mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / kernel / sched / loadavg.c
bloba171c12581096333b5a900a6a7c390ac84e2b44a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kernel/sched/loadavg.c
5 * This file contains the magic bits required to compute the global loadavg
6 * figure. Its a silly number but people think its important. We go through
7 * great pains to make it work on big machines and tickless kernels.
8 */
9 #include "sched.h"
12 * Global load-average calculations
14 * We take a distributed and async approach to calculating the global load-avg
15 * in order to minimize overhead.
17 * The global load average is an exponentially decaying average of nr_running +
18 * nr_uninterruptible.
20 * Once every LOAD_FREQ:
22 * nr_active = 0;
23 * for_each_possible_cpu(cpu)
24 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
26 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
28 * Due to a number of reasons the above turns in the mess below:
30 * - for_each_possible_cpu() is prohibitively expensive on machines with
31 * serious number of CPUs, therefore we need to take a distributed approach
32 * to calculating nr_active.
34 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
35 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
37 * So assuming nr_active := 0 when we start out -- true per definition, we
38 * can simply take per-CPU deltas and fold those into a global accumulate
39 * to obtain the same result. See calc_load_fold_active().
41 * Furthermore, in order to avoid synchronizing all per-CPU delta folding
42 * across the machine, we assume 10 ticks is sufficient time for every
43 * CPU to have completed this task.
45 * This places an upper-bound on the IRQ-off latency of the machine. Then
46 * again, being late doesn't loose the delta, just wrecks the sample.
48 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
49 * this would add another cross-CPU cacheline miss and atomic operation
50 * to the wakeup path. Instead we increment on whatever CPU the task ran
51 * when it went into uninterruptible state and decrement on whatever CPU
52 * did the wakeup. This means that only the sum of nr_uninterruptible over
53 * all CPUs yields the correct result.
55 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
58 /* Variables and functions for calc_load */
59 atomic_long_t calc_load_tasks;
60 unsigned long calc_load_update;
61 unsigned long avenrun[3];
62 EXPORT_SYMBOL(avenrun); /* should be removed */
64 /**
65 * get_avenrun - get the load average array
66 * @loads: pointer to dest load array
67 * @offset: offset to add
68 * @shift: shift count to shift the result left
70 * These values are estimates at best, so no need for locking.
72 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
74 loads[0] = (avenrun[0] + offset) << shift;
75 loads[1] = (avenrun[1] + offset) << shift;
76 loads[2] = (avenrun[2] + offset) << shift;
79 long calc_load_fold_active(struct rq *this_rq, long adjust)
81 long nr_active, delta = 0;
83 nr_active = this_rq->nr_running - adjust;
84 nr_active += (long)this_rq->nr_uninterruptible;
86 if (nr_active != this_rq->calc_load_active) {
87 delta = nr_active - this_rq->calc_load_active;
88 this_rq->calc_load_active = nr_active;
91 return delta;
95 * a1 = a0 * e + a * (1 - e)
97 static unsigned long
98 calc_load(unsigned long load, unsigned long exp, unsigned long active)
100 unsigned long newload;
102 newload = load * exp + active * (FIXED_1 - exp);
103 if (active >= load)
104 newload += FIXED_1-1;
106 return newload / FIXED_1;
109 #ifdef CONFIG_NO_HZ_COMMON
111 * Handle NO_HZ for the global load-average.
113 * Since the above described distributed algorithm to compute the global
114 * load-average relies on per-CPU sampling from the tick, it is affected by
115 * NO_HZ.
117 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
118 * entering NO_HZ state such that we can include this as an 'extra' CPU delta
119 * when we read the global state.
121 * Obviously reality has to ruin such a delightfully simple scheme:
123 * - When we go NO_HZ idle during the window, we can negate our sample
124 * contribution, causing under-accounting.
126 * We avoid this by keeping two NO_HZ-delta counters and flipping them
127 * when the window starts, thus separating old and new NO_HZ load.
129 * The only trick is the slight shift in index flip for read vs write.
131 * 0s 5s 10s 15s
132 * +10 +10 +10 +10
133 * |-|-----------|-|-----------|-|-----------|-|
134 * r:0 0 1 1 0 0 1 1 0
135 * w:0 1 1 0 0 1 1 0 0
137 * This ensures we'll fold the old NO_HZ contribution in this window while
138 * accumlating the new one.
140 * - When we wake up from NO_HZ during the window, we push up our
141 * contribution, since we effectively move our sample point to a known
142 * busy state.
144 * This is solved by pushing the window forward, and thus skipping the
145 * sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
146 * was in effect at the time the window opened). This also solves the issue
147 * of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
148 * intervals.
150 * When making the ILB scale, we should try to pull this in as well.
152 static atomic_long_t calc_load_nohz[2];
153 static int calc_load_idx;
155 static inline int calc_load_write_idx(void)
157 int idx = calc_load_idx;
160 * See calc_global_nohz(), if we observe the new index, we also
161 * need to observe the new update time.
163 smp_rmb();
166 * If the folding window started, make sure we start writing in the
167 * next NO_HZ-delta.
169 if (!time_before(jiffies, READ_ONCE(calc_load_update)))
170 idx++;
172 return idx & 1;
175 static inline int calc_load_read_idx(void)
177 return calc_load_idx & 1;
180 void calc_load_nohz_start(void)
182 struct rq *this_rq = this_rq();
183 long delta;
186 * We're going into NO_HZ mode, if there's any pending delta, fold it
187 * into the pending NO_HZ delta.
189 delta = calc_load_fold_active(this_rq, 0);
190 if (delta) {
191 int idx = calc_load_write_idx();
193 atomic_long_add(delta, &calc_load_nohz[idx]);
197 void calc_load_nohz_stop(void)
199 struct rq *this_rq = this_rq();
202 * If we're still before the pending sample window, we're done.
204 this_rq->calc_load_update = READ_ONCE(calc_load_update);
205 if (time_before(jiffies, this_rq->calc_load_update))
206 return;
209 * We woke inside or after the sample window, this means we're already
210 * accounted through the nohz accounting, so skip the entire deal and
211 * sync up for the next window.
213 if (time_before(jiffies, this_rq->calc_load_update + 10))
214 this_rq->calc_load_update += LOAD_FREQ;
217 static long calc_load_nohz_fold(void)
219 int idx = calc_load_read_idx();
220 long delta = 0;
222 if (atomic_long_read(&calc_load_nohz[idx]))
223 delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
225 return delta;
229 * fixed_power_int - compute: x^n, in O(log n) time
231 * @x: base of the power
232 * @frac_bits: fractional bits of @x
233 * @n: power to raise @x to.
235 * By exploiting the relation between the definition of the natural power
236 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
237 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
238 * (where: n_i \elem {0, 1}, the binary vector representing n),
239 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
240 * of course trivially computable in O(log_2 n), the length of our binary
241 * vector.
243 static unsigned long
244 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
246 unsigned long result = 1UL << frac_bits;
248 if (n) {
249 for (;;) {
250 if (n & 1) {
251 result *= x;
252 result += 1UL << (frac_bits - 1);
253 result >>= frac_bits;
255 n >>= 1;
256 if (!n)
257 break;
258 x *= x;
259 x += 1UL << (frac_bits - 1);
260 x >>= frac_bits;
264 return result;
268 * a1 = a0 * e + a * (1 - e)
270 * a2 = a1 * e + a * (1 - e)
271 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
272 * = a0 * e^2 + a * (1 - e) * (1 + e)
274 * a3 = a2 * e + a * (1 - e)
275 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
276 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
278 * ...
280 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
281 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
282 * = a0 * e^n + a * (1 - e^n)
284 * [1] application of the geometric series:
286 * n 1 - x^(n+1)
287 * S_n := \Sum x^i = -------------
288 * i=0 1 - x
290 static unsigned long
291 calc_load_n(unsigned long load, unsigned long exp,
292 unsigned long active, unsigned int n)
294 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
298 * NO_HZ can leave us missing all per-CPU ticks calling
299 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
300 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
301 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
303 * Once we've updated the global active value, we need to apply the exponential
304 * weights adjusted to the number of cycles missed.
306 static void calc_global_nohz(void)
308 unsigned long sample_window;
309 long delta, active, n;
311 sample_window = READ_ONCE(calc_load_update);
312 if (!time_before(jiffies, sample_window + 10)) {
314 * Catch-up, fold however many we are behind still
316 delta = jiffies - sample_window - 10;
317 n = 1 + (delta / LOAD_FREQ);
319 active = atomic_long_read(&calc_load_tasks);
320 active = active > 0 ? active * FIXED_1 : 0;
322 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
323 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
324 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
326 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
330 * Flip the NO_HZ index...
332 * Make sure we first write the new time then flip the index, so that
333 * calc_load_write_idx() will see the new time when it reads the new
334 * index, this avoids a double flip messing things up.
336 smp_wmb();
337 calc_load_idx++;
339 #else /* !CONFIG_NO_HZ_COMMON */
341 static inline long calc_load_nohz_fold(void) { return 0; }
342 static inline void calc_global_nohz(void) { }
344 #endif /* CONFIG_NO_HZ_COMMON */
347 * calc_load - update the avenrun load estimates 10 ticks after the
348 * CPUs have updated calc_load_tasks.
350 * Called from the global timer code.
352 void calc_global_load(unsigned long ticks)
354 unsigned long sample_window;
355 long active, delta;
357 sample_window = READ_ONCE(calc_load_update);
358 if (time_before(jiffies, sample_window + 10))
359 return;
362 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
364 delta = calc_load_nohz_fold();
365 if (delta)
366 atomic_long_add(delta, &calc_load_tasks);
368 active = atomic_long_read(&calc_load_tasks);
369 active = active > 0 ? active * FIXED_1 : 0;
371 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
372 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
373 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
375 WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
378 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
379 * catch up in bulk.
381 calc_global_nohz();
385 * Called from scheduler_tick() to periodically update this CPU's
386 * active count.
388 void calc_global_load_tick(struct rq *this_rq)
390 long delta;
392 if (time_before(jiffies, this_rq->calc_load_update))
393 return;
395 delta = calc_load_fold_active(this_rq, 0);
396 if (delta)
397 atomic_long_add(delta, &calc_load_tasks);
399 this_rq->calc_load_update += LOAD_FREQ;