mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / kernel / irq / manage.c
blobe3336d904f64d3762a1e8bcf638bb6e6ba56c60d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
6 * This file contains driver APIs to the irq subsystem.
7 */
9 #define pr_fmt(fmt) "genirq: " fmt
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
23 #include "internals.h"
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
28 static int __init setup_forced_irqthreads(char *arg)
30 force_irqthreads = true;
31 return 0;
33 early_param("threadirqs", setup_forced_irqthreads);
34 #endif
36 static void __synchronize_hardirq(struct irq_desc *desc)
38 bool inprogress;
40 do {
41 unsigned long flags;
44 * Wait until we're out of the critical section. This might
45 * give the wrong answer due to the lack of memory barriers.
47 while (irqd_irq_inprogress(&desc->irq_data))
48 cpu_relax();
50 /* Ok, that indicated we're done: double-check carefully. */
51 raw_spin_lock_irqsave(&desc->lock, flags);
52 inprogress = irqd_irq_inprogress(&desc->irq_data);
53 raw_spin_unlock_irqrestore(&desc->lock, flags);
55 /* Oops, that failed? */
56 } while (inprogress);
59 /**
60 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
61 * @irq: interrupt number to wait for
63 * This function waits for any pending hard IRQ handlers for this
64 * interrupt to complete before returning. If you use this
65 * function while holding a resource the IRQ handler may need you
66 * will deadlock. It does not take associated threaded handlers
67 * into account.
69 * Do not use this for shutdown scenarios where you must be sure
70 * that all parts (hardirq and threaded handler) have completed.
72 * Returns: false if a threaded handler is active.
74 * This function may be called - with care - from IRQ context.
76 bool synchronize_hardirq(unsigned int irq)
78 struct irq_desc *desc = irq_to_desc(irq);
80 if (desc) {
81 __synchronize_hardirq(desc);
82 return !atomic_read(&desc->threads_active);
85 return true;
87 EXPORT_SYMBOL(synchronize_hardirq);
89 /**
90 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
91 * @irq: interrupt number to wait for
93 * This function waits for any pending IRQ handlers for this interrupt
94 * to complete before returning. If you use this function while
95 * holding a resource the IRQ handler may need you will deadlock.
97 * This function may be called - with care - from IRQ context.
99 void synchronize_irq(unsigned int irq)
101 struct irq_desc *desc = irq_to_desc(irq);
103 if (desc) {
104 __synchronize_hardirq(desc);
106 * We made sure that no hardirq handler is
107 * running. Now verify that no threaded handlers are
108 * active.
110 wait_event(desc->wait_for_threads,
111 !atomic_read(&desc->threads_active));
114 EXPORT_SYMBOL(synchronize_irq);
116 #ifdef CONFIG_SMP
117 cpumask_var_t irq_default_affinity;
119 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 if (!desc || !irqd_can_balance(&desc->irq_data) ||
122 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
123 return false;
124 return true;
128 * irq_can_set_affinity - Check if the affinity of a given irq can be set
129 * @irq: Interrupt to check
132 int irq_can_set_affinity(unsigned int irq)
134 return __irq_can_set_affinity(irq_to_desc(irq));
138 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
139 * @irq: Interrupt to check
141 * Like irq_can_set_affinity() above, but additionally checks for the
142 * AFFINITY_MANAGED flag.
144 bool irq_can_set_affinity_usr(unsigned int irq)
146 struct irq_desc *desc = irq_to_desc(irq);
148 return __irq_can_set_affinity(desc) &&
149 !irqd_affinity_is_managed(&desc->irq_data);
153 * irq_set_thread_affinity - Notify irq threads to adjust affinity
154 * @desc: irq descriptor which has affitnity changed
156 * We just set IRQTF_AFFINITY and delegate the affinity setting
157 * to the interrupt thread itself. We can not call
158 * set_cpus_allowed_ptr() here as we hold desc->lock and this
159 * code can be called from hard interrupt context.
161 void irq_set_thread_affinity(struct irq_desc *desc)
163 struct irqaction *action;
165 for_each_action_of_desc(desc, action)
166 if (action->thread)
167 set_bit(IRQTF_AFFINITY, &action->thread_flags);
170 static void irq_validate_effective_affinity(struct irq_data *data)
172 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
173 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
174 struct irq_chip *chip = irq_data_get_irq_chip(data);
176 if (!cpumask_empty(m))
177 return;
178 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
179 chip->name, data->irq);
180 #endif
183 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
184 bool force)
186 struct irq_desc *desc = irq_data_to_desc(data);
187 struct irq_chip *chip = irq_data_get_irq_chip(data);
188 int ret;
190 if (!chip || !chip->irq_set_affinity)
191 return -EINVAL;
193 ret = chip->irq_set_affinity(data, mask, force);
194 switch (ret) {
195 case IRQ_SET_MASK_OK:
196 case IRQ_SET_MASK_OK_DONE:
197 cpumask_copy(desc->irq_common_data.affinity, mask);
198 case IRQ_SET_MASK_OK_NOCOPY:
199 irq_validate_effective_affinity(data);
200 irq_set_thread_affinity(desc);
201 ret = 0;
204 return ret;
207 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
208 bool force)
210 struct irq_chip *chip = irq_data_get_irq_chip(data);
211 struct irq_desc *desc = irq_data_to_desc(data);
212 int ret = 0;
214 if (!chip || !chip->irq_set_affinity)
215 return -EINVAL;
217 if (irq_can_move_pcntxt(data)) {
218 ret = irq_do_set_affinity(data, mask, force);
219 } else {
220 irqd_set_move_pending(data);
221 irq_copy_pending(desc, mask);
224 if (desc->affinity_notify) {
225 kref_get(&desc->affinity_notify->kref);
226 schedule_work(&desc->affinity_notify->work);
228 irqd_set(data, IRQD_AFFINITY_SET);
230 return ret;
233 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
235 struct irq_desc *desc = irq_to_desc(irq);
236 unsigned long flags;
237 int ret;
239 if (!desc)
240 return -EINVAL;
242 raw_spin_lock_irqsave(&desc->lock, flags);
243 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
244 raw_spin_unlock_irqrestore(&desc->lock, flags);
245 return ret;
248 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
250 unsigned long flags;
251 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
253 if (!desc)
254 return -EINVAL;
255 desc->affinity_hint = m;
256 irq_put_desc_unlock(desc, flags);
257 /* set the initial affinity to prevent every interrupt being on CPU0 */
258 if (m)
259 __irq_set_affinity(irq, m, false);
260 return 0;
262 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
264 static void irq_affinity_notify(struct work_struct *work)
266 struct irq_affinity_notify *notify =
267 container_of(work, struct irq_affinity_notify, work);
268 struct irq_desc *desc = irq_to_desc(notify->irq);
269 cpumask_var_t cpumask;
270 unsigned long flags;
272 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
273 goto out;
275 raw_spin_lock_irqsave(&desc->lock, flags);
276 if (irq_move_pending(&desc->irq_data))
277 irq_get_pending(cpumask, desc);
278 else
279 cpumask_copy(cpumask, desc->irq_common_data.affinity);
280 raw_spin_unlock_irqrestore(&desc->lock, flags);
282 notify->notify(notify, cpumask);
284 free_cpumask_var(cpumask);
285 out:
286 kref_put(&notify->kref, notify->release);
290 * irq_set_affinity_notifier - control notification of IRQ affinity changes
291 * @irq: Interrupt for which to enable/disable notification
292 * @notify: Context for notification, or %NULL to disable
293 * notification. Function pointers must be initialised;
294 * the other fields will be initialised by this function.
296 * Must be called in process context. Notification may only be enabled
297 * after the IRQ is allocated and must be disabled before the IRQ is
298 * freed using free_irq().
301 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
303 struct irq_desc *desc = irq_to_desc(irq);
304 struct irq_affinity_notify *old_notify;
305 unsigned long flags;
307 /* The release function is promised process context */
308 might_sleep();
310 if (!desc)
311 return -EINVAL;
313 /* Complete initialisation of *notify */
314 if (notify) {
315 notify->irq = irq;
316 kref_init(&notify->kref);
317 INIT_WORK(&notify->work, irq_affinity_notify);
320 raw_spin_lock_irqsave(&desc->lock, flags);
321 old_notify = desc->affinity_notify;
322 desc->affinity_notify = notify;
323 raw_spin_unlock_irqrestore(&desc->lock, flags);
325 if (old_notify)
326 kref_put(&old_notify->kref, old_notify->release);
328 return 0;
330 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
332 #ifndef CONFIG_AUTO_IRQ_AFFINITY
334 * Generic version of the affinity autoselector.
336 int irq_setup_affinity(struct irq_desc *desc)
338 struct cpumask *set = irq_default_affinity;
339 int ret, node = irq_desc_get_node(desc);
340 static DEFINE_RAW_SPINLOCK(mask_lock);
341 static struct cpumask mask;
343 /* Excludes PER_CPU and NO_BALANCE interrupts */
344 if (!__irq_can_set_affinity(desc))
345 return 0;
347 raw_spin_lock(&mask_lock);
349 * Preserve the managed affinity setting and a userspace affinity
350 * setup, but make sure that one of the targets is online.
352 if (irqd_affinity_is_managed(&desc->irq_data) ||
353 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
354 if (cpumask_intersects(desc->irq_common_data.affinity,
355 cpu_online_mask))
356 set = desc->irq_common_data.affinity;
357 else
358 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
361 cpumask_and(&mask, cpu_online_mask, set);
362 if (node != NUMA_NO_NODE) {
363 const struct cpumask *nodemask = cpumask_of_node(node);
365 /* make sure at least one of the cpus in nodemask is online */
366 if (cpumask_intersects(&mask, nodemask))
367 cpumask_and(&mask, &mask, nodemask);
369 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
370 raw_spin_unlock(&mask_lock);
371 return ret;
373 #else
374 /* Wrapper for ALPHA specific affinity selector magic */
375 int irq_setup_affinity(struct irq_desc *desc)
377 return irq_select_affinity(irq_desc_get_irq(desc));
379 #endif
382 * Called when a bogus affinity is set via /proc/irq
384 int irq_select_affinity_usr(unsigned int irq)
386 struct irq_desc *desc = irq_to_desc(irq);
387 unsigned long flags;
388 int ret;
390 raw_spin_lock_irqsave(&desc->lock, flags);
391 ret = irq_setup_affinity(desc);
392 raw_spin_unlock_irqrestore(&desc->lock, flags);
393 return ret;
395 #endif
398 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
399 * @irq: interrupt number to set affinity
400 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
401 * specific data for percpu_devid interrupts
403 * This function uses the vCPU specific data to set the vCPU
404 * affinity for an irq. The vCPU specific data is passed from
405 * outside, such as KVM. One example code path is as below:
406 * KVM -> IOMMU -> irq_set_vcpu_affinity().
408 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
410 unsigned long flags;
411 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
412 struct irq_data *data;
413 struct irq_chip *chip;
414 int ret = -ENOSYS;
416 if (!desc)
417 return -EINVAL;
419 data = irq_desc_get_irq_data(desc);
420 do {
421 chip = irq_data_get_irq_chip(data);
422 if (chip && chip->irq_set_vcpu_affinity)
423 break;
424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
425 data = data->parent_data;
426 #else
427 data = NULL;
428 #endif
429 } while (data);
431 if (data)
432 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
433 irq_put_desc_unlock(desc, flags);
435 return ret;
437 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
439 void __disable_irq(struct irq_desc *desc)
441 if (!desc->depth++)
442 irq_disable(desc);
445 static int __disable_irq_nosync(unsigned int irq)
447 unsigned long flags;
448 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
450 if (!desc)
451 return -EINVAL;
452 __disable_irq(desc);
453 irq_put_desc_busunlock(desc, flags);
454 return 0;
458 * disable_irq_nosync - disable an irq without waiting
459 * @irq: Interrupt to disable
461 * Disable the selected interrupt line. Disables and Enables are
462 * nested.
463 * Unlike disable_irq(), this function does not ensure existing
464 * instances of the IRQ handler have completed before returning.
466 * This function may be called from IRQ context.
468 void disable_irq_nosync(unsigned int irq)
470 __disable_irq_nosync(irq);
472 EXPORT_SYMBOL(disable_irq_nosync);
475 * disable_irq - disable an irq and wait for completion
476 * @irq: Interrupt to disable
478 * Disable the selected interrupt line. Enables and Disables are
479 * nested.
480 * This function waits for any pending IRQ handlers for this interrupt
481 * to complete before returning. If you use this function while
482 * holding a resource the IRQ handler may need you will deadlock.
484 * This function may be called - with care - from IRQ context.
486 void disable_irq(unsigned int irq)
488 if (!__disable_irq_nosync(irq))
489 synchronize_irq(irq);
491 EXPORT_SYMBOL(disable_irq);
494 * disable_hardirq - disables an irq and waits for hardirq completion
495 * @irq: Interrupt to disable
497 * Disable the selected interrupt line. Enables and Disables are
498 * nested.
499 * This function waits for any pending hard IRQ handlers for this
500 * interrupt to complete before returning. If you use this function while
501 * holding a resource the hard IRQ handler may need you will deadlock.
503 * When used to optimistically disable an interrupt from atomic context
504 * the return value must be checked.
506 * Returns: false if a threaded handler is active.
508 * This function may be called - with care - from IRQ context.
510 bool disable_hardirq(unsigned int irq)
512 if (!__disable_irq_nosync(irq))
513 return synchronize_hardirq(irq);
515 return false;
517 EXPORT_SYMBOL_GPL(disable_hardirq);
519 void __enable_irq(struct irq_desc *desc)
521 switch (desc->depth) {
522 case 0:
523 err_out:
524 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
525 irq_desc_get_irq(desc));
526 break;
527 case 1: {
528 if (desc->istate & IRQS_SUSPENDED)
529 goto err_out;
530 /* Prevent probing on this irq: */
531 irq_settings_set_noprobe(desc);
533 * Call irq_startup() not irq_enable() here because the
534 * interrupt might be marked NOAUTOEN. So irq_startup()
535 * needs to be invoked when it gets enabled the first
536 * time. If it was already started up, then irq_startup()
537 * will invoke irq_enable() under the hood.
539 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
540 break;
542 default:
543 desc->depth--;
548 * enable_irq - enable handling of an irq
549 * @irq: Interrupt to enable
551 * Undoes the effect of one call to disable_irq(). If this
552 * matches the last disable, processing of interrupts on this
553 * IRQ line is re-enabled.
555 * This function may be called from IRQ context only when
556 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
558 void enable_irq(unsigned int irq)
560 unsigned long flags;
561 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
563 if (!desc)
564 return;
565 if (WARN(!desc->irq_data.chip,
566 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
567 goto out;
569 __enable_irq(desc);
570 out:
571 irq_put_desc_busunlock(desc, flags);
573 EXPORT_SYMBOL(enable_irq);
575 static int set_irq_wake_real(unsigned int irq, unsigned int on)
577 struct irq_desc *desc = irq_to_desc(irq);
578 int ret = -ENXIO;
580 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
581 return 0;
583 if (desc->irq_data.chip->irq_set_wake)
584 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
586 return ret;
590 * irq_set_irq_wake - control irq power management wakeup
591 * @irq: interrupt to control
592 * @on: enable/disable power management wakeup
594 * Enable/disable power management wakeup mode, which is
595 * disabled by default. Enables and disables must match,
596 * just as they match for non-wakeup mode support.
598 * Wakeup mode lets this IRQ wake the system from sleep
599 * states like "suspend to RAM".
601 int irq_set_irq_wake(unsigned int irq, unsigned int on)
603 unsigned long flags;
604 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
605 int ret = 0;
607 if (!desc)
608 return -EINVAL;
610 /* wakeup-capable irqs can be shared between drivers that
611 * don't need to have the same sleep mode behaviors.
613 if (on) {
614 if (desc->wake_depth++ == 0) {
615 ret = set_irq_wake_real(irq, on);
616 if (ret)
617 desc->wake_depth = 0;
618 else
619 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
621 } else {
622 if (desc->wake_depth == 0) {
623 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
624 } else if (--desc->wake_depth == 0) {
625 ret = set_irq_wake_real(irq, on);
626 if (ret)
627 desc->wake_depth = 1;
628 else
629 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
632 irq_put_desc_busunlock(desc, flags);
633 return ret;
635 EXPORT_SYMBOL(irq_set_irq_wake);
638 * Internal function that tells the architecture code whether a
639 * particular irq has been exclusively allocated or is available
640 * for driver use.
642 int can_request_irq(unsigned int irq, unsigned long irqflags)
644 unsigned long flags;
645 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
646 int canrequest = 0;
648 if (!desc)
649 return 0;
651 if (irq_settings_can_request(desc)) {
652 if (!desc->action ||
653 irqflags & desc->action->flags & IRQF_SHARED)
654 canrequest = 1;
656 irq_put_desc_unlock(desc, flags);
657 return canrequest;
660 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
662 struct irq_chip *chip = desc->irq_data.chip;
663 int ret, unmask = 0;
665 if (!chip || !chip->irq_set_type) {
667 * IRQF_TRIGGER_* but the PIC does not support multiple
668 * flow-types?
670 pr_debug("No set_type function for IRQ %d (%s)\n",
671 irq_desc_get_irq(desc),
672 chip ? (chip->name ? : "unknown") : "unknown");
673 return 0;
676 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
677 if (!irqd_irq_masked(&desc->irq_data))
678 mask_irq(desc);
679 if (!irqd_irq_disabled(&desc->irq_data))
680 unmask = 1;
683 /* Mask all flags except trigger mode */
684 flags &= IRQ_TYPE_SENSE_MASK;
685 ret = chip->irq_set_type(&desc->irq_data, flags);
687 switch (ret) {
688 case IRQ_SET_MASK_OK:
689 case IRQ_SET_MASK_OK_DONE:
690 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
691 irqd_set(&desc->irq_data, flags);
693 case IRQ_SET_MASK_OK_NOCOPY:
694 flags = irqd_get_trigger_type(&desc->irq_data);
695 irq_settings_set_trigger_mask(desc, flags);
696 irqd_clear(&desc->irq_data, IRQD_LEVEL);
697 irq_settings_clr_level(desc);
698 if (flags & IRQ_TYPE_LEVEL_MASK) {
699 irq_settings_set_level(desc);
700 irqd_set(&desc->irq_data, IRQD_LEVEL);
703 ret = 0;
704 break;
705 default:
706 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
707 flags, irq_desc_get_irq(desc), chip->irq_set_type);
709 if (unmask)
710 unmask_irq(desc);
711 return ret;
714 #ifdef CONFIG_HARDIRQS_SW_RESEND
715 int irq_set_parent(int irq, int parent_irq)
717 unsigned long flags;
718 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
720 if (!desc)
721 return -EINVAL;
723 desc->parent_irq = parent_irq;
725 irq_put_desc_unlock(desc, flags);
726 return 0;
728 EXPORT_SYMBOL_GPL(irq_set_parent);
729 #endif
732 * Default primary interrupt handler for threaded interrupts. Is
733 * assigned as primary handler when request_threaded_irq is called
734 * with handler == NULL. Useful for oneshot interrupts.
736 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
738 return IRQ_WAKE_THREAD;
742 * Primary handler for nested threaded interrupts. Should never be
743 * called.
745 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
747 WARN(1, "Primary handler called for nested irq %d\n", irq);
748 return IRQ_NONE;
751 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
753 WARN(1, "Secondary action handler called for irq %d\n", irq);
754 return IRQ_NONE;
757 static int irq_wait_for_interrupt(struct irqaction *action)
759 set_current_state(TASK_INTERRUPTIBLE);
761 while (!kthread_should_stop()) {
763 if (test_and_clear_bit(IRQTF_RUNTHREAD,
764 &action->thread_flags)) {
765 __set_current_state(TASK_RUNNING);
766 return 0;
768 schedule();
769 set_current_state(TASK_INTERRUPTIBLE);
771 __set_current_state(TASK_RUNNING);
772 return -1;
776 * Oneshot interrupts keep the irq line masked until the threaded
777 * handler finished. unmask if the interrupt has not been disabled and
778 * is marked MASKED.
780 static void irq_finalize_oneshot(struct irq_desc *desc,
781 struct irqaction *action)
783 if (!(desc->istate & IRQS_ONESHOT) ||
784 action->handler == irq_forced_secondary_handler)
785 return;
786 again:
787 chip_bus_lock(desc);
788 raw_spin_lock_irq(&desc->lock);
791 * Implausible though it may be we need to protect us against
792 * the following scenario:
794 * The thread is faster done than the hard interrupt handler
795 * on the other CPU. If we unmask the irq line then the
796 * interrupt can come in again and masks the line, leaves due
797 * to IRQS_INPROGRESS and the irq line is masked forever.
799 * This also serializes the state of shared oneshot handlers
800 * versus "desc->threads_onehsot |= action->thread_mask;" in
801 * irq_wake_thread(). See the comment there which explains the
802 * serialization.
804 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
805 raw_spin_unlock_irq(&desc->lock);
806 chip_bus_sync_unlock(desc);
807 cpu_relax();
808 goto again;
812 * Now check again, whether the thread should run. Otherwise
813 * we would clear the threads_oneshot bit of this thread which
814 * was just set.
816 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
817 goto out_unlock;
819 desc->threads_oneshot &= ~action->thread_mask;
821 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
822 irqd_irq_masked(&desc->irq_data))
823 unmask_threaded_irq(desc);
825 out_unlock:
826 raw_spin_unlock_irq(&desc->lock);
827 chip_bus_sync_unlock(desc);
830 #ifdef CONFIG_SMP
832 * Check whether we need to change the affinity of the interrupt thread.
834 static void
835 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
837 cpumask_var_t mask;
838 bool valid = true;
840 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
841 return;
844 * In case we are out of memory we set IRQTF_AFFINITY again and
845 * try again next time
847 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
848 set_bit(IRQTF_AFFINITY, &action->thread_flags);
849 return;
852 raw_spin_lock_irq(&desc->lock);
854 * This code is triggered unconditionally. Check the affinity
855 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
857 if (cpumask_available(desc->irq_common_data.affinity)) {
858 const struct cpumask *m;
860 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
861 cpumask_copy(mask, m);
862 } else {
863 valid = false;
865 raw_spin_unlock_irq(&desc->lock);
867 if (valid)
868 set_cpus_allowed_ptr(current, mask);
869 free_cpumask_var(mask);
871 #else
872 static inline void
873 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
874 #endif
877 * Interrupts which are not explicitely requested as threaded
878 * interrupts rely on the implicit bh/preempt disable of the hard irq
879 * context. So we need to disable bh here to avoid deadlocks and other
880 * side effects.
882 static irqreturn_t
883 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
885 irqreturn_t ret;
887 local_bh_disable();
888 ret = action->thread_fn(action->irq, action->dev_id);
889 irq_finalize_oneshot(desc, action);
890 local_bh_enable();
891 return ret;
895 * Interrupts explicitly requested as threaded interrupts want to be
896 * preemtible - many of them need to sleep and wait for slow busses to
897 * complete.
899 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
900 struct irqaction *action)
902 irqreturn_t ret;
904 ret = action->thread_fn(action->irq, action->dev_id);
905 irq_finalize_oneshot(desc, action);
906 return ret;
909 static void wake_threads_waitq(struct irq_desc *desc)
911 if (atomic_dec_and_test(&desc->threads_active))
912 wake_up(&desc->wait_for_threads);
915 static void irq_thread_dtor(struct callback_head *unused)
917 struct task_struct *tsk = current;
918 struct irq_desc *desc;
919 struct irqaction *action;
921 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
922 return;
924 action = kthread_data(tsk);
926 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
927 tsk->comm, tsk->pid, action->irq);
930 desc = irq_to_desc(action->irq);
932 * If IRQTF_RUNTHREAD is set, we need to decrement
933 * desc->threads_active and wake possible waiters.
935 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
936 wake_threads_waitq(desc);
938 /* Prevent a stale desc->threads_oneshot */
939 irq_finalize_oneshot(desc, action);
942 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
944 struct irqaction *secondary = action->secondary;
946 if (WARN_ON_ONCE(!secondary))
947 return;
949 raw_spin_lock_irq(&desc->lock);
950 __irq_wake_thread(desc, secondary);
951 raw_spin_unlock_irq(&desc->lock);
955 * Interrupt handler thread
957 static int irq_thread(void *data)
959 struct callback_head on_exit_work;
960 struct irqaction *action = data;
961 struct irq_desc *desc = irq_to_desc(action->irq);
962 irqreturn_t (*handler_fn)(struct irq_desc *desc,
963 struct irqaction *action);
965 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
966 &action->thread_flags))
967 handler_fn = irq_forced_thread_fn;
968 else
969 handler_fn = irq_thread_fn;
971 init_task_work(&on_exit_work, irq_thread_dtor);
972 task_work_add(current, &on_exit_work, false);
974 irq_thread_check_affinity(desc, action);
976 while (!irq_wait_for_interrupt(action)) {
977 irqreturn_t action_ret;
979 irq_thread_check_affinity(desc, action);
981 action_ret = handler_fn(desc, action);
982 if (action_ret == IRQ_HANDLED)
983 atomic_inc(&desc->threads_handled);
984 if (action_ret == IRQ_WAKE_THREAD)
985 irq_wake_secondary(desc, action);
987 wake_threads_waitq(desc);
991 * This is the regular exit path. __free_irq() is stopping the
992 * thread via kthread_stop() after calling
993 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
994 * oneshot mask bit can be set. We cannot verify that as we
995 * cannot touch the oneshot mask at this point anymore as
996 * __setup_irq() might have given out currents thread_mask
997 * again.
999 task_work_cancel(current, irq_thread_dtor);
1000 return 0;
1004 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1005 * @irq: Interrupt line
1006 * @dev_id: Device identity for which the thread should be woken
1009 void irq_wake_thread(unsigned int irq, void *dev_id)
1011 struct irq_desc *desc = irq_to_desc(irq);
1012 struct irqaction *action;
1013 unsigned long flags;
1015 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1016 return;
1018 raw_spin_lock_irqsave(&desc->lock, flags);
1019 for_each_action_of_desc(desc, action) {
1020 if (action->dev_id == dev_id) {
1021 if (action->thread)
1022 __irq_wake_thread(desc, action);
1023 break;
1026 raw_spin_unlock_irqrestore(&desc->lock, flags);
1028 EXPORT_SYMBOL_GPL(irq_wake_thread);
1030 static int irq_setup_forced_threading(struct irqaction *new)
1032 if (!force_irqthreads)
1033 return 0;
1034 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1035 return 0;
1037 new->flags |= IRQF_ONESHOT;
1040 * Handle the case where we have a real primary handler and a
1041 * thread handler. We force thread them as well by creating a
1042 * secondary action.
1044 if (new->handler != irq_default_primary_handler && new->thread_fn) {
1045 /* Allocate the secondary action */
1046 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1047 if (!new->secondary)
1048 return -ENOMEM;
1049 new->secondary->handler = irq_forced_secondary_handler;
1050 new->secondary->thread_fn = new->thread_fn;
1051 new->secondary->dev_id = new->dev_id;
1052 new->secondary->irq = new->irq;
1053 new->secondary->name = new->name;
1055 /* Deal with the primary handler */
1056 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1057 new->thread_fn = new->handler;
1058 new->handler = irq_default_primary_handler;
1059 return 0;
1062 static int irq_request_resources(struct irq_desc *desc)
1064 struct irq_data *d = &desc->irq_data;
1065 struct irq_chip *c = d->chip;
1067 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1070 static void irq_release_resources(struct irq_desc *desc)
1072 struct irq_data *d = &desc->irq_data;
1073 struct irq_chip *c = d->chip;
1075 if (c->irq_release_resources)
1076 c->irq_release_resources(d);
1079 static int
1080 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1082 struct task_struct *t;
1083 struct sched_param param = {
1084 .sched_priority = MAX_USER_RT_PRIO/2,
1087 if (!secondary) {
1088 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1089 new->name);
1090 } else {
1091 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1092 new->name);
1093 param.sched_priority -= 1;
1096 if (IS_ERR(t))
1097 return PTR_ERR(t);
1099 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1102 * We keep the reference to the task struct even if
1103 * the thread dies to avoid that the interrupt code
1104 * references an already freed task_struct.
1106 get_task_struct(t);
1107 new->thread = t;
1109 * Tell the thread to set its affinity. This is
1110 * important for shared interrupt handlers as we do
1111 * not invoke setup_affinity() for the secondary
1112 * handlers as everything is already set up. Even for
1113 * interrupts marked with IRQF_NO_BALANCE this is
1114 * correct as we want the thread to move to the cpu(s)
1115 * on which the requesting code placed the interrupt.
1117 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1118 return 0;
1122 * Internal function to register an irqaction - typically used to
1123 * allocate special interrupts that are part of the architecture.
1125 * Locking rules:
1127 * desc->request_mutex Provides serialization against a concurrent free_irq()
1128 * chip_bus_lock Provides serialization for slow bus operations
1129 * desc->lock Provides serialization against hard interrupts
1131 * chip_bus_lock and desc->lock are sufficient for all other management and
1132 * interrupt related functions. desc->request_mutex solely serializes
1133 * request/free_irq().
1135 static int
1136 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1138 struct irqaction *old, **old_ptr;
1139 unsigned long flags, thread_mask = 0;
1140 int ret, nested, shared = 0;
1142 if (!desc)
1143 return -EINVAL;
1145 if (desc->irq_data.chip == &no_irq_chip)
1146 return -ENOSYS;
1147 if (!try_module_get(desc->owner))
1148 return -ENODEV;
1150 new->irq = irq;
1153 * If the trigger type is not specified by the caller,
1154 * then use the default for this interrupt.
1156 if (!(new->flags & IRQF_TRIGGER_MASK))
1157 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1160 * Check whether the interrupt nests into another interrupt
1161 * thread.
1163 nested = irq_settings_is_nested_thread(desc);
1164 if (nested) {
1165 if (!new->thread_fn) {
1166 ret = -EINVAL;
1167 goto out_mput;
1170 * Replace the primary handler which was provided from
1171 * the driver for non nested interrupt handling by the
1172 * dummy function which warns when called.
1174 new->handler = irq_nested_primary_handler;
1175 } else {
1176 if (irq_settings_can_thread(desc)) {
1177 ret = irq_setup_forced_threading(new);
1178 if (ret)
1179 goto out_mput;
1184 * Create a handler thread when a thread function is supplied
1185 * and the interrupt does not nest into another interrupt
1186 * thread.
1188 if (new->thread_fn && !nested) {
1189 ret = setup_irq_thread(new, irq, false);
1190 if (ret)
1191 goto out_mput;
1192 if (new->secondary) {
1193 ret = setup_irq_thread(new->secondary, irq, true);
1194 if (ret)
1195 goto out_thread;
1200 * Drivers are often written to work w/o knowledge about the
1201 * underlying irq chip implementation, so a request for a
1202 * threaded irq without a primary hard irq context handler
1203 * requires the ONESHOT flag to be set. Some irq chips like
1204 * MSI based interrupts are per se one shot safe. Check the
1205 * chip flags, so we can avoid the unmask dance at the end of
1206 * the threaded handler for those.
1208 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1209 new->flags &= ~IRQF_ONESHOT;
1212 * Protects against a concurrent __free_irq() call which might wait
1213 * for synchronize_irq() to complete without holding the optional
1214 * chip bus lock and desc->lock.
1216 mutex_lock(&desc->request_mutex);
1219 * Acquire bus lock as the irq_request_resources() callback below
1220 * might rely on the serialization or the magic power management
1221 * functions which are abusing the irq_bus_lock() callback,
1223 chip_bus_lock(desc);
1225 /* First installed action requests resources. */
1226 if (!desc->action) {
1227 ret = irq_request_resources(desc);
1228 if (ret) {
1229 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1230 new->name, irq, desc->irq_data.chip->name);
1231 goto out_bus_unlock;
1236 * The following block of code has to be executed atomically
1237 * protected against a concurrent interrupt and any of the other
1238 * management calls which are not serialized via
1239 * desc->request_mutex or the optional bus lock.
1241 raw_spin_lock_irqsave(&desc->lock, flags);
1242 old_ptr = &desc->action;
1243 old = *old_ptr;
1244 if (old) {
1246 * Can't share interrupts unless both agree to and are
1247 * the same type (level, edge, polarity). So both flag
1248 * fields must have IRQF_SHARED set and the bits which
1249 * set the trigger type must match. Also all must
1250 * agree on ONESHOT.
1252 unsigned int oldtype;
1255 * If nobody did set the configuration before, inherit
1256 * the one provided by the requester.
1258 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1259 oldtype = irqd_get_trigger_type(&desc->irq_data);
1260 } else {
1261 oldtype = new->flags & IRQF_TRIGGER_MASK;
1262 irqd_set_trigger_type(&desc->irq_data, oldtype);
1265 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1266 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1267 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1268 goto mismatch;
1270 /* All handlers must agree on per-cpuness */
1271 if ((old->flags & IRQF_PERCPU) !=
1272 (new->flags & IRQF_PERCPU))
1273 goto mismatch;
1275 /* add new interrupt at end of irq queue */
1276 do {
1278 * Or all existing action->thread_mask bits,
1279 * so we can find the next zero bit for this
1280 * new action.
1282 thread_mask |= old->thread_mask;
1283 old_ptr = &old->next;
1284 old = *old_ptr;
1285 } while (old);
1286 shared = 1;
1290 * Setup the thread mask for this irqaction for ONESHOT. For
1291 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1292 * conditional in irq_wake_thread().
1294 if (new->flags & IRQF_ONESHOT) {
1296 * Unlikely to have 32 resp 64 irqs sharing one line,
1297 * but who knows.
1299 if (thread_mask == ~0UL) {
1300 ret = -EBUSY;
1301 goto out_unlock;
1304 * The thread_mask for the action is or'ed to
1305 * desc->thread_active to indicate that the
1306 * IRQF_ONESHOT thread handler has been woken, but not
1307 * yet finished. The bit is cleared when a thread
1308 * completes. When all threads of a shared interrupt
1309 * line have completed desc->threads_active becomes
1310 * zero and the interrupt line is unmasked. See
1311 * handle.c:irq_wake_thread() for further information.
1313 * If no thread is woken by primary (hard irq context)
1314 * interrupt handlers, then desc->threads_active is
1315 * also checked for zero to unmask the irq line in the
1316 * affected hard irq flow handlers
1317 * (handle_[fasteoi|level]_irq).
1319 * The new action gets the first zero bit of
1320 * thread_mask assigned. See the loop above which or's
1321 * all existing action->thread_mask bits.
1323 new->thread_mask = 1UL << ffz(thread_mask);
1325 } else if (new->handler == irq_default_primary_handler &&
1326 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1328 * The interrupt was requested with handler = NULL, so
1329 * we use the default primary handler for it. But it
1330 * does not have the oneshot flag set. In combination
1331 * with level interrupts this is deadly, because the
1332 * default primary handler just wakes the thread, then
1333 * the irq lines is reenabled, but the device still
1334 * has the level irq asserted. Rinse and repeat....
1336 * While this works for edge type interrupts, we play
1337 * it safe and reject unconditionally because we can't
1338 * say for sure which type this interrupt really
1339 * has. The type flags are unreliable as the
1340 * underlying chip implementation can override them.
1342 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1343 irq);
1344 ret = -EINVAL;
1345 goto out_unlock;
1348 if (!shared) {
1349 init_waitqueue_head(&desc->wait_for_threads);
1351 /* Setup the type (level, edge polarity) if configured: */
1352 if (new->flags & IRQF_TRIGGER_MASK) {
1353 ret = __irq_set_trigger(desc,
1354 new->flags & IRQF_TRIGGER_MASK);
1356 if (ret)
1357 goto out_unlock;
1361 * Activate the interrupt. That activation must happen
1362 * independently of IRQ_NOAUTOEN. request_irq() can fail
1363 * and the callers are supposed to handle
1364 * that. enable_irq() of an interrupt requested with
1365 * IRQ_NOAUTOEN is not supposed to fail. The activation
1366 * keeps it in shutdown mode, it merily associates
1367 * resources if necessary and if that's not possible it
1368 * fails. Interrupts which are in managed shutdown mode
1369 * will simply ignore that activation request.
1371 ret = irq_activate(desc);
1372 if (ret)
1373 goto out_unlock;
1375 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1376 IRQS_ONESHOT | IRQS_WAITING);
1377 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1379 if (new->flags & IRQF_PERCPU) {
1380 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1381 irq_settings_set_per_cpu(desc);
1384 if (new->flags & IRQF_ONESHOT)
1385 desc->istate |= IRQS_ONESHOT;
1387 /* Exclude IRQ from balancing if requested */
1388 if (new->flags & IRQF_NOBALANCING) {
1389 irq_settings_set_no_balancing(desc);
1390 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1393 if (irq_settings_can_autoenable(desc)) {
1394 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1395 } else {
1397 * Shared interrupts do not go well with disabling
1398 * auto enable. The sharing interrupt might request
1399 * it while it's still disabled and then wait for
1400 * interrupts forever.
1402 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1403 /* Undo nested disables: */
1404 desc->depth = 1;
1407 } else if (new->flags & IRQF_TRIGGER_MASK) {
1408 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1409 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1411 if (nmsk != omsk)
1412 /* hope the handler works with current trigger mode */
1413 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1414 irq, omsk, nmsk);
1417 *old_ptr = new;
1419 irq_pm_install_action(desc, new);
1421 /* Reset broken irq detection when installing new handler */
1422 desc->irq_count = 0;
1423 desc->irqs_unhandled = 0;
1426 * Check whether we disabled the irq via the spurious handler
1427 * before. Reenable it and give it another chance.
1429 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1430 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1431 __enable_irq(desc);
1434 raw_spin_unlock_irqrestore(&desc->lock, flags);
1435 chip_bus_sync_unlock(desc);
1436 mutex_unlock(&desc->request_mutex);
1438 irq_setup_timings(desc, new);
1441 * Strictly no need to wake it up, but hung_task complains
1442 * when no hard interrupt wakes the thread up.
1444 if (new->thread)
1445 wake_up_process(new->thread);
1446 if (new->secondary)
1447 wake_up_process(new->secondary->thread);
1449 register_irq_proc(irq, desc);
1450 new->dir = NULL;
1451 register_handler_proc(irq, new);
1452 return 0;
1454 mismatch:
1455 if (!(new->flags & IRQF_PROBE_SHARED)) {
1456 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1457 irq, new->flags, new->name, old->flags, old->name);
1458 #ifdef CONFIG_DEBUG_SHIRQ
1459 dump_stack();
1460 #endif
1462 ret = -EBUSY;
1464 out_unlock:
1465 raw_spin_unlock_irqrestore(&desc->lock, flags);
1467 if (!desc->action)
1468 irq_release_resources(desc);
1469 out_bus_unlock:
1470 chip_bus_sync_unlock(desc);
1471 mutex_unlock(&desc->request_mutex);
1473 out_thread:
1474 if (new->thread) {
1475 struct task_struct *t = new->thread;
1477 new->thread = NULL;
1478 kthread_stop(t);
1479 put_task_struct(t);
1481 if (new->secondary && new->secondary->thread) {
1482 struct task_struct *t = new->secondary->thread;
1484 new->secondary->thread = NULL;
1485 kthread_stop(t);
1486 put_task_struct(t);
1488 out_mput:
1489 module_put(desc->owner);
1490 return ret;
1494 * setup_irq - setup an interrupt
1495 * @irq: Interrupt line to setup
1496 * @act: irqaction for the interrupt
1498 * Used to statically setup interrupts in the early boot process.
1500 int setup_irq(unsigned int irq, struct irqaction *act)
1502 int retval;
1503 struct irq_desc *desc = irq_to_desc(irq);
1505 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1506 return -EINVAL;
1508 retval = irq_chip_pm_get(&desc->irq_data);
1509 if (retval < 0)
1510 return retval;
1512 retval = __setup_irq(irq, desc, act);
1514 if (retval)
1515 irq_chip_pm_put(&desc->irq_data);
1517 return retval;
1519 EXPORT_SYMBOL_GPL(setup_irq);
1522 * Internal function to unregister an irqaction - used to free
1523 * regular and special interrupts that are part of the architecture.
1525 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1527 unsigned irq = desc->irq_data.irq;
1528 struct irqaction *action, **action_ptr;
1529 unsigned long flags;
1531 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1533 if (!desc)
1534 return NULL;
1536 mutex_lock(&desc->request_mutex);
1537 chip_bus_lock(desc);
1538 raw_spin_lock_irqsave(&desc->lock, flags);
1541 * There can be multiple actions per IRQ descriptor, find the right
1542 * one based on the dev_id:
1544 action_ptr = &desc->action;
1545 for (;;) {
1546 action = *action_ptr;
1548 if (!action) {
1549 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1550 raw_spin_unlock_irqrestore(&desc->lock, flags);
1551 chip_bus_sync_unlock(desc);
1552 mutex_unlock(&desc->request_mutex);
1553 return NULL;
1556 if (action->dev_id == dev_id)
1557 break;
1558 action_ptr = &action->next;
1561 /* Found it - now remove it from the list of entries: */
1562 *action_ptr = action->next;
1564 irq_pm_remove_action(desc, action);
1566 /* If this was the last handler, shut down the IRQ line: */
1567 if (!desc->action) {
1568 irq_settings_clr_disable_unlazy(desc);
1569 irq_shutdown(desc);
1572 #ifdef CONFIG_SMP
1573 /* make sure affinity_hint is cleaned up */
1574 if (WARN_ON_ONCE(desc->affinity_hint))
1575 desc->affinity_hint = NULL;
1576 #endif
1578 raw_spin_unlock_irqrestore(&desc->lock, flags);
1580 * Drop bus_lock here so the changes which were done in the chip
1581 * callbacks above are synced out to the irq chips which hang
1582 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1584 * Aside of that the bus_lock can also be taken from the threaded
1585 * handler in irq_finalize_oneshot() which results in a deadlock
1586 * because synchronize_irq() would wait forever for the thread to
1587 * complete, which is blocked on the bus lock.
1589 * The still held desc->request_mutex() protects against a
1590 * concurrent request_irq() of this irq so the release of resources
1591 * and timing data is properly serialized.
1593 chip_bus_sync_unlock(desc);
1595 unregister_handler_proc(irq, action);
1597 /* Make sure it's not being used on another CPU: */
1598 synchronize_irq(irq);
1600 #ifdef CONFIG_DEBUG_SHIRQ
1602 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1603 * event to happen even now it's being freed, so let's make sure that
1604 * is so by doing an extra call to the handler ....
1606 * ( We do this after actually deregistering it, to make sure that a
1607 * 'real' IRQ doesn't run in * parallel with our fake. )
1609 if (action->flags & IRQF_SHARED) {
1610 local_irq_save(flags);
1611 action->handler(irq, dev_id);
1612 local_irq_restore(flags);
1614 #endif
1616 if (action->thread) {
1617 kthread_stop(action->thread);
1618 put_task_struct(action->thread);
1619 if (action->secondary && action->secondary->thread) {
1620 kthread_stop(action->secondary->thread);
1621 put_task_struct(action->secondary->thread);
1625 /* Last action releases resources */
1626 if (!desc->action) {
1628 * Reaquire bus lock as irq_release_resources() might
1629 * require it to deallocate resources over the slow bus.
1631 chip_bus_lock(desc);
1632 irq_release_resources(desc);
1633 chip_bus_sync_unlock(desc);
1634 irq_remove_timings(desc);
1637 mutex_unlock(&desc->request_mutex);
1639 irq_chip_pm_put(&desc->irq_data);
1640 module_put(desc->owner);
1641 kfree(action->secondary);
1642 return action;
1646 * remove_irq - free an interrupt
1647 * @irq: Interrupt line to free
1648 * @act: irqaction for the interrupt
1650 * Used to remove interrupts statically setup by the early boot process.
1652 void remove_irq(unsigned int irq, struct irqaction *act)
1654 struct irq_desc *desc = irq_to_desc(irq);
1656 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1657 __free_irq(desc, act->dev_id);
1659 EXPORT_SYMBOL_GPL(remove_irq);
1662 * free_irq - free an interrupt allocated with request_irq
1663 * @irq: Interrupt line to free
1664 * @dev_id: Device identity to free
1666 * Remove an interrupt handler. The handler is removed and if the
1667 * interrupt line is no longer in use by any driver it is disabled.
1668 * On a shared IRQ the caller must ensure the interrupt is disabled
1669 * on the card it drives before calling this function. The function
1670 * does not return until any executing interrupts for this IRQ
1671 * have completed.
1673 * This function must not be called from interrupt context.
1675 * Returns the devname argument passed to request_irq.
1677 const void *free_irq(unsigned int irq, void *dev_id)
1679 struct irq_desc *desc = irq_to_desc(irq);
1680 struct irqaction *action;
1681 const char *devname;
1683 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1684 return NULL;
1686 #ifdef CONFIG_SMP
1687 if (WARN_ON(desc->affinity_notify))
1688 desc->affinity_notify = NULL;
1689 #endif
1691 action = __free_irq(desc, dev_id);
1693 if (!action)
1694 return NULL;
1696 devname = action->name;
1697 kfree(action);
1698 return devname;
1700 EXPORT_SYMBOL(free_irq);
1703 * request_threaded_irq - allocate an interrupt line
1704 * @irq: Interrupt line to allocate
1705 * @handler: Function to be called when the IRQ occurs.
1706 * Primary handler for threaded interrupts
1707 * If NULL and thread_fn != NULL the default
1708 * primary handler is installed
1709 * @thread_fn: Function called from the irq handler thread
1710 * If NULL, no irq thread is created
1711 * @irqflags: Interrupt type flags
1712 * @devname: An ascii name for the claiming device
1713 * @dev_id: A cookie passed back to the handler function
1715 * This call allocates interrupt resources and enables the
1716 * interrupt line and IRQ handling. From the point this
1717 * call is made your handler function may be invoked. Since
1718 * your handler function must clear any interrupt the board
1719 * raises, you must take care both to initialise your hardware
1720 * and to set up the interrupt handler in the right order.
1722 * If you want to set up a threaded irq handler for your device
1723 * then you need to supply @handler and @thread_fn. @handler is
1724 * still called in hard interrupt context and has to check
1725 * whether the interrupt originates from the device. If yes it
1726 * needs to disable the interrupt on the device and return
1727 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1728 * @thread_fn. This split handler design is necessary to support
1729 * shared interrupts.
1731 * Dev_id must be globally unique. Normally the address of the
1732 * device data structure is used as the cookie. Since the handler
1733 * receives this value it makes sense to use it.
1735 * If your interrupt is shared you must pass a non NULL dev_id
1736 * as this is required when freeing the interrupt.
1738 * Flags:
1740 * IRQF_SHARED Interrupt is shared
1741 * IRQF_TRIGGER_* Specify active edge(s) or level
1744 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1745 irq_handler_t thread_fn, unsigned long irqflags,
1746 const char *devname, void *dev_id)
1748 struct irqaction *action;
1749 struct irq_desc *desc;
1750 int retval;
1752 if (irq == IRQ_NOTCONNECTED)
1753 return -ENOTCONN;
1756 * Sanity-check: shared interrupts must pass in a real dev-ID,
1757 * otherwise we'll have trouble later trying to figure out
1758 * which interrupt is which (messes up the interrupt freeing
1759 * logic etc).
1761 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1762 * it cannot be set along with IRQF_NO_SUSPEND.
1764 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1765 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1766 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1767 return -EINVAL;
1769 desc = irq_to_desc(irq);
1770 if (!desc)
1771 return -EINVAL;
1773 if (!irq_settings_can_request(desc) ||
1774 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1775 return -EINVAL;
1777 if (!handler) {
1778 if (!thread_fn)
1779 return -EINVAL;
1780 handler = irq_default_primary_handler;
1783 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1784 if (!action)
1785 return -ENOMEM;
1787 action->handler = handler;
1788 action->thread_fn = thread_fn;
1789 action->flags = irqflags;
1790 action->name = devname;
1791 action->dev_id = dev_id;
1793 retval = irq_chip_pm_get(&desc->irq_data);
1794 if (retval < 0) {
1795 kfree(action);
1796 return retval;
1799 retval = __setup_irq(irq, desc, action);
1801 if (retval) {
1802 irq_chip_pm_put(&desc->irq_data);
1803 kfree(action->secondary);
1804 kfree(action);
1807 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1808 if (!retval && (irqflags & IRQF_SHARED)) {
1810 * It's a shared IRQ -- the driver ought to be prepared for it
1811 * to happen immediately, so let's make sure....
1812 * We disable the irq to make sure that a 'real' IRQ doesn't
1813 * run in parallel with our fake.
1815 unsigned long flags;
1817 disable_irq(irq);
1818 local_irq_save(flags);
1820 handler(irq, dev_id);
1822 local_irq_restore(flags);
1823 enable_irq(irq);
1825 #endif
1826 return retval;
1828 EXPORT_SYMBOL(request_threaded_irq);
1831 * request_any_context_irq - allocate an interrupt line
1832 * @irq: Interrupt line to allocate
1833 * @handler: Function to be called when the IRQ occurs.
1834 * Threaded handler for threaded interrupts.
1835 * @flags: Interrupt type flags
1836 * @name: An ascii name for the claiming device
1837 * @dev_id: A cookie passed back to the handler function
1839 * This call allocates interrupt resources and enables the
1840 * interrupt line and IRQ handling. It selects either a
1841 * hardirq or threaded handling method depending on the
1842 * context.
1844 * On failure, it returns a negative value. On success,
1845 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1847 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1848 unsigned long flags, const char *name, void *dev_id)
1850 struct irq_desc *desc;
1851 int ret;
1853 if (irq == IRQ_NOTCONNECTED)
1854 return -ENOTCONN;
1856 desc = irq_to_desc(irq);
1857 if (!desc)
1858 return -EINVAL;
1860 if (irq_settings_is_nested_thread(desc)) {
1861 ret = request_threaded_irq(irq, NULL, handler,
1862 flags, name, dev_id);
1863 return !ret ? IRQC_IS_NESTED : ret;
1866 ret = request_irq(irq, handler, flags, name, dev_id);
1867 return !ret ? IRQC_IS_HARDIRQ : ret;
1869 EXPORT_SYMBOL_GPL(request_any_context_irq);
1871 void enable_percpu_irq(unsigned int irq, unsigned int type)
1873 unsigned int cpu = smp_processor_id();
1874 unsigned long flags;
1875 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1877 if (!desc)
1878 return;
1881 * If the trigger type is not specified by the caller, then
1882 * use the default for this interrupt.
1884 type &= IRQ_TYPE_SENSE_MASK;
1885 if (type == IRQ_TYPE_NONE)
1886 type = irqd_get_trigger_type(&desc->irq_data);
1888 if (type != IRQ_TYPE_NONE) {
1889 int ret;
1891 ret = __irq_set_trigger(desc, type);
1893 if (ret) {
1894 WARN(1, "failed to set type for IRQ%d\n", irq);
1895 goto out;
1899 irq_percpu_enable(desc, cpu);
1900 out:
1901 irq_put_desc_unlock(desc, flags);
1903 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1906 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1907 * @irq: Linux irq number to check for
1909 * Must be called from a non migratable context. Returns the enable
1910 * state of a per cpu interrupt on the current cpu.
1912 bool irq_percpu_is_enabled(unsigned int irq)
1914 unsigned int cpu = smp_processor_id();
1915 struct irq_desc *desc;
1916 unsigned long flags;
1917 bool is_enabled;
1919 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1920 if (!desc)
1921 return false;
1923 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1924 irq_put_desc_unlock(desc, flags);
1926 return is_enabled;
1928 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1930 void disable_percpu_irq(unsigned int irq)
1932 unsigned int cpu = smp_processor_id();
1933 unsigned long flags;
1934 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1936 if (!desc)
1937 return;
1939 irq_percpu_disable(desc, cpu);
1940 irq_put_desc_unlock(desc, flags);
1942 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1945 * Internal function to unregister a percpu irqaction.
1947 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1949 struct irq_desc *desc = irq_to_desc(irq);
1950 struct irqaction *action;
1951 unsigned long flags;
1953 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1955 if (!desc)
1956 return NULL;
1958 raw_spin_lock_irqsave(&desc->lock, flags);
1960 action = desc->action;
1961 if (!action || action->percpu_dev_id != dev_id) {
1962 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1963 goto bad;
1966 if (!cpumask_empty(desc->percpu_enabled)) {
1967 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1968 irq, cpumask_first(desc->percpu_enabled));
1969 goto bad;
1972 /* Found it - now remove it from the list of entries: */
1973 desc->action = NULL;
1975 raw_spin_unlock_irqrestore(&desc->lock, flags);
1977 unregister_handler_proc(irq, action);
1979 irq_chip_pm_put(&desc->irq_data);
1980 module_put(desc->owner);
1981 return action;
1983 bad:
1984 raw_spin_unlock_irqrestore(&desc->lock, flags);
1985 return NULL;
1989 * remove_percpu_irq - free a per-cpu interrupt
1990 * @irq: Interrupt line to free
1991 * @act: irqaction for the interrupt
1993 * Used to remove interrupts statically setup by the early boot process.
1995 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1997 struct irq_desc *desc = irq_to_desc(irq);
1999 if (desc && irq_settings_is_per_cpu_devid(desc))
2000 __free_percpu_irq(irq, act->percpu_dev_id);
2004 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2005 * @irq: Interrupt line to free
2006 * @dev_id: Device identity to free
2008 * Remove a percpu interrupt handler. The handler is removed, but
2009 * the interrupt line is not disabled. This must be done on each
2010 * CPU before calling this function. The function does not return
2011 * until any executing interrupts for this IRQ have completed.
2013 * This function must not be called from interrupt context.
2015 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2017 struct irq_desc *desc = irq_to_desc(irq);
2019 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2020 return;
2022 chip_bus_lock(desc);
2023 kfree(__free_percpu_irq(irq, dev_id));
2024 chip_bus_sync_unlock(desc);
2026 EXPORT_SYMBOL_GPL(free_percpu_irq);
2029 * setup_percpu_irq - setup a per-cpu interrupt
2030 * @irq: Interrupt line to setup
2031 * @act: irqaction for the interrupt
2033 * Used to statically setup per-cpu interrupts in the early boot process.
2035 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2037 struct irq_desc *desc = irq_to_desc(irq);
2038 int retval;
2040 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2041 return -EINVAL;
2043 retval = irq_chip_pm_get(&desc->irq_data);
2044 if (retval < 0)
2045 return retval;
2047 retval = __setup_irq(irq, desc, act);
2049 if (retval)
2050 irq_chip_pm_put(&desc->irq_data);
2052 return retval;
2056 * __request_percpu_irq - allocate a percpu interrupt line
2057 * @irq: Interrupt line to allocate
2058 * @handler: Function to be called when the IRQ occurs.
2059 * @flags: Interrupt type flags (IRQF_TIMER only)
2060 * @devname: An ascii name for the claiming device
2061 * @dev_id: A percpu cookie passed back to the handler function
2063 * This call allocates interrupt resources and enables the
2064 * interrupt on the local CPU. If the interrupt is supposed to be
2065 * enabled on other CPUs, it has to be done on each CPU using
2066 * enable_percpu_irq().
2068 * Dev_id must be globally unique. It is a per-cpu variable, and
2069 * the handler gets called with the interrupted CPU's instance of
2070 * that variable.
2072 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2073 unsigned long flags, const char *devname,
2074 void __percpu *dev_id)
2076 struct irqaction *action;
2077 struct irq_desc *desc;
2078 int retval;
2080 if (!dev_id)
2081 return -EINVAL;
2083 desc = irq_to_desc(irq);
2084 if (!desc || !irq_settings_can_request(desc) ||
2085 !irq_settings_is_per_cpu_devid(desc))
2086 return -EINVAL;
2088 if (flags && flags != IRQF_TIMER)
2089 return -EINVAL;
2091 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2092 if (!action)
2093 return -ENOMEM;
2095 action->handler = handler;
2096 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2097 action->name = devname;
2098 action->percpu_dev_id = dev_id;
2100 retval = irq_chip_pm_get(&desc->irq_data);
2101 if (retval < 0) {
2102 kfree(action);
2103 return retval;
2106 retval = __setup_irq(irq, desc, action);
2108 if (retval) {
2109 irq_chip_pm_put(&desc->irq_data);
2110 kfree(action);
2113 return retval;
2115 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2118 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2119 * @irq: Interrupt line that is forwarded to a VM
2120 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2121 * @state: a pointer to a boolean where the state is to be storeed
2123 * This call snapshots the internal irqchip state of an
2124 * interrupt, returning into @state the bit corresponding to
2125 * stage @which
2127 * This function should be called with preemption disabled if the
2128 * interrupt controller has per-cpu registers.
2130 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2131 bool *state)
2133 struct irq_desc *desc;
2134 struct irq_data *data;
2135 struct irq_chip *chip;
2136 unsigned long flags;
2137 int err = -EINVAL;
2139 desc = irq_get_desc_buslock(irq, &flags, 0);
2140 if (!desc)
2141 return err;
2143 data = irq_desc_get_irq_data(desc);
2145 do {
2146 chip = irq_data_get_irq_chip(data);
2147 if (chip->irq_get_irqchip_state)
2148 break;
2149 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2150 data = data->parent_data;
2151 #else
2152 data = NULL;
2153 #endif
2154 } while (data);
2156 if (data)
2157 err = chip->irq_get_irqchip_state(data, which, state);
2159 irq_put_desc_busunlock(desc, flags);
2160 return err;
2162 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2165 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2166 * @irq: Interrupt line that is forwarded to a VM
2167 * @which: State to be restored (one of IRQCHIP_STATE_*)
2168 * @val: Value corresponding to @which
2170 * This call sets the internal irqchip state of an interrupt,
2171 * depending on the value of @which.
2173 * This function should be called with preemption disabled if the
2174 * interrupt controller has per-cpu registers.
2176 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2177 bool val)
2179 struct irq_desc *desc;
2180 struct irq_data *data;
2181 struct irq_chip *chip;
2182 unsigned long flags;
2183 int err = -EINVAL;
2185 desc = irq_get_desc_buslock(irq, &flags, 0);
2186 if (!desc)
2187 return err;
2189 data = irq_desc_get_irq_data(desc);
2191 do {
2192 chip = irq_data_get_irq_chip(data);
2193 if (chip->irq_set_irqchip_state)
2194 break;
2195 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2196 data = data->parent_data;
2197 #else
2198 data = NULL;
2199 #endif
2200 } while (data);
2202 if (data)
2203 err = chip->irq_set_irqchip_state(data, which, val);
2205 irq_put_desc_busunlock(desc, flags);
2206 return err;
2208 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);