
2971 lockdep_assert_held(&ctx1->lock);
2972 lockdep_assert_held(&ctx2->lock);
2974 /* Pinning disables the swap optimization */
2975 if (ctx1->pin_count || ctx2->pin_count)
2976 return 0;
2978 /* If ctx1 is the parent of ctx2 */
2979 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980 return 1;
2982 /* If ctx2 is the parent of ctx1 */
2983 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984 return 1;
2987 * If ctx1 and ctx2 have the same parent; we flatten the parent
2988 * hierarchy, see perf_event_init_context().
2990 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991 ctx1->parent_gen == ctx2->parent_gen)
2992 return 1;
2994 /* Unmatched */
2995 return 0;
2998 static void __perf_event_sync_stat(struct perf_event *event,
2999 struct perf_event *next_event)
3001 u64 value;
3003 if (!event->attr.inherit_stat)
3004 return;
3007 * Update the event value, we cannot use perf_event_read()
3008 * because we're in the middle of a context switch and have IRQs
3009 * disabled, which upsets smp_call_function_single(), however
3010 * we know the event must be on the current CPU, therefore we
3011 * don't need to use it.
3013 if (event->state == PERF_EVENT_STATE_ACTIVE)
3014 event->pmu->read(event);
3016 perf_event_update_time(event);
3019 * In order to keep per-task stats reliable we need to flip the event
3020 * values when we flip the contexts.
3022 value = local64_read(&next_event->count);
3023 value = local64_xchg(&event->count, value);
3024 local64_set(&next_event->count, value);
3026 swap(event->total_time_enabled, next_event->total_time_enabled);
3027 swap(event->total_time_running, next_event->total_time_running);
3030 * Since we swizzled the values, update the user visible data too.
3032 perf_event_update_userpage(event);
3033 perf_event_update_userpage(next_event);
3036 static void perf_event_sync_stat(struct perf_event_context *ctx,
3037 struct perf_event_context *next_ctx)
3039 struct perf_event *event, *next_event;
3041 if (!ctx->nr_stat)
3042 return;
3044 update_context_time(ctx);
3046 event = list_first_entry(&ctx->event_list,
3047 struct perf_event, event_entry);
3049 next_event = list_first_entry(&next_ctx->event_list,
3050 struct perf_event, event_entry);
3052 while (&event->event_entry != &ctx->event_list &&
3053 &next_event->event_entry != &next_ctx->event_list) {
3055 __perf_event_sync_stat(event, next_event);
3057 event = list_next_entry(event, event_entry);
3058 next_event = list_next_entry(next_event, event_entry);
3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063 struct task_struct *next)
3065 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066 struct perf_event_context *next_ctx;
3067 struct perf_event_context *parent, *next_parent;
3068 struct perf_cpu_context *cpuctx;
3069 int do_switch = 1;
3071 if (likely(!ctx))
3072 return;
3074 cpuctx = __get_cpu_context(ctx);
3075 if (!cpuctx->task_ctx)
3076 return;
3078 rcu_read_lock();
3079 next_ctx = next->perf_event_ctxp[ctxn];
3080 if (!next_ctx)
3081 goto unlock;
3083 parent = rcu_dereference(ctx->parent_ctx);
3084 next_parent = rcu_dereference(next_ctx->parent_ctx);
3086 /* If neither context have a parent context; they cannot be clones. */
3087 if (!parent && !next_parent)
3088 goto unlock;
3090 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3092 * Looks like the two contexts are clones, so we might be
3093 * able to optimize the context switch. We lock both
3094 * contexts and check that they are clones under the
3095 * lock (including re-checking that neither has been
3096 * uncloned in the meantime). It doesn't matter which
3097 * order we take the locks because no other cpu could
3098 * be trying to lock both of these tasks.
3100 raw_spin_lock(&ctx->lock);
3101 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102 if (context_equiv(ctx, next_ctx)) {
3103 WRITE_ONCE(ctx->task, next);
3104 WRITE_ONCE(next_ctx->task, task);
3106 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3109 * RCU_INIT_POINTER here is safe because we've not
3110 * modified the ctx and the above modification of
3111 * ctx->task and ctx->task_ctx_data are immaterial
3112 * since those values are always verified under
3113 * ctx->lock which we're now holding.
3115 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3118 do_switch = 0;
3120 perf_event_sync_stat(ctx, next_ctx);
3122 raw_spin_unlock(&next_ctx->lock);
3123 raw_spin_unlock(&ctx->lock);
3125 unlock:
3126 rcu_read_unlock();
3128 if (do_switch) {
3129 raw_spin_lock(&ctx->lock);
3130 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131 raw_spin_unlock(&ctx->lock);
3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3137 void perf_sched_cb_dec(struct pmu *pmu)
3139 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3141 this_cpu_dec(perf_sched_cb_usages);
3143 if (!--cpuctx->sched_cb_usage)
3144 list_del(&cpuctx->sched_cb_entry);
3148 void perf_sched_cb_inc(struct pmu *pmu)
3150 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3152 if (!cpuctx->sched_cb_usage++)
3153 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3155 this_cpu_inc(perf_sched_cb_usages);
3159 * This function provides the context switch callback to the lower code
3160 * layer. It is invoked ONLY when the context switch callback is enabled.
3162 * This callback is relevant even to per-cpu events; for example multi event
3163 * PEBS requires this to provide PID/TID information. This requires we flush
3164 * all queued PEBS records before we context switch to a new task.
3166 static void perf_pmu_sched_task(struct task_struct *prev,
3167 struct task_struct *next,
3168 bool sched_in)
3170 struct perf_cpu_context *cpuctx;
3171 struct pmu *pmu;
3173 if (prev == next)
3174 return;
3176 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3179 if (WARN_ON_ONCE(!pmu->sched_task))
3180 continue;
3182 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183 perf_pmu_disable(pmu);
3185 pmu->sched_task(cpuctx->task_ctx, sched_in);
3187 perf_pmu_enable(pmu);
3188 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3192 static void perf_event_switch(struct task_struct *task,
3193 struct task_struct *next_prev, bool sched_in);
3195 #define for_each_task_context_nr(ctxn) \
3196 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3199 * Called from scheduler to remove the events of the current task,
3200 * with interrupts disabled.
3202 * We stop each event and update the event value in event->count.
3204 * This does not protect us against NMI, but disable()
3205 * sets the disabled bit in the control field of event _before_
3206 * accessing the event control register. If a NMI hits, then it will
3207 * not restart the event.
3209 void __perf_event_task_sched_out(struct task_struct *task,
3210 struct task_struct *next)
3212 int ctxn;
3214 if (__this_cpu_read(perf_sched_cb_usages))
3215 perf_pmu_sched_task(task, next, false);
3217 if (atomic_read(&nr_switch_events))
3218 perf_event_switch(task, next, false);
3220 for_each_task_context_nr(ctxn)
3221 perf_event_context_sched_out(task, ctxn, next);
3224 * if cgroup events exist on this CPU, then we need
3225 * to check if we have to switch out PMU state.
3226 * cgroup event are system-wide mode only
3228 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229 perf_cgroup_sched_out(task, next);
3233 * Called with IRQs disabled
3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236 enum event_type_t event_type)
3238 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242 int (*func)(struct perf_event *, void *), void *data)
3244 struct perf_event **evt, *evt1, *evt2;
3245 int ret;
3247 evt1 = perf_event_groups_first(groups, -1);
3248 evt2 = perf_event_groups_first(groups, cpu);
3250 while (evt1 || evt2) {
3251 if (evt1 && evt2) {
3252 if (evt1->group_index < evt2->group_index)
3253 evt = &evt1;
3254 else
3255 evt = &evt2;
3256 } else if (evt1) {
3257 evt = &evt1;
3258 } else {
3259 evt = &evt2;
3262 ret = func(*evt, data);
3263 if (ret)
3264 return ret;
3266 *evt = perf_event_groups_next(*evt);
3269 return 0;
3272 struct sched_in_data {
3273 struct perf_event_context *ctx;
3274 struct perf_cpu_context *cpuctx;
3275 int can_add_hw;
3278 static int pinned_sched_in(struct perf_event *event, void *data)
3280 struct sched_in_data *sid = data;
3282 if (event->state <= PERF_EVENT_STATE_OFF)
3283 return 0;
3285 if (!event_filter_match(event))
3286 return 0;
3288 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3294 * If this pinned group hasn't been scheduled,
3295 * put it in error state.
3297 if (event->state == PERF_EVENT_STATE_INACTIVE)
3298 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3300 return 0;
3303 static int flexible_sched_in(struct perf_event *event, void *data)
3305 struct sched_in_data *sid = data;
3307 if (event->state <= PERF_EVENT_STATE_OFF)
3308 return 0;
3310 if (!event_filter_match(event))
3311 return 0;
3313 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316 else
3317 sid->can_add_hw = 0;
3320 return 0;
3323 static void
3324 ctx_pinned_sched_in(struct perf_event_context *ctx,
3325 struct perf_cpu_context *cpuctx)
3327 struct sched_in_data sid = {
3328 .ctx = ctx,
3329 .cpuctx = cpuctx,
3330 .can_add_hw = 1,
3333 visit_groups_merge(&ctx->pinned_groups,
3334 smp_processor_id(),
3335 pinned_sched_in, &sid);
3338 static void
3339 ctx_flexible_sched_in(struct perf_event_context *ctx,
3340 struct perf_cpu_context *cpuctx)
3342 struct sched_in_data sid = {
3343 .ctx = ctx,
3344 .cpuctx = cpuctx,
3345 .can_add_hw = 1,
3348 visit_groups_merge(&ctx->flexible_groups,
3349 smp_processor_id(),
3350 flexible_sched_in, &sid);
3353 static void
3354 ctx_sched_in(struct perf_event_context *ctx,
3355 struct perf_cpu_context *cpuctx,
3356 enum event_type_t event_type,
3357 struct task_struct *task)
3359 int is_active = ctx->is_active;
3360 u64 now;
3362 lockdep_assert_held(&ctx->lock);
3364 if (likely(!ctx->nr_events))
3365 return;
3367 ctx->is_active |= (event_type | EVENT_TIME);
3368 if (ctx->task) {
3369 if (!is_active)
3370 cpuctx->task_ctx = ctx;
3371 else
3372 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3375 is_active ^= ctx->is_active; /* changed bits */
3377 if (is_active & EVENT_TIME) {
3378 /* start ctx time */
3379 now = perf_clock();
3380 ctx->timestamp = now;
3381 perf_cgroup_set_timestamp(task, ctx);
3385 * First go through the list and put on any pinned groups
3386 * in order to give them the best chance of going on.
3388 if (is_active & EVENT_PINNED)
3389 ctx_pinned_sched_in(ctx, cpuctx);
3391 /* Then walk through the lower prio flexible groups */
3392 if (is_active & EVENT_FLEXIBLE)
3393 ctx_flexible_sched_in(ctx, cpuctx);
3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397 enum event_type_t event_type,
3398 struct task_struct *task)
3400 struct perf_event_context *ctx = &cpuctx->ctx;
3402 ctx_sched_in(ctx, cpuctx, event_type, task);
3405 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406 struct task_struct *task)
3408 struct perf_cpu_context *cpuctx;
3410 cpuctx = __get_cpu_context(ctx);
3411 if (cpuctx->task_ctx == ctx)
3412 return;
3414 perf_ctx_lock(cpuctx, ctx);
3416 * We must check ctx->nr_events while holding ctx->lock, such
3417 * that we serialize against perf_install_in_context().
3419 if (!ctx->nr_events)
3420 goto unlock;
3422 perf_pmu_disable(ctx->pmu);
3424 * We want to keep the following priority order:
3425 * cpu pinned (that don't need to move), task pinned,
3426 * cpu flexible, task flexible.
3428 * However, if task's ctx is not carrying any pinned
3429 * events, no need to flip the cpuctx's events around.
3431 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433 perf_event_sched_in(cpuctx, ctx, task);
3434 perf_pmu_enable(ctx->pmu);
3436 unlock:
3437 perf_ctx_unlock(cpuctx, ctx);
3441 * Called from scheduler to add the events of the current task
3442 * with interrupts disabled.
3444 * We restore the event value and then enable it.
3446 * This does not protect us against NMI, but enable()
3447 * sets the enabled bit in the control field of event _before_
3448 * accessing the event control register. If a NMI hits, then it will
3449 * keep the event running.
3451 void __perf_event_task_sched_in(struct task_struct *prev,
3452 struct task_struct *task)
3454 struct perf_event_context *ctx;
3455 int ctxn;
3458 * If cgroup events exist on this CPU, then we need to check if we have
3459 * to switch in PMU state; cgroup event are system-wide mode only.
3461 * Since cgroup events are CPU events, we must schedule these in before
3462 * we schedule in the task events.
3464 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465 perf_cgroup_sched_in(prev, task);
3467 for_each_task_context_nr(ctxn) {
3468 ctx = task->perf_event_ctxp[ctxn];
3469 if (likely(!ctx))
3470 continue;
3472 perf_event_context_sched_in(ctx, task);
3475 if (atomic_read(&nr_switch_events))
3476 perf_event_switch(task, prev, true);
3478 if (__this_cpu_read(perf_sched_cb_usages))
3479 perf_pmu_sched_task(prev, task, true);
3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3484 u64 frequency = event->attr.sample_freq;
3485 u64 sec = NSEC_PER_SEC;
3486 u64 divisor, dividend;
3488 int count_fls, nsec_fls, frequency_fls, sec_fls;
3490 count_fls = fls64(count);
3491 nsec_fls = fls64(nsec);
3492 frequency_fls = fls64(frequency);
3493 sec_fls = 30;
3496 * We got @count in @nsec, with a target of sample_freq HZ
3497 * the target period becomes:
3499 * @count * 10^9
3500 * period = -------------------
3501 * @nsec * sample_freq
3506 * Reduce accuracy by one bit such that @a and @b converge
3507 * to a similar magnitude.
3509 #define REDUCE_FLS(a, b) \
3510 do { \
3511 if (a##_fls > b##_fls) { \
3512 a >>= 1; \
3513 a##_fls--; \
3514 } else { \
3515 b >>= 1; \
3516 b##_fls--; \
3518 } while (0)
3521 * Reduce accuracy until either term fits in a u64, then proceed with
3522 * the other, so that finally we can do a u64/u64 division.
3524 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525 REDUCE_FLS(nsec, frequency);
3526 REDUCE_FLS(sec, count);
3529 if (count_fls + sec_fls > 64) {
3530 divisor = nsec * frequency;
3532 while (count_fls + sec_fls > 64) {
3533 REDUCE_FLS(count, sec);
3534 divisor >>= 1;
3537 dividend = count * sec;
3538 } else {
3539 dividend = count * sec;
3541 while (nsec_fls + frequency_fls > 64) {
3542 REDUCE_FLS(nsec, frequency);
3543 dividend >>= 1;
3546 divisor = nsec * frequency;
3549 if (!divisor)
3550 return dividend;
3552 return div64_u64(dividend, divisor);
3555 static DEFINE_PER_CPU(int, perf_throttled_count);
3556 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3560 struct hw_perf_event *hwc = &event->hw;
3561 s64 period, sample_period;
3562 s64 delta;
3564 period = perf_calculate_period(event, nsec, count);
3566 delta = (s64)(period - hwc->sample_period);
3567 delta = (delta + 7) / 8; /* low pass filter */
3569 sample_period = hwc->sample_period + delta;
3571 if (!sample_period)
3572 sample_period = 1;
3574 hwc->sample_period = sample_period;
3576 if (local64_read(&hwc->period_left) > 8*sample_period) {
3577 if (disable)
3578 event->pmu->stop(event, PERF_EF_UPDATE);
3580 local64_set(&hwc->period_left, 0);
3582 if (disable)
3583 event->pmu->start(event, PERF_EF_RELOAD);
3588 * combine freq adjustment with unthrottling to avoid two passes over the
3589 * events. At the same time, make sure, having freq events does not change
3590 * the rate of unthrottling as that would introduce bias.
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593 int needs_unthr)
3595 struct perf_event *event;
3596 struct hw_perf_event *hwc;
3597 u64 now, period = TICK_NSEC;
3598 s64 delta;
3601 * only need to iterate over all events iff:
3602 * - context have events in frequency mode (needs freq adjust)
3603 * - there are events to unthrottle on this cpu
3605 if (!(ctx->nr_freq || needs_unthr))
3606 return;
3608 raw_spin_lock(&ctx->lock);
3609 perf_pmu_disable(ctx->pmu);
3611 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612 if (event->state != PERF_EVENT_STATE_ACTIVE)
3613 continue;
3615 if (!event_filter_match(event))
3616 continue;
3618 perf_pmu_disable(event->pmu);
3620 hwc = &event->hw;
3622 if (hwc->interrupts == MAX_INTERRUPTS) {
3623 hwc->interrupts = 0;
3624 perf_log_throttle(event, 1);
3625 event->pmu->start(event, 0);
3628 if (!event->attr.freq || !event->attr.sample_freq)
3629 goto next;
3632 * stop the event and update event->count
3634 event->pmu->stop(event, PERF_EF_UPDATE);
3636 now = local64_read(&event->count);
3637 delta = now - hwc->freq_count_stamp;
3638 hwc->freq_count_stamp = now;
3641 * restart the event
3642 * reload only if value has changed
3643 * we have stopped the event so tell that
3644 * to perf_adjust_period() to avoid stopping it
3645 * twice.
3647 if (delta > 0)
3648 perf_adjust_period(event, period, delta, false);
3650 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651 next:
3652 perf_pmu_enable(event->pmu);
3655 perf_pmu_enable(ctx->pmu);
3656 raw_spin_unlock(&ctx->lock);
3660 * Move @event to the tail of the @ctx's elegible events.
3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3665 * Rotate the first entry last of non-pinned groups. Rotation might be
3666 * disabled by the inheritance code.
3668 if (ctx->rotate_disable)
3669 return;
3671 perf_event_groups_delete(&ctx->flexible_groups, event);
3672 perf_event_groups_insert(&ctx->flexible_groups, event);
3675 static inline struct perf_event *
3676 ctx_first_active(struct perf_event_context *ctx)
3678 return list_first_entry_or_null(&ctx->flexible_active,
3679 struct perf_event, active_list);
3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3684 struct perf_event *cpu_event = NULL, *task_event = NULL;
3685 bool cpu_rotate = false, task_rotate = false;
3686 struct perf_event_context *ctx = NULL;
3689 * Since we run this from IRQ context, nobody can install new
3690 * events, thus the event count values are stable.
3693 if (cpuctx->ctx.nr_events) {
3694 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695 cpu_rotate = true;
3698 ctx = cpuctx->task_ctx;
3699 if (ctx && ctx->nr_events) {
3700 if (ctx->nr_events != ctx->nr_active)
3701 task_rotate = true;
3704 if (!(cpu_rotate || task_rotate))
3705 return false;
3707 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708 perf_pmu_disable(cpuctx->ctx.pmu);
3710 if (task_rotate)
3711 task_event = ctx_first_active(ctx);
3712 if (cpu_rotate)
3713 cpu_event = ctx_first_active(&cpuctx->ctx);
3716 * As per the order given at ctx_resched() first 'pop' task flexible
3717 * and then, if needed CPU flexible.
3719 if (task_event || (ctx && cpu_event))
3720 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721 if (cpu_event)
3722 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3724 if (task_event)
3725 rotate_ctx(ctx, task_event);
3726 if (cpu_event)
3727 rotate_ctx(&cpuctx->ctx, cpu_event);
3729 perf_event_sched_in(cpuctx, ctx, current);
3731 perf_pmu_enable(cpuctx->ctx.pmu);
3732 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3734 return true;
3737 void perf_event_task_tick(void)
3739 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740 struct perf_event_context *ctx, *tmp;
3741 int throttled;
3743 lockdep_assert_irqs_disabled();
3745 __this_cpu_inc(perf_throttled_seq);
3746 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3749 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750 perf_adjust_freq_unthr_context(ctx, throttled);
3753 static int event_enable_on_exec(struct perf_event *event,
3754 struct perf_event_context *ctx)
3756 if (!event->attr.enable_on_exec)
3757 return 0;
3759 event->attr.enable_on_exec = 0;
3760 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761 return 0;
3763 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3765 return 1;
3769 * Enable all of a task's events that have been marked enable-on-exec.
3770 * This expects task == current.
3772 static void perf_event_enable_on_exec(int ctxn)
3774 struct perf_event_context *ctx, *clone_ctx = NULL;
3775 enum event_type_t event_type = 0;
3776 struct perf_cpu_context *cpuctx;
3777 struct perf_event *event;
3778 unsigned long flags;
3779 int enabled = 0;
3781 local_irq_save(flags);
3782 ctx = current->perf_event_ctxp[ctxn];
3783 if (!ctx || !ctx->nr_events)
3784 goto out;
3786 cpuctx = __get_cpu_context(ctx);
3787 perf_ctx_lock(cpuctx, ctx);
3788 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789 list_for_each_entry(event, &ctx->event_list, event_entry) {
3790 enabled |= event_enable_on_exec(event, ctx);
3791 event_type |= get_event_type(event);
3795 * Unclone and reschedule this context if we enabled any event.
3797 if (enabled) {
3798 clone_ctx = unclone_ctx(ctx);
3799 ctx_resched(cpuctx, ctx, event_type);
3800 } else {
3801 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3803 perf_ctx_unlock(cpuctx, ctx);
3805 out:
3806 local_irq_restore(flags);
3808 if (clone_ctx)
3809 put_ctx(clone_ctx);
3812 struct perf_read_data {
3813 struct perf_event *event;
3814 bool group;
3815 int ret;
3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3820 u16 local_pkg, event_pkg;
3822 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823 int local_cpu = smp_processor_id();
3825 event_pkg = topology_physical_package_id(event_cpu);
3826 local_pkg = topology_physical_package_id(local_cpu);
3828 if (event_pkg == local_pkg)
3829 return local_cpu;
3832 return event_cpu;
3836 * Cross CPU call to read the hardware event
3838 static void __perf_event_read(void *info)
3840 struct perf_read_data *data = info;
3841 struct perf_event *sub, *event = data->event;
3842 struct perf_event_context *ctx = event->ctx;
3843 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844 struct pmu *pmu = event->pmu;
3847 * If this is a task context, we need to check whether it is
3848 * the current task context of this cpu. If not it has been
3849 * scheduled out before the smp call arrived. In that case
3850 * event->count would have been updated to a recent sample
3851 * when the event was scheduled out.
3853 if (ctx->task && cpuctx->task_ctx != ctx)
3854 return;
3856 raw_spin_lock(&ctx->lock);
3857 if (ctx->is_active & EVENT_TIME) {
3858 update_context_time(ctx);
3859 update_cgrp_time_from_event(event);
3862 perf_event_update_time(event);
3863 if (data->group)
3864 perf_event_update_sibling_time(event);
3866 if (event->state != PERF_EVENT_STATE_ACTIVE)
3867 goto unlock;
3869 if (!data->group) {
3870 pmu->read(event);
3871 data->ret = 0;
3872 goto unlock;
3875 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3877 pmu->read(event);
3879 for_each_sibling_event(sub, event) {
3880 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3882 * Use sibling's PMU rather than @event's since
3883 * sibling could be on different (eg: software) PMU.
3885 sub->pmu->read(sub);
3889 data->ret = pmu->commit_txn(pmu);
3891 unlock:
3892 raw_spin_unlock(&ctx->lock);
3895 static inline u64 perf_event_count(struct perf_event *event)
3897 return local64_read(&event->count) + atomic64_read(&event->child_count);
3901 * NMI-safe method to read a local event, that is an event that
3902 * is:
3903 * - either for the current task, or for this CPU
3904 * - does not have inherit set, for inherited task events
3905 * will not be local and we cannot read them atomically
3906 * - must not have a pmu::count method
3908 int perf_event_read_local(struct perf_event *event, u64 *value,
3909 u64 *enabled, u64 *running)
3911 unsigned long flags;
3912 int ret = 0;
3915 * Disabling interrupts avoids all counter scheduling (context
3916 * switches, timer based rotation and IPIs).
3918 local_irq_save(flags);
3921 * It must not be an event with inherit set, we cannot read
3922 * all child counters from atomic context.
3924 if (event->attr.inherit) {
3925 ret = -EOPNOTSUPP;
3926 goto out;
3929 /* If this is a per-task event, it must be for current */
3930 if ((event->attach_state & PERF_ATTACH_TASK) &&
3931 event->hw.target != current) {
3932 ret = -EINVAL;
3933 goto out;
3936 /* If this is a per-CPU event, it must be for this CPU */
3937 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938 event->cpu != smp_processor_id()) {
3939 ret = -EINVAL;
3940 goto out;
3944 * If the event is currently on this CPU, its either a per-task event,
3945 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946 * oncpu == -1).
3948 if (event->oncpu == smp_processor_id())
3949 event->pmu->read(event);
3951 *value = local64_read(&event->count);
3952 if (enabled || running) {
3953 u64 now = event->shadow_ctx_time + perf_clock();
3954 u64 __enabled, __running;
3956 __perf_update_times(event, now, &__enabled, &__running);
3957 if (enabled)
3958 *enabled = __enabled;
3959 if (running)
3960 *running = __running;
3962 out:
3963 local_irq_restore(flags);
3965 return ret;
3968 static int perf_event_read(struct perf_event *event, bool group)
3970 enum perf_event_state state = READ_ONCE(event->state);
3971 int event_cpu, ret = 0;
3974 * If event is enabled and currently active on a CPU, update the
3975 * value in the event structure:
3977 again:
3978 if (state == PERF_EVENT_STATE_ACTIVE) {
3979 struct perf_read_data data;
3982 * Orders the ->state and ->oncpu loads such that if we see
3983 * ACTIVE we must also see the right ->oncpu.
3985 * Matches the smp_wmb() from event_sched_in().
3987 smp_rmb();
3989 event_cpu = READ_ONCE(event->oncpu);
3990 if ((unsigned)event_cpu >= nr_cpu_ids)
3991 return 0;
3993 data = (struct perf_read_data){
3994 .event = event,
3995 .group = group,
3996 .ret = 0,
3999 preempt_disable();
4000 event_cpu = __perf_event_read_cpu(event, event_cpu);
4003 * Purposely ignore the smp_call_function_single() return
4004 * value.
4006 * If event_cpu isn't a valid CPU it means the event got
4007 * scheduled out and that will have updated the event count.
4009 * Therefore, either way, we'll have an up-to-date event count
4010 * after this.
4012 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013 preempt_enable();
4014 ret = data.ret;
4016 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4017 struct perf_event_context *ctx = event->ctx;
4018 unsigned long flags;
4020 raw_spin_lock_irqsave(&ctx->lock, flags);
4021 state = event->state;
4022 if (state != PERF_EVENT_STATE_INACTIVE) {
4023 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024 goto again;
4028 * May read while context is not active (e.g., thread is
4029 * blocked), in that case we cannot update context time
4031 if (ctx->is_active & EVENT_TIME) {
4032 update_context_time(ctx);
4033 update_cgrp_time_from_event(event);
4036 perf_event_update_time(event);
4037 if (group)
4038 perf_event_update_sibling_time(event);
4039 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4042 return ret;
4046 * Initialize the perf_event context in a task_struct:
4048 static void __perf_event_init_context(struct perf_event_context *ctx)
4050 raw_spin_lock_init(&ctx->lock);
4051 mutex_init(&ctx->mutex);
4052 INIT_LIST_HEAD(&ctx->active_ctx_list);
4053 perf_event_groups_init(&ctx->pinned_groups);
4054 perf_event_groups_init(&ctx->flexible_groups);
4055 INIT_LIST_HEAD(&ctx->event_list);
4056 INIT_LIST_HEAD(&ctx->pinned_active);
4057 INIT_LIST_HEAD(&ctx->flexible_active);
4058 atomic_set(&ctx->refcount, 1);
4061 static struct perf_event_context *
4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4064 struct perf_event_context *ctx;
4066 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067 if (!ctx)
4068 return NULL;
4070 __perf_event_init_context(ctx);
4071 if (task) {
4072 ctx->task = task;
4073 get_task_struct(task);
4075 ctx->pmu = pmu;
4077 return ctx;
4080 static struct task_struct *
4081 find_lively_task_by_vpid(pid_t vpid)
4083 struct task_struct *task;
4085 rcu_read_lock();
4086 if (!vpid)
4087 task = current;
4088 else
4089 task = find_task_by_vpid(vpid);
4090 if (task)
4091 get_task_struct(task);
4092 rcu_read_unlock();
4094 if (!task)
4095 return ERR_PTR(-ESRCH);
4097 return task;
4101 * Returns a matching context with refcount and pincount.
4103 static struct perf_event_context *
4104 find_get_context(struct pmu *pmu, struct task_struct *task,
4105 struct perf_event *event)
4107 struct perf_event_context *ctx, *clone_ctx = NULL;
4108 struct perf_cpu_context *cpuctx;
4109 void *task_ctx_data = NULL;
4110 unsigned long flags;
4111 int ctxn, err;
4112 int cpu = event->cpu;
4114 if (!task) {
4115 /* Must be root to operate on a CPU event: */
4116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117 return ERR_PTR(-EACCES);
4119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120 ctx = &cpuctx->ctx;
4121 get_ctx(ctx);
4122 ++ctx->pin_count;
4124 return ctx;
4127 err = -EINVAL;
4128 ctxn = pmu->task_ctx_nr;
4129 if (ctxn < 0)
4130 goto errout;
4132 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134 if (!task_ctx_data) {
4135 err = -ENOMEM;
4136 goto errout;
4140 retry:
4141 ctx = perf_lock_task_context(task, ctxn, &flags);
4142 if (ctx) {
4143 clone_ctx = unclone_ctx(ctx);
4144 ++ctx->pin_count;
4146 if (task_ctx_data && !ctx->task_ctx_data) {
4147 ctx->task_ctx_data = task_ctx_data;
4148 task_ctx_data = NULL;
4150 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4152 if (clone_ctx)
4153 put_ctx(clone_ctx);
4154 } else {
4155 ctx = alloc_perf_context(pmu, task);
4156 err = -ENOMEM;
4157 if (!ctx)
4158 goto errout;
4160 if (task_ctx_data) {
4161 ctx->task_ctx_data = task_ctx_data;
4162 task_ctx_data = NULL;
4165 err = 0;
4166 mutex_lock(&task->perf_event_mutex);
4168 * If it has already passed perf_event_exit_task().
4169 * we must see PF_EXITING, it takes this mutex too.
4171 if (task->flags & PF_EXITING)
4172 err = -ESRCH;
4173 else if (task->perf_event_ctxp[ctxn])
4174 err = -EAGAIN;
4175 else {
4176 get_ctx(ctx);
4177 ++ctx->pin_count;
4178 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4180 mutex_unlock(&task->perf_event_mutex);
4182 if (unlikely(err)) {
4183 put_ctx(ctx);
4185 if (err == -EAGAIN)
4186 goto retry;
4187 goto errout;
4191 kfree(task_ctx_data);
4192 return ctx;
4194 errout:
4195 kfree(task_ctx_data);
4196 return ERR_PTR(err);
4199 static void perf_event_free_filter(struct perf_event *event);
4200 static void perf_event_free_bpf_prog(struct perf_event *event);
4202 static void free_event_rcu(struct rcu_head *head)
4204 struct perf_event *event;
4206 event = container_of(head, struct perf_event, rcu_head);
4207 if (event->ns)
4208 put_pid_ns(event->ns);
4209 perf_event_free_filter(event);
4210 kfree(event);
4213 static void ring_buffer_attach(struct perf_event *event,
4214 struct ring_buffer *rb);
4216 static void detach_sb_event(struct perf_event *event)
4218 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4220 raw_spin_lock(&pel->lock);
4221 list_del_rcu(&event->sb_list);
4222 raw_spin_unlock(&pel->lock);
4225 static bool is_sb_event(struct perf_event *event)
4227 struct perf_event_attr *attr = &event->attr;
4229 if (event->parent)
4230 return false;
4232 if (event->attach_state & PERF_ATTACH_TASK)
4233 return false;
4235 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236 attr->comm || attr->comm_exec ||
4237 attr->task ||
4238 attr->context_switch)
4239 return true;
4240 return false;
4243 static void unaccount_pmu_sb_event(struct perf_event *event)
4245 if (is_sb_event(event))
4246 detach_sb_event(event);
4249 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4251 if (event->parent)
4252 return;
4254 if (is_cgroup_event(event))
4255 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock);
4260 #endif
4262 static void unaccount_freq_event_nohz(void)
4264 #ifdef CONFIG_NO_HZ_FULL
4265 spin_lock(&nr_freq_lock);
4266 if (atomic_dec_and_test(&nr_freq_events))
4267 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268 spin_unlock(&nr_freq_lock);
4269 #endif
4272 static void unaccount_freq_event(void)
4274 if (tick_nohz_full_enabled())
4275 unaccount_freq_event_nohz();
4276 else
4277 atomic_dec(&nr_freq_events);
4280 static void unaccount_event(struct perf_event *event)
4282 bool dec = false;
4284 if (event->parent)
4285 return;
4287 if (event->attach_state & PERF_ATTACH_TASK)
4288 dec = true;
4289 if (event->attr.mmap || event->attr.mmap_data)
4290 atomic_dec(&nr_mmap_events);
4291 if (event->attr.comm)
4292 atomic_dec(&nr_comm_events);
4293 if (event->attr.namespaces)
4294 atomic_dec(&nr_namespaces_events);
4295 if (event->attr.task)
4296 atomic_dec(&nr_task_events);
4297 if (event->attr.freq)
4298 unaccount_freq_event();
4299 if (event->attr.context_switch) {
4300 dec = true;
4301 atomic_dec(&nr_switch_events);
4303 if (is_cgroup_event(event))
4304 dec = true;
4305 if (has_branch_stack(event))
4306 dec = true;
4308 if (dec) {
4309 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310 schedule_delayed_work(&perf_sched_work, HZ);
4313 unaccount_event_cpu(event, event->cpu);
4315 unaccount_pmu_sb_event(event);
4318 static void perf_sched_delayed(struct work_struct *work)
4320 mutex_lock(&perf_sched_mutex);
4321 if (atomic_dec_and_test(&perf_sched_count))
4322 static_branch_disable(&perf_sched_events);
4323 mutex_unlock(&perf_sched_mutex);
4327 * The following implement mutual exclusion of events on "exclusive" pmus
4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329 * at a time, so we disallow creating events that might conflict, namely:
4331 * 1) cpu-wide events in the presence of per-task events,
4332 * 2) per-task events in the presence of cpu-wide events,
4333 * 3) two matching events on the same context.
4335 * The former two cases are handled in the allocation path (perf_event_alloc(),
4336 * _free_event()), the latter -- before the first perf_install_in_context().
4338 static int exclusive_event_init(struct perf_event *event)
4340 struct pmu *pmu = event->pmu;
4342 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343 return 0;
4346 * Prevent co-existence of per-task and cpu-wide events on the
4347 * same exclusive pmu.
4349 * Negative pmu::exclusive_cnt means there are cpu-wide
4350 * events on this "exclusive" pmu, positive means there are
4351 * per-task events.
4353 * Since this is called in perf_event_alloc() path, event::ctx
4354 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355 * to mean "per-task event", because unlike other attach states it
4356 * never gets cleared.
4358 if (event->attach_state & PERF_ATTACH_TASK) {
4359 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360 return -EBUSY;
4361 } else {
4362 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363 return -EBUSY;
4366 return 0;
4369 static void exclusive_event_destroy(struct perf_event *event)
4371 struct pmu *pmu = event->pmu;
4373 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374 return;
4376 /* see comment in exclusive_event_init() */
4377 if (event->attach_state & PERF_ATTACH_TASK)
4378 atomic_dec(&pmu->exclusive_cnt);
4379 else
4380 atomic_inc(&pmu->exclusive_cnt);
4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4385 if ((e1->pmu == e2->pmu) &&
4386 (e1->cpu == e2->cpu ||
4387 e1->cpu == -1 ||
4388 e2->cpu == -1))
4389 return true;
4390 return false;
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event *event,
4395 struct perf_event_context *ctx)
4397 struct perf_event *iter_event;
4398 struct pmu *pmu = event->pmu;
4400 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401 return true;
4403 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404 if (exclusive_event_match(iter_event, event))
4405 return false;
4408 return true;
4411 static void perf_addr_filters_splice(struct perf_event *event,
4412 struct list_head *head);
4414 static void _free_event(struct perf_event *event)
4416 irq_work_sync(&event->pending);
4418 unaccount_event(event);
4420 if (event->rb) {
4422 * Can happen when we close an event with re-directed output.
4424 * Since we have a 0 refcount, perf_mmap_close() will skip
4425 * over us; possibly making our ring_buffer_put() the last.
4427 mutex_lock(&event->mmap_mutex);
4428 ring_buffer_attach(event, NULL);
4429 mutex_unlock(&event->mmap_mutex);
4432 if (is_cgroup_event(event))
4433 perf_detach_cgroup(event);
4435 if (!event->parent) {
4436 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437 put_callchain_buffers();
4440 perf_event_free_bpf_prog(event);
4441 perf_addr_filters_splice(event, NULL);
4442 kfree(event->addr_filters_offs);
4444 if (event->destroy)
4445 event->destroy(event);
4447 if (event->ctx)
4448 put_ctx(event->ctx);
4450 exclusive_event_destroy(event);
4451 module_put(event->pmu->module);
4453 call_rcu(&event->rcu_head, free_event_rcu);
4457 * Used to free events which have a known refcount of 1, such as in error paths
4458 * where the event isn't exposed yet and inherited events.
4460 static void free_event(struct perf_event *event)
4462 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4463 "unexpected event refcount: %ld; ptr=%p\n",
4464 atomic_long_read(&event->refcount), event)) {
4465 /* leak to avoid use-after-free */
4466 return;
4469 _free_event(event);
4473 * Remove user event from the owner task.
4475 static void perf_remove_from_owner(struct perf_event *event)
4477 struct task_struct *owner;
4479 rcu_read_lock();
4481 * Matches the smp_store_release() in perf_event_exit_task(). If we
4482 * observe !owner it means the list deletion is complete and we can
4483 * indeed free this event, otherwise we need to serialize on
4484 * owner->perf_event_mutex.
4486 owner = READ_ONCE(event->owner);
4487 if (owner) {
4489 * Since delayed_put_task_struct() also drops the last
4490 * task reference we can safely take a new reference
4491 * while holding the rcu_read_lock().
4493 get_task_struct(owner);
4495 rcu_read_unlock();
4497 if (owner) {
4499 * If we're here through perf_event_exit_task() we're already
4500 * holding ctx->mutex which would be an inversion wrt. the
4501 * normal lock order.
4503 * However we can safely take this lock because its the child
4504 * ctx->mutex.
4506 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4509 * We have to re-check the event->owner field, if it is cleared
4510 * we raced with perf_event_exit_task(), acquiring the mutex
4511 * ensured they're done, and we can proceed with freeing the
4512 * event.
4514 if (event->owner) {
4515 list_del_init(&event->owner_entry);
4516 smp_store_release(&event->owner, NULL);
4518 mutex_unlock(&owner->perf_event_mutex);
4519 put_task_struct(owner);
4523 static void put_event(struct perf_event *event)
4525 if (!atomic_long_dec_and_test(&event->refcount))
4526 return;
4528 _free_event(event);
4532 * Kill an event dead; while event:refcount will preserve the event
4533 * object, it will not preserve its functionality. Once the last 'user'
4534 * gives up the object, we'll destroy the thing.
4536 int perf_event_release_kernel(struct perf_event *event)
4538 struct perf_event_context *ctx = event->ctx;
4539 struct perf_event *child, *tmp;
4540 LIST_HEAD(free_list);
4543 * If we got here through err_file: fput(event_file); we will not have
4544 * attached to a context yet.
4546 if (!ctx) {
4547 WARN_ON_ONCE(event->attach_state &
4548 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4549 goto no_ctx;
4552 if (!is_kernel_event(event))
4553 perf_remove_from_owner(event);
4555 ctx = perf_event_ctx_lock(event);
4556 WARN_ON_ONCE(ctx->parent_ctx);
4557 perf_remove_from_context(event, DETACH_GROUP);
4559 raw_spin_lock_irq(&ctx->lock);
4561 * Mark this event as STATE_DEAD, there is no external reference to it
4562 * anymore.
4564 * Anybody acquiring event->child_mutex after the below loop _must_
4565 * also see this, most importantly inherit_event() which will avoid
4566 * placing more children on the list.
4568 * Thus this guarantees that we will in fact observe and kill _ALL_
4569 * child events.
4571 event->state = PERF_EVENT_STATE_DEAD;
4572 raw_spin_unlock_irq(&ctx->lock);
4574 perf_event_ctx_unlock(event, ctx);
4576 again:
4577 mutex_lock(&event->child_mutex);
4578 list_for_each_entry(child, &event->child_list, child_list) {
4581 * Cannot change, child events are not migrated, see the
4582 * comment with perf_event_ctx_lock_nested().
4584 ctx = READ_ONCE(child->ctx);
4586 * Since child_mutex nests inside ctx::mutex, we must jump
4587 * through hoops. We start by grabbing a reference on the ctx.
4589 * Since the event cannot get freed while we hold the
4590 * child_mutex, the context must also exist and have a !0
4591 * reference count.
4593 get_ctx(ctx);
4596 * Now that we have a ctx ref, we can drop child_mutex, and
4597 * acquire ctx::mutex without fear of it going away. Then we
4598 * can re-acquire child_mutex.
4600 mutex_unlock(&event->child_mutex);
4601 mutex_lock(&ctx->mutex);
4602 mutex_lock(&event->child_mutex);
4605 * Now that we hold ctx::mutex and child_mutex, revalidate our
4606 * state, if child is still the first entry, it didn't get freed
4607 * and we can continue doing so.
4609 tmp = list_first_entry_or_null(&event->child_list,
4610 struct perf_event, child_list);
4611 if (tmp == child) {
4612 perf_remove_from_context(child, DETACH_GROUP);
4613 list_move(&child->child_list, &free_list);
4615 * This matches the refcount bump in inherit_event();
4616 * this can't be the last reference.
4618 put_event(event);
4621 mutex_unlock(&event->child_mutex);
4622 mutex_unlock(&ctx->mutex);
4623 put_ctx(ctx);
4624 goto again;
4626 mutex_unlock(&event->child_mutex);
4628 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4629 list_del(&child->child_list);
4630 free_event(child);
4633 no_ctx:
4634 put_event(event); /* Must be the 'last' reference */
4635 return 0;
4637 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4640 * Called when the last reference to the file is gone.
4642 static int perf_release(struct inode *inode, struct file *file)
4644 perf_event_release_kernel(file->private_data);
4645 return 0;
4648 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4650 struct perf_event *child;
4651 u64 total = 0;
4653 *enabled = 0;
4654 *running = 0;
4656 mutex_lock(&event->child_mutex);
4658 (void)perf_event_read(event, false);
4659 total += perf_event_count(event);
4661 *enabled += event->total_time_enabled +
4662 atomic64_read(&event->child_total_time_enabled);
4663 *running += event->total_time_running +
4664 atomic64_read(&event->child_total_time_running);
4666 list_for_each_entry(child, &event->child_list, child_list) {
4667 (void)perf_event_read(child, false);
4668 total += perf_event_count(child);
4669 *enabled += child->total_time_enabled;
4670 *running += child->total_time_running;
4672 mutex_unlock(&event->child_mutex);
4674 return total;
4677 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4679 struct perf_event_context *ctx;
4680 u64 count;
4682 ctx = perf_event_ctx_lock(event);
4683 count = __perf_event_read_value(event, enabled, running);
4684 perf_event_ctx_unlock(event, ctx);
4686 return count;
4688 EXPORT_SYMBOL_GPL(perf_event_read_value);
4690 static int __perf_read_group_add(struct perf_event *leader,
4691 u64 read_format, u64 *values)
4693 struct perf_event_context *ctx = leader->ctx;
4694 struct perf_event *sub;
4695 unsigned long flags;
4696 int n = 1; /* skip @nr */
4697 int ret;
4699 ret = perf_event_read(leader, true);
4700 if (ret)
4701 return ret;
4703 raw_spin_lock_irqsave(&ctx->lock, flags);
4706 * Since we co-schedule groups, {enabled,running} times of siblings
4707 * will be identical to those of the leader, so we only publish one
4708 * set.
4710 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4711 values[n++] += leader->total_time_enabled +
4712 atomic64_read(&leader->child_total_time_enabled);
4715 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4716 values[n++] += leader->total_time_running +
4717 atomic64_read(&leader->child_total_time_running);
4721 * Write {count,id} tuples for every sibling.
4723 values[n++] += perf_event_count(leader);
4724 if (read_format & PERF_FORMAT_ID)
4725 values[n++] = primary_event_id(leader);
4727 for_each_sibling_event(sub, leader) {
4728 values[n++] += perf_event_count(sub);
4729 if (read_format & PERF_FORMAT_ID)
4730 values[n++] = primary_event_id(sub);
4733 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4734 return 0;
4737 static int perf_read_group(struct perf_event *event,
4738 u64 read_format, char __user *buf)
4740 struct perf_event *leader = event->group_leader, *child;
4741 struct perf_event_context *ctx = leader->ctx;
4742 int ret;
4743 u64 *values;
4745 lockdep_assert_held(&ctx->mutex);
4747 values = kzalloc(event->read_size, GFP_KERNEL);
4748 if (!values)
4749 return -ENOMEM;
4751 values[0] = 1 + leader->nr_siblings;
4754 * By locking the child_mutex of the leader we effectively
4755 * lock the child list of all siblings.. XXX explain how.
4757 mutex_lock(&leader->child_mutex);
4759 ret = __perf_read_group_add(leader, read_format, values);
4760 if (ret)
4761 goto unlock;
4763 list_for_each_entry(child, &leader->child_list, child_list) {
4764 ret = __perf_read_group_add(child, read_format, values);
4765 if (ret)
4766 goto unlock;
4769 mutex_unlock(&leader->child_mutex);
4771 ret = event->read_size;
4772 if (copy_to_user(buf, values, event->read_size))
4773 ret = -EFAULT;
4774 goto out;
4776 unlock:
4777 mutex_unlock(&leader->child_mutex);
4778 out:
4779 kfree(values);
4780 return ret;
4783 static int perf_read_one(struct perf_event *event,
4784 u64 read_format, char __user *buf)
4786 u64 enabled, running;
4787 u64 values[4];
4788 int n = 0;
4790 values[n++] = __perf_event_read_value(event, &enabled, &running);
4791 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4792 values[n++] = enabled;
4793 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4794 values[n++] = running;
4795 if (read_format & PERF_FORMAT_ID)
4796 values[n++] = primary_event_id(event);
4798 if (copy_to_user(buf, values, n * sizeof(u64)))
4799 return -EFAULT;
4801 return n * sizeof(u64);
4804 static bool is_event_hup(struct perf_event *event)
4806 bool no_children;
4808 if (event->state > PERF_EVENT_STATE_EXIT)
4809 return false;
4811 mutex_lock(&event->child_mutex);
4812 no_children = list_empty(&event->child_list);
4813 mutex_unlock(&event->child_mutex);
4814 return no_children;
4818 * Read the performance event - simple non blocking version for now
4820 static ssize_t
4821 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4823 u64 read_format = event->attr.read_format;
4824 int ret;
4827 * Return end-of-file for a read on a event that is in
4828 * error state (i.e. because it was pinned but it couldn't be
4829 * scheduled on to the CPU at some point).
4831 if (event->state == PERF_EVENT_STATE_ERROR)
4832 return 0;
4834 if (count < event->read_size)
4835 return -ENOSPC;
4837 WARN_ON_ONCE(event->ctx->parent_ctx);
4838 if (read_format & PERF_FORMAT_GROUP)
4839 ret = perf_read_group(event, read_format, buf);
4840 else
4841 ret = perf_read_one(event, read_format, buf);
4843 return ret;
4846 static ssize_t
4847 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4849 struct perf_event *event = file->private_data;
4850 struct perf_event_context *ctx;
4851 int ret;
4853 ctx = perf_event_ctx_lock(event);
4854 ret = __perf_read(event, buf, count);
4855 perf_event_ctx_unlock(event, ctx);
4857 return ret;
4860 static __poll_t perf_poll(struct file *file, poll_table *wait)
4862 struct perf_event *event = file->private_data;
4863 struct ring_buffer *rb;
4864 __poll_t events = EPOLLHUP;
4866 poll_wait(file, &event->waitq, wait);
4868 if (is_event_hup(event))
4869 return events;
4872 * Pin the event->rb by taking event->mmap_mutex; otherwise
4873 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4875 mutex_lock(&event->mmap_mutex);
4876 rb = event->rb;
4877 if (rb)
4878 events = atomic_xchg(&rb->poll, 0);
4879 mutex_unlock(&event->mmap_mutex);
4880 return events;
4883 static void _perf_event_reset(struct perf_event *event)
4885 (void)perf_event_read(event, false);
4886 local64_set(&event->count, 0);
4887 perf_event_update_userpage(event);
4891 * Holding the top-level event's child_mutex means that any
4892 * descendant process that has inherited this event will block
4893 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4894 * task existence requirements of perf_event_enable/disable.
4896 static void perf_event_for_each_child(struct perf_event *event,
4897 void (*func)(struct perf_event *))
4899 struct perf_event *child;
4901 WARN_ON_ONCE(event->ctx->parent_ctx);
4903 mutex_lock(&event->child_mutex);
4904 func(event);
4905 list_for_each_entry(child, &event->child_list, child_list)
4906 func(child);
4907 mutex_unlock(&event->child_mutex);
4910 static void perf_event_for_each(struct perf_event *event,
4911 void (*func)(struct perf_event *))
4913 struct perf_event_context *ctx = event->ctx;
4914 struct perf_event *sibling;
4916 lockdep_assert_held(&ctx->mutex);
4918 event = event->group_leader;
4920 perf_event_for_each_child(event, func);
4921 for_each_sibling_event(sibling, event)
4922 perf_event_for_each_child(sibling, func);
4925 static void __perf_event_period(struct perf_event *event,
4926 struct perf_cpu_context *cpuctx,
4927 struct perf_event_context *ctx,
4928 void *info)
4930 u64 value = *((u64 *)info);
4931 bool active;
4933 if (event->attr.freq) {
4934 event->attr.sample_freq = value;
4935 } else {
4936 event->attr.sample_period = value;
4937 event->hw.sample_period = value;
4940 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4941 if (active) {
4942 perf_pmu_disable(ctx->pmu);
4944 * We could be throttled; unthrottle now to avoid the tick
4945 * trying to unthrottle while we already re-started the event.
4947 if (event->hw.interrupts == MAX_INTERRUPTS) {
4948 event->hw.interrupts = 0;
4949 perf_log_throttle(event, 1);
4951 event->pmu->stop(event, PERF_EF_UPDATE);
4954 local64_set(&event->hw.period_left, 0);
4956 if (active) {
4957 event->pmu->start(event, PERF_EF_RELOAD);
4958 perf_pmu_enable(ctx->pmu);
4962 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4964 u64 value;
4966 if (!is_sampling_event(event))
4967 return -EINVAL;
4969 if (copy_from_user(&value, arg, sizeof(value)))
4970 return -EFAULT;
4972 if (!value)
4973 return -EINVAL;
4975 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4976 return -EINVAL;
4978 event_function_call(event, __perf_event_period, &value);
4980 return 0;
4983 static const struct file_operations perf_fops;
4985 static inline int perf_fget_light(int fd, struct fd *p)
4987 struct fd f = fdget(fd);
4988 if (!f.file)
4989 return -EBADF;
4991 if (f.file->f_op != &perf_fops) {
4992 fdput(f);
4993 return -EBADF;
4995 *p = f;
4996 return 0;
4999 static int perf_event_set_output(struct perf_event *event,
5000 struct perf_event *output_event);
5001 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5002 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5003 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5004 struct perf_event_attr *attr);
5006 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5008 void (*func)(struct perf_event *);
5009 u32 flags = arg;
5011 switch (cmd) {
5012 case PERF_EVENT_IOC_ENABLE:
5013 func = _perf_event_enable;
5014 break;
5015 case PERF_EVENT_IOC_DISABLE:
5016 func = _perf_event_disable;
5017 break;
5018 case PERF_EVENT_IOC_RESET:
5019 func = _perf_event_reset;
5020 break;
5022 case PERF_EVENT_IOC_REFRESH:
5023 return _perf_event_refresh(event, arg);
5025 case PERF_EVENT_IOC_PERIOD:
5026 return perf_event_period(event, (u64 __user *)arg);
5028 case PERF_EVENT_IOC_ID:
5030 u64 id = primary_event_id(event);
5032 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5033 return -EFAULT;
5034 return 0;
5037 case PERF_EVENT_IOC_SET_OUTPUT:
5039 int ret;
5040 if (arg != -1) {
5041 struct perf_event *output_event;
5042 struct fd output;
5043 ret = perf_fget_light(arg, &output);
5044 if (ret)
5045 return ret;
5046 output_event = output.file->private_data;
5047 ret = perf_event_set_output(event, output_event);
5048 fdput(output);
5049 } else {
5050 ret = perf_event_set_output(event, NULL);
5052 return ret;
5055 case PERF_EVENT_IOC_SET_FILTER:
5056 return perf_event_set_filter(event, (void __user *)arg);
5058 case PERF_EVENT_IOC_SET_BPF:
5059 return perf_event_set_bpf_prog(event, arg);
5061 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5062 struct ring_buffer *rb;
5064 rcu_read_lock();
5065 rb = rcu_dereference(event->rb);
5066 if (!rb || !rb->nr_pages) {
5067 rcu_read_unlock();
5068 return -EINVAL;
5070 rb_toggle_paused(rb, !!arg);
5071 rcu_read_unlock();
5072 return 0;
5075 case PERF_EVENT_IOC_QUERY_BPF:
5076 return perf_event_query_prog_array(event, (void __user *)arg);
5078 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5079 struct perf_event_attr new_attr;
5080 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5081 &new_attr);
5083 if (err)
5084 return err;
5086 return perf_event_modify_attr(event, &new_attr);
5088 default:
5089 return -ENOTTY;
5092 if (flags & PERF_IOC_FLAG_GROUP)
5093 perf_event_for_each(event, func);
5094 else
5095 perf_event_for_each_child(event, func);
5097 return 0;
5100 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5102 struct perf_event *event = file->private_data;
5103 struct perf_event_context *ctx;
5104 long ret;
5106 ctx = perf_event_ctx_lock(event);
5107 ret = _perf_ioctl(event, cmd, arg);
5108 perf_event_ctx_unlock(event, ctx);
5110 return ret;
5113 #ifdef CONFIG_COMPAT
5114 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5115 unsigned long arg)
5117 switch (_IOC_NR(cmd)) {
5118 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5119 case _IOC_NR(PERF_EVENT_IOC_ID):
5120 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5121 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5122 cmd &= ~IOCSIZE_MASK;
5123 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5125 break;
5127 return perf_ioctl(file, cmd, arg);
5129 #else
5130 # define perf_compat_ioctl NULL
5131 #endif
5133 int perf_event_task_enable(void)
5135 struct perf_event_context *ctx;
5136 struct perf_event *event;
5138 mutex_lock(&current->perf_event_mutex);
5139 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5140 ctx = perf_event_ctx_lock(event);
5141 perf_event_for_each_child(event, _perf_event_enable);
5142 perf_event_ctx_unlock(event, ctx);
5144 mutex_unlock(&current->perf_event_mutex);
5146 return 0;
5149 int perf_event_task_disable(void)
5151 struct perf_event_context *ctx;
5152 struct perf_event *event;
5154 mutex_lock(&current->perf_event_mutex);
5155 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5156 ctx = perf_event_ctx_lock(event);
5157 perf_event_for_each_child(event, _perf_event_disable);
5158 perf_event_ctx_unlock(event, ctx);
5160 mutex_unlock(&current->perf_event_mutex);
5162 return 0;
5165 static int perf_event_index(struct perf_event *event)
5167 if (event->hw.state & PERF_HES_STOPPED)
5168 return 0;
5170 if (event->state != PERF_EVENT_STATE_ACTIVE)
5171 return 0;
5173 return event->pmu->event_idx(event);
5176 static void calc_timer_values(struct perf_event *event,
5177 u64 *now,
5178 u64 *enabled,
5179 u64 *running)
5181 u64 ctx_time;
5183 *now = perf_clock();
5184 ctx_time = event->shadow_ctx_time + *now;
5185 __perf_update_times(event, ctx_time, enabled, running);
5188 static void perf_event_init_userpage(struct perf_event *event)
5190 struct perf_event_mmap_page *userpg;
5191 struct ring_buffer *rb;
5193 rcu_read_lock();
5194 rb = rcu_dereference(event->rb);
5195 if (!rb)
5196 goto unlock;
5198 userpg = rb->user_page;
5200 /* Allow new userspace to detect that bit 0 is deprecated */
5201 userpg->cap_bit0_is_deprecated = 1;
5202 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5203 userpg->data_offset = PAGE_SIZE;
5204 userpg->data_size = perf_data_size(rb);
5206 unlock:
5207 rcu_read_unlock();
5210 void __weak arch_perf_update_userpage(
5211 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5216 * Callers need to ensure there can be no nesting of this function, otherwise
5217 * the seqlock logic goes bad. We can not serialize this because the arch
5218 * code calls this from NMI context.
5220 void perf_event_update_userpage(struct perf_event *event)
5222 struct perf_event_mmap_page *userpg;
5223 struct ring_buffer *rb;
5224 u64 enabled, running, now;
5226 rcu_read_lock();
5227 rb = rcu_dereference(event->rb);
5228 if (!rb)
5229 goto unlock;
5232 * compute total_time_enabled, total_time_running
5233 * based on snapshot values taken when the event
5234 * was last scheduled in.
5236 * we cannot simply called update_context_time()
5237 * because of locking issue as we can be called in
5238 * NMI context
5240 calc_timer_values(event, &now, &enabled, &running);
5242 userpg = rb->user_page;
5244 * Disable preemption so as to not let the corresponding user-space
5245 * spin too long if we get preempted.
5247 preempt_disable();
5248 ++userpg->lock;
5249 barrier();
5250 userpg->index = perf_event_index(event);
5251 userpg->offset = perf_event_count(event);
5252 if (userpg->index)
5253 userpg->offset -= local64_read(&event->hw.prev_count);
5255 userpg->time_enabled = enabled +
5256 atomic64_read(&event->child_total_time_enabled);
5258 userpg->time_running = running +
5259 atomic64_read(&event->child_total_time_running);
5261 arch_perf_update_userpage(event, userpg, now);
5263 barrier();
5264 ++userpg->lock;
5265 preempt_enable();
5266 unlock:
5267 rcu_read_unlock();
5269 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5271 static int perf_mmap_fault(struct vm_fault *vmf)
5273 struct perf_event *event = vmf->vma->vm_file->private_data;
5274 struct ring_buffer *rb;
5275 int ret = VM_FAULT_SIGBUS;
5277 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5278 if (vmf->pgoff == 0)
5279 ret = 0;
5280 return ret;
5283 rcu_read_lock();
5284 rb = rcu_dereference(event->rb);
5285 if (!rb)
5286 goto unlock;
5288 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5289 goto unlock;
5291 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5292 if (!vmf->page)
5293 goto unlock;
5295 get_page(vmf->page);
5296 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5297 vmf->page->index = vmf->pgoff;
5299 ret = 0;
5300 unlock:
5301 rcu_read_unlock();
5303 return ret;
5306 static void ring_buffer_attach(struct perf_event *event,
5307 struct ring_buffer *rb)
5309 struct ring_buffer *old_rb = NULL;
5310 unsigned long flags;
5312 if (event->rb) {
5314 * Should be impossible, we set this when removing
5315 * event->rb_entry and wait/clear when adding event->rb_entry.
5317 WARN_ON_ONCE(event->rcu_pending);
5319 old_rb = event->rb;
5320 spin_lock_irqsave(&old_rb->event_lock, flags);
5321 list_del_rcu(&event->rb_entry);
5322 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5324 event->rcu_batches = get_state_synchronize_rcu();
5325 event->rcu_pending = 1;
5328 if (rb) {
5329 if (event->rcu_pending) {
5330 cond_synchronize_rcu(event->rcu_batches);
5331 event->rcu_pending = 0;
5334 spin_lock_irqsave(&rb->event_lock, flags);
5335 list_add_rcu(&event->rb_entry, &rb->event_list);
5336 spin_unlock_irqrestore(&rb->event_lock, flags);
5340 * Avoid racing with perf_mmap_close(AUX): stop the event
5341 * before swizzling the event::rb pointer; if it's getting
5342 * unmapped, its aux_mmap_count will be 0 and it won't
5343 * restart. See the comment in __perf_pmu_output_stop().
5345 * Data will inevitably be lost when set_output is done in
5346 * mid-air, but then again, whoever does it like this is
5347 * not in for the data anyway.
5349 if (has_aux(event))
5350 perf_event_stop(event, 0);
5352 rcu_assign_pointer(event->rb, rb);
5354 if (old_rb) {
5355 ring_buffer_put(old_rb);
5357 * Since we detached before setting the new rb, so that we
5358 * could attach the new rb, we could have missed a wakeup.
5359 * Provide it now.
5361 wake_up_all(&event->waitq);
5365 static void ring_buffer_wakeup(struct perf_event *event)
5367 struct ring_buffer *rb;
5369 rcu_read_lock();
5370 rb = rcu_dereference(event->rb);
5371 if (rb) {
5372 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5373 wake_up_all(&event->waitq);
5375 rcu_read_unlock();
5378 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5380 struct ring_buffer *rb;
5382 rcu_read_lock();
5383 rb = rcu_dereference(event->rb);
5384 if (rb) {
5385 if (!atomic_inc_not_zero(&rb->refcount))
5386 rb = NULL;
5388 rcu_read_unlock();
5390 return rb;
5393 void ring_buffer_put(struct ring_buffer *rb)
5395 if (!atomic_dec_and_test(&rb->refcount))
5396 return;
5398 WARN_ON_ONCE(!list_empty(&rb->event_list));
5400 call_rcu(&rb->rcu_head, rb_free_rcu);
5403 static void perf_mmap_open(struct vm_area_struct *vma)
5405 struct perf_event *event = vma->vm_file->private_data;
5407 atomic_inc(&event->mmap_count);
5408 atomic_inc(&event->rb->mmap_count);
5410 if (vma->vm_pgoff)
5411 atomic_inc(&event->rb->aux_mmap_count);
5413 if (event->pmu->event_mapped)
5414 event->pmu->event_mapped(event, vma->vm_mm);
5417 static void perf_pmu_output_stop(struct perf_event *event);
5420 * A buffer can be mmap()ed multiple times; either directly through the same
5421 * event, or through other events by use of perf_event_set_output().
5423 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5424 * the buffer here, where we still have a VM context. This means we need
5425 * to detach all events redirecting to us.
5427 static void perf_mmap_close(struct vm_area_struct *vma)
5429 struct perf_event *event = vma->vm_file->private_data;
5431 struct ring_buffer *rb = ring_buffer_get(event);
5432 struct user_struct *mmap_user = rb->mmap_user;
5433 int mmap_locked = rb->mmap_locked;
5434 unsigned long size = perf_data_size(rb);
5436 if (event->pmu->event_unmapped)
5437 event->pmu->event_unmapped(event, vma->vm_mm);
5440 * rb->aux_mmap_count will always drop before rb->mmap_count and
5441 * event->mmap_count, so it is ok to use event->mmap_mutex to
5442 * serialize with perf_mmap here.
5444 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5445 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5447 * Stop all AUX events that are writing to this buffer,
5448 * so that we can free its AUX pages and corresponding PMU
5449 * data. Note that after rb::aux_mmap_count dropped to zero,
5450 * they won't start any more (see perf_aux_output_begin()).
5452 perf_pmu_output_stop(event);
5454 /* now it's safe to free the pages */
5455 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5456 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5458 /* this has to be the last one */
5459 rb_free_aux(rb);
5460 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5462 mutex_unlock(&event->mmap_mutex);
5465 atomic_dec(&rb->mmap_count);
5467 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5468 goto out_put;
5470 ring_buffer_attach(event, NULL);
5471 mutex_unlock(&event->mmap_mutex);
5473 /* If there's still other mmap()s of this buffer, we're done. */
5474 if (atomic_read(&rb->mmap_count))
5475 goto out_put;
5478 * No other mmap()s, detach from all other events that might redirect
5479 * into the now unreachable buffer. Somewhat complicated by the
5480 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5482 again:
5483 rcu_read_lock();
5484 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5485 if (!atomic_long_inc_not_zero(&event->refcount)) {
5487 * This event is en-route to free_event() which will
5488 * detach it and remove it from the list.
5490 continue;
5492 rcu_read_unlock();
5494 mutex_lock(&event->mmap_mutex);
5496 * Check we didn't race with perf_event_set_output() which can
5497 * swizzle the rb from under us while we were waiting to
5498 * acquire mmap_mutex.
5500 * If we find a different rb; ignore this event, a next
5501 * iteration will no longer find it on the list. We have to
5502 * still restart the iteration to make sure we're not now
5503 * iterating the wrong list.
5505 if (event->rb == rb)
5506 ring_buffer_attach(event, NULL);
5508 mutex_unlock(&event->mmap_mutex);
5509 put_event(event);
5512 * Restart the iteration; either we're on the wrong list or
5513 * destroyed its integrity by doing a deletion.
5515 goto again;
5517 rcu_read_unlock();
5520 * It could be there's still a few 0-ref events on the list; they'll
5521 * get cleaned up by free_event() -- they'll also still have their
5522 * ref on the rb and will free it whenever they are done with it.
5524 * Aside from that, this buffer is 'fully' detached and unmapped,
5525 * undo the VM accounting.
5528 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5529 vma->vm_mm->pinned_vm -= mmap_locked;
5530 free_uid(mmap_user);
5532 out_put:
5533 ring_buffer_put(rb); /* could be last */
5536 static const struct vm_operations_struct perf_mmap_vmops = {
5537 .open = perf_mmap_open,
5538 .close = perf_mmap_close, /* non mergable */
5539 .fault = perf_mmap_fault,
5540 .page_mkwrite = perf_mmap_fault,
5543 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5545 struct perf_event *event = file->private_data;
5546 unsigned long user_locked, user_lock_limit;
5547 struct user_struct *user = current_user();
5548 unsigned long locked, lock_limit;
5549 struct ring_buffer *rb = NULL;
5550 unsigned long vma_size;
5551 unsigned long nr_pages;
5552 long user_extra = 0, extra = 0;
5553 int ret = 0, flags = 0;
5556 * Don't allow mmap() of inherited per-task counters. This would
5557 * create a performance issue due to all children writing to the
5558 * same rb.
5560 if (event->cpu == -1 && event->attr.inherit)
5561 return -EINVAL;
5563 if (!(vma->vm_flags & VM_SHARED))
5564 return -EINVAL;
5566 vma_size = vma->vm_end - vma->vm_start;
5568 if (vma->vm_pgoff == 0) {
5569 nr_pages = (vma_size / PAGE_SIZE) - 1;
5570 } else {
5572 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5573 * mapped, all subsequent mappings should have the same size
5574 * and offset. Must be above the normal perf buffer.
5576 u64 aux_offset, aux_size;
5578 if (!event->rb)
5579 return -EINVAL;
5581 nr_pages = vma_size / PAGE_SIZE;
5583 mutex_lock(&event->mmap_mutex);
5584 ret = -EINVAL;
5586 rb = event->rb;
5587 if (!rb)
5588 goto aux_unlock;
5590 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5591 aux_size = READ_ONCE(rb->user_page->aux_size);
5593 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5594 goto aux_unlock;
5596 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5597 goto aux_unlock;
5599 /* already mapped with a different offset */
5600 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5601 goto aux_unlock;
5603 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5604 goto aux_unlock;
5606 /* already mapped with a different size */
5607 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5608 goto aux_unlock;
5610 if (!is_power_of_2(nr_pages))
5611 goto aux_unlock;
5613 if (!atomic_inc_not_zero(&rb->mmap_count))
5614 goto aux_unlock;
5616 if (rb_has_aux(rb)) {
5617 atomic_inc(&rb->aux_mmap_count);
5618 ret = 0;
5619 goto unlock;
5622 atomic_set(&rb->aux_mmap_count, 1);
5623 user_extra = nr_pages;
5625 goto accounting;
5629 * If we have rb pages ensure they're a power-of-two number, so we
5630 * can do bitmasks instead of modulo.
5632 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5633 return -EINVAL;
5635 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5636 return -EINVAL;
5638 WARN_ON_ONCE(event->ctx->parent_ctx);
5639 again:
5640 mutex_lock(&event->mmap_mutex);
5641 if (event->rb) {
5642 if (event->rb->nr_pages != nr_pages) {
5643 ret = -EINVAL;
5644 goto unlock;
5647 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5649 * Raced against perf_mmap_close() through
5650 * perf_event_set_output(). Try again, hope for better
5651 * luck.
5653 mutex_unlock(&event->mmap_mutex);
5654 goto again;
5657 goto unlock;
5660 user_extra = nr_pages + 1;
5662 accounting:
5663 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5666 * Increase the limit linearly with more CPUs:
5668 user_lock_limit *= num_online_cpus();
5670 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5672 if (user_locked > user_lock_limit)
5673 extra = user_locked - user_lock_limit;
5675 lock_limit = rlimit(RLIMIT_MEMLOCK);
5676 lock_limit >>= PAGE_SHIFT;
5677 locked = vma->vm_mm->pinned_vm + extra;
5679 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5680 !capable(CAP_IPC_LOCK)) {
5681 ret = -EPERM;
5682 goto unlock;
5685 WARN_ON(!rb && event->rb);
5687 if (vma->vm_flags & VM_WRITE)
5688 flags |= RING_BUFFER_WRITABLE;
5690 if (!rb) {
5691 rb = rb_alloc(nr_pages,
5692 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5693 event->cpu, flags);
5695 if (!rb) {
5696 ret = -ENOMEM;
5697 goto unlock;
5700 atomic_set(&rb->mmap_count, 1);
5701 rb->mmap_user = get_current_user();
5702 rb->mmap_locked = extra;
5704 ring_buffer_attach(event, rb);
5706 perf_event_init_userpage(event);
5707 perf_event_update_userpage(event);
5708 } else {
5709 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5710 event->attr.aux_watermark, flags);
5711 if (!ret)
5712 rb->aux_mmap_locked = extra;
5715 unlock:
5716 if (!ret) {
5717 atomic_long_add(user_extra, &user->locked_vm);
5718 vma->vm_mm->pinned_vm += extra;
5720 atomic_inc(&event->mmap_count);
5721 } else if (rb) {
5722 atomic_dec(&rb->mmap_count);
5724 aux_unlock:
5725 mutex_unlock(&event->mmap_mutex);
5728 * Since pinned accounting is per vm we cannot allow fork() to copy our
5729 * vma.
5731 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5732 vma->vm_ops = &perf_mmap_vmops;
5734 if (event->pmu->event_mapped)
5735 event->pmu->event_mapped(event, vma->vm_mm);
5737 return ret;
5740 static int perf_fasync(int fd, struct file *filp, int on)
5742 struct inode *inode = file_inode(filp);
5743 struct perf_event *event = filp->private_data;
5744 int retval;
5746 inode_lock(inode);
5747 retval = fasync_helper(fd, filp, on, &event->fasync);
5748 inode_unlock(inode);
5750 if (retval < 0)
5751 return retval;
5753 return 0;
5756 static const struct file_operations perf_fops = {
5757 .llseek = no_llseek,
5758 .release = perf_release,
5759 .read = perf_read,
5760 .poll = perf_poll,
5761 .unlocked_ioctl = perf_ioctl,
5762 .compat_ioctl = perf_compat_ioctl,
5763 .mmap = perf_mmap,
5764 .fasync = perf_fasync,
5768 * Perf event wakeup
5770 * If there's data, ensure we set the poll() state and publish everything
5771 * to user-space before waking everybody up.
5774 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5776 /* only the parent has fasync state */
5777 if (event->parent)
5778 event = event->parent;
5779 return &event->fasync;
5782 void perf_event_wakeup(struct perf_event *event)
5784 ring_buffer_wakeup(event);
5786 if (event->pending_kill) {
5787 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5788 event->pending_kill = 0;
5792 static void perf_pending_event(struct irq_work *entry)
5794 struct perf_event *event = container_of(entry,
5795 struct perf_event, pending);
5796 int rctx;
5798 rctx = perf_swevent_get_recursion_context();
5800 * If we 'fail' here, that's OK, it means recursion is already disabled
5801 * and we won't recurse 'further'.
5804 if (event->pending_disable) {
5805 event->pending_disable = 0;
5806 perf_event_disable_local(event);
5809 if (event->pending_wakeup) {
5810 event->pending_wakeup = 0;
5811 perf_event_wakeup(event);
5814 if (rctx >= 0)
5815 perf_swevent_put_recursion_context(rctx);
5819 * We assume there is only KVM supporting the callbacks.
5820 * Later on, we might change it to a list if there is
5821 * another virtualization implementation supporting the callbacks.
5823 struct perf_guest_info_callbacks *perf_guest_cbs;
5825 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5827 perf_guest_cbs = cbs;
5828 return 0;
5830 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5832 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5834 perf_guest_cbs = NULL;
5835 return 0;
5837 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5839 static void
5840 perf_output_sample_regs(struct perf_output_handle *handle,
5841 struct pt_regs *regs, u64 mask)
5843 int bit;
5844 DECLARE_BITMAP(_mask, 64);
5846 bitmap_from_u64(_mask, mask);
5847 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5848 u64 val;
5850 val = perf_reg_value(regs, bit);
5851 perf_output_put(handle, val);
5855 static void perf_sample_regs_user(struct perf_regs *regs_user,
5856 struct pt_regs *regs,
5857 struct pt_regs *regs_user_copy)
5859 if (user_mode(regs)) {
5860 regs_user->abi = perf_reg_abi(current);
5861 regs_user->regs = regs;
5862 } else if (current->mm) {
5863 perf_get_regs_user(regs_user, regs, regs_user_copy);
5864 } else {
5865 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5866 regs_user->regs = NULL;
5870 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5871 struct pt_regs *regs)
5873 regs_intr->regs = regs;
5874 regs_intr->abi = perf_reg_abi(current);
5879 * Get remaining task size from user stack pointer.
5881 * It'd be better to take stack vma map and limit this more
5882 * precisly, but there's no way to get it safely under interrupt,
5883 * so using TASK_SIZE as limit.
5885 static u64 perf_ustack_task_size(struct pt_regs *regs)
5887 unsigned long addr = perf_user_stack_pointer(regs);
5889 if (!addr || addr >= TASK_SIZE)
5890 return 0;
5892 return TASK_SIZE - addr;
5895 static u16
5896 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5897 struct pt_regs *regs)
5899 u64 task_size;
5901 /* No regs, no stack pointer, no dump. */
5902 if (!regs)
5903 return 0;
5906 * Check if we fit in with the requested stack size into the:
5907 * - TASK_SIZE
5908 * If we don't, we limit the size to the TASK_SIZE.
5910 * - remaining sample size
5911 * If we don't, we customize the stack size to
5912 * fit in to the remaining sample size.
5915 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5916 stack_size = min(stack_size, (u16) task_size);
5918 /* Current header size plus static size and dynamic size. */
5919 header_size += 2 * sizeof(u64);
5921 /* Do we fit in with the current stack dump size? */
5922 if ((u16) (header_size + stack_size) < header_size) {
5924 * If we overflow the maximum size for the sample,
5925 * we customize the stack dump size to fit in.
5927 stack_size = USHRT_MAX - header_size - sizeof(u64);
5928 stack_size = round_up(stack_size, sizeof(u64));
5931 return stack_size;
5934 static void
5935 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5936 struct pt_regs *regs)
5938 /* Case of a kernel thread, nothing to dump */
5939 if (!regs) {
5940 u64 size = 0;
5941 perf_output_put(handle, size);
5942 } else {
5943 unsigned long sp;
5944 unsigned int rem;
5945 u64 dyn_size;
5948 * We dump:
5949 * static size
5950 * - the size requested by user or the best one we can fit
5951 * in to the sample max size
5952 * data
5953 * - user stack dump data
5954 * dynamic size
5955 * - the actual dumped size
5958 /* Static size. */
5959 perf_output_put(handle, dump_size);
5961 /* Data. */
5962 sp = perf_user_stack_pointer(regs);
5963 rem = __output_copy_user(handle, (void *) sp, dump_size);
5964 dyn_size = dump_size - rem;
5966 perf_output_skip(handle, rem);
5968 /* Dynamic size. */
5969 perf_output_put(handle, dyn_size);
5973 static void __perf_event_header__init_id(struct perf_event_header *header,
5974 struct perf_sample_data *data,
5975 struct perf_event *event)
5977 u64 sample_type = event->attr.sample_type;
5979 data->type = sample_type;
5980 header->size += event->id_header_size;
5982 if (sample_type & PERF_SAMPLE_TID) {
5983 /* namespace issues */
5984 data->tid_entry.pid = perf_event_pid(event, current);
5985 data->tid_entry.tid = perf_event_tid(event, current);
5988 if (sample_type & PERF_SAMPLE_TIME)
5989 data->time = perf_event_clock(event);
5991 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5992 data->id = primary_event_id(event);
5994 if (sample_type & PERF_SAMPLE_STREAM_ID)
5995 data->stream_id = event->id;
5997 if (sample_type & PERF_SAMPLE_CPU) {
5998 data->cpu_entry.cpu = raw_smp_processor_id();
5999 data->cpu_entry.reserved = 0;
6003 void perf_event_header__init_id(struct perf_event_header *header,
6004 struct perf_sample_data *data,
6005 struct perf_event *event)
6007 if (event->attr.sample_id_all)
6008 __perf_event_header__init_id(header, data, event);
6011 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6012 struct perf_sample_data *data)
6014 u64 sample_type = data->type;
6016 if (sample_type & PERF_SAMPLE_TID)
6017 perf_output_put(handle, data->tid_entry);
6019 if (sample_type & PERF_SAMPLE_TIME)
6020 perf_output_put(handle, data->time);
6022 if (sample_type & PERF_SAMPLE_ID)
6023 perf_output_put(handle, data->id);
6025 if (sample_type & PERF_SAMPLE_STREAM_ID)
6026 perf_output_put(handle, data->stream_id);
6028 if (sample_type & PERF_SAMPLE_CPU)
6029 perf_output_put(handle, data->cpu_entry);
6031 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6032 perf_output_put(handle, data->id);
6035 void perf_event__output_id_sample(struct perf_event *event,
6036 struct perf_output_handle *handle,
6037 struct perf_sample_data *sample)
6039 if (event->attr.sample_id_all)
6040 __perf_event__output_id_sample(handle, sample);
6043 static void perf_output_read_one(struct perf_output_handle *handle,
6044 struct perf_event *event,
6045 u64 enabled, u64 running)
6047 u64 read_format = event->attr.read_format;
6048 u64 values[4];
6049 int n = 0;
6051 values[n++] = perf_event_count(event);
6052 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6053 values[n++] = enabled +
6054 atomic64_read(&event->child_total_time_enabled);
6056 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6057 values[n++] = running +
6058 atomic64_read(&event->child_total_time_running);
6060 if (read_format & PERF_FORMAT_ID)
6061 values[n++] = primary_event_id(event);
6063 __output_copy(handle, values, n * sizeof(u64));
6066 static void perf_output_read_group(struct perf_output_handle *handle,
6067 struct perf_event *event,
6068 u64 enabled, u64 running)
6070 struct perf_event *leader = event->group_leader, *sub;
6071 u64 read_format = event->attr.read_format;
6072 u64 values[5];
6073 int n = 0;
6075 values[n++] = 1 + leader->nr_siblings;
6077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6078 values[n++] = enabled;
6080 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6081 values[n++] = running;
6083 if ((leader != event) &&
6084 (leader->state == PERF_EVENT_STATE_ACTIVE))
6085 leader->pmu->read(leader);
6087 values[n++] = perf_event_count(leader);
6088 if (read_format & PERF_FORMAT_ID)
6089 values[n++] = primary_event_id(leader);
6091 __output_copy(handle, values, n * sizeof(u64));
6093 for_each_sibling_event(sub, leader) {
6094 n = 0;
6096 if ((sub != event) &&
6097 (sub->state == PERF_EVENT_STATE_ACTIVE))
6098 sub->pmu->read(sub);
6100 values[n++] = perf_event_count(sub);
6101 if (read_format & PERF_FORMAT_ID)
6102 values[n++] = primary_event_id(sub);
6104 __output_copy(handle, values, n * sizeof(u64));
6108 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6109 PERF_FORMAT_TOTAL_TIME_RUNNING)
6112 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6114 * The problem is that its both hard and excessively expensive to iterate the
6115 * child list, not to mention that its impossible to IPI the children running
6116 * on another CPU, from interrupt/NMI context.
6118 static void perf_output_read(struct perf_output_handle *handle,
6119 struct perf_event *event)
6121 u64 enabled = 0, running = 0, now;
6122 u64 read_format = event->attr.read_format;
6125 * compute total_time_enabled, total_time_running
6126 * based on snapshot values taken when the event
6127 * was last scheduled in.
6129 * we cannot simply called update_context_time()
6130 * because of locking issue as we are called in
6131 * NMI context
6133 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6134 calc_timer_values(event, &now, &enabled, &running);
6136 if (event->attr.read_format & PERF_FORMAT_GROUP)
6137 perf_output_read_group(handle, event, enabled, running);
6138 else
6139 perf_output_read_one(handle, event, enabled, running);
6142 void perf_output_sample(struct perf_output_handle *handle,
6143 struct perf_event_header *header,
6144 struct perf_sample_data *data,
6145 struct perf_event *event)
6147 u64 sample_type = data->type;
6149 perf_output_put(handle, *header);
6151 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6152 perf_output_put(handle, data->id);
6154 if (sample_type & PERF_SAMPLE_IP)
6155 perf_output_put(handle, data->ip);
6157 if (sample_type & PERF_SAMPLE_TID)
6158 perf_output_put(handle, data->tid_entry);
6160 if (sample_type & PERF_SAMPLE_TIME)
6161 perf_output_put(handle, data->time);
6163 if (sample_type & PERF_SAMPLE_ADDR)
6164 perf_output_put(handle, data->addr);
6166 if (sample_type & PERF_SAMPLE_ID)
6167 perf_output_put(handle, data->id);
6169 if (sample_type & PERF_SAMPLE_STREAM_ID)
6170 perf_output_put(handle, data->stream_id);
6172 if (sample_type & PERF_SAMPLE_CPU)
6173 perf_output_put(handle, data->cpu_entry);
6175 if (sample_type & PERF_SAMPLE_PERIOD)
6176 perf_output_put(handle, data->period);
6178 if (sample_type & PERF_SAMPLE_READ)
6179 perf_output_read(handle, event);
6181 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6182 int size = 1;
6184 size += data->callchain->nr;
6185 size *= sizeof(u64);
6186 __output_copy(handle, data->callchain, size);
6189 if (sample_type & PERF_SAMPLE_RAW) {
6190 struct perf_raw_record *raw = data->raw;
6192 if (raw) {
6193 struct perf_raw_frag *frag = &raw->frag;
6195 perf_output_put(handle, raw->size);
6196 do {
6197 if (frag->copy) {
6198 __output_custom(handle, frag->copy,
6199 frag->data, frag->size);
6200 } else {
6201 __output_copy(handle, frag->data,
6202 frag->size);
6204 if (perf_raw_frag_last(frag))
6205 break;
6206 frag = frag->next;
6207 } while (1);
6208 if (frag->pad)
6209 __output_skip(handle, NULL, frag->pad);
6210 } else {
6211 struct {
6212 u32 size;
6213 u32 data;
6214 } raw = {
6215 .size = sizeof(u32),
6216 .data = 0,
6218 perf_output_put(handle, raw);
6222 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6223 if (data->br_stack) {
6224 size_t size;
6226 size = data->br_stack->nr
6227 * sizeof(struct perf_branch_entry);
6229 perf_output_put(handle, data->br_stack->nr);
6230 perf_output_copy(handle, data->br_stack->entries, size);
6231 } else {
6233 * we always store at least the value of nr
6235 u64 nr = 0;
6236 perf_output_put(handle, nr);
6240 if (sample_type & PERF_SAMPLE_REGS_USER) {
6241 u64 abi = data->regs_user.abi;
6244 * If there are no regs to dump, notice it through
6245 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6247 perf_output_put(handle, abi);
6249 if (abi) {
6250 u64 mask = event->attr.sample_regs_user;
6251 perf_output_sample_regs(handle,
6252 data->regs_user.regs,
6253 mask);
6257 if (sample_type & PERF_SAMPLE_STACK_USER) {
6258 perf_output_sample_ustack(handle,
6259 data->stack_user_size,
6260 data->regs_user.regs);
6263 if (sample_type & PERF_SAMPLE_WEIGHT)
6264 perf_output_put(handle, data->weight);
6266 if (sample_type & PERF_SAMPLE_DATA_SRC)
6267 perf_output_put(handle, data->data_src.val);
6269 if (sample_type & PERF_SAMPLE_TRANSACTION)
6270 perf_output_put(handle, data->txn);
6272 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6273 u64 abi = data->regs_intr.abi;
6275 * If there are no regs to dump, notice it through
6276 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6278 perf_output_put(handle, abi);
6280 if (abi) {
6281 u64 mask = event->attr.sample_regs_intr;
6283 perf_output_sample_regs(handle,
6284 data->regs_intr.regs,
6285 mask);
6289 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6290 perf_output_put(handle, data->phys_addr);
6292 if (!event->attr.watermark) {
6293 int wakeup_events = event->attr.wakeup_events;
6295 if (wakeup_events) {
6296 struct ring_buffer *rb = handle->rb;
6297 int events = local_inc_return(&rb->events);
6299 if (events >= wakeup_events) {
6300 local_sub(wakeup_events, &rb->events);
6301 local_inc(&rb->wakeup);
6307 static u64 perf_virt_to_phys(u64 virt)
6309 u64 phys_addr = 0;
6310 struct page *p = NULL;
6312 if (!virt)
6313 return 0;
6315 if (virt >= TASK_SIZE) {
6316 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6317 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6318 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6319 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6320 } else {
6322 * Walking the pages tables for user address.
6323 * Interrupts are disabled, so it prevents any tear down
6324 * of the page tables.
6325 * Try IRQ-safe __get_user_pages_fast first.
6326 * If failed, leave phys_addr as 0.
6328 if ((current->mm != NULL) &&
6329 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6330 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6332 if (p)
6333 put_page(p);
6336 return phys_addr;
6339 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6341 static struct perf_callchain_entry *
6342 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6344 bool kernel = !event->attr.exclude_callchain_kernel;
6345 bool user = !event->attr.exclude_callchain_user;
6346 /* Disallow cross-task user callchains. */
6347 bool crosstask = event->ctx->task && event->ctx->task != current;
6348 const u32 max_stack = event->attr.sample_max_stack;
6349 struct perf_callchain_entry *callchain;
6351 if (!kernel && !user)
6352 return &__empty_callchain;
6354 callchain = get_perf_callchain(regs, 0, kernel, user,
6355 max_stack, crosstask, true);
6356 return callchain ?: &__empty_callchain;
6359 void perf_prepare_sample(struct perf_event_header *header,
6360 struct perf_sample_data *data,
6361 struct perf_event *event,
6362 struct pt_regs *regs)
6364 u64 sample_type = event->attr.sample_type;
6366 header->type = PERF_RECORD_SAMPLE;
6367 header->size = sizeof(*header) + event->header_size;
6369 header->misc = 0;
6370 header->misc |= perf_misc_flags(regs);
6372 __perf_event_header__init_id(header, data, event);
6374 if (sample_type & PERF_SAMPLE_IP)
6375 data->ip = perf_instruction_pointer(regs);
6377 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6378 int size = 1;
6380 data->callchain = perf_callchain(event, regs);
6381 size += data->callchain->nr;
6383 header->size += size * sizeof(u64);
6386 if (sample_type & PERF_SAMPLE_RAW) {
6387 struct perf_raw_record *raw = data->raw;
6388 int size;
6390 if (raw) {
6391 struct perf_raw_frag *frag = &raw->frag;
6392 u32 sum = 0;
6394 do {
6395 sum += frag->size;
6396 if (perf_raw_frag_last(frag))
6397 break;
6398 frag = frag->next;
6399 } while (1);
6401 size = round_up(sum + sizeof(u32), sizeof(u64));
6402 raw->size = size - sizeof(u32);
6403 frag->pad = raw->size - sum;
6404 } else {
6405 size = sizeof(u64);
6408 header->size += size;
6411 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6412 int size = sizeof(u64); /* nr */
6413 if (data->br_stack) {
6414 size += data->br_stack->nr
6415 * sizeof(struct perf_branch_entry);
6417 header->size += size;
6420 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6421 perf_sample_regs_user(&data->regs_user, regs,
6422 &data->regs_user_copy);
6424 if (sample_type & PERF_SAMPLE_REGS_USER) {
6425 /* regs dump ABI info */
6426 int size = sizeof(u64);
6428 if (data->regs_user.regs) {
6429 u64 mask = event->attr.sample_regs_user;
6430 size += hweight64(mask) * sizeof(u64);
6433 header->size += size;
6436 if (sample_type & PERF_SAMPLE_STACK_USER) {
6438 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6439 * processed as the last one or have additional check added
6440 * in case new sample type is added, because we could eat
6441 * up the rest of the sample size.
6443 u16 stack_size = event->attr.sample_stack_user;
6444 u16 size = sizeof(u64);
6446 stack_size = perf_sample_ustack_size(stack_size, header->size,
6447 data->regs_user.regs);
6450 * If there is something to dump, add space for the dump
6451 * itself and for the field that tells the dynamic size,
6452 * which is how many have been actually dumped.
6454 if (stack_size)
6455 size += sizeof(u64) + stack_size;
6457 data->stack_user_size = stack_size;
6458 header->size += size;
6461 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6462 /* regs dump ABI info */
6463 int size = sizeof(u64);
6465 perf_sample_regs_intr(&data->regs_intr, regs);
6467 if (data->regs_intr.regs) {
6468 u64 mask = event->attr.sample_regs_intr;
6470 size += hweight64(mask) * sizeof(u64);
6473 header->size += size;
6476 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6477 data->phys_addr = perf_virt_to_phys(data->addr);
6480 static void __always_inline
6481 __perf_event_output(struct perf_event *event,
6482 struct perf_sample_data *data,
6483 struct pt_regs *regs,
6484 int (*output_begin)(struct perf_output_handle *,
6485 struct perf_event *,
6486 unsigned int))
6488 struct perf_output_handle handle;
6489 struct perf_event_header header;
6491 /* protect the callchain buffers */
6492 rcu_read_lock();
6494 perf_prepare_sample(&header, data, event, regs);
6496 if (output_begin(&handle, event, header.size))
6497 goto exit;
6499 perf_output_sample(&handle, &header, data, event);
6501 perf_output_end(&handle);
6503 exit:
6504 rcu_read_unlock();
6507 void
6508 perf_event_output_forward(struct perf_event *event,
6509 struct perf_sample_data *data,
6510 struct pt_regs *regs)
6512 __perf_event_output(event, data, regs, perf_output_begin_forward);
6515 void
6516 perf_event_output_backward(struct perf_event *event,
6517 struct perf_sample_data *data,
6518 struct pt_regs *regs)
6520 __perf_event_output(event, data, regs, perf_output_begin_backward);
6523 void
6524 perf_event_output(struct perf_event *event,
6525 struct perf_sample_data *data,
6526 struct pt_regs *regs)
6528 __perf_event_output(event, data, regs, perf_output_begin);
6532 * read event_id
6535 struct perf_read_event {
6536 struct perf_event_header header;
6538 u32 pid;
6539 u32 tid;
6542 static void
6543 perf_event_read_event(struct perf_event *event,
6544 struct task_struct *task)
6546 struct perf_output_handle handle;
6547 struct perf_sample_data sample;
6548 struct perf_read_event read_event = {
6549 .header = {
6550 .type = PERF_RECORD_READ,
6551 .misc = 0,
6552 .size = sizeof(read_event) + event->read_size,
6554 .pid = perf_event_pid(event, task),
6555 .tid = perf_event_tid(event, task),
6557 int ret;
6559 perf_event_header__init_id(&read_event.header, &sample, event);
6560 ret = perf_output_begin(&handle, event, read_event.header.size);
6561 if (ret)
6562 return;
6564 perf_output_put(&handle, read_event);
6565 perf_output_read(&handle, event);
6566 perf_event__output_id_sample(event, &handle, &sample);
6568 perf_output_end(&handle);
6571 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6573 static void
6574 perf_iterate_ctx(struct perf_event_context *ctx,
6575 perf_iterate_f output,
6576 void *data, bool all)
6578 struct perf_event *event;
6580 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6581 if (!all) {
6582 if (event->state < PERF_EVENT_STATE_INACTIVE)
6583 continue;
6584 if (!event_filter_match(event))
6585 continue;
6588 output(event, data);
6592 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6594 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6595 struct perf_event *event;
6597 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6599 * Skip events that are not fully formed yet; ensure that
6600 * if we observe event->ctx, both event and ctx will be
6601 * complete enough. See perf_install_in_context().
6603 if (!smp_load_acquire(&event->ctx))
6604 continue;
6606 if (event->state < PERF_EVENT_STATE_INACTIVE)
6607 continue;
6608 if (!event_filter_match(event))
6609 continue;
6610 output(event, data);
6615 * Iterate all events that need to receive side-band events.
6617 * For new callers; ensure that account_pmu_sb_event() includes
6618 * your event, otherwise it might not get delivered.
6620 static void
6621 perf_iterate_sb(perf_iterate_f output, void *data,
6622 struct perf_event_context *task_ctx)
6624 struct perf_event_context *ctx;
6625 int ctxn;
6627 rcu_read_lock();
6628 preempt_disable();
6631 * If we have task_ctx != NULL we only notify the task context itself.
6632 * The task_ctx is set only for EXIT events before releasing task
6633 * context.
6635 if (task_ctx) {
6636 perf_iterate_ctx(task_ctx, output, data, false);
6637 goto done;
6640 perf_iterate_sb_cpu(output, data);
6642 for_each_task_context_nr(ctxn) {
6643 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6644 if (ctx)
6645 perf_iterate_ctx(ctx, output, data, false);
6647 done:
6648 preempt_enable();
6649 rcu_read_unlock();
6653 * Clear all file-based filters at exec, they'll have to be
6654 * re-instated when/if these objects are mmapped again.
6656 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6658 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6659 struct perf_addr_filter *filter;
6660 unsigned int restart = 0, count = 0;
6661 unsigned long flags;
6663 if (!has_addr_filter(event))
6664 return;
6666 raw_spin_lock_irqsave(&ifh->lock, flags);
6667 list_for_each_entry(filter, &ifh->list, entry) {
6668 if (filter->inode) {
6669 event->addr_filters_offs[count] = 0;
6670 restart++;
6673 count++;
6676 if (restart)
6677 event->addr_filters_gen++;
6678 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6680 if (restart)
6681 perf_event_stop(event, 1);
6684 void perf_event_exec(void)
6686 struct perf_event_context *ctx;
6687 int ctxn;
6689 rcu_read_lock();
6690 for_each_task_context_nr(ctxn) {
6691 ctx = current->perf_event_ctxp[ctxn];
6692 if (!ctx)
6693 continue;
6695 perf_event_enable_on_exec(ctxn);
6697 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6698 true);
6700 rcu_read_unlock();
6703 struct remote_output {
6704 struct ring_buffer *rb;
6705 int err;
6708 static void __perf_event_output_stop(struct perf_event *event, void *data)
6710 struct perf_event *parent = event->parent;
6711 struct remote_output *ro = data;
6712 struct ring_buffer *rb = ro->rb;
6713 struct stop_event_data sd = {
6714 .event = event,
6717 if (!has_aux(event))
6718 return;
6720 if (!parent)
6721 parent = event;
6724 * In case of inheritance, it will be the parent that links to the
6725 * ring-buffer, but it will be the child that's actually using it.
6727 * We are using event::rb to determine if the event should be stopped,
6728 * however this may race with ring_buffer_attach() (through set_output),
6729 * which will make us skip the event that actually needs to be stopped.
6730 * So ring_buffer_attach() has to stop an aux event before re-assigning
6731 * its rb pointer.
6733 if (rcu_dereference(parent->rb) == rb)
6734 ro->err = __perf_event_stop(&sd);
6737 static int __perf_pmu_output_stop(void *info)
6739 struct perf_event *event = info;
6740 struct pmu *pmu = event->pmu;
6741 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6742 struct remote_output ro = {
6743 .rb = event->rb,
6746 rcu_read_lock();
6747 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6748 if (cpuctx->task_ctx)
6749 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6750 &ro, false);
6751 rcu_read_unlock();
6753 return ro.err;
6756 static void perf_pmu_output_stop(struct perf_event *event)
6758 struct perf_event *iter;
6759 int err, cpu;
6761 restart:
6762 rcu_read_lock();
6763 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6765 * For per-CPU events, we need to make sure that neither they
6766 * nor their children are running; for cpu==-1 events it's
6767 * sufficient to stop the event itself if it's active, since
6768 * it can't have children.
6770 cpu = iter->cpu;
6771 if (cpu == -1)
6772 cpu = READ_ONCE(iter->oncpu);
6774 if (cpu == -1)
6775 continue;
6777 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6778 if (err == -EAGAIN) {
6779 rcu_read_unlock();
6780 goto restart;
6783 rcu_read_unlock();
6787 * task tracking -- fork/exit
6789 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6792 struct perf_task_event {
6793 struct task_struct *task;
6794 struct perf_event_context *task_ctx;
6796 struct {
6797 struct perf_event_header header;
6799 u32 pid;
6800 u32 ppid;
6801 u32 tid;
6802 u32 ptid;
6803 u64 time;
6804 } event_id;
6807 static int perf_event_task_match(struct perf_event *event)
6809 return event->attr.comm || event->attr.mmap ||
6810 event->attr.mmap2 || event->attr.mmap_data ||
6811 event->attr.task;
6814 static void perf_event_task_output(struct perf_event *event,
6815 void *data)
6817 struct perf_task_event *task_event = data;
6818 struct perf_output_handle handle;
6819 struct perf_sample_data sample;
6820 struct task_struct *task = task_event->task;
6821 int ret, size = task_event->event_id.header.size;
6823 if (!perf_event_task_match(event))
6824 return;
6826 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6828 ret = perf_output_begin(&handle, event,
6829 task_event->event_id.header.size);
6830 if (ret)
6831 goto out;
6833 task_event->event_id.pid = perf_event_pid(event, task);
6834 task_event->event_id.ppid = perf_event_pid(event, current);
6836 task_event->event_id.tid = perf_event_tid(event, task);
6837 task_event->event_id.ptid = perf_event_tid(event, current);
6839 task_event->event_id.time = perf_event_clock(event);
6841 perf_output_put(&handle, task_event->event_id);
6843 perf_event__output_id_sample(event, &handle, &sample);
6845 perf_output_end(&handle);
6846 out:
6847 task_event->event_id.header.size = size;
6850 static void perf_event_task(struct task_struct *task,
6851 struct perf_event_context *task_ctx,
6852 int new)
6854 struct perf_task_event task_event;
6856 if (!atomic_read(&nr_comm_events) &&
6857 !atomic_read(&nr_mmap_events) &&
6858 !atomic_read(&nr_task_events))
6859 return;
6861 task_event = (struct perf_task_event){
6862 .task = task,
6863 .task_ctx = task_ctx,
6864 .event_id = {
6865 .header = {
6866 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6867 .misc = 0,
6868 .size = sizeof(task_event.event_id),
6870 /* .pid */
6871 /* .ppid */
6872 /* .tid */
6873 /* .ptid */
6874 /* .time */
6878 perf_iterate_sb(perf_event_task_output,
6879 &task_event,
6880 task_ctx);
6883 void perf_event_fork(struct task_struct *task)
6885 perf_event_task(task, NULL, 1);
6886 perf_event_namespaces(task);
6890 * comm tracking
6893 struct perf_comm_event {
6894 struct task_struct *task;
6895 char *comm;
6896 int comm_size;
6898 struct {
6899 struct perf_event_header header;
6901 u32 pid;
6902 u32 tid;
6903 } event_id;
6906 static int perf_event_comm_match(struct perf_event *event)
6908 return event->attr.comm;
6911 static void perf_event_comm_output(struct perf_event *event,
6912 void *data)
6914 struct perf_comm_event *comm_event = data;
6915 struct perf_output_handle handle;
6916 struct perf_sample_data sample;
6917 int size = comm_event->event_id.header.size;
6918 int ret;
6920 if (!perf_event_comm_match(event))
6921 return;
6923 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6924 ret = perf_output_begin(&handle, event,
6925 comm_event->event_id.header.size);
6927 if (ret)
6928 goto out;
6930 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6931 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6933 perf_output_put(&handle, comm_event->event_id);
6934 __output_copy(&handle, comm_event->comm,
6935 comm_event->comm_size);
6937 perf_event__output_id_sample(event, &handle, &sample);
6939 perf_output_end(&handle);
6940 out:
6941 comm_event->event_id.header.size = size;
6944 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6946 char comm[TASK_COMM_LEN];
6947 unsigned int size;
6949 memset(comm, 0, sizeof(comm));
6950 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6951 size = ALIGN(strlen(comm)+1, sizeof(u64));
6953 comm_event->comm = comm;
6954 comm_event->comm_size = size;
6956 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6958 perf_iterate_sb(perf_event_comm_output,
6959 comm_event,
6960 NULL);
6963 void perf_event_comm(struct task_struct *task, bool exec)
6965 struct perf_comm_event comm_event;
6967 if (!atomic_read(&nr_comm_events))
6968 return;
6970 comm_event = (struct perf_comm_event){
6971 .task = task,
6972 /* .comm */
6973 /* .comm_size */
6974 .event_id = {
6975 .header = {
6976 .type = PERF_RECORD_COMM,
6977 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6978 /* .size */
6980 /* .pid */
6981 /* .tid */
6985 perf_event_comm_event(&comm_event);
6989 * namespaces tracking
6992 struct perf_namespaces_event {
6993 struct task_struct *task;
6995 struct {
6996 struct perf_event_header header;
6998 u32 pid;
6999 u32 tid;
7000 u64 nr_namespaces;
7001 struct perf_ns_link_info link_info[NR_NAMESPACES];
7002 } event_id;
7005 static int perf_event_namespaces_match(struct perf_event *event)
7007 return event->attr.namespaces;
7010 static void perf_event_namespaces_output(struct perf_event *event,
7011 void *data)
7013 struct perf_namespaces_event *namespaces_event = data;
7014 struct perf_output_handle handle;
7015 struct perf_sample_data sample;
7016 u16 header_size = namespaces_event->event_id.header.size;
7017 int ret;
7019 if (!perf_event_namespaces_match(event))
7020 return;
7022 perf_event_header__init_id(&namespaces_event->event_id.header,
7023 &sample, event);
7024 ret = perf_output_begin(&handle, event,
7025 namespaces_event->event_id.header.size);
7026 if (ret)
7027 goto out;
7029 namespaces_event->event_id.pid = perf_event_pid(event,
7030 namespaces_event->task);
7031 namespaces_event->event_id.tid = perf_event_tid(event,
7032 namespaces_event->task);
7034 perf_output_put(&handle, namespaces_event->event_id);
7036 perf_event__output_id_sample(event, &handle, &sample);
7038 perf_output_end(&handle);
7039 out:
7040 namespaces_event->event_id.header.size = header_size;
7043 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7044 struct task_struct *task,
7045 const struct proc_ns_operations *ns_ops)
7047 struct path ns_path;
7048 struct inode *ns_inode;
7049 void *error;
7051 error = ns_get_path(&ns_path, task, ns_ops);
7052 if (!error) {
7053 ns_inode = ns_path.dentry->d_inode;
7054 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7055 ns_link_info->ino = ns_inode->i_ino;
7056 path_put(&ns_path);
7060 void perf_event_namespaces(struct task_struct *task)
7062 struct perf_namespaces_event namespaces_event;
7063 struct perf_ns_link_info *ns_link_info;
7065 if (!atomic_read(&nr_namespaces_events))
7066 return;
7068 namespaces_event = (struct perf_namespaces_event){
7069 .task = task,
7070 .event_id = {
7071 .header = {
7072 .type = PERF_RECORD_NAMESPACES,
7073 .misc = 0,
7074 .size = sizeof(namespaces_event.event_id),
7076 /* .pid */
7077 /* .tid */
7078 .nr_namespaces = NR_NAMESPACES,
7079 /* .link_info[NR_NAMESPACES] */
7083 ns_link_info = namespaces_event.event_id.link_info;
7085 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7086 task, &mntns_operations);
7088 #ifdef CONFIG_USER_NS
7089 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7090 task, &userns_operations);
7091 #endif
7092 #ifdef CONFIG_NET_NS
7093 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7094 task, &netns_operations);
7095 #endif
7096 #ifdef CONFIG_UTS_NS
7097 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7098 task, &utsns_operations);
7099 #endif
7100 #ifdef CONFIG_IPC_NS
7101 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7102 task, &ipcns_operations);
7103 #endif
7104 #ifdef CONFIG_PID_NS
7105 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7106 task, &pidns_operations);
7107 #endif
7108 #ifdef CONFIG_CGROUPS
7109 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7110 task, &cgroupns_operations);
7111 #endif
7113 perf_iterate_sb(perf_event_namespaces_output,
7114 &namespaces_event,
7115 NULL);
7119 * mmap tracking
7122 struct perf_mmap_event {
7123 struct vm_area_struct *vma;
7125 const char *file_name;
7126 int file_size;
7127 int maj, min;
7128 u64 ino;
7129 u64 ino_generation;
7130 u32 prot, flags;
7132 struct {
7133 struct perf_event_header header;
7135 u32 pid;
7136 u32 tid;
7137 u64 start;
7138 u64 len;
7139 u64 pgoff;
7140 } event_id;
7143 static int perf_event_mmap_match(struct perf_event *event,
7144 void *data)
7146 struct perf_mmap_event *mmap_event = data;
7147 struct vm_area_struct *vma = mmap_event->vma;
7148 int executable = vma->vm_flags & VM_EXEC;
7150 return (!executable && event->attr.mmap_data) ||
7151 (executable && (event->attr.mmap || event->attr.mmap2));
7154 static void perf_event_mmap_output(struct perf_event *event,
7155 void *data)
7157 struct perf_mmap_event *mmap_event = data;
7158 struct perf_output_handle handle;
7159 struct perf_sample_data sample;
7160 int size = mmap_event->event_id.header.size;
7161 int ret;
7163 if (!perf_event_mmap_match(event, data))
7164 return;
7166 if (event->attr.mmap2) {
7167 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7168 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7169 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7170 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7171 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7172 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7173 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7176 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7177 ret = perf_output_begin(&handle, event,
7178 mmap_event->event_id.header.size);
7179 if (ret)
7180 goto out;
7182 mmap_event->event_id.pid = perf_event_pid(event, current);
7183 mmap_event->event_id.tid = perf_event_tid(event, current);
7185 perf_output_put(&handle, mmap_event->event_id);
7187 if (event->attr.mmap2) {
7188 perf_output_put(&handle, mmap_event->maj);
7189 perf_output_put(&handle, mmap_event->min);
7190 perf_output_put(&handle, mmap_event->ino);
7191 perf_output_put(&handle, mmap_event->ino_generation);
7192 perf_output_put(&handle, mmap_event->prot);
7193 perf_output_put(&handle, mmap_event->flags);
7196 __output_copy(&handle, mmap_event->file_name,
7197 mmap_event->file_size);
7199 perf_event__output_id_sample(event, &handle, &sample);
7201 perf_output_end(&handle);
7202 out:
7203 mmap_event->event_id.header.size = size;
7206 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7208 struct vm_area_struct *vma = mmap_event->vma;
7209 struct file *file = vma->vm_file;
7210 int maj = 0, min = 0;
7211 u64 ino = 0, gen = 0;
7212 u32 prot = 0, flags = 0;
7213 unsigned int size;
7214 char tmp[16];
7215 char *buf = NULL;
7216 char *name;
7218 if (vma->vm_flags & VM_READ)
7219 prot |= PROT_READ;
7220 if (vma->vm_flags & VM_WRITE)
7221 prot |= PROT_WRITE;
7222 if (vma->vm_flags & VM_EXEC)
7223 prot |= PROT_EXEC;
7225 if (vma->vm_flags & VM_MAYSHARE)
7226 flags = MAP_SHARED;
7227 else
7228 flags = MAP_PRIVATE;
7230 if (vma->vm_flags & VM_DENYWRITE)
7231 flags |= MAP_DENYWRITE;
7232 if (vma->vm_flags & VM_MAYEXEC)
7233 flags |= MAP_EXECUTABLE;
7234 if (vma->vm_flags & VM_LOCKED)
7235 flags |= MAP_LOCKED;
7236 if (vma->vm_flags & VM_HUGETLB)
7237 flags |= MAP_HUGETLB;
7239 if (file) {
7240 struct inode *inode;
7241 dev_t dev;
7243 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7244 if (!buf) {
7245 name = "//enomem";
7246 goto cpy_name;
7249 * d_path() works from the end of the rb backwards, so we
7250 * need to add enough zero bytes after the string to handle
7251 * the 64bit alignment we do later.
7253 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7254 if (IS_ERR(name)) {
7255 name = "//toolong";
7256 goto cpy_name;
7258 inode = file_inode(vma->vm_file);
7259 dev = inode->i_sb->s_dev;
7260 ino = inode->i_ino;
7261 gen = inode->i_generation;
7262 maj = MAJOR(dev);
7263 min = MINOR(dev);
7265 goto got_name;
7266 } else {
7267 if (vma->vm_ops && vma->vm_ops->name) {
7268 name = (char *) vma->vm_ops->name(vma);
7269 if (name)
7270 goto cpy_name;
7273 name = (char *)arch_vma_name(vma);
7274 if (name)
7275 goto cpy_name;
7277 if (vma->vm_start <= vma->vm_mm->start_brk &&
7278 vma->vm_end >= vma->vm_mm->brk) {
7279 name = "[heap]";
7280 goto cpy_name;
7282 if (vma->vm_start <= vma->vm_mm->start_stack &&
7283 vma->vm_end >= vma->vm_mm->start_stack) {
7284 name = "[stack]";
7285 goto cpy_name;
7288 name = "//anon";
7289 goto cpy_name;
7292 cpy_name:
7293 strlcpy(tmp, name, sizeof(tmp));
7294 name = tmp;
7295 got_name:
7297 * Since our buffer works in 8 byte units we need to align our string
7298 * size to a multiple of 8. However, we must guarantee the tail end is
7299 * zero'd out to avoid leaking random bits to userspace.
7301 size = strlen(name)+1;
7302 while (!IS_ALIGNED(size, sizeof(u64)))
7303 name[size++] = '\0';
7305 mmap_event->file_name = name;
7306 mmap_event->file_size = size;
7307 mmap_event->maj = maj;
7308 mmap_event->min = min;
7309 mmap_event->ino = ino;
7310 mmap_event->ino_generation = gen;
7311 mmap_event->prot = prot;
7312 mmap_event->flags = flags;
7314 if (!(vma->vm_flags & VM_EXEC))
7315 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7317 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7319 perf_iterate_sb(perf_event_mmap_output,
7320 mmap_event,
7321 NULL);
7323 kfree(buf);
7327 * Check whether inode and address range match filter criteria.
7329 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7330 struct file *file, unsigned long offset,
7331 unsigned long size)
7333 if (filter->inode != file_inode(file))
7334 return false;
7336 if (filter->offset > offset + size)
7337 return false;
7339 if (filter->offset + filter->size < offset)
7340 return false;
7342 return true;
7345 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7347 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7348 struct vm_area_struct *vma = data;
7349 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7350 struct file *file = vma->vm_file;
7351 struct perf_addr_filter *filter;
7352 unsigned int restart = 0, count = 0;
7354 if (!has_addr_filter(event))
7355 return;
7357 if (!file)
7358 return;
7360 raw_spin_lock_irqsave(&ifh->lock, flags);
7361 list_for_each_entry(filter, &ifh->list, entry) {
7362 if (perf_addr_filter_match(filter, file, off,
7363 vma->vm_end - vma->vm_start)) {
7364 event->addr_filters_offs[count] = vma->vm_start;
7365 restart++;
7368 count++;
7371 if (restart)
7372 event->addr_filters_gen++;
7373 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7375 if (restart)
7376 perf_event_stop(event, 1);
7380 * Adjust all task's events' filters to the new vma
7382 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7384 struct perf_event_context *ctx;
7385 int ctxn;
7388 * Data tracing isn't supported yet and as such there is no need
7389 * to keep track of anything that isn't related to executable code:
7391 if (!(vma->vm_flags & VM_EXEC))
7392 return;
7394 rcu_read_lock();
7395 for_each_task_context_nr(ctxn) {
7396 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7397 if (!ctx)
7398 continue;
7400 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7402 rcu_read_unlock();
7405 void perf_event_mmap(struct vm_area_struct *vma)
7407 struct perf_mmap_event mmap_event;
7409 if (!atomic_read(&nr_mmap_events))
7410 return;
7412 mmap_event = (struct perf_mmap_event){
7413 .vma = vma,
7414 /* .file_name */
7415 /* .file_size */
7416 .event_id = {
7417 .header = {
7418 .type = PERF_RECORD_MMAP,
7419 .misc = PERF_RECORD_MISC_USER,
7420 /* .size */
7422 /* .pid */
7423 /* .tid */
7424 .start = vma->vm_start,
7425 .len = vma->vm_end - vma->vm_start,
7426 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7428 /* .maj (attr_mmap2 only) */
7429 /* .min (attr_mmap2 only) */
7430 /* .ino (attr_mmap2 only) */
7431 /* .ino_generation (attr_mmap2 only) */
7432 /* .prot (attr_mmap2 only) */
7433 /* .flags (attr_mmap2 only) */
7436 perf_addr_filters_adjust(vma);
7437 perf_event_mmap_event(&mmap_event);
7440 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7441 unsigned long size, u64 flags)
7443 struct perf_output_handle handle;
7444 struct perf_sample_data sample;
7445 struct perf_aux_event {
7446 struct perf_event_header header;
7447 u64 offset;
7448 u64 size;
7449 u64 flags;
7450 } rec = {
7451 .header = {
7452 .type = PERF_RECORD_AUX,
7453 .misc = 0,
7454 .size = sizeof(rec),
7456 .offset = head,
7457 .size = size,
7458 .flags = flags,
7460 int ret;
7462 perf_event_header__init_id(&rec.header, &sample, event);
7463 ret = perf_output_begin(&handle, event, rec.header.size);
7465 if (ret)
7466 return;
7468 perf_output_put(&handle, rec);
7469 perf_event__output_id_sample(event, &handle, &sample);
7471 perf_output_end(&handle);
7475 * Lost/dropped samples logging
7477 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7479 struct perf_output_handle handle;
7480 struct perf_sample_data sample;
7481 int ret;
7483 struct {
7484 struct perf_event_header header;
7485 u64 lost;
7486 } lost_samples_event = {
7487 .header = {
7488 .type = PERF_RECORD_LOST_SAMPLES,
7489 .misc = 0,
7490 .size = sizeof(lost_samples_event),
7492 .lost = lost,
7495 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7497 ret = perf_output_begin(&handle, event,
7498 lost_samples_event.header.size);
7499 if (ret)
7500 return;
7502 perf_output_put(&handle, lost_samples_event);
7503 perf_event__output_id_sample(event, &handle, &sample);
7504 perf_output_end(&handle);
7508 * context_switch tracking
7511 struct perf_switch_event {
7512 struct task_struct *task;
7513 struct task_struct *next_prev;
7515 struct {
7516 struct perf_event_header header;
7517 u32 next_prev_pid;
7518 u32 next_prev_tid;
7519 } event_id;
7522 static int perf_event_switch_match(struct perf_event *event)
7524 return event->attr.context_switch;
7527 static void perf_event_switch_output(struct perf_event *event, void *data)
7529 struct perf_switch_event *se = data;
7530 struct perf_output_handle handle;
7531 struct perf_sample_data sample;
7532 int ret;
7534 if (!perf_event_switch_match(event))
7535 return;
7537 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7538 if (event->ctx->task) {
7539 se->event_id.header.type = PERF_RECORD_SWITCH;
7540 se->event_id.header.size = sizeof(se->event_id.header);
7541 } else {
7542 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7543 se->event_id.header.size = sizeof(se->event_id);
7544 se->event_id.next_prev_pid =
7545 perf_event_pid(event, se->next_prev);
7546 se->event_id.next_prev_tid =
7547 perf_event_tid(event, se->next_prev);
7550 perf_event_header__init_id(&se->event_id.header, &sample, event);
7552 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7553 if (ret)
7554 return;
7556 if (event->ctx->task)
7557 perf_output_put(&handle, se->event_id.header);
7558 else
7559 perf_output_put(&handle, se->event_id);
7561 perf_event__output_id_sample(event, &handle, &sample);
7563 perf_output_end(&handle);
7566 static void perf_event_switch(struct task_struct *task,
7567 struct task_struct *next_prev, bool sched_in)
7569 struct perf_switch_event switch_event;
7571 /* N.B. caller checks nr_switch_events != 0 */
7573 switch_event = (struct perf_switch_event){
7574 .task = task,
7575 .next_prev = next_prev,
7576 .event_id = {
7577 .header = {
7578 /* .type */
7579 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7580 /* .size */
7582 /* .next_prev_pid */
7583 /* .next_prev_tid */
7587 perf_iterate_sb(perf_event_switch_output,
7588 &switch_event,
7589 NULL);
7593 * IRQ throttle logging
7596 static void perf_log_throttle(struct perf_event *event, int enable)
7598 struct perf_output_handle handle;
7599 struct perf_sample_data sample;
7600 int ret;
7602 struct {
7603 struct perf_event_header header;
7604 u64 time;
7605 u64 id;
7606 u64 stream_id;
7607 } throttle_event = {
7608 .header = {
7609 .type = PERF_RECORD_THROTTLE,
7610 .misc = 0,
7611 .size = sizeof(throttle_event),
7613 .time = perf_event_clock(event),
7614 .id = primary_event_id(event),
7615 .stream_id = event->id,
7618 if (enable)
7619 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7621 perf_event_header__init_id(&throttle_event.header, &sample, event);
7623 ret = perf_output_begin(&handle, event,
7624 throttle_event.header.size);
7625 if (ret)
7626 return;
7628 perf_output_put(&handle, throttle_event);
7629 perf_event__output_id_sample(event, &handle, &sample);
7630 perf_output_end(&handle);
7633 void perf_event_itrace_started(struct perf_event *event)
7635 event->attach_state |= PERF_ATTACH_ITRACE;
7638 static void perf_log_itrace_start(struct perf_event *event)
7640 struct perf_output_handle handle;
7641 struct perf_sample_data sample;
7642 struct perf_aux_event {
7643 struct perf_event_header header;
7644 u32 pid;
7645 u32 tid;
7646 } rec;
7647 int ret;
7649 if (event->parent)
7650 event = event->parent;
7652 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7653 event->attach_state & PERF_ATTACH_ITRACE)
7654 return;
7656 rec.header.type = PERF_RECORD_ITRACE_START;
7657 rec.header.misc = 0;
7658 rec.header.size = sizeof(rec);
7659 rec.pid = perf_event_pid(event, current);
7660 rec.tid = perf_event_tid(event, current);
7662 perf_event_header__init_id(&rec.header, &sample, event);
7663 ret = perf_output_begin(&handle, event, rec.header.size);
7665 if (ret)
7666 return;
7668 perf_output_put(&handle, rec);
7669 perf_event__output_id_sample(event, &handle, &sample);
7671 perf_output_end(&handle);
7674 static int
7675 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7677 struct hw_perf_event *hwc = &event->hw;
7678 int ret = 0;
7679 u64 seq;
7681 seq = __this_cpu_read(perf_throttled_seq);
7682 if (seq != hwc->interrupts_seq) {
7683 hwc->interrupts_seq = seq;
7684 hwc->interrupts = 1;
7685 } else {
7686 hwc->interrupts++;
7687 if (unlikely(throttle
7688 && hwc->interrupts >= max_samples_per_tick)) {
7689 __this_cpu_inc(perf_throttled_count);
7690 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7691 hwc->interrupts = MAX_INTERRUPTS;
7692 perf_log_throttle(event, 0);
7693 ret = 1;
7697 if (event->attr.freq) {
7698 u64 now = perf_clock();
7699 s64 delta = now - hwc->freq_time_stamp;
7701 hwc->freq_time_stamp = now;
7703 if (delta > 0 && delta < 2*TICK_NSEC)
7704 perf_adjust_period(event, delta, hwc->last_period, true);
7707 return ret;
7710 int perf_event_account_interrupt(struct perf_event *event)
7712 return __perf_event_account_interrupt(event, 1);
7716 * Generic event overflow handling, sampling.
7719 static int __perf_event_overflow(struct perf_event *event,
7720 int throttle, struct perf_sample_data *data,
7721 struct pt_regs *regs)
7723 int events = atomic_read(&event->event_limit);
7724 int ret = 0;
7727 * Non-sampling counters might still use the PMI to fold short
7728 * hardware counters, ignore those.
7730 if (unlikely(!is_sampling_event(event)))
7731 return 0;
7733 ret = __perf_event_account_interrupt(event, throttle);
7736 * XXX event_limit might not quite work as expected on inherited
7737 * events
7740 event->pending_kill = POLL_IN;
7741 if (events && atomic_dec_and_test(&event->event_limit)) {
7742 ret = 1;
7743 event->pending_kill = POLL_HUP;
7745 perf_event_disable_inatomic(event);
7748 READ_ONCE(event->overflow_handler)(event, data, regs);
7750 if (*perf_event_fasync(event) && event->pending_kill) {
7751 event->pending_wakeup = 1;
7752 irq_work_queue(&event->pending);
7755 return ret;
7758 int perf_event_overflow(struct perf_event *event,
7759 struct perf_sample_data *data,
7760 struct pt_regs *regs)
7762 return __perf_event_overflow(event, 1, data, regs);
7766 * Generic software event infrastructure
7769 struct swevent_htable {
7770 struct swevent_hlist *swevent_hlist;
7771 struct mutex hlist_mutex;
7772 int hlist_refcount;
7774 /* Recursion avoidance in each contexts */
7775 int recursion[PERF_NR_CONTEXTS];
7778 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7781 * We directly increment event->count and keep a second value in
7782 * event->hw.period_left to count intervals. This period event
7783 * is kept in the range [-sample_period, 0] so that we can use the
7784 * sign as trigger.
7787 u64 perf_swevent_set_period(struct perf_event *event)
7789 struct hw_perf_event *hwc = &event->hw;
7790 u64 period = hwc->last_period;
7791 u64 nr, offset;
7792 s64 old, val;
7794 hwc->last_period = hwc->sample_period;
7796 again:
7797 old = val = local64_read(&hwc->period_left);
7798 if (val < 0)
7799 return 0;
7801 nr = div64_u64(period + val, period);
7802 offset = nr * period;
7803 val -= offset;
7804 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7805 goto again;
7807 return nr;
7810 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7811 struct perf_sample_data *data,
7812 struct pt_regs *regs)
7814 struct hw_perf_event *hwc = &event->hw;
7815 int throttle = 0;
7817 if (!overflow)
7818 overflow = perf_swevent_set_period(event);
7820 if (hwc->interrupts == MAX_INTERRUPTS)
7821 return;
7823 for (; overflow; overflow--) {
7824 if (__perf_event_overflow(event, throttle,
7825 data, regs)) {
7827 * We inhibit the overflow from happening when
7828 * hwc->interrupts == MAX_INTERRUPTS.
7830 break;
7832 throttle = 1;
7836 static void perf_swevent_event(struct perf_event *event, u64 nr,
7837 struct perf_sample_data *data,
7838 struct pt_regs *regs)
7840 struct hw_perf_event *hwc = &event->hw;
7842 local64_add(nr, &event->count);
7844 if (!regs)
7845 return;
7847 if (!is_sampling_event(event))
7848 return;
7850 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7851 data->period = nr;
7852 return perf_swevent_overflow(event, 1, data, regs);
7853 } else
7854 data->period = event->hw.last_period;
7856 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7857 return perf_swevent_overflow(event, 1, data, regs);
7859 if (local64_add_negative(nr, &hwc->period_left))
7860 return;
7862 perf_swevent_overflow(event, 0, data, regs);
7865 static int perf_exclude_event(struct perf_event *event,
7866 struct pt_regs *regs)
7868 if (event->hw.state & PERF_HES_STOPPED)
7869 return 1;
7871 if (regs) {
7872 if (event->attr.exclude_user && user_mode(regs))
7873 return 1;
7875 if (event->attr.exclude_kernel && !user_mode(regs))
7876 return 1;
7879 return 0;
7882 static int perf_swevent_match(struct perf_event *event,
7883 enum perf_type_id type,
7884 u32 event_id,
7885 struct perf_sample_data *data,
7886 struct pt_regs *regs)
7888 if (event->attr.type != type)
7889 return 0;
7891 if (event->attr.config != event_id)
7892 return 0;
7894 if (perf_exclude_event(event, regs))
7895 return 0;
7897 return 1;
7900 static inline u64 swevent_hash(u64 type, u32 event_id)
7902 u64 val = event_id | (type << 32);
7904 return hash_64(val, SWEVENT_HLIST_BITS);
7907 static inline struct hlist_head *
7908 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7910 u64 hash = swevent_hash(type, event_id);
7912 return &hlist->heads[hash];
7915 /* For the read side: events when they trigger */
7916 static inline struct hlist_head *
7917 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7919 struct swevent_hlist *hlist;
7921 hlist = rcu_dereference(swhash->swevent_hlist);
7922 if (!hlist)
7923 return NULL;
7925 return __find_swevent_head(hlist, type, event_id);
7928 /* For the event head insertion and removal in the hlist */
7929 static inline struct hlist_head *
7930 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7932 struct swevent_hlist *hlist;
7933 u32 event_id = event->attr.config;
7934 u64 type = event->attr.type;
7937 * Event scheduling is always serialized against hlist allocation
7938 * and release. Which makes the protected version suitable here.
7939 * The context lock guarantees that.
7941 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7942 lockdep_is_held(&event->ctx->lock));
7943 if (!hlist)
7944 return NULL;
7946 return __find_swevent_head(hlist, type, event_id);
7949 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7950 u64 nr,
7951 struct perf_sample_data *data,
7952 struct pt_regs *regs)
7954 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7955 struct perf_event *event;
7956 struct hlist_head *head;
7958 rcu_read_lock();
7959 head = find_swevent_head_rcu(swhash, type, event_id);
7960 if (!head)
7961 goto end;
7963 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7964 if (perf_swevent_match(event, type, event_id, data, regs))
7965 perf_swevent_event(event, nr, data, regs);
7967 end:
7968 rcu_read_unlock();
7971 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7973 int perf_swevent_get_recursion_context(void)
7975 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7977 return get_recursion_context(swhash->recursion);
7979 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7981 void perf_swevent_put_recursion_context(int rctx)
7983 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7985 put_recursion_context(swhash->recursion, rctx);
7988 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7990 struct perf_sample_data data;
7992 if (WARN_ON_ONCE(!regs))
7993 return;
7995 perf_sample_data_init(&data, addr, 0);
7996 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7999 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8001 int rctx;
8003 preempt_disable_notrace();
8004 rctx = perf_swevent_get_recursion_context();
8005 if (unlikely(rctx < 0))
8006 goto fail;
8008 ___perf_sw_event(event_id, nr, regs, addr);
8010 perf_swevent_put_recursion_context(rctx);
8011 fail:
8012 preempt_enable_notrace();
8015 static void perf_swevent_read(struct perf_event *event)
8019 static int perf_swevent_add(struct perf_event *event, int flags)
8021 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8022 struct hw_perf_event *hwc = &event->hw;
8023 struct hlist_head *head;
8025 if (is_sampling_event(event)) {
8026 hwc->last_period = hwc->sample_period;
8027 perf_swevent_set_period(event);
8030 hwc->state = !(flags & PERF_EF_START);
8032 head = find_swevent_head(swhash, event);
8033 if (WARN_ON_ONCE(!head))
8034 return -EINVAL;
8036 hlist_add_head_rcu(&event->hlist_entry, head);
8037 perf_event_update_userpage(event);
8039 return 0;
8042 static void perf_swevent_del(struct perf_event *event, int flags)
8044 hlist_del_rcu(&event->hlist_entry);
8047 static void perf_swevent_start(struct perf_event *event, int flags)
8049 event->hw.state = 0;
8052 static void perf_swevent_stop(struct perf_event *event, int flags)
8054 event->hw.state = PERF_HES_STOPPED;
8057 /* Deref the hlist from the update side */
8058 static inline struct swevent_hlist *
8059 swevent_hlist_deref(struct swevent_htable *swhash)
8061 return rcu_dereference_protected(swhash->swevent_hlist,
8062 lockdep_is_held(&swhash->hlist_mutex));
8065 static void swevent_hlist_release(struct swevent_htable *swhash)
8067 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8069 if (!hlist)
8070 return;
8072 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8073 kfree_rcu(hlist, rcu_head);
8076 static void swevent_hlist_put_cpu(int cpu)
8078 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8080 mutex_lock(&swhash->hlist_mutex);
8082 if (!--swhash->hlist_refcount)
8083 swevent_hlist_release(swhash);
8085 mutex_unlock(&swhash->hlist_mutex);
8088 static void swevent_hlist_put(void)
8090 int cpu;
8092 for_each_possible_cpu(cpu)
8093 swevent_hlist_put_cpu(cpu);
8096 static int swevent_hlist_get_cpu(int cpu)
8098 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8099 int err = 0;
8101 mutex_lock(&swhash->hlist_mutex);
8102 if (!swevent_hlist_deref(swhash) &&
8103 cpumask_test_cpu(cpu, perf_online_mask)) {
8104 struct swevent_hlist *hlist;
8106 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8107 if (!hlist) {
8108 err = -ENOMEM;
8109 goto exit;
8111 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8113 swhash->hlist_refcount++;
8114 exit:
8115 mutex_unlock(&swhash->hlist_mutex);
8117 return err;
8120 static int swevent_hlist_get(void)
8122 int err, cpu, failed_cpu;
8124 mutex_lock(&pmus_lock);
8125 for_each_possible_cpu(cpu) {
8126 err = swevent_hlist_get_cpu(cpu);
8127 if (err) {
8128 failed_cpu = cpu;
8129 goto fail;
8132 mutex_unlock(&pmus_lock);
8133 return 0;
8134 fail:
8135 for_each_possible_cpu(cpu) {
8136 if (cpu == failed_cpu)
8137 break;
8138 swevent_hlist_put_cpu(cpu);
8140 mutex_unlock(&pmus_lock);
8141 return err;
8144 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8146 static void sw_perf_event_destroy(struct perf_event *event)
8148 u64 event_id = event->attr.config;
8150 WARN_ON(event->parent);
8152 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8153 swevent_hlist_put();
8156 static int perf_swevent_init(struct perf_event *event)
8158 u64 event_id = event->attr.config;
8160 if (event->attr.type != PERF_TYPE_SOFTWARE)
8161 return -ENOENT;
8164 * no branch sampling for software events
8166 if (has_branch_stack(event))
8167 return -EOPNOTSUPP;
8169 switch (event_id) {
8170 case PERF_COUNT_SW_CPU_CLOCK:
8171 case PERF_COUNT_SW_TASK_CLOCK:
8172 return -ENOENT;
8174 default:
8175 break;
8178 if (event_id >= PERF_COUNT_SW_MAX)
8179 return -ENOENT;
8181 if (!event->parent) {
8182 int err;
8184 err = swevent_hlist_get();
8185 if (err)
8186 return err;
8188 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8189 event->destroy = sw_perf_event_destroy;
8192 return 0;
8195 static struct pmu perf_swevent = {
8196 .task_ctx_nr = perf_sw_context,
8198 .capabilities = PERF_PMU_CAP_NO_NMI,
8200 .event_init = perf_swevent_init,
8201 .add = perf_swevent_add,
8202 .del = perf_swevent_del,
8203 .start = perf_swevent_start,
8204 .stop = perf_swevent_stop,
8205 .read = perf_swevent_read,
8208 #ifdef CONFIG_EVENT_TRACING
8210 static int perf_tp_filter_match(struct perf_event *event,
8211 struct perf_sample_data *data)
8213 void *record = data->raw->frag.data;
8215 /* only top level events have filters set */
8216 if (event->parent)
8217 event = event->parent;
8219 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8220 return 1;
8221 return 0;
8224 static int perf_tp_event_match(struct perf_event *event,
8225 struct perf_sample_data *data,
8226 struct pt_regs *regs)
8228 if (event->hw.state & PERF_HES_STOPPED)
8229 return 0;
8231 * All tracepoints are from kernel-space.
8233 if (event->attr.exclude_kernel)
8234 return 0;
8236 if (!perf_tp_filter_match(event, data))
8237 return 0;
8239 return 1;
8242 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8243 struct trace_event_call *call, u64 count,
8244 struct pt_regs *regs, struct hlist_head *head,
8245 struct task_struct *task)
8247 if (bpf_prog_array_valid(call)) {
8248 *(struct pt_regs **)raw_data = regs;
8249 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8250 perf_swevent_put_recursion_context(rctx);
8251 return;
8254 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8255 rctx, task);
8257 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8259 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8260 struct pt_regs *regs, struct hlist_head *head, int rctx,
8261 struct task_struct *task)
8263 struct perf_sample_data data;
8264 struct perf_event *event;
8266 struct perf_raw_record raw = {
8267 .frag = {
8268 .size = entry_size,
8269 .data = record,
8273 perf_sample_data_init(&data, 0, 0);
8274 data.raw = &raw;
8276 perf_trace_buf_update(record, event_type);
8278 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8279 if (perf_tp_event_match(event, &data, regs))
8280 perf_swevent_event(event, count, &data, regs);
8284 * If we got specified a target task, also iterate its context and
8285 * deliver this event there too.
8287 if (task && task != current) {
8288 struct perf_event_context *ctx;
8289 struct trace_entry *entry = record;
8291 rcu_read_lock();
8292 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8293 if (!ctx)
8294 goto unlock;
8296 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8297 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8298 continue;
8299 if (event->attr.config != entry->type)
8300 continue;
8301 if (perf_tp_event_match(event, &data, regs))
8302 perf_swevent_event(event, count, &data, regs);
8304 unlock:
8305 rcu_read_unlock();
8308 perf_swevent_put_recursion_context(rctx);
8310 EXPORT_SYMBOL_GPL(perf_tp_event);
8312 static void tp_perf_event_destroy(struct perf_event *event)
8314 perf_trace_destroy(event);
8317 static int perf_tp_event_init(struct perf_event *event)
8319 int err;
8321 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8322 return -ENOENT;
8325 * no branch sampling for tracepoint events
8327 if (has_branch_stack(event))
8328 return -EOPNOTSUPP;
8330 err = perf_trace_init(event);
8331 if (err)
8332 return err;
8334 event->destroy = tp_perf_event_destroy;
8336 return 0;
8339 static struct pmu perf_tracepoint = {
8340 .task_ctx_nr = perf_sw_context,
8342 .event_init = perf_tp_event_init,
8343 .add = perf_trace_add,
8344 .del = perf_trace_del,
8345 .start = perf_swevent_start,
8346 .stop = perf_swevent_stop,
8347 .read = perf_swevent_read,
8350 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8352 * Flags in config, used by dynamic PMU kprobe and uprobe
8353 * The flags should match following PMU_FORMAT_ATTR().
8355 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8356 * if not set, create kprobe/uprobe
8358 enum perf_probe_config {
8359 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8362 PMU_FORMAT_ATTR(retprobe, "config:0");
8364 static struct attribute *probe_attrs[] = {
8365 &format_attr_retprobe.attr,
8366 NULL,
8369 static struct attribute_group probe_format_group = {
8370 .name = "format",
8371 .attrs = probe_attrs,
8374 static const struct attribute_group *probe_attr_groups[] = {
8375 &probe_format_group,
8376 NULL,
8378 #endif
8380 #ifdef CONFIG_KPROBE_EVENTS
8381 static int perf_kprobe_event_init(struct perf_event *event);
8382 static struct pmu perf_kprobe = {
8383 .task_ctx_nr = perf_sw_context,
8384 .event_init = perf_kprobe_event_init,
8385 .add = perf_trace_add,
8386 .del = perf_trace_del,
8387 .start = perf_swevent_start,
8388 .stop = perf_swevent_stop,
8389 .read = perf_swevent_read,
8390 .attr_groups = probe_attr_groups,
8393 static int perf_kprobe_event_init(struct perf_event *event)
8395 int err;
8396 bool is_retprobe;
8398 if (event->attr.type != perf_kprobe.type)
8399 return -ENOENT;
8401 * no branch sampling for probe events
8403 if (has_branch_stack(event))
8404 return -EOPNOTSUPP;
8406 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8407 err = perf_kprobe_init(event, is_retprobe);
8408 if (err)
8409 return err;
8411 event->destroy = perf_kprobe_destroy;
8413 return 0;
8415 #endif /* CONFIG_KPROBE_EVENTS */
8417 #ifdef CONFIG_UPROBE_EVENTS
8418 static int perf_uprobe_event_init(struct perf_event *event);
8419 static struct pmu perf_uprobe = {
8420 .task_ctx_nr = perf_sw_context,
8421 .event_init = perf_uprobe_event_init,
8422 .add = perf_trace_add,
8423 .del = perf_trace_del,
8424 .start = perf_swevent_start,
8425 .stop = perf_swevent_stop,
8426 .read = perf_swevent_read,
8427 .attr_groups = probe_attr_groups,
8430 static int perf_uprobe_event_init(struct perf_event *event)
8432 int err;
8433 bool is_retprobe;
8435 if (event->attr.type != perf_uprobe.type)
8436 return -ENOENT;
8438 * no branch sampling for probe events
8440 if (has_branch_stack(event))
8441 return -EOPNOTSUPP;
8443 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8444 err = perf_uprobe_init(event, is_retprobe);
8445 if (err)
8446 return err;
8448 event->destroy = perf_uprobe_destroy;
8450 return 0;
8452 #endif /* CONFIG_UPROBE_EVENTS */
8454 static inline void perf_tp_register(void)
8456 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8457 #ifdef CONFIG_KPROBE_EVENTS
8458 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8459 #endif
8460 #ifdef CONFIG_UPROBE_EVENTS
8461 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8462 #endif
8465 static void perf_event_free_filter(struct perf_event *event)
8467 ftrace_profile_free_filter(event);
8470 #ifdef CONFIG_BPF_SYSCALL
8471 static void bpf_overflow_handler(struct perf_event *event,
8472 struct perf_sample_data *data,
8473 struct pt_regs *regs)
8475 struct bpf_perf_event_data_kern ctx = {
8476 .data = data,
8477 .event = event,
8479 int ret = 0;
8481 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8482 preempt_disable();
8483 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8484 goto out;
8485 rcu_read_lock();
8486 ret = BPF_PROG_RUN(event->prog, &ctx);
8487 rcu_read_unlock();
8488 out:
8489 __this_cpu_dec(bpf_prog_active);
8490 preempt_enable();
8491 if (!ret)
8492 return;
8494 event->orig_overflow_handler(event, data, regs);
8497 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8499 struct bpf_prog *prog;
8501 if (event->overflow_handler_context)
8502 /* hw breakpoint or kernel counter */
8503 return -EINVAL;
8505 if (event->prog)
8506 return -EEXIST;
8508 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8509 if (IS_ERR(prog))
8510 return PTR_ERR(prog);
8512 event->prog = prog;
8513 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8514 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8515 return 0;
8518 static void perf_event_free_bpf_handler(struct perf_event *event)
8520 struct bpf_prog *prog = event->prog;
8522 if (!prog)
8523 return;
8525 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8526 event->prog = NULL;
8527 bpf_prog_put(prog);
8529 #else
8530 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8532 return -EOPNOTSUPP;
8534 static void perf_event_free_bpf_handler(struct perf_event *event)
8537 #endif
8540 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8541 * with perf_event_open()
8543 static inline bool perf_event_is_tracing(struct perf_event *event)
8545 if (event->pmu == &perf_tracepoint)
8546 return true;
8547 #ifdef CONFIG_KPROBE_EVENTS
8548 if (event->pmu == &perf_kprobe)
8549 return true;
8550 #endif
8551 #ifdef CONFIG_UPROBE_EVENTS
8552 if (event->pmu == &perf_uprobe)
8553 return true;
8554 #endif
8555 return false;
8558 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8560 bool is_kprobe, is_tracepoint, is_syscall_tp;
8561 struct bpf_prog *prog;
8562 int ret;
8564 if (!perf_event_is_tracing(event))
8565 return perf_event_set_bpf_handler(event, prog_fd);
8567 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8568 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8569 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8570 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8571 /* bpf programs can only be attached to u/kprobe or tracepoint */
8572 return -EINVAL;
8574 prog = bpf_prog_get(prog_fd);
8575 if (IS_ERR(prog))
8576 return PTR_ERR(prog);
8578 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8579 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8580 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8581 /* valid fd, but invalid bpf program type */
8582 bpf_prog_put(prog);
8583 return -EINVAL;
8586 /* Kprobe override only works for kprobes, not uprobes. */
8587 if (prog->kprobe_override &&
8588 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8589 bpf_prog_put(prog);
8590 return -EINVAL;
8593 if (is_tracepoint || is_syscall_tp) {
8594 int off = trace_event_get_offsets(event->tp_event);
8596 if (prog->aux->max_ctx_offset > off) {
8597 bpf_prog_put(prog);
8598 return -EACCES;
8602 ret = perf_event_attach_bpf_prog(event, prog);
8603 if (ret)
8604 bpf_prog_put(prog);
8605 return ret;
8608 static void perf_event_free_bpf_prog(struct perf_event *event)
8610 if (!perf_event_is_tracing(event)) {
8611 perf_event_free_bpf_handler(event);
8612 return;
8614 perf_event_detach_bpf_prog(event);
8617 #else
8619 static inline void perf_tp_register(void)
8623 static void perf_event_free_filter(struct perf_event *event)
8627 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8629 return -ENOENT;
8632 static void perf_event_free_bpf_prog(struct perf_event *event)
8635 #endif /* CONFIG_EVENT_TRACING */
8637 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8638 void perf_bp_event(struct perf_event *bp, void *data)
8640 struct perf_sample_data sample;
8641 struct pt_regs *regs = data;
8643 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8645 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8646 perf_swevent_event(bp, 1, &sample, regs);
8648 #endif
8651 * Allocate a new address filter
8653 static struct perf_addr_filter *
8654 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8656 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8657 struct perf_addr_filter *filter;
8659 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8660 if (!filter)
8661 return NULL;
8663 INIT_LIST_HEAD(&filter->entry);
8664 list_add_tail(&filter->entry, filters);
8666 return filter;
8669 static void free_filters_list(struct list_head *filters)
8671 struct perf_addr_filter *filter, *iter;
8673 list_for_each_entry_safe(filter, iter, filters, entry) {
8674 if (filter->inode)
8675 iput(filter->inode);
8676 list_del(&filter->entry);
8677 kfree(filter);
8682 * Free existing address filters and optionally install new ones
8684 static void perf_addr_filters_splice(struct perf_event *event,
8685 struct list_head *head)
8687 unsigned long flags;
8688 LIST_HEAD(list);
8690 if (!has_addr_filter(event))
8691 return;
8693 /* don't bother with children, they don't have their own filters */
8694 if (event->parent)
8695 return;
8697 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8699 list_splice_init(&event->addr_filters.list, &list);
8700 if (head)
8701 list_splice(head, &event->addr_filters.list);
8703 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8705 free_filters_list(&list);
8709 * Scan through mm's vmas and see if one of them matches the
8710 * @filter; if so, adjust filter's address range.
8711 * Called with mm::mmap_sem down for reading.
8713 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8714 struct mm_struct *mm)
8716 struct vm_area_struct *vma;
8718 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8719 struct file *file = vma->vm_file;
8720 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8721 unsigned long vma_size = vma->vm_end - vma->vm_start;
8723 if (!file)
8724 continue;
8726 if (!perf_addr_filter_match(filter, file, off, vma_size))
8727 continue;
8729 return vma->vm_start;
8732 return 0;
8736 * Update event's address range filters based on the
8737 * task's existing mappings, if any.
8739 static void perf_event_addr_filters_apply(struct perf_event *event)
8741 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8742 struct task_struct *task = READ_ONCE(event->ctx->task);
8743 struct perf_addr_filter *filter;
8744 struct mm_struct *mm = NULL;
8745 unsigned int count = 0;
8746 unsigned long flags;
8749 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8750 * will stop on the parent's child_mutex that our caller is also holding
8752 if (task == TASK_TOMBSTONE)
8753 return;
8755 if (!ifh->nr_file_filters)
8756 return;
8758 mm = get_task_mm(event->ctx->task);
8759 if (!mm)
8760 goto restart;
8762 down_read(&mm->mmap_sem);
8764 raw_spin_lock_irqsave(&ifh->lock, flags);
8765 list_for_each_entry(filter, &ifh->list, entry) {
8766 event->addr_filters_offs[count] = 0;
8769 * Adjust base offset if the filter is associated to a binary
8770 * that needs to be mapped:
8772 if (filter->inode)
8773 event->addr_filters_offs[count] =
8774 perf_addr_filter_apply(filter, mm);
8776 count++;
8779 event->addr_filters_gen++;
8780 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8782 up_read(&mm->mmap_sem);
8784 mmput(mm);
8786 restart:
8787 perf_event_stop(event, 1);
8791 * Address range filtering: limiting the data to certain
8792 * instruction address ranges. Filters are ioctl()ed to us from
8793 * userspace as ascii strings.
8795 * Filter string format:
8797 * ACTION RANGE_SPEC
8798 * where ACTION is one of the
8799 * * "filter": limit the trace to this region
8800 * * "start": start tracing from this address
8801 * * "stop": stop tracing at this address/region;
8802 * RANGE_SPEC is
8803 * * for kernel addresses: <start address>[/<size>]
8804 * * for object files: <start address>[/<size>]@</path/to/object/file>
8806 * if <size> is not specified or is zero, the range is treated as a single
8807 * address; not valid for ACTION=="filter".
8809 enum {
8810 IF_ACT_NONE = -1,
8811 IF_ACT_FILTER,
8812 IF_ACT_START,
8813 IF_ACT_STOP,
8814 IF_SRC_FILE,
8815 IF_SRC_KERNEL,
8816 IF_SRC_FILEADDR,
8817 IF_SRC_KERNELADDR,
8820 enum {
8821 IF_STATE_ACTION = 0,
8822 IF_STATE_SOURCE,
8823 IF_STATE_END,
8826 static const match_table_t if_tokens = {
8827 { IF_ACT_FILTER, "filter" },
8828 { IF_ACT_START, "start" },
8829 { IF_ACT_STOP, "stop" },
8830 { IF_SRC_FILE, "%u/%u@%s" },
8831 { IF_SRC_KERNEL, "%u/%u" },
8832 { IF_SRC_FILEADDR, "%u@%s" },
8833 { IF_SRC_KERNELADDR, "%u" },
8834 { IF_ACT_NONE, NULL },
8838 * Address filter string parser
8840 static int
8841 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8842 struct list_head *filters)
8844 struct perf_addr_filter *filter = NULL;
8845 char *start, *orig, *filename = NULL;
8846 struct path path;
8847 substring_t args[MAX_OPT_ARGS];
8848 int state = IF_STATE_ACTION, token;
8849 unsigned int kernel = 0;
8850 int ret = -EINVAL;
8852 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8853 if (!fstr)
8854 return -ENOMEM;
8856 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8857 static const enum perf_addr_filter_action_t actions[] = {
8858 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8859 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
8860 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
8862 ret = -EINVAL;
8864 if (!*start)
8865 continue;
8867 /* filter definition begins */
8868 if (state == IF_STATE_ACTION) {
8869 filter = perf_addr_filter_new(event, filters);
8870 if (!filter)
8871 goto fail;
8874 token = match_token(start, if_tokens, args);
8875 switch (token) {
8876 case IF_ACT_FILTER:
8877 case IF_ACT_START:
8878 case IF_ACT_STOP:
8879 if (state != IF_STATE_ACTION)
8880 goto fail;
8882 filter->action = actions[token];
8883 state = IF_STATE_SOURCE;
8884 break;
8886 case IF_SRC_KERNELADDR:
8887 case IF_SRC_KERNEL:
8888 kernel = 1;
8890 case IF_SRC_FILEADDR:
8891 case IF_SRC_FILE:
8892 if (state != IF_STATE_SOURCE)
8893 goto fail;
8895 *args[0].to = 0;
8896 ret = kstrtoul(args[0].from, 0, &filter->offset);
8897 if (ret)
8898 goto fail;
8900 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8901 *args[1].to = 0;
8902 ret = kstrtoul(args[1].from, 0, &filter->size);
8903 if (ret)
8904 goto fail;
8907 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8908 int fpos = token == IF_SRC_FILE ? 2 : 1;
8910 filename = match_strdup(&args[fpos]);
8911 if (!filename) {
8912 ret = -ENOMEM;
8913 goto fail;
8917 state = IF_STATE_END;
8918 break;
8920 default:
8921 goto fail;
8925 * Filter definition is fully parsed, validate and install it.
8926 * Make sure that it doesn't contradict itself or the event's
8927 * attribute.
8929 if (state == IF_STATE_END) {
8930 ret = -EINVAL;
8931 if (kernel && event->attr.exclude_kernel)
8932 goto fail;
8935 * ACTION "filter" must have a non-zero length region
8936 * specified.
8938 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8939 !filter->size)
8940 goto fail;
8942 if (!kernel) {
8943 if (!filename)
8944 goto fail;
8947 * For now, we only support file-based filters
8948 * in per-task events; doing so for CPU-wide
8949 * events requires additional context switching
8950 * trickery, since same object code will be
8951 * mapped at different virtual addresses in
8952 * different processes.
8954 ret = -EOPNOTSUPP;
8955 if (!event->ctx->task)
8956 goto fail_free_name;
8958 /* look up the path and grab its inode */
8959 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8960 if (ret)
8961 goto fail_free_name;
8963 filter->inode = igrab(d_inode(path.dentry));
8964 path_put(&path);
8965 kfree(filename);
8966 filename = NULL;
8968 ret = -EINVAL;
8969 if (!filter->inode ||
8970 !S_ISREG(filter->inode->i_mode))
8971 /* free_filters_list() will iput() */
8972 goto fail;
8974 event->addr_filters.nr_file_filters++;
8977 /* ready to consume more filters */
8978 state = IF_STATE_ACTION;
8979 filter = NULL;
8983 if (state != IF_STATE_ACTION)
8984 goto fail;
8986 kfree(orig);
8988 return 0;
8990 fail_free_name:
8991 kfree(filename);
8992 fail:
8993 free_filters_list(filters);
8994 kfree(orig);
8996 return ret;
8999 static int
9000 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9002 LIST_HEAD(filters);
9003 int ret;
9006 * Since this is called in perf_ioctl() path, we're already holding
9007 * ctx::mutex.
9009 lockdep_assert_held(&event->ctx->mutex);
9011 if (WARN_ON_ONCE(event->parent))
9012 return -EINVAL;
9014 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9015 if (ret)
9016 goto fail_clear_files;
9018 ret = event->pmu->addr_filters_validate(&filters);
9019 if (ret)
9020 goto fail_free_filters;
9022 /* remove existing filters, if any */
9023 perf_addr_filters_splice(event, &filters);
9025 /* install new filters */
9026 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9028 return ret;
9030 fail_free_filters:
9031 free_filters_list(&filters);
9033 fail_clear_files:
9034 event->addr_filters.nr_file_filters = 0;
9036 return ret;
9039 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9041 int ret = -EINVAL;
9042 char *filter_str;
9044 filter_str = strndup_user(arg, PAGE_SIZE);
9045 if (IS_ERR(filter_str))
9046 return PTR_ERR(filter_str);
9048 #ifdef CONFIG_EVENT_TRACING
9049 if (perf_event_is_tracing(event)) {
9050 struct perf_event_context *ctx = event->ctx;
9053 * Beware, here be dragons!!
9055 * the tracepoint muck will deadlock against ctx->mutex, but
9056 * the tracepoint stuff does not actually need it. So
9057 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9058 * already have a reference on ctx.
9060 * This can result in event getting moved to a different ctx,
9061 * but that does not affect the tracepoint state.
9063 mutex_unlock(&ctx->mutex);
9064 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9065 mutex_lock(&ctx->mutex);
9066 } else
9067 #endif
9068 if (has_addr_filter(event))
9069 ret = perf_event_set_addr_filter(event, filter_str);
9071 kfree(filter_str);
9072 return ret;
9076 * hrtimer based swevent callback
9079 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9081 enum hrtimer_restart ret = HRTIMER_RESTART;
9082 struct perf_sample_data data;
9083 struct pt_regs *regs;
9084 struct perf_event *event;
9085 u64 period;
9087 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9089 if (event->state != PERF_EVENT_STATE_ACTIVE)
9090 return HRTIMER_NORESTART;
9092 event->pmu->read(event);
9094 perf_sample_data_init(&data, 0, event->hw.last_period);
9095 regs = get_irq_regs();
9097 if (regs && !perf_exclude_event(event, regs)) {
9098 if (!(event->attr.exclude_idle && is_idle_task(current)))
9099 if (__perf_event_overflow(event, 1, &data, regs))
9100 ret = HRTIMER_NORESTART;
9103 period = max_t(u64, 10000, event->hw.sample_period);
9104 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9106 return ret;
9109 static void perf_swevent_start_hrtimer(struct perf_event *event)
9111 struct hw_perf_event *hwc = &event->hw;
9112 s64 period;
9114 if (!is_sampling_event(event))
9115 return;
9117 period = local64_read(&hwc->period_left);
9118 if (period) {
9119 if (period < 0)
9120 period = 10000;
9122 local64_set(&hwc->period_left, 0);
9123 } else {
9124 period = max_t(u64, 10000, hwc->sample_period);
9126 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9127 HRTIMER_MODE_REL_PINNED);
9130 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9132 struct hw_perf_event *hwc = &event->hw;
9134 if (is_sampling_event(event)) {
9135 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9136 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9138 hrtimer_cancel(&hwc->hrtimer);
9142 static void perf_swevent_init_hrtimer(struct perf_event *event)
9144 struct hw_perf_event *hwc = &event->hw;
9146 if (!is_sampling_event(event))
9147 return;
9149 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9150 hwc->hrtimer.function = perf_swevent_hrtimer;
9153 * Since hrtimers have a fixed rate, we can do a static freq->period
9154 * mapping and avoid the whole period adjust feedback stuff.
9156 if (event->attr.freq) {
9157 long freq = event->attr.sample_freq;
9159 event->attr.sample_period = NSEC_PER_SEC / freq;
9160 hwc->sample_period = event->attr.sample_period;
9161 local64_set(&hwc->period_left, hwc->sample_period);
9162 hwc->last_period = hwc->sample_period;
9163 event->attr.freq = 0;
9168 * Software event: cpu wall time clock
9171 static void cpu_clock_event_update(struct perf_event *event)
9173 s64 prev;
9174 u64 now;
9176 now = local_clock();
9177 prev = local64_xchg(&event->hw.prev_count, now);
9178 local64_add(now - prev, &event->count);
9181 static void cpu_clock_event_start(struct perf_event *event, int flags)
9183 local64_set(&event->hw.prev_count, local_clock());
9184 perf_swevent_start_hrtimer(event);
9187 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9189 perf_swevent_cancel_hrtimer(event);
9190 cpu_clock_event_update(event);
9193 static int cpu_clock_event_add(struct perf_event *event, int flags)
9195 if (flags & PERF_EF_START)
9196 cpu_clock_event_start(event, flags);
9197 perf_event_update_userpage(event);
9199 return 0;
9202 static void cpu_clock_event_del(struct perf_event *event, int flags)
9204 cpu_clock_event_stop(event, flags);
9207 static void cpu_clock_event_read(struct perf_event *event)
9209 cpu_clock_event_update(event);
9212 static int cpu_clock_event_init(struct perf_event *event)
9214 if (event->attr.type != PERF_TYPE_SOFTWARE)
9215 return -ENOENT;
9217 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9218 return -ENOENT;
9221 * no branch sampling for software events
9223 if (has_branch_stack(event))
9224 return -EOPNOTSUPP;
9226 perf_swevent_init_hrtimer(event);
9228 return 0;
9231 static struct pmu perf_cpu_clock = {
9232 .task_ctx_nr = perf_sw_context,
9234 .capabilities = PERF_PMU_CAP_NO_NMI,
9236 .event_init = cpu_clock_event_init,
9237 .add = cpu_clock_event_add,
9238 .del = cpu_clock_event_del,
9239 .start = cpu_clock_event_start,
9240 .stop = cpu_clock_event_stop,
9241 .read = cpu_clock_event_read,
9245 * Software event: task time clock
9248 static void task_clock_event_update(struct perf_event *event, u64 now)
9250 u64 prev;
9251 s64 delta;
9253 prev = local64_xchg(&event->hw.prev_count, now);
9254 delta = now - prev;
9255 local64_add(delta, &event->count);
9258 static void task_clock_event_start(struct perf_event *event, int flags)
9260 local64_set(&event->hw.prev_count, event->ctx->time);
9261 perf_swevent_start_hrtimer(event);
9264 static void task_clock_event_stop(struct perf_event *event, int flags)
9266 perf_swevent_cancel_hrtimer(event);
9267 task_clock_event_update(event, event->ctx->time);
9270 static int task_clock_event_add(struct perf_event *event, int flags)
9272 if (flags & PERF_EF_START)
9273 task_clock_event_start(event, flags);
9274 perf_event_update_userpage(event);
9276 return 0;
9279 static void task_clock_event_del(struct perf_event *event, int flags)
9281 task_clock_event_stop(event, PERF_EF_UPDATE);
9284 static void task_clock_event_read(struct perf_event *event)
9286 u64 now = perf_clock();
9287 u64 delta = now - event->ctx->timestamp;
9288 u64 time = event->ctx->time + delta;
9290 task_clock_event_update(event, time);
9293 static int task_clock_event_init(struct perf_event *event)
9295 if (event->attr.type != PERF_TYPE_SOFTWARE)
9296 return -ENOENT;
9298 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9299 return -ENOENT;
9302 * no branch sampling for software events
9304 if (has_branch_stack(event))
9305 return -EOPNOTSUPP;
9307 perf_swevent_init_hrtimer(event);
9309 return 0;
9312 static struct pmu perf_task_clock = {
9313 .task_ctx_nr = perf_sw_context,
9315 .capabilities = PERF_PMU_CAP_NO_NMI,
9317 .event_init = task_clock_event_init,
9318 .add = task_clock_event_add,
9319 .del = task_clock_event_del,
9320 .start = task_clock_event_start,
9321 .stop = task_clock_event_stop,
9322 .read = task_clock_event_read,
9325 static void perf_pmu_nop_void(struct pmu *pmu)
9329 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9333 static int perf_pmu_nop_int(struct pmu *pmu)
9335 return 0;
9338 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9340 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9342 __this_cpu_write(nop_txn_flags, flags);
9344 if (flags & ~PERF_PMU_TXN_ADD)
9345 return;
9347 perf_pmu_disable(pmu);
9350 static int perf_pmu_commit_txn(struct pmu *pmu)
9352 unsigned int flags = __this_cpu_read(nop_txn_flags);
9354 __this_cpu_write(nop_txn_flags, 0);
9356 if (flags & ~PERF_PMU_TXN_ADD)
9357 return 0;
9359 perf_pmu_enable(pmu);
9360 return 0;
9363 static void perf_pmu_cancel_txn(struct pmu *pmu)
9365 unsigned int flags = __this_cpu_read(nop_txn_flags);
9367 __this_cpu_write(nop_txn_flags, 0);
9369 if (flags & ~PERF_PMU_TXN_ADD)
9370 return;
9372 perf_pmu_enable(pmu);
9375 static int perf_event_idx_default(struct perf_event *event)
9377 return 0;
9381 * Ensures all contexts with the same task_ctx_nr have the same
9382 * pmu_cpu_context too.
9384 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9386 struct pmu *pmu;
9388 if (ctxn < 0)
9389 return NULL;
9391 list_for_each_entry(pmu, &pmus, entry) {
9392 if (pmu->task_ctx_nr == ctxn)
9393 return pmu->pmu_cpu_context;
9396 return NULL;
9399 static void free_pmu_context(struct pmu *pmu)
9402 * Static contexts such as perf_sw_context have a global lifetime
9403 * and may be shared between different PMUs. Avoid freeing them
9404 * when a single PMU is going away.
9406 if (pmu->task_ctx_nr > perf_invalid_context)
9407 return;
9409 mutex_lock(&pmus_lock);
9410 free_percpu(pmu->pmu_cpu_context);
9411 mutex_unlock(&pmus_lock);
9415 * Let userspace know that this PMU supports address range filtering:
9417 static ssize_t nr_addr_filters_show(struct device *dev,
9418 struct device_attribute *attr,
9419 char *page)
9421 struct pmu *pmu = dev_get_drvdata(dev);
9423 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9425 DEVICE_ATTR_RO(nr_addr_filters);
9427 static struct idr pmu_idr;
9429 static ssize_t
9430 type_show(struct device *dev, struct device_attribute *attr, char *page)
9432 struct pmu *pmu = dev_get_drvdata(dev);
9434 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9436 static DEVICE_ATTR_RO(type);
9438 static ssize_t
9439 perf_event_mux_interval_ms_show(struct device *dev,
9440 struct device_attribute *attr,
9441 char *page)
9443 struct pmu *pmu = dev_get_drvdata(dev);
9445 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9448 static DEFINE_MUTEX(mux_interval_mutex);
9450 static ssize_t
9451 perf_event_mux_interval_ms_store(struct device *dev,
9452 struct device_attribute *attr,
9453 const char *buf, size_t count)
9455 struct pmu *pmu = dev_get_drvdata(dev);
9456 int timer, cpu, ret;
9458 ret = kstrtoint(buf, 0, &timer);
9459 if (ret)
9460 return ret;
9462 if (timer < 1)
9463 return -EINVAL;
9465 /* same value, noting to do */
9466 if (timer == pmu->hrtimer_interval_ms)
9467 return count;
9469 mutex_lock(&mux_interval_mutex);
9470 pmu->hrtimer_interval_ms = timer;
9472 /* update all cpuctx for this PMU */
9473 cpus_read_lock();
9474 for_each_online_cpu(cpu) {
9475 struct perf_cpu_context *cpuctx;
9476 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9477 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9479 cpu_function_call(cpu,
9480 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9482 cpus_read_unlock();
9483 mutex_unlock(&mux_interval_mutex);
9485 return count;
9487 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9489 static struct attribute *pmu_dev_attrs[] = {
9490 &dev_attr_type.attr,
9491 &dev_attr_perf_event_mux_interval_ms.attr,
9492 NULL,
9494 ATTRIBUTE_GROUPS(pmu_dev);
9496 static int pmu_bus_running;
9497 static struct bus_type pmu_bus = {
9498 .name = "event_source",
9499 .dev_groups = pmu_dev_groups,
9502 static void pmu_dev_release(struct device *dev)
9504 kfree(dev);
9507 static int pmu_dev_alloc(struct pmu *pmu)
9509 int ret = -ENOMEM;
9511 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9512 if (!pmu->dev)
9513 goto out;
9515 pmu->dev->groups = pmu->attr_groups;
9516 device_initialize(pmu->dev);
9517 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9518 if (ret)
9519 goto free_dev;
9521 dev_set_drvdata(pmu->dev, pmu);
9522 pmu->dev->bus = &pmu_bus;
9523 pmu->dev->release = pmu_dev_release;
9524 ret = device_add(pmu->dev);
9525 if (ret)
9526 goto free_dev;
9528 /* For PMUs with address filters, throw in an extra attribute: */
9529 if (pmu->nr_addr_filters)
9530 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9532 if (ret)
9533 goto del_dev;
9535 out:
9536 return ret;
9538 del_dev:
9539 device_del(pmu->dev);
9541 free_dev:
9542 put_device(pmu->dev);
9543 goto out;
9546 static struct lock_class_key cpuctx_mutex;
9547 static struct lock_class_key cpuctx_lock;
9549 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9551 int cpu, ret;
9553 mutex_lock(&pmus_lock);
9554 ret = -ENOMEM;
9555 pmu->pmu_disable_count = alloc_percpu(int);
9556 if (!pmu->pmu_disable_count)
9557 goto unlock;
9559 pmu->type = -1;
9560 if (!name)
9561 goto skip_type;
9562 pmu->name = name;
9564 if (type < 0) {
9565 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9566 if (type < 0) {
9567 ret = type;
9568 goto free_pdc;
9571 pmu->type = type;
9573 if (pmu_bus_running) {
9574 ret = pmu_dev_alloc(pmu);
9575 if (ret)
9576 goto free_idr;
9579 skip_type:
9580 if (pmu->task_ctx_nr == perf_hw_context) {
9581 static int hw_context_taken = 0;
9584 * Other than systems with heterogeneous CPUs, it never makes
9585 * sense for two PMUs to share perf_hw_context. PMUs which are
9586 * uncore must use perf_invalid_context.
9588 if (WARN_ON_ONCE(hw_context_taken &&
9589 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9590 pmu->task_ctx_nr = perf_invalid_context;
9592 hw_context_taken = 1;
9595 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9596 if (pmu->pmu_cpu_context)
9597 goto got_cpu_context;
9599 ret = -ENOMEM;
9600 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9601 if (!pmu->pmu_cpu_context)
9602 goto free_dev;
9604 for_each_possible_cpu(cpu) {
9605 struct perf_cpu_context *cpuctx;
9607 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9608 __perf_event_init_context(&cpuctx->ctx);
9609 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9610 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9611 cpuctx->ctx.pmu = pmu;
9612 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9614 __perf_mux_hrtimer_init(cpuctx, cpu);
9617 got_cpu_context:
9618 if (!pmu->start_txn) {
9619 if (pmu->pmu_enable) {
9621 * If we have pmu_enable/pmu_disable calls, install
9622 * transaction stubs that use that to try and batch
9623 * hardware accesses.
9625 pmu->start_txn = perf_pmu_start_txn;
9626 pmu->commit_txn = perf_pmu_commit_txn;
9627 pmu->cancel_txn = perf_pmu_cancel_txn;
9628 } else {
9629 pmu->start_txn = perf_pmu_nop_txn;
9630 pmu->commit_txn = perf_pmu_nop_int;
9631 pmu->cancel_txn = perf_pmu_nop_void;
9635 if (!pmu->pmu_enable) {
9636 pmu->pmu_enable = perf_pmu_nop_void;
9637 pmu->pmu_disable = perf_pmu_nop_void;
9640 if (!pmu->event_idx)
9641 pmu->event_idx = perf_event_idx_default;
9643 list_add_rcu(&pmu->entry, &pmus);
9644 atomic_set(&pmu->exclusive_cnt, 0);
9645 ret = 0;
9646 unlock:
9647 mutex_unlock(&pmus_lock);
9649 return ret;
9651 free_dev:
9652 device_del(pmu->dev);
9653 put_device(pmu->dev);
9655 free_idr:
9656 if (pmu->type >= PERF_TYPE_MAX)
9657 idr_remove(&pmu_idr, pmu->type);
9659 free_pdc:
9660 free_percpu(pmu->pmu_disable_count);
9661 goto unlock;
9663 EXPORT_SYMBOL_GPL(perf_pmu_register);
9665 void perf_pmu_unregister(struct pmu *pmu)
9667 int remove_device;
9669 mutex_lock(&pmus_lock);
9670 remove_device = pmu_bus_running;
9671 list_del_rcu(&pmu->entry);
9672 mutex_unlock(&pmus_lock);
9675 * We dereference the pmu list under both SRCU and regular RCU, so
9676 * synchronize against both of those.
9678 synchronize_srcu(&pmus_srcu);
9679 synchronize_rcu();
9681 free_percpu(pmu->pmu_disable_count);
9682 if (pmu->type >= PERF_TYPE_MAX)
9683 idr_remove(&pmu_idr, pmu->type);
9684 if (remove_device) {
9685 if (pmu->nr_addr_filters)
9686 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9687 device_del(pmu->dev);
9688 put_device(pmu->dev);
9690 free_pmu_context(pmu);
9692 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9694 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9696 struct perf_event_context *ctx = NULL;
9697 int ret;
9699 if (!try_module_get(pmu->module))
9700 return -ENODEV;
9703 * A number of pmu->event_init() methods iterate the sibling_list to,
9704 * for example, validate if the group fits on the PMU. Therefore,
9705 * if this is a sibling event, acquire the ctx->mutex to protect
9706 * the sibling_list.
9708 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9710 * This ctx->mutex can nest when we're called through
9711 * inheritance. See the perf_event_ctx_lock_nested() comment.
9713 ctx = perf_event_ctx_lock_nested(event->group_leader,
9714 SINGLE_DEPTH_NESTING);
9715 BUG_ON(!ctx);
9718 event->pmu = pmu;
9719 ret = pmu->event_init(event);
9721 if (ctx)
9722 perf_event_ctx_unlock(event->group_leader, ctx);
9724 if (ret)
9725 module_put(pmu->module);
9727 return ret;
9730 static struct pmu *perf_init_event(struct perf_event *event)
9732 struct pmu *pmu;
9733 int idx;
9734 int ret;
9736 idx = srcu_read_lock(&pmus_srcu);
9738 /* Try parent's PMU first: */
9739 if (event->parent && event->parent->pmu) {
9740 pmu = event->parent->pmu;
9741 ret = perf_try_init_event(pmu, event);
9742 if (!ret)
9743 goto unlock;
9746 rcu_read_lock();
9747 pmu = idr_find(&pmu_idr, event->attr.type);
9748 rcu_read_unlock();
9749 if (pmu) {
9750 ret = perf_try_init_event(pmu, event);
9751 if (ret)
9752 pmu = ERR_PTR(ret);
9753 goto unlock;
9756 list_for_each_entry_rcu(pmu, &pmus, entry) {
9757 ret = perf_try_init_event(pmu, event);
9758 if (!ret)
9759 goto unlock;
9761 if (ret != -ENOENT) {
9762 pmu = ERR_PTR(ret);
9763 goto unlock;
9766 pmu = ERR_PTR(-ENOENT);
9767 unlock:
9768 srcu_read_unlock(&pmus_srcu, idx);
9770 return pmu;
9773 static void attach_sb_event(struct perf_event *event)
9775 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9777 raw_spin_lock(&pel->lock);
9778 list_add_rcu(&event->sb_list, &pel->list);
9779 raw_spin_unlock(&pel->lock);
9783 * We keep a list of all !task (and therefore per-cpu) events
9784 * that need to receive side-band records.
9786 * This avoids having to scan all the various PMU per-cpu contexts
9787 * looking for them.
9789 static void account_pmu_sb_event(struct perf_event *event)
9791 if (is_sb_event(event))
9792 attach_sb_event(event);
9795 static void account_event_cpu(struct perf_event *event, int cpu)
9797 if (event->parent)
9798 return;
9800 if (is_cgroup_event(event))
9801 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9804 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9805 static void account_freq_event_nohz(void)
9807 #ifdef CONFIG_NO_HZ_FULL
9808 /* Lock so we don't race with concurrent unaccount */
9809 spin_lock(&nr_freq_lock);
9810 if (atomic_inc_return(&nr_freq_events) == 1)
9811 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9812 spin_unlock(&nr_freq_lock);
9813 #endif
9816 static void account_freq_event(void)
9818 if (tick_nohz_full_enabled())
9819 account_freq_event_nohz();
9820 else
9821 atomic_inc(&nr_freq_events);
9825 static void account_event(struct perf_event *event)
9827 bool inc = false;
9829 if (event->parent)
9830 return;
9832 if (event->attach_state & PERF_ATTACH_TASK)
9833 inc = true;
9834 if (event->attr.mmap || event->attr.mmap_data)
9835 atomic_inc(&nr_mmap_events);
9836 if (event->attr.comm)
9837 atomic_inc(&nr_comm_events);
9838 if (event->attr.namespaces)
9839 atomic_inc(&nr_namespaces_events);
9840 if (event->attr.task)
9841 atomic_inc(&nr_task_events);
9842 if (event->attr.freq)
9843 account_freq_event();
9844 if (event->attr.context_switch) {
9845 atomic_inc(&nr_switch_events);
9846 inc = true;
9848 if (has_branch_stack(event))
9849 inc = true;
9850 if (is_cgroup_event(event))
9851 inc = true;
9853 if (inc) {
9855 * We need the mutex here because static_branch_enable()
9856 * must complete *before* the perf_sched_count increment
9857 * becomes visible.
9859 if (atomic_inc_not_zero(&perf_sched_count))
9860 goto enabled;
9862 mutex_lock(&perf_sched_mutex);
9863 if (!atomic_read(&perf_sched_count)) {
9864 static_branch_enable(&perf_sched_events);
9866 * Guarantee that all CPUs observe they key change and
9867 * call the perf scheduling hooks before proceeding to
9868 * install events that need them.
9870 synchronize_sched();
9873 * Now that we have waited for the sync_sched(), allow further
9874 * increments to by-pass the mutex.
9876 atomic_inc(&perf_sched_count);
9877 mutex_unlock(&perf_sched_mutex);
9879 enabled:
9881 account_event_cpu(event, event->cpu);
9883 account_pmu_sb_event(event);
9887 * Allocate and initialize a event structure
9889 static struct perf_event *
9890 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9891 struct task_struct *task,
9892 struct perf_event *group_leader,
9893 struct perf_event *parent_event,
9894 perf_overflow_handler_t overflow_handler,
9895 void *context, int cgroup_fd)
9897 struct pmu *pmu;
9898 struct perf_event *event;
9899 struct hw_perf_event *hwc;
9900 long err = -EINVAL;
9902 if ((unsigned)cpu >= nr_cpu_ids) {
9903 if (!task || cpu != -1)
9904 return ERR_PTR(-EINVAL);
9907 event = kzalloc(sizeof(*event), GFP_KERNEL);
9908 if (!event)
9909 return ERR_PTR(-ENOMEM);
9912 * Single events are their own group leaders, with an
9913 * empty sibling list:
9915 if (!group_leader)
9916 group_leader = event;
9918 mutex_init(&event->child_mutex);
9919 INIT_LIST_HEAD(&event->child_list);
9921 INIT_LIST_HEAD(&event->event_entry);
9922 INIT_LIST_HEAD(&event->sibling_list);
9923 INIT_LIST_HEAD(&event->active_list);
9924 init_event_group(event);
9925 INIT_LIST_HEAD(&event->rb_entry);
9926 INIT_LIST_HEAD(&event->active_entry);
9927 INIT_LIST_HEAD(&event->addr_filters.list);
9928 INIT_HLIST_NODE(&event->hlist_entry);
9931 init_waitqueue_head(&event->waitq);
9932 init_irq_work(&event->pending, perf_pending_event);
9934 mutex_init(&event->mmap_mutex);
9935 raw_spin_lock_init(&event->addr_filters.lock);
9937 atomic_long_set(&event->refcount, 1);
9938 event->cpu = cpu;
9939 event->attr = *attr;
9940 event->group_leader = group_leader;
9941 event->pmu = NULL;
9942 event->oncpu = -1;
9944 event->parent = parent_event;
9946 event->ns = get_pid_ns(task_active_pid_ns(current));
9947 event->id = atomic64_inc_return(&perf_event_id);
9949 event->state = PERF_EVENT_STATE_INACTIVE;
9951 if (task) {
9952 event->attach_state = PERF_ATTACH_TASK;
9954 * XXX pmu::event_init needs to know what task to account to
9955 * and we cannot use the ctx information because we need the
9956 * pmu before we get a ctx.
9958 event->hw.target = task;
9961 event->clock = &local_clock;
9962 if (parent_event)
9963 event->clock = parent_event->clock;
9965 if (!overflow_handler && parent_event) {
9966 overflow_handler = parent_event->overflow_handler;
9967 context = parent_event->overflow_handler_context;
9968 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9969 if (overflow_handler == bpf_overflow_handler) {
9970 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9972 if (IS_ERR(prog)) {
9973 err = PTR_ERR(prog);
9974 goto err_ns;
9976 event->prog = prog;
9977 event->orig_overflow_handler =
9978 parent_event->orig_overflow_handler;
9980 #endif
9983 if (overflow_handler) {
9984 event->overflow_handler = overflow_handler;
9985 event->overflow_handler_context = context;
9986 } else if (is_write_backward(event)){
9987 event->overflow_handler = perf_event_output_backward;
9988 event->overflow_handler_context = NULL;
9989 } else {
9990 event->overflow_handler = perf_event_output_forward;
9991 event->overflow_handler_context = NULL;
9994 perf_event__state_init(event);
9996 pmu = NULL;
9998 hwc = &event->hw;
9999 hwc->sample_period = attr->sample_period;
10000 if (attr->freq && attr->sample_freq)
10001 hwc->sample_period = 1;
10002 hwc->last_period = hwc->sample_period;
10004 local64_set(&hwc->period_left, hwc->sample_period);
10007 * We currently do not support PERF_SAMPLE_READ on inherited events.
10008 * See perf_output_read().
10010 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10011 goto err_ns;
10013 if (!has_branch_stack(event))
10014 event->attr.branch_sample_type = 0;
10016 if (cgroup_fd != -1) {
10017 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10018 if (err)
10019 goto err_ns;
10022 pmu = perf_init_event(event);
10023 if (IS_ERR(pmu)) {
10024 err = PTR_ERR(pmu);
10025 goto err_ns;
10028 err = exclusive_event_init(event);
10029 if (err)
10030 goto err_pmu;
10032 if (has_addr_filter(event)) {
10033 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10034 sizeof(unsigned long),
10035 GFP_KERNEL);
10036 if (!event->addr_filters_offs) {
10037 err = -ENOMEM;
10038 goto err_per_task;
10041 /* force hw sync on the address filters */
10042 event->addr_filters_gen = 1;
10045 if (!event->parent) {
10046 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10047 err = get_callchain_buffers(attr->sample_max_stack);
10048 if (err)
10049 goto err_addr_filters;
10053 /* symmetric to unaccount_event() in _free_event() */
10054 account_event(event);
10056 return event;
10058 err_addr_filters:
10059 kfree(event->addr_filters_offs);
10061 err_per_task:
10062 exclusive_event_destroy(event);
10064 err_pmu:
10065 if (event->destroy)
10066 event->destroy(event);
10067 module_put(pmu->module);
10068 err_ns:
10069 if (is_cgroup_event(event))
10070 perf_detach_cgroup(event);
10071 if (event->ns)
10072 put_pid_ns(event->ns);
10073 kfree(event);
10075 return ERR_PTR(err);
10078 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10079 struct perf_event_attr *attr)
10081 u32 size;
10082 int ret;
10084 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10085 return -EFAULT;
10088 * zero the full structure, so that a short copy will be nice.
10090 memset(attr, 0, sizeof(*attr));
10092 ret = get_user(size, &uattr->size);
10093 if (ret)
10094 return ret;
10096 if (size > PAGE_SIZE) /* silly large */
10097 goto err_size;
10099 if (!size) /* abi compat */
10100 size = PERF_ATTR_SIZE_VER0;
10102 if (size < PERF_ATTR_SIZE_VER0)
10103 goto err_size;
10106 * If we're handed a bigger struct than we know of,
10107 * ensure all the unknown bits are 0 - i.e. new
10108 * user-space does not rely on any kernel feature
10109 * extensions we dont know about yet.
10111 if (size > sizeof(*attr)) {
10112 unsigned char __user *addr;
10113 unsigned char __user *end;
10114 unsigned char val;
10116 addr = (void __user *)uattr + sizeof(*attr);
10117 end = (void __user *)uattr + size;
10119 for (; addr < end; addr++) {
10120 ret = get_user(val, addr);
10121 if (ret)
10122 return ret;
10123 if (val)
10124 goto err_size;
10126 size = sizeof(*attr);
10129 ret = copy_from_user(attr, uattr, size);
10130 if (ret)
10131 return -EFAULT;
10133 attr->size = size;
10135 if (attr->__reserved_1)
10136 return -EINVAL;
10138 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10139 return -EINVAL;
10141 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10142 return -EINVAL;
10144 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10145 u64 mask = attr->branch_sample_type;
10147 /* only using defined bits */
10148 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10149 return -EINVAL;
10151 /* at least one branch bit must be set */
10152 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10153 return -EINVAL;
10155 /* propagate priv level, when not set for branch */
10156 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10158 /* exclude_kernel checked on syscall entry */
10159 if (!attr->exclude_kernel)
10160 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10162 if (!attr->exclude_user)
10163 mask |= PERF_SAMPLE_BRANCH_USER;
10165 if (!attr->exclude_hv)
10166 mask |= PERF_SAMPLE_BRANCH_HV;
10168 * adjust user setting (for HW filter setup)
10170 attr->branch_sample_type = mask;
10172 /* privileged levels capture (kernel, hv): check permissions */
10173 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10174 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10175 return -EACCES;
10178 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10179 ret = perf_reg_validate(attr->sample_regs_user);
10180 if (ret)
10181 return ret;
10184 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10185 if (!arch_perf_have_user_stack_dump())
10186 return -ENOSYS;
10189 * We have __u32 type for the size, but so far
10190 * we can only use __u16 as maximum due to the
10191 * __u16 sample size limit.
10193 if (attr->sample_stack_user >= USHRT_MAX)
10194 ret = -EINVAL;
10195 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10196 ret = -EINVAL;
10199 if (!attr->sample_max_stack)
10200 attr->sample_max_stack = sysctl_perf_event_max_stack;
10202 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10203 ret = perf_reg_validate(attr->sample_regs_intr);
10204 out:
10205 return ret;
10207 err_size:
10208 put_user(sizeof(*attr), &uattr->size);
10209 ret = -E2BIG;
10210 goto out;
10213 static int
10214 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10216 struct ring_buffer *rb = NULL;
10217 int ret = -EINVAL;
10219 if (!output_event)
10220 goto set;
10222 /* don't allow circular references */
10223 if (event == output_event)
10224 goto out;
10227 * Don't allow cross-cpu buffers
10229 if (output_event->cpu != event->cpu)
10230 goto out;
10233 * If its not a per-cpu rb, it must be the same task.
10235 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10236 goto out;
10239 * Mixing clocks in the same buffer is trouble you don't need.
10241 if (output_event->clock != event->clock)
10242 goto out;
10245 * Either writing ring buffer from beginning or from end.
10246 * Mixing is not allowed.
10248 if (is_write_backward(output_event) != is_write_backward(event))
10249 goto out;
10252 * If both events generate aux data, they must be on the same PMU
10254 if (has_aux(event) && has_aux(output_event) &&
10255 event->pmu != output_event->pmu)
10256 goto out;
10258 set:
10259 mutex_lock(&event->mmap_mutex);
10260 /* Can't redirect output if we've got an active mmap() */
10261 if (atomic_read(&event->mmap_count))
10262 goto unlock;
10264 if (output_event) {
10265 /* get the rb we want to redirect to */
10266 rb = ring_buffer_get(output_event);
10267 if (!rb)
10268 goto unlock;
10271 ring_buffer_attach(event, rb);
10273 ret = 0;
10274 unlock:
10275 mutex_unlock(&event->mmap_mutex);
10277 out:
10278 return ret;
10281 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10283 if (b < a)
10284 swap(a, b);
10286 mutex_lock(a);
10287 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10290 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10292 bool nmi_safe = false;
10294 switch (clk_id) {
10295 case CLOCK_MONOTONIC:
10296 event->clock = &ktime_get_mono_fast_ns;
10297 nmi_safe = true;
10298 break;
10300 case CLOCK_MONOTONIC_RAW:
10301 event->clock = &ktime_get_raw_fast_ns;
10302 nmi_safe = true;
10303 break;
10305 case CLOCK_REALTIME:
10306 event->clock = &ktime_get_real_ns;
10307 break;
10309 case CLOCK_BOOTTIME:
10310 event->clock = &ktime_get_boot_ns;
10311 break;
10313 case CLOCK_TAI:
10314 event->clock = &ktime_get_tai_ns;
10315 break;
10317 default:
10318 return -EINVAL;
10321 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10322 return -EINVAL;
10324 return 0;
10328 * Variation on perf_event_ctx_lock_nested(), except we take two context
10329 * mutexes.
10331 static struct perf_event_context *
10332 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10333 struct perf_event_context *ctx)
10335 struct perf_event_context *gctx;
10337 again:
10338 rcu_read_lock();
10339 gctx = READ_ONCE(group_leader->ctx);
10340 if (!atomic_inc_not_zero(&gctx->refcount)) {
10341 rcu_read_unlock();
10342 goto again;
10344 rcu_read_unlock();
10346 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10348 if (group_leader->ctx != gctx) {
10349 mutex_unlock(&ctx->mutex);
10350 mutex_unlock(&gctx->mutex);
10351 put_ctx(gctx);
10352 goto again;
10355 return gctx;
10359 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10361 * @attr_uptr: event_id type attributes for monitoring/sampling
10362 * @pid: target pid
10363 * @cpu: target cpu
10364 * @group_fd: group leader event fd
10366 SYSCALL_DEFINE5(perf_event_open,
10367 struct perf_event_attr __user *, attr_uptr,
10368 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10370 struct perf_event *group_leader = NULL, *output_event = NULL;
10371 struct perf_event *event, *sibling;
10372 struct perf_event_attr attr;
10373 struct perf_event_context *ctx, *uninitialized_var(gctx);
10374 struct file *event_file = NULL;
10375 struct fd group = {NULL, 0};
10376 struct task_struct *task = NULL;
10377 struct pmu *pmu;
10378 int event_fd;
10379 int move_group = 0;
10380 int err;
10381 int f_flags = O_RDWR;
10382 int cgroup_fd = -1;
10384 /* for future expandability... */
10385 if (flags & ~PERF_FLAG_ALL)
10386 return -EINVAL;
10388 err = perf_copy_attr(attr_uptr, &attr);
10389 if (err)
10390 return err;
10392 if (!attr.exclude_kernel) {
10393 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10394 return -EACCES;
10397 if (attr.namespaces) {
10398 if (!capable(CAP_SYS_ADMIN))
10399 return -EACCES;
10402 if (attr.freq) {
10403 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10404 return -EINVAL;
10405 } else {
10406 if (attr.sample_period & (1ULL << 63))
10407 return -EINVAL;
10410 /* Only privileged users can get physical addresses */
10411 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10412 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10413 return -EACCES;
10416 * In cgroup mode, the pid argument is used to pass the fd
10417 * opened to the cgroup directory in cgroupfs. The cpu argument
10418 * designates the cpu on which to monitor threads from that
10419 * cgroup.
10421 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10422 return -EINVAL;
10424 if (flags & PERF_FLAG_FD_CLOEXEC)
10425 f_flags |= O_CLOEXEC;
10427 event_fd = get_unused_fd_flags(f_flags);
10428 if (event_fd < 0)
10429 return event_fd;
10431 if (group_fd != -1) {
10432 err = perf_fget_light(group_fd, &group);
10433 if (err)
10434 goto err_fd;
10435 group_leader = group.file->private_data;
10436 if (flags & PERF_FLAG_FD_OUTPUT)
10437 output_event = group_leader;
10438 if (flags & PERF_FLAG_FD_NO_GROUP)
10439 group_leader = NULL;
10442 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10443 task = find_lively_task_by_vpid(pid);
10444 if (IS_ERR(task)) {
10445 err = PTR_ERR(task);
10446 goto err_group_fd;
10450 if (task && group_leader &&
10451 group_leader->attr.inherit != attr.inherit) {
10452 err = -EINVAL;
10453 goto err_task;
10456 if (task) {
10457 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10458 if (err)
10459 goto err_task;
10462 * Reuse ptrace permission checks for now.
10464 * We must hold cred_guard_mutex across this and any potential
10465 * perf_install_in_context() call for this new event to
10466 * serialize against exec() altering our credentials (and the
10467 * perf_event_exit_task() that could imply).
10469 err = -EACCES;
10470 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10471 goto err_cred;
10474 if (flags & PERF_FLAG_PID_CGROUP)
10475 cgroup_fd = pid;
10477 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10478 NULL, NULL, cgroup_fd);
10479 if (IS_ERR(event)) {
10480 err = PTR_ERR(event);
10481 goto err_cred;
10484 if (is_sampling_event(event)) {
10485 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10486 err = -EOPNOTSUPP;
10487 goto err_alloc;
10492 * Special case software events and allow them to be part of
10493 * any hardware group.
10495 pmu = event->pmu;
10497 if (attr.use_clockid) {
10498 err = perf_event_set_clock(event, attr.clockid);
10499 if (err)
10500 goto err_alloc;
10503 if (pmu->task_ctx_nr == perf_sw_context)
10504 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10506 if (group_leader &&
10507 (is_software_event(event) != is_software_event(group_leader))) {
10508 if (is_software_event(event)) {
10510 * If event and group_leader are not both a software
10511 * event, and event is, then group leader is not.
10513 * Allow the addition of software events to !software
10514 * groups, this is safe because software events never
10515 * fail to schedule.
10517 pmu = group_leader->pmu;
10518 } else if (is_software_event(group_leader) &&
10519 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10521 * In case the group is a pure software group, and we
10522 * try to add a hardware event, move the whole group to
10523 * the hardware context.
10525 move_group = 1;
10530 * Get the target context (task or percpu):
10532 ctx = find_get_context(pmu, task, event);
10533 if (IS_ERR(ctx)) {
10534 err = PTR_ERR(ctx);
10535 goto err_alloc;
10538 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10539 err = -EBUSY;
10540 goto err_context;
10544 * Look up the group leader (we will attach this event to it):
10546 if (group_leader) {
10547 err = -EINVAL;
10550 * Do not allow a recursive hierarchy (this new sibling
10551 * becoming part of another group-sibling):
10553 if (group_leader->group_leader != group_leader)
10554 goto err_context;
10556 /* All events in a group should have the same clock */
10557 if (group_leader->clock != event->clock)
10558 goto err_context;
10561 * Make sure we're both events for the same CPU;
10562 * grouping events for different CPUs is broken; since
10563 * you can never concurrently schedule them anyhow.
10565 if (group_leader->cpu != event->cpu)
10566 goto err_context;
10569 * Make sure we're both on the same task, or both
10570 * per-CPU events.
10572 if (group_leader->ctx->task != ctx->task)
10573 goto err_context;
10576 * Do not allow to attach to a group in a different task
10577 * or CPU context. If we're moving SW events, we'll fix
10578 * this up later, so allow that.
10580 if (!move_group && group_leader->ctx != ctx)
10581 goto err_context;
10584 * Only a group leader can be exclusive or pinned
10586 if (attr.exclusive || attr.pinned)
10587 goto err_context;
10590 if (output_event) {
10591 err = perf_event_set_output(event, output_event);
10592 if (err)
10593 goto err_context;
10596 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10597 f_flags);
10598 if (IS_ERR(event_file)) {
10599 err = PTR_ERR(event_file);
10600 event_file = NULL;
10601 goto err_context;
10604 if (move_group) {
10605 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10607 if (gctx->task == TASK_TOMBSTONE) {
10608 err = -ESRCH;
10609 goto err_locked;
10613 * Check if we raced against another sys_perf_event_open() call
10614 * moving the software group underneath us.
10616 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10618 * If someone moved the group out from under us, check
10619 * if this new event wound up on the same ctx, if so
10620 * its the regular !move_group case, otherwise fail.
10622 if (gctx != ctx) {
10623 err = -EINVAL;
10624 goto err_locked;
10625 } else {
10626 perf_event_ctx_unlock(group_leader, gctx);
10627 move_group = 0;
10630 } else {
10631 mutex_lock(&ctx->mutex);
10634 if (ctx->task == TASK_TOMBSTONE) {
10635 err = -ESRCH;
10636 goto err_locked;
10639 if (!perf_event_validate_size(event)) {
10640 err = -E2BIG;
10641 goto err_locked;
10644 if (!task) {
10646 * Check if the @cpu we're creating an event for is online.
10648 * We use the perf_cpu_context::ctx::mutex to serialize against
10649 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10651 struct perf_cpu_context *cpuctx =
10652 container_of(ctx, struct perf_cpu_context, ctx);
10654 if (!cpuctx->online) {
10655 err = -ENODEV;
10656 goto err_locked;
10662 * Must be under the same ctx::mutex as perf_install_in_context(),
10663 * because we need to serialize with concurrent event creation.
10665 if (!exclusive_event_installable(event, ctx)) {
10666 /* exclusive and group stuff are assumed mutually exclusive */
10667 WARN_ON_ONCE(move_group);
10669 err = -EBUSY;
10670 goto err_locked;
10673 WARN_ON_ONCE(ctx->parent_ctx);
10676 * This is the point on no return; we cannot fail hereafter. This is
10677 * where we start modifying current state.
10680 if (move_group) {
10682 * See perf_event_ctx_lock() for comments on the details
10683 * of swizzling perf_event::ctx.
10685 perf_remove_from_context(group_leader, 0);
10686 put_ctx(gctx);
10688 for_each_sibling_event(sibling, group_leader) {
10689 perf_remove_from_context(sibling, 0);
10690 put_ctx(gctx);
10694 * Wait for everybody to stop referencing the events through
10695 * the old lists, before installing it on new lists.
10697 synchronize_rcu();
10700 * Install the group siblings before the group leader.
10702 * Because a group leader will try and install the entire group
10703 * (through the sibling list, which is still in-tact), we can
10704 * end up with siblings installed in the wrong context.
10706 * By installing siblings first we NO-OP because they're not
10707 * reachable through the group lists.
10709 for_each_sibling_event(sibling, group_leader) {
10710 perf_event__state_init(sibling);
10711 perf_install_in_context(ctx, sibling, sibling->cpu);
10712 get_ctx(ctx);
10716 * Removing from the context ends up with disabled
10717 * event. What we want here is event in the initial
10718 * startup state, ready to be add into new context.
10720 perf_event__state_init(group_leader);
10721 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10722 get_ctx(ctx);
10726 * Precalculate sample_data sizes; do while holding ctx::mutex such
10727 * that we're serialized against further additions and before
10728 * perf_install_in_context() which is the point the event is active and
10729 * can use these values.
10731 perf_event__header_size(event);
10732 perf_event__id_header_size(event);
10734 event->owner = current;
10736 perf_install_in_context(ctx, event, event->cpu);
10737 perf_unpin_context(ctx);
10739 if (move_group)
10740 perf_event_ctx_unlock(group_leader, gctx);
10741 mutex_unlock(&ctx->mutex);
10743 if (task) {
10744 mutex_unlock(&task->signal->cred_guard_mutex);
10745 put_task_struct(task);
10748 mutex_lock(&current->perf_event_mutex);
10749 list_add_tail(&event->owner_entry, &current->perf_event_list);
10750 mutex_unlock(&current->perf_event_mutex);
10753 * Drop the reference on the group_event after placing the
10754 * new event on the sibling_list. This ensures destruction
10755 * of the group leader will find the pointer to itself in
10756 * perf_group_detach().
10758 fdput(group);
10759 fd_install(event_fd, event_file);
10760 return event_fd;
10762 err_locked:
10763 if (move_group)
10764 perf_event_ctx_unlock(group_leader, gctx);
10765 mutex_unlock(&ctx->mutex);
10766 /* err_file: */
10767 fput(event_file);
10768 err_context:
10769 perf_unpin_context(ctx);
10770 put_ctx(ctx);
10771 err_alloc:
10773 * If event_file is set, the fput() above will have called ->release()
10774 * and that will take care of freeing the event.
10776 if (!event_file)
10777 free_event(event);
10778 err_cred:
10779 if (task)
10780 mutex_unlock(&task->signal->cred_guard_mutex);
10781 err_task:
10782 if (task)
10783 put_task_struct(task);
10784 err_group_fd:
10785 fdput(group);
10786 err_fd:
10787 put_unused_fd(event_fd);
10788 return err;
10792 * perf_event_create_kernel_counter
10794 * @attr: attributes of the counter to create
10795 * @cpu: cpu in which the counter is bound
10796 * @task: task to profile (NULL for percpu)
10798 struct perf_event *
10799 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10800 struct task_struct *task,
10801 perf_overflow_handler_t overflow_handler,
10802 void *context)
10804 struct perf_event_context *ctx;
10805 struct perf_event *event;
10806 int err;
10809 * Get the target context (task or percpu):
10812 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10813 overflow_handler, context, -1);
10814 if (IS_ERR(event)) {
10815 err = PTR_ERR(event);
10816 goto err;
10819 /* Mark owner so we could distinguish it from user events. */
10820 event->owner = TASK_TOMBSTONE;
10822 ctx = find_get_context(event->pmu, task, event);
10823 if (IS_ERR(ctx)) {
10824 err = PTR_ERR(ctx);
10825 goto err_free;
10828 WARN_ON_ONCE(ctx->parent_ctx);
10829 mutex_lock(&ctx->mutex);
10830 if (ctx->task == TASK_TOMBSTONE) {
10831 err = -ESRCH;
10832 goto err_unlock;
10835 if (!task) {
10837 * Check if the @cpu we're creating an event for is online.
10839 * We use the perf_cpu_context::ctx::mutex to serialize against
10840 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10842 struct perf_cpu_context *cpuctx =
10843 container_of(ctx, struct perf_cpu_context, ctx);
10844 if (!cpuctx->online) {
10845 err = -ENODEV;
10846 goto err_unlock;
10850 if (!exclusive_event_installable(event, ctx)) {
10851 err = -EBUSY;
10852 goto err_unlock;
10855 perf_install_in_context(ctx, event, cpu);
10856 perf_unpin_context(ctx);
10857 mutex_unlock(&ctx->mutex);
10859 return event;
10861 err_unlock:
10862 mutex_unlock(&ctx->mutex);
10863 perf_unpin_context(ctx);
10864 put_ctx(ctx);
10865 err_free:
10866 free_event(event);
10867 err:
10868 return ERR_PTR(err);
10870 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10872 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10874 struct perf_event_context *src_ctx;
10875 struct perf_event_context *dst_ctx;
10876 struct perf_event *event, *tmp;
10877 LIST_HEAD(events);
10879 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10880 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10883 * See perf_event_ctx_lock() for comments on the details
10884 * of swizzling perf_event::ctx.
10886 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10887 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10888 event_entry) {
10889 perf_remove_from_context(event, 0);
10890 unaccount_event_cpu(event, src_cpu);
10891 put_ctx(src_ctx);
10892 list_add(&event->migrate_entry, &events);
10896 * Wait for the events to quiesce before re-instating them.
10898 synchronize_rcu();
10901 * Re-instate events in 2 passes.
10903 * Skip over group leaders and only install siblings on this first
10904 * pass, siblings will not get enabled without a leader, however a
10905 * leader will enable its siblings, even if those are still on the old
10906 * context.
10908 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10909 if (event->group_leader == event)
10910 continue;
10912 list_del(&event->migrate_entry);
10913 if (event->state >= PERF_EVENT_STATE_OFF)
10914 event->state = PERF_EVENT_STATE_INACTIVE;
10915 account_event_cpu(event, dst_cpu);
10916 perf_install_in_context(dst_ctx, event, dst_cpu);
10917 get_ctx(dst_ctx);
10921 * Once all the siblings are setup properly, install the group leaders
10922 * to make it go.
10924 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10925 list_del(&event->migrate_entry);
10926 if (event->state >= PERF_EVENT_STATE_OFF)
10927 event->state = PERF_EVENT_STATE_INACTIVE;
10928 account_event_cpu(event, dst_cpu);
10929 perf_install_in_context(dst_ctx, event, dst_cpu);
10930 get_ctx(dst_ctx);
10932 mutex_unlock(&dst_ctx->mutex);
10933 mutex_unlock(&src_ctx->mutex);
10935 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10937 static void sync_child_event(struct perf_event *child_event,
10938 struct task_struct *child)
10940 struct perf_event *parent_event = child_event->parent;
10941 u64 child_val;
10943 if (child_event->attr.inherit_stat)
10944 perf_event_read_event(child_event, child);
10946 child_val = perf_event_count(child_event);
10949 * Add back the child's count to the parent's count:
10951 atomic64_add(child_val, &parent_event->child_count);
10952 atomic64_add(child_event->total_time_enabled,
10953 &parent_event->child_total_time_enabled);
10954 atomic64_add(child_event->total_time_running,
10955 &parent_event->child_total_time_running);
10958 static void
10959 perf_event_exit_event(struct perf_event *child_event,
10960 struct perf_event_context *child_ctx,
10961 struct task_struct *child)
10963 struct perf_event *parent_event = child_event->parent;
10966 * Do not destroy the 'original' grouping; because of the context
10967 * switch optimization the original events could've ended up in a
10968 * random child task.
10970 * If we were to destroy the original group, all group related
10971 * operations would cease to function properly after this random
10972 * child dies.
10974 * Do destroy all inherited groups, we don't care about those
10975 * and being thorough is better.
10977 raw_spin_lock_irq(&child_ctx->lock);
10978 WARN_ON_ONCE(child_ctx->is_active);
10980 if (parent_event)
10981 perf_group_detach(child_event);
10982 list_del_event(child_event, child_ctx);
10983 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10984 raw_spin_unlock_irq(&child_ctx->lock);
10987 * Parent events are governed by their filedesc, retain them.
10989 if (!parent_event) {
10990 perf_event_wakeup(child_event);
10991 return;
10994 * Child events can be cleaned up.
10997 sync_child_event(child_event, child);
11000 * Remove this event from the parent's list
11002 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11003 mutex_lock(&parent_event->child_mutex);
11004 list_del_init(&child_event->child_list);
11005 mutex_unlock(&parent_event->child_mutex);
11008 * Kick perf_poll() for is_event_hup().
11010 perf_event_wakeup(parent_event);
11011 free_event(child_event);
11012 put_event(parent_event);
11015 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11017 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11018 struct perf_event *child_event, *next;
11020 WARN_ON_ONCE(child != current);
11022 child_ctx = perf_pin_task_context(child, ctxn);
11023 if (!child_ctx)
11024 return;
11027 * In order to reduce the amount of tricky in ctx tear-down, we hold
11028 * ctx::mutex over the entire thing. This serializes against almost
11029 * everything that wants to access the ctx.
11031 * The exception is sys_perf_event_open() /
11032 * perf_event_create_kernel_count() which does find_get_context()
11033 * without ctx::mutex (it cannot because of the move_group double mutex
11034 * lock thing). See the comments in perf_install_in_context().
11036 mutex_lock(&child_ctx->mutex);
11039 * In a single ctx::lock section, de-schedule the events and detach the
11040 * context from the task such that we cannot ever get it scheduled back
11041 * in.
11043 raw_spin_lock_irq(&child_ctx->lock);
11044 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11047 * Now that the context is inactive, destroy the task <-> ctx relation
11048 * and mark the context dead.
11050 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11051 put_ctx(child_ctx); /* cannot be last */
11052 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11053 put_task_struct(current); /* cannot be last */
11055 clone_ctx = unclone_ctx(child_ctx);
11056 raw_spin_unlock_irq(&child_ctx->lock);
11058 if (clone_ctx)
11059 put_ctx(clone_ctx);
11062 * Report the task dead after unscheduling the events so that we
11063 * won't get any samples after PERF_RECORD_EXIT. We can however still
11064 * get a few PERF_RECORD_READ events.
11066 perf_event_task(child, child_ctx, 0);
11068 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11069 perf_event_exit_event(child_event, child_ctx, child);
11071 mutex_unlock(&child_ctx->mutex);
11073 put_ctx(child_ctx);
11077 * When a child task exits, feed back event values to parent events.
11079 * Can be called with cred_guard_mutex held when called from
11080 * install_exec_creds().
11082 void perf_event_exit_task(struct task_struct *child)
11084 struct perf_event *event, *tmp;
11085 int ctxn;
11087 mutex_lock(&child->perf_event_mutex);
11088 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11089 owner_entry) {
11090 list_del_init(&event->owner_entry);
11093 * Ensure the list deletion is visible before we clear
11094 * the owner, closes a race against perf_release() where
11095 * we need to serialize on the owner->perf_event_mutex.
11097 smp_store_release(&event->owner, NULL);
11099 mutex_unlock(&child->perf_event_mutex);
11101 for_each_task_context_nr(ctxn)
11102 perf_event_exit_task_context(child, ctxn);
11105 * The perf_event_exit_task_context calls perf_event_task
11106 * with child's task_ctx, which generates EXIT events for
11107 * child contexts and sets child->perf_event_ctxp[] to NULL.
11108 * At this point we need to send EXIT events to cpu contexts.
11110 perf_event_task(child, NULL, 0);
11113 static void perf_free_event(struct perf_event *event,
11114 struct perf_event_context *ctx)
11116 struct perf_event *parent = event->parent;
11118 if (WARN_ON_ONCE(!parent))
11119 return;
11121 mutex_lock(&parent->child_mutex);
11122 list_del_init(&event->child_list);
11123 mutex_unlock(&parent->child_mutex);
11125 put_event(parent);
11127 raw_spin_lock_irq(&ctx->lock);
11128 perf_group_detach(event);
11129 list_del_event(event, ctx);
11130 raw_spin_unlock_irq(&ctx->lock);
11131 free_event(event);
11135 * Free an unexposed, unused context as created by inheritance by
11136 * perf_event_init_task below, used by fork() in case of fail.
11138 * Not all locks are strictly required, but take them anyway to be nice and
11139 * help out with the lockdep assertions.
11141 void perf_event_free_task(struct task_struct *task)
11143 struct perf_event_context *ctx;
11144 struct perf_event *event, *tmp;
11145 int ctxn;
11147 for_each_task_context_nr(ctxn) {
11148 ctx = task->perf_event_ctxp[ctxn];
11149 if (!ctx)
11150 continue;
11152 mutex_lock(&ctx->mutex);
11153 raw_spin_lock_irq(&ctx->lock);
11155 * Destroy the task <-> ctx relation and mark the context dead.
11157 * This is important because even though the task hasn't been
11158 * exposed yet the context has been (through child_list).
11160 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11161 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11162 put_task_struct(task); /* cannot be last */
11163 raw_spin_unlock_irq(&ctx->lock);
11165 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11166 perf_free_event(event, ctx);
11168 mutex_unlock(&ctx->mutex);
11169 put_ctx(ctx);
11173 void perf_event_delayed_put(struct task_struct *task)
11175 int ctxn;
11177 for_each_task_context_nr(ctxn)
11178 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11181 struct file *perf_event_get(unsigned int fd)
11183 struct file *file;
11185 file = fget_raw(fd);
11186 if (!file)
11187 return ERR_PTR(-EBADF);
11189 if (file->f_op != &perf_fops) {
11190 fput(file);
11191 return ERR_PTR(-EBADF);
11194 return file;
11197 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11199 if (!event)
11200 return ERR_PTR(-EINVAL);
11202 return &event->attr;
11206 * Inherit a event from parent task to child task.
11208 * Returns:
11209 * - valid pointer on success
11210 * - NULL for orphaned events
11211 * - IS_ERR() on error
11213 static struct perf_event *
11214 inherit_event(struct perf_event *parent_event,
11215 struct task_struct *parent,
11216 struct perf_event_context *parent_ctx,
11217 struct task_struct *child,
11218 struct perf_event *group_leader,
11219 struct perf_event_context *child_ctx)
11221 enum perf_event_state parent_state = parent_event->state;
11222 struct perf_event *child_event;
11223 unsigned long flags;
11226 * Instead of creating recursive hierarchies of events,
11227 * we link inherited events back to the original parent,
11228 * which has a filp for sure, which we use as the reference
11229 * count:
11231 if (parent_event->parent)
11232 parent_event = parent_event->parent;
11234 child_event = perf_event_alloc(&parent_event->attr,
11235 parent_event->cpu,
11236 child,
11237 group_leader, parent_event,
11238 NULL, NULL, -1);
11239 if (IS_ERR(child_event))
11240 return child_event;
11243 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11244 !child_ctx->task_ctx_data) {
11245 struct pmu *pmu = child_event->pmu;
11247 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11248 GFP_KERNEL);
11249 if (!child_ctx->task_ctx_data) {
11250 free_event(child_event);
11251 return NULL;
11256 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11257 * must be under the same lock in order to serialize against
11258 * perf_event_release_kernel(), such that either we must observe
11259 * is_orphaned_event() or they will observe us on the child_list.
11261 mutex_lock(&parent_event->child_mutex);
11262 if (is_orphaned_event(parent_event) ||
11263 !atomic_long_inc_not_zero(&parent_event->refcount)) {
11264 mutex_unlock(&parent_event->child_mutex);
11265 /* task_ctx_data is freed with child_ctx */
11266 free_event(child_event);
11267 return NULL;
11270 get_ctx(child_ctx);
11273 * Make the child state follow the state of the parent event,
11274 * not its attr.disabled bit. We hold the parent's mutex,
11275 * so we won't race with perf_event_{en, dis}able_family.
11277 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11278 child_event->state = PERF_EVENT_STATE_INACTIVE;
11279 else
11280 child_event->state = PERF_EVENT_STATE_OFF;
11282 if (parent_event->attr.freq) {
11283 u64 sample_period = parent_event->hw.sample_period;
11284 struct hw_perf_event *hwc = &child_event->hw;
11286 hwc->sample_period = sample_period;
11287 hwc->last_period = sample_period;
11289 local64_set(&hwc->period_left, sample_period);
11292 child_event->ctx = child_ctx;
11293 child_event->overflow_handler = parent_event->overflow_handler;
11294 child_event->overflow_handler_context
11295 = parent_event->overflow_handler_context;
11298 * Precalculate sample_data sizes
11300 perf_event__header_size(child_event);
11301 perf_event__id_header_size(child_event);
11304 * Link it up in the child's context:
11306 raw_spin_lock_irqsave(&child_ctx->lock, flags);
11307 add_event_to_ctx(child_event, child_ctx);
11308 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11311 * Link this into the parent event's child list
11313 list_add_tail(&child_event->child_list, &parent_event->child_list);
11314 mutex_unlock(&parent_event->child_mutex);
11316 return child_event;
11320 * Inherits an event group.
11322 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11323 * This matches with perf_event_release_kernel() removing all child events.
11325 * Returns:
11326 * - 0 on success
11327 * - <0 on error
11329 static int inherit_group(struct perf_event *parent_event,
11330 struct task_struct *parent,
11331 struct perf_event_context *parent_ctx,
11332 struct task_struct *child,
11333 struct perf_event_context *child_ctx)
11335 struct perf_event *leader;
11336 struct perf_event *sub;
11337 struct perf_event *child_ctr;
11339 leader = inherit_event(parent_event, parent, parent_ctx,
11340 child, NULL, child_ctx);
11341 if (IS_ERR(leader))
11342 return PTR_ERR(leader);
11344 * @leader can be NULL here because of is_orphaned_event(). In this
11345 * case inherit_event() will create individual events, similar to what
11346 * perf_group_detach() would do anyway.
11348 for_each_sibling_event(sub, parent_event) {
11349 child_ctr = inherit_event(sub, parent, parent_ctx,
11350 child, leader, child_ctx);
11351 if (IS_ERR(child_ctr))
11352 return PTR_ERR(child_ctr);
11354 return 0;
11358 * Creates the child task context and tries to inherit the event-group.
11360 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11361 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11362 * consistent with perf_event_release_kernel() removing all child events.
11364 * Returns:
11365 * - 0 on success
11366 * - <0 on error
11368 static int
11369 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11370 struct perf_event_context *parent_ctx,
11371 struct task_struct *child, int ctxn,
11372 int *inherited_all)
11374 int ret;
11375 struct perf_event_context *child_ctx;
11377 if (!event->attr.inherit) {
11378 *inherited_all = 0;
11379 return 0;
11382 child_ctx = child->perf_event_ctxp[ctxn];
11383 if (!child_ctx) {
11385 * This is executed from the parent task context, so
11386 * inherit events that have been marked for cloning.
11387 * First allocate and initialize a context for the
11388 * child.
11390 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11391 if (!child_ctx)
11392 return -ENOMEM;
11394 child->perf_event_ctxp[ctxn] = child_ctx;
11397 ret = inherit_group(event, parent, parent_ctx,
11398 child, child_ctx);
11400 if (ret)
11401 *inherited_all = 0;
11403 return ret;
11407 * Initialize the perf_event context in task_struct
11409 static int perf_event_init_context(struct task_struct *child, int ctxn)
11411 struct perf_event_context *child_ctx, *parent_ctx;
11412 struct perf_event_context *cloned_ctx;
11413 struct perf_event *event;
11414 struct task_struct *parent = current;
11415 int inherited_all = 1;
11416 unsigned long flags;
11417 int ret = 0;
11419 if (likely(!parent->perf_event_ctxp[ctxn]))
11420 return 0;
11423 * If the parent's context is a clone, pin it so it won't get
11424 * swapped under us.
11426 parent_ctx = perf_pin_task_context(parent, ctxn);
11427 if (!parent_ctx)
11428 return 0;
11431 * No need to check if parent_ctx != NULL here; since we saw
11432 * it non-NULL earlier, the only reason for it to become NULL
11433 * is if we exit, and since we're currently in the middle of
11434 * a fork we can't be exiting at the same time.
11438 * Lock the parent list. No need to lock the child - not PID
11439 * hashed yet and not running, so nobody can access it.
11441 mutex_lock(&parent_ctx->mutex);
11444 * We dont have to disable NMIs - we are only looking at
11445 * the list, not manipulating it:
11447 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11448 ret = inherit_task_group(event, parent, parent_ctx,
11449 child, ctxn, &inherited_all);
11450 if (ret)
11451 goto out_unlock;
11455 * We can't hold ctx->lock when iterating the ->flexible_group list due
11456 * to allocations, but we need to prevent rotation because
11457 * rotate_ctx() will change the list from interrupt context.
11459 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11460 parent_ctx->rotate_disable = 1;
11461 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11463 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11464 ret = inherit_task_group(event, parent, parent_ctx,
11465 child, ctxn, &inherited_all);
11466 if (ret)
11467 goto out_unlock;
11470 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11471 parent_ctx->rotate_disable = 0;
11473 child_ctx = child->perf_event_ctxp[ctxn];
11475 if (child_ctx && inherited_all) {
11477 * Mark the child context as a clone of the parent
11478 * context, or of whatever the parent is a clone of.
11480 * Note that if the parent is a clone, the holding of
11481 * parent_ctx->lock avoids it from being uncloned.
11483 cloned_ctx = parent_ctx->parent_ctx;
11484 if (cloned_ctx) {
11485 child_ctx->parent_ctx = cloned_ctx;
11486 child_ctx->parent_gen = parent_ctx->parent_gen;
11487 } else {
11488 child_ctx->parent_ctx = parent_ctx;
11489 child_ctx->parent_gen = parent_ctx->generation;
11491 get_ctx(child_ctx->parent_ctx);
11494 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11495 out_unlock:
11496 mutex_unlock(&parent_ctx->mutex);
11498 perf_unpin_context(parent_ctx);
11499 put_ctx(parent_ctx);
11501 return ret;
11505 * Initialize the perf_event context in task_struct
11507 int perf_event_init_task(struct task_struct *child)
11509 int ctxn, ret;
11511 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11512 mutex_init(&child->perf_event_mutex);
11513 INIT_LIST_HEAD(&child->perf_event_list);
11515 for_each_task_context_nr(ctxn) {
11516 ret = perf_event_init_context(child, ctxn);
11517 if (ret) {
11518 perf_event_free_task(child);
11519 return ret;
11523 return 0;
11526 static void __init perf_event_init_all_cpus(void)
11528 struct swevent_htable *swhash;
11529 int cpu;
11531 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11533 for_each_possible_cpu(cpu) {
11534 swhash = &per_cpu(swevent_htable, cpu);
11535 mutex_init(&swhash->hlist_mutex);
11536 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11538 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11539 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11541 #ifdef CONFIG_CGROUP_PERF
11542 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11543 #endif
11544 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11548 void perf_swevent_init_cpu(unsigned int cpu)
11550 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11552 mutex_lock(&swhash->hlist_mutex);
11553 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11554 struct swevent_hlist *hlist;
11556 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11557 WARN_ON(!hlist);
11558 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11560 mutex_unlock(&swhash->hlist_mutex);
11563 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11564 static void __perf_event_exit_context(void *__info)
11566 struct perf_event_context *ctx = __info;
11567 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11568 struct perf_event *event;
11570 raw_spin_lock(&ctx->lock);
11571 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11572 list_for_each_entry(event, &ctx->event_list, event_entry)
11573 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11574 raw_spin_unlock(&ctx->lock);
11577 static void perf_event_exit_cpu_context(int cpu)
11579 struct perf_cpu_context *cpuctx;
11580 struct perf_event_context *ctx;
11581 struct pmu *pmu;
11583 mutex_lock(&pmus_lock);
11584 list_for_each_entry(pmu, &pmus, entry) {
11585 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11586 ctx = &cpuctx->ctx;
11588 mutex_lock(&ctx->mutex);
11589 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11590 cpuctx->online = 0;
11591 mutex_unlock(&ctx->mutex);
11593 cpumask_clear_cpu(cpu, perf_online_mask);
11594 mutex_unlock(&pmus_lock);
11596 #else
11598 static void perf_event_exit_cpu_context(int cpu) { }
11600 #endif
11602 int perf_event_init_cpu(unsigned int cpu)
11604 struct perf_cpu_context *cpuctx;
11605 struct perf_event_context *ctx;
11606 struct pmu *pmu;
11608 perf_swevent_init_cpu(cpu);
11610 mutex_lock(&pmus_lock);
11611 cpumask_set_cpu(cpu, perf_online_mask);
11612 list_for_each_entry(pmu, &pmus, entry) {
11613 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11614 ctx = &cpuctx->ctx;
11616 mutex_lock(&ctx->mutex);
11617 cpuctx->online = 1;
11618 mutex_unlock(&ctx->mutex);
11620 mutex_unlock(&pmus_lock);
11622 return 0;
11625 int perf_event_exit_cpu(unsigned int cpu)
11627 perf_event_exit_cpu_context(cpu);
11628 return 0;
11631 static int
11632 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11634 int cpu;
11636 for_each_online_cpu(cpu)
11637 perf_event_exit_cpu(cpu);
11639 return NOTIFY_OK;
11643 * Run the perf reboot notifier at the very last possible moment so that
11644 * the generic watchdog code runs as long as possible.
11646 static struct notifier_block perf_reboot_notifier = {
11647 .notifier_call = perf_reboot,
11648 .priority = INT_MIN,
11651 void __init perf_event_init(void)
11653 int ret;
11655 idr_init(&pmu_idr);
11657 perf_event_init_all_cpus();
11658 init_srcu_struct(&pmus_srcu);
11659 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11660 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11661 perf_pmu_register(&perf_task_clock, NULL, -1);
11662 perf_tp_register();
11663 perf_event_init_cpu(smp_processor_id());
11664 register_reboot_notifier(&perf_reboot_notifier);
11666 ret = init_hw_breakpoint();
11667 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11670 * Build time assertion that we keep the data_head at the intended
11671 * location. IOW, validation we got the __reserved[] size right.
11673 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11674 != 1024);
11677 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11678 char *page)
11680 struct perf_pmu_events_attr *pmu_attr =
11681 container_of(attr, struct perf_pmu_events_attr, attr);
11683 if (pmu_attr->event_str)
11684 return sprintf(page, "%s\n", pmu_attr->event_str);
11686 return 0;
11688 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11690 static int __init perf_event_sysfs_init(void)
11692 struct pmu *pmu;
11693 int ret;
11695 mutex_lock(&pmus_lock);
11697 ret = bus_register(&pmu_bus);
11698 if (ret)
11699 goto unlock;
11701 list_for_each_entry(pmu, &pmus, entry) {
11702 if (!pmu->name || pmu->type < 0)
11703 continue;
11705 ret = pmu_dev_alloc(pmu);
11706 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11708 pmu_bus_running = 1;
11709 ret = 0;
11711 unlock:
11712 mutex_unlock(&pmus_lock);
11714 return ret;
11716 device_initcall(perf_event_sysfs_init);
11718 #ifdef CONFIG_CGROUP_PERF
11719 static struct cgroup_subsys_state *
11720 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11722 struct perf_cgroup *jc;
11724 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11725 if (!jc)
11726 return ERR_PTR(-ENOMEM);
11728 jc->info = alloc_percpu(struct perf_cgroup_info);
11729 if (!jc->info) {
11730 kfree(jc);
11731 return ERR_PTR(-ENOMEM);
11734 return &jc->css;
11737 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11739 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11741 free_percpu(jc->info);
11742 kfree(jc);
11745 static int __perf_cgroup_move(void *info)
11747 struct task_struct *task = info;
11748 rcu_read_lock();
11749 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11750 rcu_read_unlock();
11751 return 0;
11754 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11756 struct task_struct *task;
11757 struct cgroup_subsys_state *css;
11759 cgroup_taskset_for_each(task, css, tset)
11760 task_function_call(task, __perf_cgroup_move, task);
11763 struct cgroup_subsys perf_event_cgrp_subsys = {
11764 .css_alloc = perf_cgroup_css_alloc,
11765 .css_free = perf_cgroup_css_free,
11766 .attach = perf_cgroup_attach,
11768 * Implicitly enable on dfl hierarchy so that perf events can
11769 * always be filtered by cgroup2 path as long as perf_event
11770 * controller is not mounted on a legacy hierarchy.
11772 .implicit_on_dfl = true,
11773 .threaded = true,
11775 #endif /* CONFIG_CGROUP_PERF */