2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
36 #ifdef CONFIG_RCU_BOOST
38 #include "../locking/rtmutex_common.h"
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
44 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
47 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
49 #else /* #ifdef CONFIG_RCU_BOOST */
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
57 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
60 #endif /* #else #ifdef CONFIG_RCU_BOOST */
62 #ifdef CONFIG_RCU_NOCB_CPU
63 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
64 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
65 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
68 * Check the RCU kernel configuration parameters and print informative
69 * messages about anything out of the ordinary.
71 static void __init
rcu_bootup_announce_oddness(void)
73 if (IS_ENABLED(CONFIG_RCU_TRACE
))
74 pr_info("\tRCU event tracing is enabled.\n");
75 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
76 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
80 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
83 if (IS_ENABLED(CONFIG_PROVE_RCU
))
84 pr_info("\tRCU lockdep checking is enabled.\n");
85 if (RCU_NUM_LVLS
>= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87 if (RCU_FANOUT_LEAF
!= 16)
88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
90 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
92 if (nr_cpu_ids
!= NR_CPUS
)
93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS
, nr_cpu_ids
);
94 #ifdef CONFIG_RCU_BOOST
95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
97 if (blimit
!= DEFAULT_RCU_BLIMIT
)
98 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
99 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
100 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
101 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
102 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
103 if (jiffies_till_first_fqs
!= ULONG_MAX
)
104 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
105 if (jiffies_till_next_fqs
!= ULONG_MAX
)
106 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
107 if (rcu_kick_kthreads
)
108 pr_info("\tKick kthreads if too-long grace period.\n");
109 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
110 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
111 if (gp_preinit_delay
)
112 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
114 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
115 if (gp_cleanup_delay
)
116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay
);
117 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
118 pr_info("\tRCU debug extended QS entry/exit.\n");
119 rcupdate_announce_bootup_oddness();
122 #ifdef CONFIG_PREEMPT_RCU
124 RCU_STATE_INITIALIZER(rcu_preempt
, 'p', call_rcu
);
125 static struct rcu_state
*const rcu_state_p
= &rcu_preempt_state
;
126 static struct rcu_data __percpu
*const rcu_data_p
= &rcu_preempt_data
;
128 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
132 * Tell them what RCU they are running.
134 static void __init
rcu_bootup_announce(void)
136 pr_info("Preemptible hierarchical RCU implementation.\n");
137 rcu_bootup_announce_oddness();
140 /* Flags for rcu_preempt_ctxt_queue() decision table. */
141 #define RCU_GP_TASKS 0x8
142 #define RCU_EXP_TASKS 0x4
143 #define RCU_GP_BLKD 0x2
144 #define RCU_EXP_BLKD 0x1
147 * Queues a task preempted within an RCU-preempt read-side critical
148 * section into the appropriate location within the ->blkd_tasks list,
149 * depending on the states of any ongoing normal and expedited grace
150 * periods. The ->gp_tasks pointer indicates which element the normal
151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152 * indicates which element the expedited grace period is waiting on (again,
153 * NULL if none). If a grace period is waiting on a given element in the
154 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
155 * adding a task to the tail of the list blocks any grace period that is
156 * already waiting on one of the elements. In contrast, adding a task
157 * to the head of the list won't block any grace period that is already
158 * waiting on one of the elements.
160 * This queuing is imprecise, and can sometimes make an ongoing grace
161 * period wait for a task that is not strictly speaking blocking it.
162 * Given the choice, we needlessly block a normal grace period rather than
163 * blocking an expedited grace period.
165 * Note that an endless sequence of expedited grace periods still cannot
166 * indefinitely postpone a normal grace period. Eventually, all of the
167 * fixed number of preempted tasks blocking the normal grace period that are
168 * not also blocking the expedited grace period will resume and complete
169 * their RCU read-side critical sections. At that point, the ->gp_tasks
170 * pointer will equal the ->exp_tasks pointer, at which point the end of
171 * the corresponding expedited grace period will also be the end of the
172 * normal grace period.
174 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
175 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
177 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
178 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
179 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
180 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
181 struct task_struct
*t
= current
;
183 raw_lockdep_assert_held_rcu_node(rnp
);
184 WARN_ON_ONCE(rdp
->mynode
!= rnp
);
185 WARN_ON_ONCE(rnp
->level
!= rcu_num_lvls
- 1);
188 * Decide where to queue the newly blocked task. In theory,
189 * this could be an if-statement. In practice, when I tried
190 * that, it was quite messy.
192 switch (blkd_state
) {
195 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
197 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
200 * Blocking neither GP, or first task blocking the normal
201 * GP but not blocking the already-waiting expedited GP.
202 * Queue at the head of the list to avoid unnecessarily
203 * blocking the already-waiting GPs.
205 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
210 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
211 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
212 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
213 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
216 * First task arriving that blocks either GP, or first task
217 * arriving that blocks the expedited GP (with the normal
218 * GP already waiting), or a task arriving that blocks
219 * both GPs with both GPs already waiting. Queue at the
220 * tail of the list to avoid any GP waiting on any of the
221 * already queued tasks that are not blocking it.
223 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
226 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
227 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
228 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
231 * Second or subsequent task blocking the expedited GP.
232 * The task either does not block the normal GP, or is the
233 * first task blocking the normal GP. Queue just after
234 * the first task blocking the expedited GP.
236 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
239 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
240 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
243 * Second or subsequent task blocking the normal GP.
244 * The task does not block the expedited GP. Queue just
245 * after the first task blocking the normal GP.
247 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
252 /* Yet another exercise in excessive paranoia. */
258 * We have now queued the task. If it was the first one to
259 * block either grace period, update the ->gp_tasks and/or
260 * ->exp_tasks pointers, respectively, to reference the newly
263 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
))
264 rnp
->gp_tasks
= &t
->rcu_node_entry
;
265 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
266 rnp
->exp_tasks
= &t
->rcu_node_entry
;
267 WARN_ON_ONCE(!(blkd_state
& RCU_GP_BLKD
) !=
268 !(rnp
->qsmask
& rdp
->grpmask
));
269 WARN_ON_ONCE(!(blkd_state
& RCU_EXP_BLKD
) !=
270 !(rnp
->expmask
& rdp
->grpmask
));
271 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
274 * Report the quiescent state for the expedited GP. This expedited
275 * GP should not be able to end until we report, so there should be
276 * no need to check for a subsequent expedited GP. (Though we are
277 * still in a quiescent state in any case.)
279 if (blkd_state
& RCU_EXP_BLKD
&&
280 t
->rcu_read_unlock_special
.b
.exp_need_qs
) {
281 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
282 rcu_report_exp_rdp(rdp
->rsp
, rdp
, true);
284 WARN_ON_ONCE(t
->rcu_read_unlock_special
.b
.exp_need_qs
);
289 * Record a preemptible-RCU quiescent state for the specified CPU. Note
290 * that this just means that the task currently running on the CPU is
291 * not in a quiescent state. There might be any number of tasks blocked
292 * while in an RCU read-side critical section.
294 * As with the other rcu_*_qs() functions, callers to this function
295 * must disable preemption.
297 static void rcu_preempt_qs(void)
299 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
300 if (__this_cpu_read(rcu_data_p
->cpu_no_qs
.s
)) {
301 trace_rcu_grace_period(TPS("rcu_preempt"),
302 __this_cpu_read(rcu_data_p
->gpnum
),
304 __this_cpu_write(rcu_data_p
->cpu_no_qs
.b
.norm
, false);
305 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
306 current
->rcu_read_unlock_special
.b
.need_qs
= false;
311 * We have entered the scheduler, and the current task might soon be
312 * context-switched away from. If this task is in an RCU read-side
313 * critical section, we will no longer be able to rely on the CPU to
314 * record that fact, so we enqueue the task on the blkd_tasks list.
315 * The task will dequeue itself when it exits the outermost enclosing
316 * RCU read-side critical section. Therefore, the current grace period
317 * cannot be permitted to complete until the blkd_tasks list entries
318 * predating the current grace period drain, in other words, until
319 * rnp->gp_tasks becomes NULL.
321 * Caller must disable interrupts.
323 static void rcu_preempt_note_context_switch(bool preempt
)
325 struct task_struct
*t
= current
;
326 struct rcu_data
*rdp
;
327 struct rcu_node
*rnp
;
329 lockdep_assert_irqs_disabled();
330 WARN_ON_ONCE(!preempt
&& t
->rcu_read_lock_nesting
> 0);
331 if (t
->rcu_read_lock_nesting
> 0 &&
332 !t
->rcu_read_unlock_special
.b
.blocked
) {
334 /* Possibly blocking in an RCU read-side critical section. */
335 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
337 raw_spin_lock_rcu_node(rnp
);
338 t
->rcu_read_unlock_special
.b
.blocked
= true;
339 t
->rcu_blocked_node
= rnp
;
342 * Verify the CPU's sanity, trace the preemption, and
343 * then queue the task as required based on the states
344 * of any ongoing and expedited grace periods.
346 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
347 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
348 trace_rcu_preempt_task(rdp
->rsp
->name
,
350 (rnp
->qsmask
& rdp
->grpmask
)
353 rcu_preempt_ctxt_queue(rnp
, rdp
);
354 } else if (t
->rcu_read_lock_nesting
< 0 &&
355 t
->rcu_read_unlock_special
.s
) {
358 * Complete exit from RCU read-side critical section on
359 * behalf of preempted instance of __rcu_read_unlock().
361 rcu_read_unlock_special(t
);
365 * Either we were not in an RCU read-side critical section to
366 * begin with, or we have now recorded that critical section
367 * globally. Either way, we can now note a quiescent state
368 * for this CPU. Again, if we were in an RCU read-side critical
369 * section, and if that critical section was blocking the current
370 * grace period, then the fact that the task has been enqueued
371 * means that we continue to block the current grace period.
377 * Check for preempted RCU readers blocking the current grace period
378 * for the specified rcu_node structure. If the caller needs a reliable
379 * answer, it must hold the rcu_node's ->lock.
381 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
383 return rnp
->gp_tasks
!= NULL
;
387 * Advance a ->blkd_tasks-list pointer to the next entry, instead
388 * returning NULL if at the end of the list.
390 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
391 struct rcu_node
*rnp
)
393 struct list_head
*np
;
395 np
= t
->rcu_node_entry
.next
;
396 if (np
== &rnp
->blkd_tasks
)
402 * Return true if the specified rcu_node structure has tasks that were
403 * preempted within an RCU read-side critical section.
405 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
407 return !list_empty(&rnp
->blkd_tasks
);
411 * Handle special cases during rcu_read_unlock(), such as needing to
412 * notify RCU core processing or task having blocked during the RCU
413 * read-side critical section.
415 void rcu_read_unlock_special(struct task_struct
*t
)
421 struct list_head
*np
;
422 bool drop_boost_mutex
= false;
423 struct rcu_data
*rdp
;
424 struct rcu_node
*rnp
;
425 union rcu_special special
;
427 /* NMI handlers cannot block and cannot safely manipulate state. */
431 local_irq_save(flags
);
434 * If RCU core is waiting for this CPU to exit its critical section,
435 * report the fact that it has exited. Because irqs are disabled,
436 * t->rcu_read_unlock_special cannot change.
438 special
= t
->rcu_read_unlock_special
;
439 if (special
.b
.need_qs
) {
441 t
->rcu_read_unlock_special
.b
.need_qs
= false;
442 if (!t
->rcu_read_unlock_special
.s
) {
443 local_irq_restore(flags
);
449 * Respond to a request for an expedited grace period, but only if
450 * we were not preempted, meaning that we were running on the same
451 * CPU throughout. If we were preempted, the exp_need_qs flag
452 * would have been cleared at the time of the first preemption,
453 * and the quiescent state would be reported when we were dequeued.
455 if (special
.b
.exp_need_qs
) {
456 WARN_ON_ONCE(special
.b
.blocked
);
457 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
458 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
459 rcu_report_exp_rdp(rcu_state_p
, rdp
, true);
460 if (!t
->rcu_read_unlock_special
.s
) {
461 local_irq_restore(flags
);
466 /* Hardware IRQ handlers cannot block, complain if they get here. */
467 if (in_irq() || in_serving_softirq()) {
468 lockdep_rcu_suspicious(__FILE__
, __LINE__
,
469 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
470 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
471 t
->rcu_read_unlock_special
.s
,
472 t
->rcu_read_unlock_special
.b
.blocked
,
473 t
->rcu_read_unlock_special
.b
.exp_need_qs
,
474 t
->rcu_read_unlock_special
.b
.need_qs
);
475 local_irq_restore(flags
);
479 /* Clean up if blocked during RCU read-side critical section. */
480 if (special
.b
.blocked
) {
481 t
->rcu_read_unlock_special
.b
.blocked
= false;
484 * Remove this task from the list it blocked on. The task
485 * now remains queued on the rcu_node corresponding to the
486 * CPU it first blocked on, so there is no longer any need
487 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
489 rnp
= t
->rcu_blocked_node
;
490 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
491 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
492 WARN_ON_ONCE(rnp
->level
!= rcu_num_lvls
- 1);
493 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
494 empty_exp
= sync_rcu_preempt_exp_done(rnp
);
495 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
496 np
= rcu_next_node_entry(t
, rnp
);
497 list_del_init(&t
->rcu_node_entry
);
498 t
->rcu_blocked_node
= NULL
;
499 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
501 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
503 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
505 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
506 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
507 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
508 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
509 rnp
->boost_tasks
= np
;
513 * If this was the last task on the current list, and if
514 * we aren't waiting on any CPUs, report the quiescent state.
515 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
516 * so we must take a snapshot of the expedited state.
518 empty_exp_now
= sync_rcu_preempt_exp_done(rnp
);
519 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
520 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
527 rcu_report_unblock_qs_rnp(rcu_state_p
, rnp
, flags
);
529 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
532 /* Unboost if we were boosted. */
533 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
534 rt_mutex_futex_unlock(&rnp
->boost_mtx
);
537 * If this was the last task on the expedited lists,
538 * then we need to report up the rcu_node hierarchy.
540 if (!empty_exp
&& empty_exp_now
)
541 rcu_report_exp_rnp(rcu_state_p
, rnp
, true);
543 local_irq_restore(flags
);
548 * Dump detailed information for all tasks blocking the current RCU
549 * grace period on the specified rcu_node structure.
551 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
554 struct task_struct
*t
;
556 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
557 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
558 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
561 t
= list_entry(rnp
->gp_tasks
->prev
,
562 struct task_struct
, rcu_node_entry
);
563 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
565 * We could be printing a lot while holding a spinlock.
566 * Avoid triggering hard lockup.
568 touch_nmi_watchdog();
571 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
575 * Dump detailed information for all tasks blocking the current RCU
578 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
580 struct rcu_node
*rnp
= rcu_get_root(rsp
);
582 rcu_print_detail_task_stall_rnp(rnp
);
583 rcu_for_each_leaf_node(rsp
, rnp
)
584 rcu_print_detail_task_stall_rnp(rnp
);
587 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
589 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
590 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
593 static void rcu_print_task_stall_end(void)
599 * Scan the current list of tasks blocked within RCU read-side critical
600 * sections, printing out the tid of each.
602 static int rcu_print_task_stall(struct rcu_node
*rnp
)
604 struct task_struct
*t
;
607 if (!rcu_preempt_blocked_readers_cgp(rnp
))
609 rcu_print_task_stall_begin(rnp
);
610 t
= list_entry(rnp
->gp_tasks
->prev
,
611 struct task_struct
, rcu_node_entry
);
612 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
613 pr_cont(" P%d", t
->pid
);
616 rcu_print_task_stall_end();
621 * Scan the current list of tasks blocked within RCU read-side critical
622 * sections, printing out the tid of each that is blocking the current
623 * expedited grace period.
625 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
627 struct task_struct
*t
;
632 t
= list_entry(rnp
->exp_tasks
->prev
,
633 struct task_struct
, rcu_node_entry
);
634 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
635 pr_cont(" P%d", t
->pid
);
642 * Check that the list of blocked tasks for the newly completed grace
643 * period is in fact empty. It is a serious bug to complete a grace
644 * period that still has RCU readers blocked! This function must be
645 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
646 * must be held by the caller.
648 * Also, if there are blocked tasks on the list, they automatically
649 * block the newly created grace period, so set up ->gp_tasks accordingly.
651 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
653 struct task_struct
*t
;
655 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
656 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
657 if (rcu_preempt_has_tasks(rnp
)) {
658 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
659 t
= container_of(rnp
->gp_tasks
, struct task_struct
,
661 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
664 WARN_ON_ONCE(rnp
->qsmask
);
668 * Check for a quiescent state from the current CPU. When a task blocks,
669 * the task is recorded in the corresponding CPU's rcu_node structure,
670 * which is checked elsewhere.
672 * Caller must disable hard irqs.
674 static void rcu_preempt_check_callbacks(void)
676 struct task_struct
*t
= current
;
678 if (t
->rcu_read_lock_nesting
== 0) {
682 if (t
->rcu_read_lock_nesting
> 0 &&
683 __this_cpu_read(rcu_data_p
->core_needs_qs
) &&
684 __this_cpu_read(rcu_data_p
->cpu_no_qs
.b
.norm
))
685 t
->rcu_read_unlock_special
.b
.need_qs
= true;
688 #ifdef CONFIG_RCU_BOOST
690 static void rcu_preempt_do_callbacks(void)
692 rcu_do_batch(rcu_state_p
, this_cpu_ptr(rcu_data_p
));
695 #endif /* #ifdef CONFIG_RCU_BOOST */
698 * call_rcu() - Queue an RCU callback for invocation after a grace period.
699 * @head: structure to be used for queueing the RCU updates.
700 * @func: actual callback function to be invoked after the grace period
702 * The callback function will be invoked some time after a full grace
703 * period elapses, in other words after all pre-existing RCU read-side
704 * critical sections have completed. However, the callback function
705 * might well execute concurrently with RCU read-side critical sections
706 * that started after call_rcu() was invoked. RCU read-side critical
707 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
710 * Note that all CPUs must agree that the grace period extended beyond
711 * all pre-existing RCU read-side critical section. On systems with more
712 * than one CPU, this means that when "func()" is invoked, each CPU is
713 * guaranteed to have executed a full memory barrier since the end of its
714 * last RCU read-side critical section whose beginning preceded the call
715 * to call_rcu(). It also means that each CPU executing an RCU read-side
716 * critical section that continues beyond the start of "func()" must have
717 * executed a memory barrier after the call_rcu() but before the beginning
718 * of that RCU read-side critical section. Note that these guarantees
719 * include CPUs that are offline, idle, or executing in user mode, as
720 * well as CPUs that are executing in the kernel.
722 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
723 * resulting RCU callback function "func()", then both CPU A and CPU B are
724 * guaranteed to execute a full memory barrier during the time interval
725 * between the call to call_rcu() and the invocation of "func()" -- even
726 * if CPU A and CPU B are the same CPU (but again only if the system has
727 * more than one CPU).
729 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
731 __call_rcu(head
, func
, rcu_state_p
, -1, 0);
733 EXPORT_SYMBOL_GPL(call_rcu
);
736 * synchronize_rcu - wait until a grace period has elapsed.
738 * Control will return to the caller some time after a full grace
739 * period has elapsed, in other words after all currently executing RCU
740 * read-side critical sections have completed. Note, however, that
741 * upon return from synchronize_rcu(), the caller might well be executing
742 * concurrently with new RCU read-side critical sections that began while
743 * synchronize_rcu() was waiting. RCU read-side critical sections are
744 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
746 * See the description of synchronize_sched() for more detailed
747 * information on memory-ordering guarantees. However, please note
748 * that -only- the memory-ordering guarantees apply. For example,
749 * synchronize_rcu() is -not- guaranteed to wait on things like code
750 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
751 * guaranteed to wait on RCU read-side critical sections, that is, sections
752 * of code protected by rcu_read_lock().
754 void synchronize_rcu(void)
756 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
757 lock_is_held(&rcu_lock_map
) ||
758 lock_is_held(&rcu_sched_lock_map
),
759 "Illegal synchronize_rcu() in RCU read-side critical section");
760 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
762 if (rcu_gp_is_expedited())
763 synchronize_rcu_expedited();
765 wait_rcu_gp(call_rcu
);
767 EXPORT_SYMBOL_GPL(synchronize_rcu
);
770 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
772 * Note that this primitive does not necessarily wait for an RCU grace period
773 * to complete. For example, if there are no RCU callbacks queued anywhere
774 * in the system, then rcu_barrier() is within its rights to return
775 * immediately, without waiting for anything, much less an RCU grace period.
777 void rcu_barrier(void)
779 _rcu_barrier(rcu_state_p
);
781 EXPORT_SYMBOL_GPL(rcu_barrier
);
784 * Initialize preemptible RCU's state structures.
786 static void __init
__rcu_init_preempt(void)
788 rcu_init_one(rcu_state_p
);
792 * Check for a task exiting while in a preemptible-RCU read-side
793 * critical section, clean up if so. No need to issue warnings,
794 * as debug_check_no_locks_held() already does this if lockdep
799 struct task_struct
*t
= current
;
801 if (likely(list_empty(¤t
->rcu_node_entry
)))
803 t
->rcu_read_lock_nesting
= 1;
805 t
->rcu_read_unlock_special
.b
.blocked
= true;
809 #else /* #ifdef CONFIG_PREEMPT_RCU */
811 static struct rcu_state
*const rcu_state_p
= &rcu_sched_state
;
814 * Tell them what RCU they are running.
816 static void __init
rcu_bootup_announce(void)
818 pr_info("Hierarchical RCU implementation.\n");
819 rcu_bootup_announce_oddness();
823 * Because preemptible RCU does not exist, we never have to check for
824 * CPUs being in quiescent states.
826 static void rcu_preempt_note_context_switch(bool preempt
)
831 * Because preemptible RCU does not exist, there are never any preempted
834 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
840 * Because there is no preemptible RCU, there can be no readers blocked.
842 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
848 * Because preemptible RCU does not exist, we never have to check for
849 * tasks blocked within RCU read-side critical sections.
851 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
856 * Because preemptible RCU does not exist, we never have to check for
857 * tasks blocked within RCU read-side critical sections.
859 static int rcu_print_task_stall(struct rcu_node
*rnp
)
865 * Because preemptible RCU does not exist, we never have to check for
866 * tasks blocked within RCU read-side critical sections that are
867 * blocking the current expedited grace period.
869 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
875 * Because there is no preemptible RCU, there can be no readers blocked,
876 * so there is no need to check for blocked tasks. So check only for
877 * bogus qsmask values.
879 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
881 WARN_ON_ONCE(rnp
->qsmask
);
885 * Because preemptible RCU does not exist, it never has any callbacks
888 static void rcu_preempt_check_callbacks(void)
893 * Because preemptible RCU does not exist, rcu_barrier() is just
894 * another name for rcu_barrier_sched().
896 void rcu_barrier(void)
900 EXPORT_SYMBOL_GPL(rcu_barrier
);
903 * Because preemptible RCU does not exist, it need not be initialized.
905 static void __init
__rcu_init_preempt(void)
910 * Because preemptible RCU does not exist, tasks cannot possibly exit
911 * while in preemptible RCU read-side critical sections.
917 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
919 #ifdef CONFIG_RCU_BOOST
921 static void rcu_wake_cond(struct task_struct
*t
, int status
)
924 * If the thread is yielding, only wake it when this
925 * is invoked from idle
927 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
932 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
933 * or ->boost_tasks, advancing the pointer to the next task in the
936 * Note that irqs must be enabled: boosting the task can block.
937 * Returns 1 if there are more tasks needing to be boosted.
939 static int rcu_boost(struct rcu_node
*rnp
)
942 struct task_struct
*t
;
943 struct list_head
*tb
;
945 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
946 READ_ONCE(rnp
->boost_tasks
) == NULL
)
947 return 0; /* Nothing left to boost. */
949 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
952 * Recheck under the lock: all tasks in need of boosting
953 * might exit their RCU read-side critical sections on their own.
955 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
956 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
961 * Preferentially boost tasks blocking expedited grace periods.
962 * This cannot starve the normal grace periods because a second
963 * expedited grace period must boost all blocked tasks, including
964 * those blocking the pre-existing normal grace period.
966 if (rnp
->exp_tasks
!= NULL
)
969 tb
= rnp
->boost_tasks
;
972 * We boost task t by manufacturing an rt_mutex that appears to
973 * be held by task t. We leave a pointer to that rt_mutex where
974 * task t can find it, and task t will release the mutex when it
975 * exits its outermost RCU read-side critical section. Then
976 * simply acquiring this artificial rt_mutex will boost task
977 * t's priority. (Thanks to tglx for suggesting this approach!)
979 * Note that task t must acquire rnp->lock to remove itself from
980 * the ->blkd_tasks list, which it will do from exit() if from
981 * nowhere else. We therefore are guaranteed that task t will
982 * stay around at least until we drop rnp->lock. Note that
983 * rnp->lock also resolves races between our priority boosting
984 * and task t's exiting its outermost RCU read-side critical
987 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
988 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
989 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
990 /* Lock only for side effect: boosts task t's priority. */
991 rt_mutex_lock(&rnp
->boost_mtx
);
992 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
994 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
995 READ_ONCE(rnp
->boost_tasks
) != NULL
;
999 * Priority-boosting kthread, one per leaf rcu_node.
1001 static int rcu_boost_kthread(void *arg
)
1003 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1007 trace_rcu_utilization(TPS("Start boost kthread@init"));
1009 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1010 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1011 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1012 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1013 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1014 more2boost
= rcu_boost(rnp
);
1020 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1021 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1022 schedule_timeout_interruptible(2);
1023 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1028 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1033 * Check to see if it is time to start boosting RCU readers that are
1034 * blocking the current grace period, and, if so, tell the per-rcu_node
1035 * kthread to start boosting them. If there is an expedited grace
1036 * period in progress, it is always time to boost.
1038 * The caller must hold rnp->lock, which this function releases.
1039 * The ->boost_kthread_task is immortal, so we don't need to worry
1040 * about it going away.
1042 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1043 __releases(rnp
->lock
)
1045 struct task_struct
*t
;
1047 raw_lockdep_assert_held_rcu_node(rnp
);
1048 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1049 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1052 if (rnp
->exp_tasks
!= NULL
||
1053 (rnp
->gp_tasks
!= NULL
&&
1054 rnp
->boost_tasks
== NULL
&&
1056 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1057 if (rnp
->exp_tasks
== NULL
)
1058 rnp
->boost_tasks
= rnp
->gp_tasks
;
1059 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1060 t
= rnp
->boost_kthread_task
;
1062 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1064 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1069 * Wake up the per-CPU kthread to invoke RCU callbacks.
1071 static void invoke_rcu_callbacks_kthread(void)
1073 unsigned long flags
;
1075 local_irq_save(flags
);
1076 __this_cpu_write(rcu_cpu_has_work
, 1);
1077 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1078 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1079 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1080 __this_cpu_read(rcu_cpu_kthread_status
));
1082 local_irq_restore(flags
);
1086 * Is the current CPU running the RCU-callbacks kthread?
1087 * Caller must have preemption disabled.
1089 static bool rcu_is_callbacks_kthread(void)
1091 return __this_cpu_read(rcu_cpu_kthread_task
) == current
;
1094 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1097 * Do priority-boost accounting for the start of a new grace period.
1099 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1101 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1105 * Create an RCU-boost kthread for the specified node if one does not
1106 * already exist. We only create this kthread for preemptible RCU.
1107 * Returns zero if all is well, a negated errno otherwise.
1109 static int rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1110 struct rcu_node
*rnp
)
1112 int rnp_index
= rnp
- &rsp
->node
[0];
1113 unsigned long flags
;
1114 struct sched_param sp
;
1115 struct task_struct
*t
;
1117 if (rcu_state_p
!= rsp
)
1120 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1124 if (rnp
->boost_kthread_task
!= NULL
)
1126 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1127 "rcub/%d", rnp_index
);
1130 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1131 rnp
->boost_kthread_task
= t
;
1132 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1133 sp
.sched_priority
= kthread_prio
;
1134 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1135 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1139 static void rcu_kthread_do_work(void)
1141 rcu_do_batch(&rcu_sched_state
, this_cpu_ptr(&rcu_sched_data
));
1142 rcu_do_batch(&rcu_bh_state
, this_cpu_ptr(&rcu_bh_data
));
1143 rcu_preempt_do_callbacks();
1146 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1148 struct sched_param sp
;
1150 sp
.sched_priority
= kthread_prio
;
1151 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1154 static void rcu_cpu_kthread_park(unsigned int cpu
)
1156 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1159 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1161 return __this_cpu_read(rcu_cpu_has_work
);
1165 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1166 * RCU softirq used in flavors and configurations of RCU that do not
1167 * support RCU priority boosting.
1169 static void rcu_cpu_kthread(unsigned int cpu
)
1171 unsigned int *statusp
= this_cpu_ptr(&rcu_cpu_kthread_status
);
1172 char work
, *workp
= this_cpu_ptr(&rcu_cpu_has_work
);
1175 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1176 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1178 *statusp
= RCU_KTHREAD_RUNNING
;
1179 this_cpu_inc(rcu_cpu_kthread_loops
);
1180 local_irq_disable();
1185 rcu_kthread_do_work();
1188 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1189 *statusp
= RCU_KTHREAD_WAITING
;
1193 *statusp
= RCU_KTHREAD_YIELDING
;
1194 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1195 schedule_timeout_interruptible(2);
1196 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1197 *statusp
= RCU_KTHREAD_WAITING
;
1201 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1202 * served by the rcu_node in question. The CPU hotplug lock is still
1203 * held, so the value of rnp->qsmaskinit will be stable.
1205 * We don't include outgoingcpu in the affinity set, use -1 if there is
1206 * no outgoing CPU. If there are no CPUs left in the affinity set,
1207 * this function allows the kthread to execute on any CPU.
1209 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1211 struct task_struct
*t
= rnp
->boost_kthread_task
;
1212 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1218 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1220 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1221 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1223 cpumask_set_cpu(cpu
, cm
);
1224 if (cpumask_weight(cm
) == 0)
1226 set_cpus_allowed_ptr(t
, cm
);
1227 free_cpumask_var(cm
);
1230 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1231 .store
= &rcu_cpu_kthread_task
,
1232 .thread_should_run
= rcu_cpu_kthread_should_run
,
1233 .thread_fn
= rcu_cpu_kthread
,
1234 .thread_comm
= "rcuc/%u",
1235 .setup
= rcu_cpu_kthread_setup
,
1236 .park
= rcu_cpu_kthread_park
,
1240 * Spawn boost kthreads -- called as soon as the scheduler is running.
1242 static void __init
rcu_spawn_boost_kthreads(void)
1244 struct rcu_node
*rnp
;
1247 for_each_possible_cpu(cpu
)
1248 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1249 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1250 rcu_for_each_leaf_node(rcu_state_p
, rnp
)
1251 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1254 static void rcu_prepare_kthreads(int cpu
)
1256 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
1257 struct rcu_node
*rnp
= rdp
->mynode
;
1259 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1260 if (rcu_scheduler_fully_active
)
1261 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1264 #else /* #ifdef CONFIG_RCU_BOOST */
1266 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1267 __releases(rnp
->lock
)
1269 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1272 static void invoke_rcu_callbacks_kthread(void)
1277 static bool rcu_is_callbacks_kthread(void)
1282 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1286 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1290 static void __init
rcu_spawn_boost_kthreads(void)
1294 static void rcu_prepare_kthreads(int cpu
)
1298 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1300 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1303 * Check to see if any future RCU-related work will need to be done
1304 * by the current CPU, even if none need be done immediately, returning
1305 * 1 if so. This function is part of the RCU implementation; it is -not-
1306 * an exported member of the RCU API.
1308 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1309 * any flavor of RCU.
1311 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1313 *nextevt
= KTIME_MAX
;
1314 return rcu_cpu_has_callbacks(NULL
);
1318 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1321 static void rcu_cleanup_after_idle(void)
1326 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1329 static void rcu_prepare_for_idle(void)
1334 * Don't bother keeping a running count of the number of RCU callbacks
1335 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1337 static void rcu_idle_count_callbacks_posted(void)
1341 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1344 * This code is invoked when a CPU goes idle, at which point we want
1345 * to have the CPU do everything required for RCU so that it can enter
1346 * the energy-efficient dyntick-idle mode. This is handled by a
1347 * state machine implemented by rcu_prepare_for_idle() below.
1349 * The following three proprocessor symbols control this state machine:
1351 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1352 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1353 * is sized to be roughly one RCU grace period. Those energy-efficiency
1354 * benchmarkers who might otherwise be tempted to set this to a large
1355 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1356 * system. And if you are -that- concerned about energy efficiency,
1357 * just power the system down and be done with it!
1358 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1359 * permitted to sleep in dyntick-idle mode with only lazy RCU
1360 * callbacks pending. Setting this too high can OOM your system.
1362 * The values below work well in practice. If future workloads require
1363 * adjustment, they can be converted into kernel config parameters, though
1364 * making the state machine smarter might be a better option.
1366 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1367 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1369 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1370 module_param(rcu_idle_gp_delay
, int, 0644);
1371 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1372 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1375 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1376 * only if it has been awhile since the last time we did so. Afterwards,
1377 * if there are any callbacks ready for immediate invocation, return true.
1379 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1381 bool cbs_ready
= false;
1382 struct rcu_data
*rdp
;
1383 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1384 struct rcu_node
*rnp
;
1385 struct rcu_state
*rsp
;
1387 /* Exit early if we advanced recently. */
1388 if (jiffies
== rdtp
->last_advance_all
)
1390 rdtp
->last_advance_all
= jiffies
;
1392 for_each_rcu_flavor(rsp
) {
1393 rdp
= this_cpu_ptr(rsp
->rda
);
1397 * Don't bother checking unless a grace period has
1398 * completed since we last checked and there are
1399 * callbacks not yet ready to invoke.
1401 if ((rdp
->completed
!= rnp
->completed
||
1402 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1403 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1404 note_gp_changes(rsp
, rdp
);
1406 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1413 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1414 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1415 * caller to set the timeout based on whether or not there are non-lazy
1418 * The caller must have disabled interrupts.
1420 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1422 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1425 lockdep_assert_irqs_disabled();
1427 /* Snapshot to detect later posting of non-lazy callback. */
1428 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1430 /* If no callbacks, RCU doesn't need the CPU. */
1431 if (!rcu_cpu_has_callbacks(&rdtp
->all_lazy
)) {
1432 *nextevt
= KTIME_MAX
;
1436 /* Attempt to advance callbacks. */
1437 if (rcu_try_advance_all_cbs()) {
1438 /* Some ready to invoke, so initiate later invocation. */
1442 rdtp
->last_accelerate
= jiffies
;
1444 /* Request timer delay depending on laziness, and round. */
1445 if (!rdtp
->all_lazy
) {
1446 dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1447 rcu_idle_gp_delay
) - jiffies
;
1449 dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1451 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1456 * Prepare a CPU for idle from an RCU perspective. The first major task
1457 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1458 * The second major task is to check to see if a non-lazy callback has
1459 * arrived at a CPU that previously had only lazy callbacks. The third
1460 * major task is to accelerate (that is, assign grace-period numbers to)
1461 * any recently arrived callbacks.
1463 * The caller must have disabled interrupts.
1465 static void rcu_prepare_for_idle(void)
1468 struct rcu_data
*rdp
;
1469 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1470 struct rcu_node
*rnp
;
1471 struct rcu_state
*rsp
;
1474 lockdep_assert_irqs_disabled();
1475 if (rcu_is_nocb_cpu(smp_processor_id()))
1478 /* Handle nohz enablement switches conservatively. */
1479 tne
= READ_ONCE(tick_nohz_active
);
1480 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1481 if (rcu_cpu_has_callbacks(NULL
))
1482 invoke_rcu_core(); /* force nohz to see update. */
1483 rdtp
->tick_nohz_enabled_snap
= tne
;
1490 * If a non-lazy callback arrived at a CPU having only lazy
1491 * callbacks, invoke RCU core for the side-effect of recalculating
1492 * idle duration on re-entry to idle.
1494 if (rdtp
->all_lazy
&&
1495 rdtp
->nonlazy_posted
!= rdtp
->nonlazy_posted_snap
) {
1496 rdtp
->all_lazy
= false;
1497 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1503 * If we have not yet accelerated this jiffy, accelerate all
1504 * callbacks on this CPU.
1506 if (rdtp
->last_accelerate
== jiffies
)
1508 rdtp
->last_accelerate
= jiffies
;
1509 for_each_rcu_flavor(rsp
) {
1510 rdp
= this_cpu_ptr(rsp
->rda
);
1511 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1514 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1515 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1516 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1518 rcu_gp_kthread_wake(rsp
);
1523 * Clean up for exit from idle. Attempt to advance callbacks based on
1524 * any grace periods that elapsed while the CPU was idle, and if any
1525 * callbacks are now ready to invoke, initiate invocation.
1527 static void rcu_cleanup_after_idle(void)
1529 lockdep_assert_irqs_disabled();
1530 if (rcu_is_nocb_cpu(smp_processor_id()))
1532 if (rcu_try_advance_all_cbs())
1537 * Keep a running count of the number of non-lazy callbacks posted
1538 * on this CPU. This running counter (which is never decremented) allows
1539 * rcu_prepare_for_idle() to detect when something out of the idle loop
1540 * posts a callback, even if an equal number of callbacks are invoked.
1541 * Of course, callbacks should only be posted from within a trace event
1542 * designed to be called from idle or from within RCU_NONIDLE().
1544 static void rcu_idle_count_callbacks_posted(void)
1546 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1550 * Data for flushing lazy RCU callbacks at OOM time.
1552 static atomic_t oom_callback_count
;
1553 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1556 * RCU OOM callback -- decrement the outstanding count and deliver the
1557 * wake-up if we are the last one.
1559 static void rcu_oom_callback(struct rcu_head
*rhp
)
1561 if (atomic_dec_and_test(&oom_callback_count
))
1562 wake_up(&oom_callback_wq
);
1566 * Post an rcu_oom_notify callback on the current CPU if it has at
1567 * least one lazy callback. This will unnecessarily post callbacks
1568 * to CPUs that already have a non-lazy callback at the end of their
1569 * callback list, but this is an infrequent operation, so accept some
1570 * extra overhead to keep things simple.
1572 static void rcu_oom_notify_cpu(void *unused
)
1574 struct rcu_state
*rsp
;
1575 struct rcu_data
*rdp
;
1577 for_each_rcu_flavor(rsp
) {
1578 rdp
= raw_cpu_ptr(rsp
->rda
);
1579 if (rcu_segcblist_n_lazy_cbs(&rdp
->cblist
)) {
1580 atomic_inc(&oom_callback_count
);
1581 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1587 * If low on memory, ensure that each CPU has a non-lazy callback.
1588 * This will wake up CPUs that have only lazy callbacks, in turn
1589 * ensuring that they free up the corresponding memory in a timely manner.
1590 * Because an uncertain amount of memory will be freed in some uncertain
1591 * timeframe, we do not claim to have freed anything.
1593 static int rcu_oom_notify(struct notifier_block
*self
,
1594 unsigned long notused
, void *nfreed
)
1598 /* Wait for callbacks from earlier instance to complete. */
1599 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1600 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1603 * Prevent premature wakeup: ensure that all increments happen
1604 * before there is a chance of the counter reaching zero.
1606 atomic_set(&oom_callback_count
, 1);
1608 for_each_online_cpu(cpu
) {
1609 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1610 cond_resched_rcu_qs();
1613 /* Unconditionally decrement: no need to wake ourselves up. */
1614 atomic_dec(&oom_callback_count
);
1619 static struct notifier_block rcu_oom_nb
= {
1620 .notifier_call
= rcu_oom_notify
1623 static int __init
rcu_register_oom_notifier(void)
1625 register_oom_notifier(&rcu_oom_nb
);
1628 early_initcall(rcu_register_oom_notifier
);
1630 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1632 #ifdef CONFIG_RCU_FAST_NO_HZ
1634 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1636 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1637 unsigned long nlpd
= rdtp
->nonlazy_posted
- rdtp
->nonlazy_posted_snap
;
1639 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1640 rdtp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1642 rdtp
->all_lazy
? 'L' : '.',
1643 rdtp
->tick_nohz_enabled_snap
? '.' : 'D');
1646 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1648 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1653 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1655 /* Initiate the stall-info list. */
1656 static void print_cpu_stall_info_begin(void)
1662 * Print out diagnostic information for the specified stalled CPU.
1664 * If the specified CPU is aware of the current RCU grace period
1665 * (flavor specified by rsp), then print the number of scheduling
1666 * clock interrupts the CPU has taken during the time that it has
1667 * been aware. Otherwise, print the number of RCU grace periods
1668 * that this CPU is ignorant of, for example, "1" if the CPU was
1669 * aware of the previous grace period.
1671 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1673 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1675 unsigned long delta
;
1676 char fast_no_hz
[72];
1677 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1678 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
1680 unsigned long ticks_value
;
1683 * We could be printing a lot while holding a spinlock. Avoid
1684 * triggering hard lockup.
1686 touch_nmi_watchdog();
1688 if (rsp
->gpnum
== rdp
->gpnum
) {
1689 ticks_title
= "ticks this GP";
1690 ticks_value
= rdp
->ticks_this_gp
;
1692 ticks_title
= "GPs behind";
1693 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
1695 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1696 delta
= rdp
->mynode
->gpnum
- rdp
->rcu_iw_gpnum
;
1697 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1699 "O."[!!cpu_online(cpu
)],
1700 "o."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinit
)],
1701 "N."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinitnext
)],
1702 !IS_ENABLED(CONFIG_IRQ_WORK
) ? '?' :
1703 rdp
->rcu_iw_pending
? (int)min(delta
, 9UL) + '0' :
1705 ticks_value
, ticks_title
,
1706 rcu_dynticks_snap(rdtp
) & 0xfff,
1707 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
1708 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1709 READ_ONCE(rsp
->n_force_qs
) - rsp
->n_force_qs_gpstart
,
1713 /* Terminate the stall-info list. */
1714 static void print_cpu_stall_info_end(void)
1719 /* Zero ->ticks_this_gp for all flavors of RCU. */
1720 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1722 rdp
->ticks_this_gp
= 0;
1723 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1726 /* Increment ->ticks_this_gp for all flavors of RCU. */
1727 static void increment_cpu_stall_ticks(void)
1729 struct rcu_state
*rsp
;
1731 for_each_rcu_flavor(rsp
)
1732 raw_cpu_inc(rsp
->rda
->ticks_this_gp
);
1735 #ifdef CONFIG_RCU_NOCB_CPU
1738 * Offload callback processing from the boot-time-specified set of CPUs
1739 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1740 * kthread created that pulls the callbacks from the corresponding CPU,
1741 * waits for a grace period to elapse, and invokes the callbacks.
1742 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1743 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1744 * has been specified, in which case each kthread actively polls its
1745 * CPU. (Which isn't so great for energy efficiency, but which does
1746 * reduce RCU's overhead on that CPU.)
1748 * This is intended to be used in conjunction with Frederic Weisbecker's
1749 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1750 * running CPU-bound user-mode computations.
1752 * Offloading of callback processing could also in theory be used as
1753 * an energy-efficiency measure because CPUs with no RCU callbacks
1754 * queued are more aggressive about entering dyntick-idle mode.
1758 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1759 static int __init
rcu_nocb_setup(char *str
)
1761 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1762 cpulist_parse(str
, rcu_nocb_mask
);
1765 __setup("rcu_nocbs=", rcu_nocb_setup
);
1767 static int __init
parse_rcu_nocb_poll(char *arg
)
1769 rcu_nocb_poll
= true;
1772 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1775 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1778 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1784 * Set the root rcu_node structure's ->need_future_gp field
1785 * based on the sum of those of all rcu_node structures. This does
1786 * double-count the root rcu_node structure's requests, but this
1787 * is necessary to handle the possibility of a rcu_nocb_kthread()
1788 * having awakened during the time that the rcu_node structures
1789 * were being updated for the end of the previous grace period.
1791 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
1793 rnp
->need_future_gp
[(rnp
->completed
+ 1) & 0x1] += nrq
;
1796 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1798 return &rnp
->nocb_gp_wq
[rnp
->completed
& 0x1];
1801 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1803 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1804 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1807 /* Is the specified CPU a no-CBs CPU? */
1808 bool rcu_is_nocb_cpu(int cpu
)
1810 if (cpumask_available(rcu_nocb_mask
))
1811 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1816 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1817 * and this function releases it.
1819 static void __wake_nocb_leader(struct rcu_data
*rdp
, bool force
,
1820 unsigned long flags
)
1821 __releases(rdp
->nocb_lock
)
1823 struct rcu_data
*rdp_leader
= rdp
->nocb_leader
;
1825 lockdep_assert_held(&rdp
->nocb_lock
);
1826 if (!READ_ONCE(rdp_leader
->nocb_kthread
)) {
1827 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1830 if (rdp_leader
->nocb_leader_sleep
|| force
) {
1831 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1832 WRITE_ONCE(rdp_leader
->nocb_leader_sleep
, false);
1833 del_timer(&rdp
->nocb_timer
);
1834 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1835 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1836 swake_up(&rdp_leader
->nocb_wq
);
1838 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1843 * Kick the leader kthread for this NOCB group, but caller has not
1846 static void wake_nocb_leader(struct rcu_data
*rdp
, bool force
)
1848 unsigned long flags
;
1850 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
1851 __wake_nocb_leader(rdp
, force
, flags
);
1855 * Arrange to wake the leader kthread for this NOCB group at some
1856 * future time when it is safe to do so.
1858 static void wake_nocb_leader_defer(struct rcu_data
*rdp
, int waketype
,
1861 unsigned long flags
;
1863 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
1864 if (rdp
->nocb_defer_wakeup
== RCU_NOCB_WAKE_NOT
)
1865 mod_timer(&rdp
->nocb_timer
, jiffies
+ 1);
1866 WRITE_ONCE(rdp
->nocb_defer_wakeup
, waketype
);
1867 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, reason
);
1868 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1872 * Does the specified CPU need an RCU callback for the specified flavor
1875 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
1877 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1879 #ifdef CONFIG_PROVE_RCU
1880 struct rcu_head
*rhp
;
1881 #endif /* #ifdef CONFIG_PROVE_RCU */
1884 * Check count of all no-CBs callbacks awaiting invocation.
1885 * There needs to be a barrier before this function is called,
1886 * but associated with a prior determination that no more
1887 * callbacks would be posted. In the worst case, the first
1888 * barrier in _rcu_barrier() suffices (but the caller cannot
1889 * necessarily rely on this, not a substitute for the caller
1890 * getting the concurrency design right!). There must also be
1891 * a barrier between the following load an posting of a callback
1892 * (if a callback is in fact needed). This is associated with an
1893 * atomic_inc() in the caller.
1895 ret
= atomic_long_read(&rdp
->nocb_q_count
);
1897 #ifdef CONFIG_PROVE_RCU
1898 rhp
= READ_ONCE(rdp
->nocb_head
);
1900 rhp
= READ_ONCE(rdp
->nocb_gp_head
);
1902 rhp
= READ_ONCE(rdp
->nocb_follower_head
);
1904 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1905 if (!READ_ONCE(rdp
->nocb_kthread
) && rhp
&&
1906 rcu_scheduler_fully_active
) {
1907 /* RCU callback enqueued before CPU first came online??? */
1908 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1912 #endif /* #ifdef CONFIG_PROVE_RCU */
1918 * Enqueue the specified string of rcu_head structures onto the specified
1919 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1920 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1921 * counts are supplied by rhcount and rhcount_lazy.
1923 * If warranted, also wake up the kthread servicing this CPUs queues.
1925 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
1926 struct rcu_head
*rhp
,
1927 struct rcu_head
**rhtp
,
1928 int rhcount
, int rhcount_lazy
,
1929 unsigned long flags
)
1932 struct rcu_head
**old_rhpp
;
1933 struct task_struct
*t
;
1935 /* Enqueue the callback on the nocb list and update counts. */
1936 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
1937 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1938 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
1939 WRITE_ONCE(*old_rhpp
, rhp
);
1940 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
1941 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1943 /* If we are not being polled and there is a kthread, awaken it ... */
1944 t
= READ_ONCE(rdp
->nocb_kthread
);
1945 if (rcu_nocb_poll
|| !t
) {
1946 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1947 TPS("WakeNotPoll"));
1950 len
= atomic_long_read(&rdp
->nocb_q_count
);
1951 if (old_rhpp
== &rdp
->nocb_head
) {
1952 if (!irqs_disabled_flags(flags
)) {
1953 /* ... if queue was empty ... */
1954 wake_nocb_leader(rdp
, false);
1955 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1958 wake_nocb_leader_defer(rdp
, RCU_NOCB_WAKE
,
1959 TPS("WakeEmptyIsDeferred"));
1961 rdp
->qlen_last_fqs_check
= 0;
1962 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
1963 /* ... or if many callbacks queued. */
1964 if (!irqs_disabled_flags(flags
)) {
1965 wake_nocb_leader(rdp
, true);
1966 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1969 wake_nocb_leader_defer(rdp
, RCU_NOCB_WAKE
,
1970 TPS("WakeOvfIsDeferred"));
1972 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
1974 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WakeNot"));
1980 * This is a helper for __call_rcu(), which invokes this when the normal
1981 * callback queue is inoperable. If this is not a no-CBs CPU, this
1982 * function returns failure back to __call_rcu(), which can complain
1985 * Otherwise, this function queues the callback where the corresponding
1986 * "rcuo" kthread can find it.
1988 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1989 bool lazy
, unsigned long flags
)
1992 if (!rcu_is_nocb_cpu(rdp
->cpu
))
1994 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
, flags
);
1995 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
1996 trace_rcu_kfree_callback(rdp
->rsp
->name
, rhp
,
1997 (unsigned long)rhp
->func
,
1998 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
1999 -atomic_long_read(&rdp
->nocb_q_count
));
2001 trace_rcu_callback(rdp
->rsp
->name
, rhp
,
2002 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
2003 -atomic_long_read(&rdp
->nocb_q_count
));
2006 * If called from an extended quiescent state with interrupts
2007 * disabled, invoke the RCU core in order to allow the idle-entry
2008 * deferred-wakeup check to function.
2010 if (irqs_disabled_flags(flags
) &&
2011 !rcu_is_watching() &&
2012 cpu_online(smp_processor_id()))
2019 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2022 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_data
*my_rdp
,
2023 struct rcu_data
*rdp
,
2024 unsigned long flags
)
2026 lockdep_assert_irqs_disabled();
2027 if (!rcu_is_nocb_cpu(smp_processor_id()))
2028 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2029 __call_rcu_nocb_enqueue(my_rdp
, rcu_segcblist_head(&rdp
->cblist
),
2030 rcu_segcblist_tail(&rdp
->cblist
),
2031 rcu_segcblist_n_cbs(&rdp
->cblist
),
2032 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
), flags
);
2033 rcu_segcblist_init(&rdp
->cblist
);
2034 rcu_segcblist_disable(&rdp
->cblist
);
2039 * If necessary, kick off a new grace period, and either way wait
2040 * for a subsequent grace period to complete.
2042 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
2046 unsigned long flags
;
2048 struct rcu_node
*rnp
= rdp
->mynode
;
2050 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2051 needwake
= rcu_start_future_gp(rnp
, rdp
, &c
);
2052 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2054 rcu_gp_kthread_wake(rdp
->rsp
);
2057 * Wait for the grace period. Do so interruptibly to avoid messing
2058 * up the load average.
2060 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("StartWait"));
2062 swait_event_interruptible(
2063 rnp
->nocb_gp_wq
[c
& 0x1],
2064 (d
= ULONG_CMP_GE(READ_ONCE(rnp
->completed
), c
)));
2067 WARN_ON(signal_pending(current
));
2068 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
2070 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("EndWait"));
2071 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2075 * Leaders come here to wait for additional callbacks to show up.
2076 * This function does not return until callbacks appear.
2078 static void nocb_leader_wait(struct rcu_data
*my_rdp
)
2080 bool firsttime
= true;
2081 unsigned long flags
;
2083 struct rcu_data
*rdp
;
2084 struct rcu_head
**tail
;
2088 /* Wait for callbacks to appear. */
2089 if (!rcu_nocb_poll
) {
2090 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, TPS("Sleep"));
2091 swait_event_interruptible(my_rdp
->nocb_wq
,
2092 !READ_ONCE(my_rdp
->nocb_leader_sleep
));
2093 raw_spin_lock_irqsave(&my_rdp
->nocb_lock
, flags
);
2094 my_rdp
->nocb_leader_sleep
= true;
2095 WRITE_ONCE(my_rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2096 del_timer(&my_rdp
->nocb_timer
);
2097 raw_spin_unlock_irqrestore(&my_rdp
->nocb_lock
, flags
);
2098 } else if (firsttime
) {
2099 firsttime
= false; /* Don't drown trace log with "Poll"! */
2100 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, TPS("Poll"));
2104 * Each pass through the following loop checks a follower for CBs.
2105 * We are our own first follower. Any CBs found are moved to
2106 * nocb_gp_head, where they await a grace period.
2109 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2110 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2111 rdp
->nocb_gp_head
= READ_ONCE(rdp
->nocb_head
);
2112 if (!rdp
->nocb_gp_head
)
2113 continue; /* No CBs here, try next follower. */
2115 /* Move callbacks to wait-for-GP list, which is empty. */
2116 WRITE_ONCE(rdp
->nocb_head
, NULL
);
2117 rdp
->nocb_gp_tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2121 /* No callbacks? Sleep a bit if polling, and go retry. */
2122 if (unlikely(!gotcbs
)) {
2123 WARN_ON(signal_pending(current
));
2124 if (rcu_nocb_poll
) {
2125 schedule_timeout_interruptible(1);
2127 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
,
2133 /* Wait for one grace period. */
2134 rcu_nocb_wait_gp(my_rdp
);
2136 /* Each pass through the following loop wakes a follower, if needed. */
2137 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2138 if (!rcu_nocb_poll
&&
2139 READ_ONCE(rdp
->nocb_head
) &&
2140 READ_ONCE(my_rdp
->nocb_leader_sleep
)) {
2141 raw_spin_lock_irqsave(&my_rdp
->nocb_lock
, flags
);
2142 my_rdp
->nocb_leader_sleep
= false;/* No need to sleep.*/
2143 raw_spin_unlock_irqrestore(&my_rdp
->nocb_lock
, flags
);
2145 if (!rdp
->nocb_gp_head
)
2146 continue; /* No CBs, so no need to wake follower. */
2148 /* Append callbacks to follower's "done" list. */
2149 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2150 tail
= rdp
->nocb_follower_tail
;
2151 rdp
->nocb_follower_tail
= rdp
->nocb_gp_tail
;
2152 *tail
= rdp
->nocb_gp_head
;
2153 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2154 if (rdp
!= my_rdp
&& tail
== &rdp
->nocb_follower_head
) {
2155 /* List was empty, so wake up the follower. */
2156 swake_up(&rdp
->nocb_wq
);
2160 /* If we (the leader) don't have CBs, go wait some more. */
2161 if (!my_rdp
->nocb_follower_head
)
2166 * Followers come here to wait for additional callbacks to show up.
2167 * This function does not return until callbacks appear.
2169 static void nocb_follower_wait(struct rcu_data
*rdp
)
2172 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("FollowerSleep"));
2173 swait_event_interruptible(rdp
->nocb_wq
,
2174 READ_ONCE(rdp
->nocb_follower_head
));
2175 if (smp_load_acquire(&rdp
->nocb_follower_head
)) {
2176 /* ^^^ Ensure CB invocation follows _head test. */
2179 WARN_ON(signal_pending(current
));
2180 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WokeEmpty"));
2185 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2186 * callbacks queued by the corresponding no-CBs CPU, however, there is
2187 * an optional leader-follower relationship so that the grace-period
2188 * kthreads don't have to do quite so many wakeups.
2190 static int rcu_nocb_kthread(void *arg
)
2193 unsigned long flags
;
2194 struct rcu_head
*list
;
2195 struct rcu_head
*next
;
2196 struct rcu_head
**tail
;
2197 struct rcu_data
*rdp
= arg
;
2199 /* Each pass through this loop invokes one batch of callbacks */
2201 /* Wait for callbacks. */
2202 if (rdp
->nocb_leader
== rdp
)
2203 nocb_leader_wait(rdp
);
2205 nocb_follower_wait(rdp
);
2207 /* Pull the ready-to-invoke callbacks onto local list. */
2208 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2209 list
= rdp
->nocb_follower_head
;
2210 rdp
->nocb_follower_head
= NULL
;
2211 tail
= rdp
->nocb_follower_tail
;
2212 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2213 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2215 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WokeNonEmpty"));
2217 /* Each pass through the following loop invokes a callback. */
2218 trace_rcu_batch_start(rdp
->rsp
->name
,
2219 atomic_long_read(&rdp
->nocb_q_count_lazy
),
2220 atomic_long_read(&rdp
->nocb_q_count
), -1);
2224 /* Wait for enqueuing to complete, if needed. */
2225 while (next
== NULL
&& &list
->next
!= tail
) {
2226 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2228 schedule_timeout_interruptible(1);
2229 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2233 debug_rcu_head_unqueue(list
);
2235 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2239 cond_resched_rcu_qs();
2242 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2243 smp_mb__before_atomic(); /* _add after CB invocation. */
2244 atomic_long_add(-c
, &rdp
->nocb_q_count
);
2245 atomic_long_add(-cl
, &rdp
->nocb_q_count_lazy
);
2250 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2251 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2253 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2256 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2257 static void do_nocb_deferred_wakeup_common(struct rcu_data
*rdp
)
2259 unsigned long flags
;
2262 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2263 if (!rcu_nocb_need_deferred_wakeup(rdp
)) {
2264 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2267 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2268 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2269 __wake_nocb_leader(rdp
, ndw
== RCU_NOCB_WAKE_FORCE
, flags
);
2270 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("DeferredWake"));
2273 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2274 static void do_nocb_deferred_wakeup_timer(struct timer_list
*t
)
2276 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_timer
);
2278 do_nocb_deferred_wakeup_common(rdp
);
2282 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2283 * This means we do an inexact common-case check. Note that if
2284 * we miss, ->nocb_timer will eventually clean things up.
2286 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2288 if (rcu_nocb_need_deferred_wakeup(rdp
))
2289 do_nocb_deferred_wakeup_common(rdp
);
2292 void __init
rcu_init_nohz(void)
2295 bool need_rcu_nocb_mask
= true;
2296 struct rcu_state
*rsp
;
2298 #if defined(CONFIG_NO_HZ_FULL)
2299 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2300 need_rcu_nocb_mask
= true;
2301 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2303 if (!cpumask_available(rcu_nocb_mask
) && need_rcu_nocb_mask
) {
2304 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2305 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2309 if (!cpumask_available(rcu_nocb_mask
))
2312 #if defined(CONFIG_NO_HZ_FULL)
2313 if (tick_nohz_full_running
)
2314 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2315 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2317 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2318 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2319 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2322 if (cpumask_empty(rcu_nocb_mask
))
2323 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2325 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2326 cpumask_pr_args(rcu_nocb_mask
));
2328 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2330 for_each_rcu_flavor(rsp
) {
2331 for_each_cpu(cpu
, rcu_nocb_mask
)
2332 init_nocb_callback_list(per_cpu_ptr(rsp
->rda
, cpu
));
2333 rcu_organize_nocb_kthreads(rsp
);
2337 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2338 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2340 rdp
->nocb_tail
= &rdp
->nocb_head
;
2341 init_swait_queue_head(&rdp
->nocb_wq
);
2342 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2343 raw_spin_lock_init(&rdp
->nocb_lock
);
2344 timer_setup(&rdp
->nocb_timer
, do_nocb_deferred_wakeup_timer
, 0);
2348 * If the specified CPU is a no-CBs CPU that does not already have its
2349 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2350 * brought online out of order, this can require re-organizing the
2351 * leader-follower relationships.
2353 static void rcu_spawn_one_nocb_kthread(struct rcu_state
*rsp
, int cpu
)
2355 struct rcu_data
*rdp
;
2356 struct rcu_data
*rdp_last
;
2357 struct rcu_data
*rdp_old_leader
;
2358 struct rcu_data
*rdp_spawn
= per_cpu_ptr(rsp
->rda
, cpu
);
2359 struct task_struct
*t
;
2362 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2363 * then nothing to do.
2365 if (!rcu_is_nocb_cpu(cpu
) || rdp_spawn
->nocb_kthread
)
2368 /* If we didn't spawn the leader first, reorganize! */
2369 rdp_old_leader
= rdp_spawn
->nocb_leader
;
2370 if (rdp_old_leader
!= rdp_spawn
&& !rdp_old_leader
->nocb_kthread
) {
2372 rdp
= rdp_old_leader
;
2374 rdp
->nocb_leader
= rdp_spawn
;
2375 if (rdp_last
&& rdp
!= rdp_spawn
)
2376 rdp_last
->nocb_next_follower
= rdp
;
2377 if (rdp
== rdp_spawn
) {
2378 rdp
= rdp
->nocb_next_follower
;
2381 rdp
= rdp
->nocb_next_follower
;
2382 rdp_last
->nocb_next_follower
= NULL
;
2385 rdp_spawn
->nocb_next_follower
= rdp_old_leader
;
2388 /* Spawn the kthread for this CPU and RCU flavor. */
2389 t
= kthread_run(rcu_nocb_kthread
, rdp_spawn
,
2390 "rcuo%c/%d", rsp
->abbr
, cpu
);
2392 WRITE_ONCE(rdp_spawn
->nocb_kthread
, t
);
2396 * If the specified CPU is a no-CBs CPU that does not already have its
2397 * rcuo kthreads, spawn them.
2399 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2401 struct rcu_state
*rsp
;
2403 if (rcu_scheduler_fully_active
)
2404 for_each_rcu_flavor(rsp
)
2405 rcu_spawn_one_nocb_kthread(rsp
, cpu
);
2409 * Once the scheduler is running, spawn rcuo kthreads for all online
2410 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2411 * non-boot CPUs come online -- if this changes, we will need to add
2412 * some mutual exclusion.
2414 static void __init
rcu_spawn_nocb_kthreads(void)
2418 for_each_online_cpu(cpu
)
2419 rcu_spawn_all_nocb_kthreads(cpu
);
2422 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2423 static int rcu_nocb_leader_stride
= -1;
2424 module_param(rcu_nocb_leader_stride
, int, 0444);
2427 * Initialize leader-follower relationships for all no-CBs CPU.
2429 static void __init
rcu_organize_nocb_kthreads(struct rcu_state
*rsp
)
2432 int ls
= rcu_nocb_leader_stride
;
2433 int nl
= 0; /* Next leader. */
2434 struct rcu_data
*rdp
;
2435 struct rcu_data
*rdp_leader
= NULL
; /* Suppress misguided gcc warn. */
2436 struct rcu_data
*rdp_prev
= NULL
;
2438 if (!cpumask_available(rcu_nocb_mask
))
2441 ls
= int_sqrt(nr_cpu_ids
);
2442 rcu_nocb_leader_stride
= ls
;
2446 * Each pass through this loop sets up one rcu_data structure.
2447 * Should the corresponding CPU come online in the future, then
2448 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2450 for_each_cpu(cpu
, rcu_nocb_mask
) {
2451 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2452 if (rdp
->cpu
>= nl
) {
2453 /* New leader, set up for followers & next leader. */
2454 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2455 rdp
->nocb_leader
= rdp
;
2458 /* Another follower, link to previous leader. */
2459 rdp
->nocb_leader
= rdp_leader
;
2460 rdp_prev
->nocb_next_follower
= rdp
;
2466 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2467 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2469 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2472 /* If there are early-boot callbacks, move them to nocb lists. */
2473 if (!rcu_segcblist_empty(&rdp
->cblist
)) {
2474 rdp
->nocb_head
= rcu_segcblist_head(&rdp
->cblist
);
2475 rdp
->nocb_tail
= rcu_segcblist_tail(&rdp
->cblist
);
2476 atomic_long_set(&rdp
->nocb_q_count
,
2477 rcu_segcblist_n_cbs(&rdp
->cblist
));
2478 atomic_long_set(&rdp
->nocb_q_count_lazy
,
2479 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
));
2480 rcu_segcblist_init(&rdp
->cblist
);
2482 rcu_segcblist_disable(&rdp
->cblist
);
2486 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2488 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
2490 WARN_ON_ONCE(1); /* Should be dead code. */
2494 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2498 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2502 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2507 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2511 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2512 bool lazy
, unsigned long flags
)
2517 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_data
*my_rdp
,
2518 struct rcu_data
*rdp
,
2519 unsigned long flags
)
2524 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2528 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2533 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2537 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2541 static void __init
rcu_spawn_nocb_kthreads(void)
2545 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2550 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2553 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2554 * arbitrarily long period of time with the scheduling-clock tick turned
2555 * off. RCU will be paying attention to this CPU because it is in the
2556 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2557 * machine because the scheduling-clock tick has been disabled. Therefore,
2558 * if an adaptive-ticks CPU is failing to respond to the current grace
2559 * period and has not be idle from an RCU perspective, kick it.
2561 static void __maybe_unused
rcu_kick_nohz_cpu(int cpu
)
2563 #ifdef CONFIG_NO_HZ_FULL
2564 if (tick_nohz_full_cpu(cpu
))
2565 smp_send_reschedule(cpu
);
2566 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2570 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2571 * grace-period kthread will do force_quiescent_state() processing?
2572 * The idea is to avoid waking up RCU core processing on such a
2573 * CPU unless the grace period has extended for too long.
2575 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2576 * CONFIG_RCU_NOCB_CPU CPUs.
2578 static bool rcu_nohz_full_cpu(struct rcu_state
*rsp
)
2580 #ifdef CONFIG_NO_HZ_FULL
2581 if (tick_nohz_full_cpu(smp_processor_id()) &&
2582 (!rcu_gp_in_progress(rsp
) ||
2583 ULONG_CMP_LT(jiffies
, READ_ONCE(rsp
->gp_start
) + HZ
)))
2585 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2590 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2593 static void rcu_bind_gp_kthread(void)
2595 int __maybe_unused cpu
;
2597 if (!tick_nohz_full_enabled())
2599 housekeeping_affine(current
, HK_FLAG_RCU
);
2602 /* Record the current task on dyntick-idle entry. */
2603 static void rcu_dynticks_task_enter(void)
2605 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2606 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2607 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2610 /* Record no current task on dyntick-idle exit. */
2611 static void rcu_dynticks_task_exit(void)
2613 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2614 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2615 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */