1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Scheduler internal types and methods:
5 #include <linux/sched.h>
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/sched/topology.h>
31 #include <linux/sched/user.h>
32 #include <linux/sched/wake_q.h>
33 #include <linux/sched/xacct.h>
35 #include <uapi/linux/sched/types.h>
37 #include <linux/binfmts.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/context_tracking.h>
41 #include <linux/cpufreq.h>
42 #include <linux/cpuidle.h>
43 #include <linux/cpuset.h>
44 #include <linux/ctype.h>
45 #include <linux/debugfs.h>
46 #include <linux/delayacct.h>
47 #include <linux/init_task.h>
48 #include <linux/kprobes.h>
49 #include <linux/kthread.h>
50 #include <linux/membarrier.h>
51 #include <linux/migrate.h>
52 #include <linux/mmu_context.h>
53 #include <linux/nmi.h>
54 #include <linux/proc_fs.h>
55 #include <linux/prefetch.h>
56 #include <linux/profile.h>
57 #include <linux/rcupdate_wait.h>
58 #include <linux/security.h>
59 #include <linux/stackprotector.h>
60 #include <linux/stop_machine.h>
61 #include <linux/suspend.h>
62 #include <linux/swait.h>
63 #include <linux/syscalls.h>
64 #include <linux/task_work.h>
65 #include <linux/tsacct_kern.h>
69 #ifdef CONFIG_PARAVIRT
70 # include <asm/paravirt.h>
74 #include "cpudeadline.h"
76 #ifdef CONFIG_SCHED_DEBUG
77 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
79 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
85 /* task_struct::on_rq states: */
86 #define TASK_ON_RQ_QUEUED 1
87 #define TASK_ON_RQ_MIGRATING 2
89 extern __read_mostly
int scheduler_running
;
91 extern unsigned long calc_load_update
;
92 extern atomic_long_t calc_load_tasks
;
94 extern void calc_global_load_tick(struct rq
*this_rq
);
95 extern long calc_load_fold_active(struct rq
*this_rq
, long adjust
);
98 extern void cpu_load_update_active(struct rq
*this_rq
);
100 static inline void cpu_load_update_active(struct rq
*this_rq
) { }
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
115 * We increase resolution only if we have enough bits to allow this increased
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
127 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
128 # define scale_load(w) (w)
129 # define scale_load_down(w) (w)
133 * Task weight (visible to users) and its load (invisible to users) have
134 * independent resolution, but they should be well calibrated. We use
135 * scale_load() and scale_load_down(w) to convert between them. The
136 * following must be true:
138 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
141 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
144 * Single value that decides SCHED_DEADLINE internal math precision.
145 * 10 -> just above 1us
146 * 9 -> just above 0.5us
151 * Single value that denotes runtime == period, ie unlimited time.
153 #define RUNTIME_INF ((u64)~0ULL)
155 static inline int idle_policy(int policy
)
157 return policy
== SCHED_IDLE
;
159 static inline int fair_policy(int policy
)
161 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
164 static inline int rt_policy(int policy
)
166 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
169 static inline int dl_policy(int policy
)
171 return policy
== SCHED_DEADLINE
;
173 static inline bool valid_policy(int policy
)
175 return idle_policy(policy
) || fair_policy(policy
) ||
176 rt_policy(policy
) || dl_policy(policy
);
179 static inline int task_has_rt_policy(struct task_struct
*p
)
181 return rt_policy(p
->policy
);
184 static inline int task_has_dl_policy(struct task_struct
*p
)
186 return dl_policy(p
->policy
);
189 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
192 * !! For sched_setattr_nocheck() (kernel) only !!
194 * This is actually gross. :(
196 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197 * tasks, but still be able to sleep. We need this on platforms that cannot
198 * atomically change clock frequency. Remove once fast switching will be
199 * available on such platforms.
201 * SUGOV stands for SchedUtil GOVernor.
203 #define SCHED_FLAG_SUGOV 0x10000000
205 static inline bool dl_entity_is_special(struct sched_dl_entity
*dl_se
)
207 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 return unlikely(dl_se
->flags
& SCHED_FLAG_SUGOV
);
215 * Tells if entity @a should preempt entity @b.
218 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
220 return dl_entity_is_special(a
) ||
221 dl_time_before(a
->deadline
, b
->deadline
);
225 * This is the priority-queue data structure of the RT scheduling class:
227 struct rt_prio_array
{
228 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
229 struct list_head queue
[MAX_RT_PRIO
];
232 struct rt_bandwidth
{
233 /* nests inside the rq lock: */
234 raw_spinlock_t rt_runtime_lock
;
237 struct hrtimer rt_period_timer
;
238 unsigned int rt_period_active
;
241 void __dl_clear_params(struct task_struct
*p
);
244 * To keep the bandwidth of -deadline tasks and groups under control
245 * we need some place where:
246 * - store the maximum -deadline bandwidth of the system (the group);
247 * - cache the fraction of that bandwidth that is currently allocated.
249 * This is all done in the data structure below. It is similar to the
250 * one used for RT-throttling (rt_bandwidth), with the main difference
251 * that, since here we are only interested in admission control, we
252 * do not decrease any runtime while the group "executes", neither we
253 * need a timer to replenish it.
255 * With respect to SMP, the bandwidth is given on a per-CPU basis,
257 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258 * - dl_total_bw array contains, in the i-eth element, the currently
259 * allocated bandwidth on the i-eth CPU.
260 * Moreover, groups consume bandwidth on each CPU, while tasks only
261 * consume bandwidth on the CPU they're running on.
262 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263 * that will be shown the next time the proc or cgroup controls will
264 * be red. It on its turn can be changed by writing on its own
267 struct dl_bandwidth
{
268 raw_spinlock_t dl_runtime_lock
;
273 static inline int dl_bandwidth_enabled(void)
275 return sysctl_sched_rt_runtime
>= 0;
284 static inline void __dl_update(struct dl_bw
*dl_b
, s64 bw
);
287 void __dl_sub(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
289 dl_b
->total_bw
-= tsk_bw
;
290 __dl_update(dl_b
, (s32
)tsk_bw
/ cpus
);
294 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
296 dl_b
->total_bw
+= tsk_bw
;
297 __dl_update(dl_b
, -((s32
)tsk_bw
/ cpus
));
301 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
303 return dl_b
->bw
!= -1 &&
304 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
307 extern void dl_change_utilization(struct task_struct
*p
, u64 new_bw
);
308 extern void init_dl_bw(struct dl_bw
*dl_b
);
309 extern int sched_dl_global_validate(void);
310 extern void sched_dl_do_global(void);
311 extern int sched_dl_overflow(struct task_struct
*p
, int policy
, const struct sched_attr
*attr
);
312 extern void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
);
313 extern void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
);
314 extern bool __checkparam_dl(const struct sched_attr
*attr
);
315 extern bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
);
316 extern int dl_task_can_attach(struct task_struct
*p
, const struct cpumask
*cs_cpus_allowed
);
317 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
, const struct cpumask
*trial
);
318 extern bool dl_cpu_busy(unsigned int cpu
);
320 #ifdef CONFIG_CGROUP_SCHED
322 #include <linux/cgroup.h>
327 extern struct list_head task_groups
;
329 struct cfs_bandwidth
{
330 #ifdef CONFIG_CFS_BANDWIDTH
335 s64 hierarchical_quota
;
340 struct hrtimer period_timer
;
341 struct hrtimer slack_timer
;
342 struct list_head throttled_cfs_rq
;
351 /* Task group related information */
353 struct cgroup_subsys_state css
;
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 /* schedulable entities of this group on each CPU */
357 struct sched_entity
**se
;
358 /* runqueue "owned" by this group on each CPU */
359 struct cfs_rq
**cfs_rq
;
360 unsigned long shares
;
364 * load_avg can be heavily contended at clock tick time, so put
365 * it in its own cacheline separated from the fields above which
366 * will also be accessed at each tick.
368 atomic_long_t load_avg ____cacheline_aligned
;
372 #ifdef CONFIG_RT_GROUP_SCHED
373 struct sched_rt_entity
**rt_se
;
374 struct rt_rq
**rt_rq
;
376 struct rt_bandwidth rt_bandwidth
;
380 struct list_head list
;
382 struct task_group
*parent
;
383 struct list_head siblings
;
384 struct list_head children
;
386 #ifdef CONFIG_SCHED_AUTOGROUP
387 struct autogroup
*autogroup
;
390 struct cfs_bandwidth cfs_bandwidth
;
393 #ifdef CONFIG_FAIR_GROUP_SCHED
394 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
397 * A weight of 0 or 1 can cause arithmetics problems.
398 * A weight of a cfs_rq is the sum of weights of which entities
399 * are queued on this cfs_rq, so a weight of a entity should not be
400 * too large, so as the shares value of a task group.
401 * (The default weight is 1024 - so there's no practical
402 * limitation from this.)
404 #define MIN_SHARES (1UL << 1)
405 #define MAX_SHARES (1UL << 18)
408 typedef int (*tg_visitor
)(struct task_group
*, void *);
410 extern int walk_tg_tree_from(struct task_group
*from
,
411 tg_visitor down
, tg_visitor up
, void *data
);
414 * Iterate the full tree, calling @down when first entering a node and @up when
415 * leaving it for the final time.
417 * Caller must hold rcu_lock or sufficient equivalent.
419 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
421 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
424 extern int tg_nop(struct task_group
*tg
, void *data
);
426 extern void free_fair_sched_group(struct task_group
*tg
);
427 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
428 extern void online_fair_sched_group(struct task_group
*tg
);
429 extern void unregister_fair_sched_group(struct task_group
*tg
);
430 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
431 struct sched_entity
*se
, int cpu
,
432 struct sched_entity
*parent
);
433 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
435 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
436 extern void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
437 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
439 extern void free_rt_sched_group(struct task_group
*tg
);
440 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
441 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
442 struct sched_rt_entity
*rt_se
, int cpu
,
443 struct sched_rt_entity
*parent
);
444 extern int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
);
445 extern int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
);
446 extern long sched_group_rt_runtime(struct task_group
*tg
);
447 extern long sched_group_rt_period(struct task_group
*tg
);
448 extern int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
);
450 extern struct task_group
*sched_create_group(struct task_group
*parent
);
451 extern void sched_online_group(struct task_group
*tg
,
452 struct task_group
*parent
);
453 extern void sched_destroy_group(struct task_group
*tg
);
454 extern void sched_offline_group(struct task_group
*tg
);
456 extern void sched_move_task(struct task_struct
*tsk
);
458 #ifdef CONFIG_FAIR_GROUP_SCHED
459 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
462 extern void set_task_rq_fair(struct sched_entity
*se
,
463 struct cfs_rq
*prev
, struct cfs_rq
*next
);
464 #else /* !CONFIG_SMP */
465 static inline void set_task_rq_fair(struct sched_entity
*se
,
466 struct cfs_rq
*prev
, struct cfs_rq
*next
) { }
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_FAIR_GROUP_SCHED */
470 #else /* CONFIG_CGROUP_SCHED */
472 struct cfs_bandwidth
{ };
474 #endif /* CONFIG_CGROUP_SCHED */
476 /* CFS-related fields in a runqueue */
478 struct load_weight load
;
479 unsigned long runnable_weight
;
480 unsigned int nr_running
;
481 unsigned int h_nr_running
;
486 u64 min_vruntime_copy
;
489 struct rb_root_cached tasks_timeline
;
492 * 'curr' points to currently running entity on this cfs_rq.
493 * It is set to NULL otherwise (i.e when none are currently running).
495 struct sched_entity
*curr
;
496 struct sched_entity
*next
;
497 struct sched_entity
*last
;
498 struct sched_entity
*skip
;
500 #ifdef CONFIG_SCHED_DEBUG
501 unsigned int nr_spread_over
;
508 struct sched_avg avg
;
510 u64 load_last_update_time_copy
;
513 raw_spinlock_t lock ____cacheline_aligned
;
515 unsigned long load_avg
;
516 unsigned long util_avg
;
517 unsigned long runnable_sum
;
520 #ifdef CONFIG_FAIR_GROUP_SCHED
521 unsigned long tg_load_avg_contrib
;
523 long prop_runnable_sum
;
526 * h_load = weight * f(tg)
528 * Where f(tg) is the recursive weight fraction assigned to
531 unsigned long h_load
;
532 u64 last_h_load_update
;
533 struct sched_entity
*h_load_next
;
534 #endif /* CONFIG_FAIR_GROUP_SCHED */
535 #endif /* CONFIG_SMP */
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 struct rq
*rq
; /* CPU runqueue to which this cfs_rq is attached */
541 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
542 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
543 * (like users, containers etc.)
545 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
546 * This list is used during load balance.
549 struct list_head leaf_cfs_rq_list
;
550 struct task_group
*tg
; /* group that "owns" this runqueue */
552 #ifdef CONFIG_CFS_BANDWIDTH
555 s64 runtime_remaining
;
558 u64 throttled_clock_task
;
559 u64 throttled_clock_task_time
;
562 struct list_head throttled_list
;
563 #endif /* CONFIG_CFS_BANDWIDTH */
564 #endif /* CONFIG_FAIR_GROUP_SCHED */
567 static inline int rt_bandwidth_enabled(void)
569 return sysctl_sched_rt_runtime
>= 0;
572 /* RT IPI pull logic requires IRQ_WORK */
573 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
574 # define HAVE_RT_PUSH_IPI
577 /* Real-Time classes' related field in a runqueue: */
579 struct rt_prio_array active
;
580 unsigned int rt_nr_running
;
581 unsigned int rr_nr_running
;
582 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
584 int curr
; /* highest queued rt task prio */
586 int next
; /* next highest */
591 unsigned long rt_nr_migratory
;
592 unsigned long rt_nr_total
;
594 struct plist_head pushable_tasks
;
595 #endif /* CONFIG_SMP */
601 /* Nests inside the rq lock: */
602 raw_spinlock_t rt_runtime_lock
;
604 #ifdef CONFIG_RT_GROUP_SCHED
605 unsigned long rt_nr_boosted
;
608 struct task_group
*tg
;
612 /* Deadline class' related fields in a runqueue */
614 /* runqueue is an rbtree, ordered by deadline */
615 struct rb_root_cached root
;
617 unsigned long dl_nr_running
;
621 * Deadline values of the currently executing and the
622 * earliest ready task on this rq. Caching these facilitates
623 * the decision wether or not a ready but not running task
624 * should migrate somewhere else.
631 unsigned long dl_nr_migratory
;
635 * Tasks on this rq that can be pushed away. They are kept in
636 * an rb-tree, ordered by tasks' deadlines, with caching
637 * of the leftmost (earliest deadline) element.
639 struct rb_root_cached pushable_dl_tasks_root
;
644 * "Active utilization" for this runqueue: increased when a
645 * task wakes up (becomes TASK_RUNNING) and decreased when a
651 * Utilization of the tasks "assigned" to this runqueue (including
652 * the tasks that are in runqueue and the tasks that executed on this
653 * CPU and blocked). Increased when a task moves to this runqueue, and
654 * decreased when the task moves away (migrates, changes scheduling
655 * policy, or terminates).
656 * This is needed to compute the "inactive utilization" for the
657 * runqueue (inactive utilization = this_bw - running_bw).
663 * Inverse of the fraction of CPU utilization that can be reclaimed
664 * by the GRUB algorithm.
671 static inline bool sched_asym_prefer(int a
, int b
)
673 return arch_asym_cpu_priority(a
) > arch_asym_cpu_priority(b
);
677 * We add the notion of a root-domain which will be used to define per-domain
678 * variables. Each exclusive cpuset essentially defines an island domain by
679 * fully partitioning the member CPUs from any other cpuset. Whenever a new
680 * exclusive cpuset is created, we also create and attach a new root-domain
689 cpumask_var_t online
;
691 /* Indicate more than one runnable task for any CPU */
695 * The bit corresponding to a CPU gets set here if such CPU has more
696 * than one runnable -deadline task (as it is below for RT tasks).
698 cpumask_var_t dlo_mask
;
703 #ifdef HAVE_RT_PUSH_IPI
705 * For IPI pull requests, loop across the rto_mask.
707 struct irq_work rto_push_work
;
708 raw_spinlock_t rto_lock
;
709 /* These are only updated and read within rto_lock */
712 /* These atomics are updated outside of a lock */
713 atomic_t rto_loop_next
;
714 atomic_t rto_loop_start
;
717 * The "RT overload" flag: it gets set if a CPU has more than
718 * one runnable RT task.
720 cpumask_var_t rto_mask
;
721 struct cpupri cpupri
;
723 unsigned long max_cpu_capacity
;
726 extern struct root_domain def_root_domain
;
727 extern struct mutex sched_domains_mutex
;
729 extern void init_defrootdomain(void);
730 extern int sched_init_domains(const struct cpumask
*cpu_map
);
731 extern void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
);
732 extern void sched_get_rd(struct root_domain
*rd
);
733 extern void sched_put_rd(struct root_domain
*rd
);
735 #ifdef HAVE_RT_PUSH_IPI
736 extern void rto_push_irq_work_func(struct irq_work
*work
);
738 #endif /* CONFIG_SMP */
741 * This is the main, per-CPU runqueue data structure.
743 * Locking rule: those places that want to lock multiple runqueues
744 * (such as the load balancing or the thread migration code), lock
745 * acquire operations must be ordered by ascending &runqueue.
752 * nr_running and cpu_load should be in the same cacheline because
753 * remote CPUs use both these fields when doing load calculation.
755 unsigned int nr_running
;
756 #ifdef CONFIG_NUMA_BALANCING
757 unsigned int nr_numa_running
;
758 unsigned int nr_preferred_running
;
760 #define CPU_LOAD_IDX_MAX 5
761 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
762 #ifdef CONFIG_NO_HZ_COMMON
764 unsigned long last_load_update_tick
;
765 unsigned long last_blocked_load_update_tick
;
766 unsigned int has_blocked_load
;
767 #endif /* CONFIG_SMP */
768 unsigned int nohz_tick_stopped
;
770 #endif /* CONFIG_NO_HZ_COMMON */
772 /* capture load from *all* tasks on this CPU: */
773 struct load_weight load
;
774 unsigned long nr_load_updates
;
781 #ifdef CONFIG_FAIR_GROUP_SCHED
782 /* list of leaf cfs_rq on this CPU: */
783 struct list_head leaf_cfs_rq_list
;
784 struct list_head
*tmp_alone_branch
;
785 #endif /* CONFIG_FAIR_GROUP_SCHED */
788 * This is part of a global counter where only the total sum
789 * over all CPUs matters. A task can increase this counter on
790 * one CPU and if it got migrated afterwards it may decrease
791 * it on another CPU. Always updated under the runqueue lock:
793 unsigned long nr_uninterruptible
;
795 struct task_struct
*curr
;
796 struct task_struct
*idle
;
797 struct task_struct
*stop
;
798 unsigned long next_balance
;
799 struct mm_struct
*prev_mm
;
801 unsigned int clock_update_flags
;
808 struct root_domain
*rd
;
809 struct sched_domain
*sd
;
811 unsigned long cpu_capacity
;
812 unsigned long cpu_capacity_orig
;
814 struct callback_head
*balance_callback
;
816 unsigned char idle_balance
;
818 /* For active balancing */
821 struct cpu_stop_work active_balance_work
;
823 /* CPU of this runqueue: */
827 struct list_head cfs_tasks
;
834 /* This is used to determine avg_idle's max value */
835 u64 max_idle_balance_cost
;
838 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
841 #ifdef CONFIG_PARAVIRT
844 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
845 u64 prev_steal_time_rq
;
848 /* calc_load related fields */
849 unsigned long calc_load_update
;
850 long calc_load_active
;
852 #ifdef CONFIG_SCHED_HRTICK
854 int hrtick_csd_pending
;
855 call_single_data_t hrtick_csd
;
857 struct hrtimer hrtick_timer
;
860 #ifdef CONFIG_SCHEDSTATS
862 struct sched_info rq_sched_info
;
863 unsigned long long rq_cpu_time
;
864 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
866 /* sys_sched_yield() stats */
867 unsigned int yld_count
;
869 /* schedule() stats */
870 unsigned int sched_count
;
871 unsigned int sched_goidle
;
873 /* try_to_wake_up() stats */
874 unsigned int ttwu_count
;
875 unsigned int ttwu_local
;
879 struct llist_head wake_list
;
882 #ifdef CONFIG_CPU_IDLE
883 /* Must be inspected within a rcu lock section */
884 struct cpuidle_state
*idle_state
;
888 static inline int cpu_of(struct rq
*rq
)
898 #ifdef CONFIG_SCHED_SMT
900 extern struct static_key_false sched_smt_present
;
902 extern void __update_idle_core(struct rq
*rq
);
904 static inline void update_idle_core(struct rq
*rq
)
906 if (static_branch_unlikely(&sched_smt_present
))
907 __update_idle_core(rq
);
911 static inline void update_idle_core(struct rq
*rq
) { }
914 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
916 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
917 #define this_rq() this_cpu_ptr(&runqueues)
918 #define task_rq(p) cpu_rq(task_cpu(p))
919 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
920 #define raw_rq() raw_cpu_ptr(&runqueues)
922 static inline u64
__rq_clock_broken(struct rq
*rq
)
924 return READ_ONCE(rq
->clock
);
928 * rq::clock_update_flags bits
930 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
931 * call to __schedule(). This is an optimisation to avoid
932 * neighbouring rq clock updates.
934 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
935 * in effect and calls to update_rq_clock() are being ignored.
937 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
938 * made to update_rq_clock() since the last time rq::lock was pinned.
940 * If inside of __schedule(), clock_update_flags will have been
941 * shifted left (a left shift is a cheap operation for the fast path
942 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
944 * if (rq-clock_update_flags >= RQCF_UPDATED)
946 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
947 * one position though, because the next rq_unpin_lock() will shift it
950 #define RQCF_REQ_SKIP 0x01
951 #define RQCF_ACT_SKIP 0x02
952 #define RQCF_UPDATED 0x04
954 static inline void assert_clock_updated(struct rq
*rq
)
957 * The only reason for not seeing a clock update since the
958 * last rq_pin_lock() is if we're currently skipping updates.
960 SCHED_WARN_ON(rq
->clock_update_flags
< RQCF_ACT_SKIP
);
963 static inline u64
rq_clock(struct rq
*rq
)
965 lockdep_assert_held(&rq
->lock
);
966 assert_clock_updated(rq
);
971 static inline u64
rq_clock_task(struct rq
*rq
)
973 lockdep_assert_held(&rq
->lock
);
974 assert_clock_updated(rq
);
976 return rq
->clock_task
;
979 static inline void rq_clock_skip_update(struct rq
*rq
, bool skip
)
981 lockdep_assert_held(&rq
->lock
);
983 rq
->clock_update_flags
|= RQCF_REQ_SKIP
;
985 rq
->clock_update_flags
&= ~RQCF_REQ_SKIP
;
990 struct pin_cookie cookie
;
991 #ifdef CONFIG_SCHED_DEBUG
993 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
994 * current pin context is stashed here in case it needs to be
995 * restored in rq_repin_lock().
997 unsigned int clock_update_flags
;
1001 static inline void rq_pin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1003 rf
->cookie
= lockdep_pin_lock(&rq
->lock
);
1005 #ifdef CONFIG_SCHED_DEBUG
1006 rq
->clock_update_flags
&= (RQCF_REQ_SKIP
|RQCF_ACT_SKIP
);
1007 rf
->clock_update_flags
= 0;
1011 static inline void rq_unpin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1013 #ifdef CONFIG_SCHED_DEBUG
1014 if (rq
->clock_update_flags
> RQCF_ACT_SKIP
)
1015 rf
->clock_update_flags
= RQCF_UPDATED
;
1018 lockdep_unpin_lock(&rq
->lock
, rf
->cookie
);
1021 static inline void rq_repin_lock(struct rq
*rq
, struct rq_flags
*rf
)
1023 lockdep_repin_lock(&rq
->lock
, rf
->cookie
);
1025 #ifdef CONFIG_SCHED_DEBUG
1027 * Restore the value we stashed in @rf for this pin context.
1029 rq
->clock_update_flags
|= rf
->clock_update_flags
;
1034 enum numa_topology_type
{
1039 extern enum numa_topology_type sched_numa_topology_type
;
1040 extern int sched_max_numa_distance
;
1041 extern bool find_numa_distance(int distance
);
1045 extern void sched_init_numa(void);
1046 extern void sched_domains_numa_masks_set(unsigned int cpu
);
1047 extern void sched_domains_numa_masks_clear(unsigned int cpu
);
1049 static inline void sched_init_numa(void) { }
1050 static inline void sched_domains_numa_masks_set(unsigned int cpu
) { }
1051 static inline void sched_domains_numa_masks_clear(unsigned int cpu
) { }
1054 #ifdef CONFIG_NUMA_BALANCING
1055 /* The regions in numa_faults array from task_struct */
1056 enum numa_faults_stats
{
1062 extern void sched_setnuma(struct task_struct
*p
, int node
);
1063 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
1064 extern int migrate_swap(struct task_struct
*, struct task_struct
*);
1065 #endif /* CONFIG_NUMA_BALANCING */
1070 queue_balance_callback(struct rq
*rq
,
1071 struct callback_head
*head
,
1072 void (*func
)(struct rq
*rq
))
1074 lockdep_assert_held(&rq
->lock
);
1076 if (unlikely(head
->next
))
1079 head
->func
= (void (*)(struct callback_head
*))func
;
1080 head
->next
= rq
->balance_callback
;
1081 rq
->balance_callback
= head
;
1084 extern void sched_ttwu_pending(void);
1086 #define rcu_dereference_check_sched_domain(p) \
1087 rcu_dereference_check((p), \
1088 lockdep_is_held(&sched_domains_mutex))
1091 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1092 * See detach_destroy_domains: synchronize_sched for details.
1094 * The domain tree of any CPU may only be accessed from within
1095 * preempt-disabled sections.
1097 #define for_each_domain(cpu, __sd) \
1098 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1099 __sd; __sd = __sd->parent)
1101 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1104 * highest_flag_domain - Return highest sched_domain containing flag.
1105 * @cpu: The CPU whose highest level of sched domain is to
1107 * @flag: The flag to check for the highest sched_domain
1108 * for the given CPU.
1110 * Returns the highest sched_domain of a CPU which contains the given flag.
1112 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
1114 struct sched_domain
*sd
, *hsd
= NULL
;
1116 for_each_domain(cpu
, sd
) {
1117 if (!(sd
->flags
& flag
))
1125 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
1127 struct sched_domain
*sd
;
1129 for_each_domain(cpu
, sd
) {
1130 if (sd
->flags
& flag
)
1137 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
1138 DECLARE_PER_CPU(int, sd_llc_size
);
1139 DECLARE_PER_CPU(int, sd_llc_id
);
1140 DECLARE_PER_CPU(struct sched_domain_shared
*, sd_llc_shared
);
1141 DECLARE_PER_CPU(struct sched_domain
*, sd_numa
);
1142 DECLARE_PER_CPU(struct sched_domain
*, sd_asym
);
1144 struct sched_group_capacity
{
1147 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1150 unsigned long capacity
;
1151 unsigned long min_capacity
; /* Min per-CPU capacity in group */
1152 unsigned long next_update
;
1153 int imbalance
; /* XXX unrelated to capacity but shared group state */
1155 #ifdef CONFIG_SCHED_DEBUG
1159 unsigned long cpumask
[0]; /* Balance mask */
1162 struct sched_group
{
1163 struct sched_group
*next
; /* Must be a circular list */
1166 unsigned int group_weight
;
1167 struct sched_group_capacity
*sgc
;
1168 int asym_prefer_cpu
; /* CPU of highest priority in group */
1171 * The CPUs this group covers.
1173 * NOTE: this field is variable length. (Allocated dynamically
1174 * by attaching extra space to the end of the structure,
1175 * depending on how many CPUs the kernel has booted up with)
1177 unsigned long cpumask
[0];
1180 static inline struct cpumask
*sched_group_span(struct sched_group
*sg
)
1182 return to_cpumask(sg
->cpumask
);
1186 * See build_balance_mask().
1188 static inline struct cpumask
*group_balance_mask(struct sched_group
*sg
)
1190 return to_cpumask(sg
->sgc
->cpumask
);
1194 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1195 * @group: The group whose first CPU is to be returned.
1197 static inline unsigned int group_first_cpu(struct sched_group
*group
)
1199 return cpumask_first(sched_group_span(group
));
1202 extern int group_balance_cpu(struct sched_group
*sg
);
1204 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1205 void register_sched_domain_sysctl(void);
1206 void dirty_sched_domain_sysctl(int cpu
);
1207 void unregister_sched_domain_sysctl(void);
1209 static inline void register_sched_domain_sysctl(void)
1212 static inline void dirty_sched_domain_sysctl(int cpu
)
1215 static inline void unregister_sched_domain_sysctl(void)
1222 static inline void sched_ttwu_pending(void) { }
1224 #endif /* CONFIG_SMP */
1227 #include "autogroup.h"
1229 #ifdef CONFIG_CGROUP_SCHED
1232 * Return the group to which this tasks belongs.
1234 * We cannot use task_css() and friends because the cgroup subsystem
1235 * changes that value before the cgroup_subsys::attach() method is called,
1236 * therefore we cannot pin it and might observe the wrong value.
1238 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1239 * core changes this before calling sched_move_task().
1241 * Instead we use a 'copy' which is updated from sched_move_task() while
1242 * holding both task_struct::pi_lock and rq::lock.
1244 static inline struct task_group
*task_group(struct task_struct
*p
)
1246 return p
->sched_task_group
;
1249 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1250 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
1252 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1253 struct task_group
*tg
= task_group(p
);
1256 #ifdef CONFIG_FAIR_GROUP_SCHED
1257 set_task_rq_fair(&p
->se
, p
->se
.cfs_rq
, tg
->cfs_rq
[cpu
]);
1258 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
1259 p
->se
.parent
= tg
->se
[cpu
];
1262 #ifdef CONFIG_RT_GROUP_SCHED
1263 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
1264 p
->rt
.parent
= tg
->rt_se
[cpu
];
1268 #else /* CONFIG_CGROUP_SCHED */
1270 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
1271 static inline struct task_group
*task_group(struct task_struct
*p
)
1276 #endif /* CONFIG_CGROUP_SCHED */
1278 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1280 set_task_rq(p
, cpu
);
1283 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1284 * successfuly executed on another CPU. We must ensure that updates of
1285 * per-task data have been completed by this moment.
1288 #ifdef CONFIG_THREAD_INFO_IN_TASK
1291 task_thread_info(p
)->cpu
= cpu
;
1298 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1300 #ifdef CONFIG_SCHED_DEBUG
1301 # include <linux/static_key.h>
1302 # define const_debug __read_mostly
1304 # define const_debug const
1307 #define SCHED_FEAT(name, enabled) \
1308 __SCHED_FEAT_##name ,
1311 #include "features.h"
1317 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1320 * To support run-time toggling of sched features, all the translation units
1321 * (but core.c) reference the sysctl_sched_features defined in core.c.
1323 extern const_debug
unsigned int sysctl_sched_features
;
1325 #define SCHED_FEAT(name, enabled) \
1326 static __always_inline bool static_branch_##name(struct static_key *key) \
1328 return static_key_##enabled(key); \
1331 #include "features.h"
1334 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
1335 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1337 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1340 * Each translation unit has its own copy of sysctl_sched_features to allow
1341 * constants propagation at compile time and compiler optimization based on
1344 #define SCHED_FEAT(name, enabled) \
1345 (1UL << __SCHED_FEAT_##name) * enabled |
1346 static const_debug __maybe_unused
unsigned int sysctl_sched_features
=
1347 #include "features.h"
1351 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1353 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1355 extern struct static_key_false sched_numa_balancing
;
1356 extern struct static_key_false sched_schedstats
;
1358 static inline u64
global_rt_period(void)
1360 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
1363 static inline u64
global_rt_runtime(void)
1365 if (sysctl_sched_rt_runtime
< 0)
1368 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
1371 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
1373 return rq
->curr
== p
;
1376 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1381 return task_current(rq
, p
);
1385 static inline int task_on_rq_queued(struct task_struct
*p
)
1387 return p
->on_rq
== TASK_ON_RQ_QUEUED
;
1390 static inline int task_on_rq_migrating(struct task_struct
*p
)
1392 return p
->on_rq
== TASK_ON_RQ_MIGRATING
;
1398 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1399 #define WF_FORK 0x02 /* Child wakeup after fork */
1400 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1403 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1404 * of tasks with abnormal "nice" values across CPUs the contribution that
1405 * each task makes to its run queue's load is weighted according to its
1406 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1407 * scaled version of the new time slice allocation that they receive on time
1411 #define WEIGHT_IDLEPRIO 3
1412 #define WMULT_IDLEPRIO 1431655765
1414 extern const int sched_prio_to_weight
[40];
1415 extern const u32 sched_prio_to_wmult
[40];
1418 * {de,en}queue flags:
1420 * DEQUEUE_SLEEP - task is no longer runnable
1421 * ENQUEUE_WAKEUP - task just became runnable
1423 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1424 * are in a known state which allows modification. Such pairs
1425 * should preserve as much state as possible.
1427 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1430 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1431 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1432 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1436 #define DEQUEUE_SLEEP 0x01
1437 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1438 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1439 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1441 #define ENQUEUE_WAKEUP 0x01
1442 #define ENQUEUE_RESTORE 0x02
1443 #define ENQUEUE_MOVE 0x04
1444 #define ENQUEUE_NOCLOCK 0x08
1446 #define ENQUEUE_HEAD 0x10
1447 #define ENQUEUE_REPLENISH 0x20
1449 #define ENQUEUE_MIGRATED 0x40
1451 #define ENQUEUE_MIGRATED 0x00
1454 #define RETRY_TASK ((void *)-1UL)
1456 struct sched_class
{
1457 const struct sched_class
*next
;
1459 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1460 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1461 void (*yield_task
) (struct rq
*rq
);
1462 bool (*yield_to_task
)(struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1464 void (*check_preempt_curr
)(struct rq
*rq
, struct task_struct
*p
, int flags
);
1467 * It is the responsibility of the pick_next_task() method that will
1468 * return the next task to call put_prev_task() on the @prev task or
1469 * something equivalent.
1471 * May return RETRY_TASK when it finds a higher prio class has runnable
1474 struct task_struct
* (*pick_next_task
)(struct rq
*rq
,
1475 struct task_struct
*prev
,
1476 struct rq_flags
*rf
);
1477 void (*put_prev_task
)(struct rq
*rq
, struct task_struct
*p
);
1480 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1481 void (*migrate_task_rq
)(struct task_struct
*p
);
1483 void (*task_woken
)(struct rq
*this_rq
, struct task_struct
*task
);
1485 void (*set_cpus_allowed
)(struct task_struct
*p
,
1486 const struct cpumask
*newmask
);
1488 void (*rq_online
)(struct rq
*rq
);
1489 void (*rq_offline
)(struct rq
*rq
);
1492 void (*set_curr_task
)(struct rq
*rq
);
1493 void (*task_tick
)(struct rq
*rq
, struct task_struct
*p
, int queued
);
1494 void (*task_fork
)(struct task_struct
*p
);
1495 void (*task_dead
)(struct task_struct
*p
);
1498 * The switched_from() call is allowed to drop rq->lock, therefore we
1499 * cannot assume the switched_from/switched_to pair is serliazed by
1500 * rq->lock. They are however serialized by p->pi_lock.
1502 void (*switched_from
)(struct rq
*this_rq
, struct task_struct
*task
);
1503 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1504 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1507 unsigned int (*get_rr_interval
)(struct rq
*rq
,
1508 struct task_struct
*task
);
1510 void (*update_curr
)(struct rq
*rq
);
1512 #define TASK_SET_GROUP 0
1513 #define TASK_MOVE_GROUP 1
1515 #ifdef CONFIG_FAIR_GROUP_SCHED
1516 void (*task_change_group
)(struct task_struct
*p
, int type
);
1520 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1522 prev
->sched_class
->put_prev_task(rq
, prev
);
1525 static inline void set_curr_task(struct rq
*rq
, struct task_struct
*curr
)
1527 curr
->sched_class
->set_curr_task(rq
);
1531 #define sched_class_highest (&stop_sched_class)
1533 #define sched_class_highest (&dl_sched_class)
1535 #define for_each_class(class) \
1536 for (class = sched_class_highest; class; class = class->next)
1538 extern const struct sched_class stop_sched_class
;
1539 extern const struct sched_class dl_sched_class
;
1540 extern const struct sched_class rt_sched_class
;
1541 extern const struct sched_class fair_sched_class
;
1542 extern const struct sched_class idle_sched_class
;
1547 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1549 extern void trigger_load_balance(struct rq
*rq
);
1551 extern void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
);
1555 #ifdef CONFIG_CPU_IDLE
1556 static inline void idle_set_state(struct rq
*rq
,
1557 struct cpuidle_state
*idle_state
)
1559 rq
->idle_state
= idle_state
;
1562 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1564 SCHED_WARN_ON(!rcu_read_lock_held());
1566 return rq
->idle_state
;
1569 static inline void idle_set_state(struct rq
*rq
,
1570 struct cpuidle_state
*idle_state
)
1574 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1580 extern void schedule_idle(void);
1582 extern void sysrq_sched_debug_show(void);
1583 extern void sched_init_granularity(void);
1584 extern void update_max_interval(void);
1586 extern void init_sched_dl_class(void);
1587 extern void init_sched_rt_class(void);
1588 extern void init_sched_fair_class(void);
1590 extern void reweight_task(struct task_struct
*p
, int prio
);
1592 extern void resched_curr(struct rq
*rq
);
1593 extern void resched_cpu(int cpu
);
1595 extern struct rt_bandwidth def_rt_bandwidth
;
1596 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1598 extern struct dl_bandwidth def_dl_bandwidth
;
1599 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1600 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1601 extern void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
);
1602 extern void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
);
1605 #define BW_UNIT (1 << BW_SHIFT)
1606 #define RATIO_SHIFT 8
1607 unsigned long to_ratio(u64 period
, u64 runtime
);
1609 extern void init_entity_runnable_average(struct sched_entity
*se
);
1610 extern void post_init_entity_util_avg(struct sched_entity
*se
);
1612 #ifdef CONFIG_NO_HZ_FULL
1613 extern bool sched_can_stop_tick(struct rq
*rq
);
1614 extern int __init
sched_tick_offload_init(void);
1617 * Tick may be needed by tasks in the runqueue depending on their policy and
1618 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1619 * nohz mode if necessary.
1621 static inline void sched_update_tick_dependency(struct rq
*rq
)
1625 if (!tick_nohz_full_enabled())
1630 if (!tick_nohz_full_cpu(cpu
))
1633 if (sched_can_stop_tick(rq
))
1634 tick_nohz_dep_clear_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1636 tick_nohz_dep_set_cpu(cpu
, TICK_DEP_BIT_SCHED
);
1639 static inline int sched_tick_offload_init(void) { return 0; }
1640 static inline void sched_update_tick_dependency(struct rq
*rq
) { }
1643 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1645 unsigned prev_nr
= rq
->nr_running
;
1647 rq
->nr_running
= prev_nr
+ count
;
1649 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1651 if (!rq
->rd
->overload
)
1652 rq
->rd
->overload
= true;
1656 sched_update_tick_dependency(rq
);
1659 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1661 rq
->nr_running
-= count
;
1662 /* Check if we still need preemption */
1663 sched_update_tick_dependency(rq
);
1666 extern void update_rq_clock(struct rq
*rq
);
1668 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1669 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1671 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1673 extern const_debug
unsigned int sysctl_sched_time_avg
;
1674 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1675 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1677 static inline u64
sched_avg_period(void)
1679 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1682 #ifdef CONFIG_SCHED_HRTICK
1686 * - enabled by features
1687 * - hrtimer is actually high res
1689 static inline int hrtick_enabled(struct rq
*rq
)
1691 if (!sched_feat(HRTICK
))
1693 if (!cpu_active(cpu_of(rq
)))
1695 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1698 void hrtick_start(struct rq
*rq
, u64 delay
);
1702 static inline int hrtick_enabled(struct rq
*rq
)
1707 #endif /* CONFIG_SCHED_HRTICK */
1709 #ifndef arch_scale_freq_capacity
1710 static __always_inline
1711 unsigned long arch_scale_freq_capacity(int cpu
)
1713 return SCHED_CAPACITY_SCALE
;
1718 extern void sched_avg_update(struct rq
*rq
);
1720 #ifndef arch_scale_cpu_capacity
1721 static __always_inline
1722 unsigned long arch_scale_cpu_capacity(struct sched_domain
*sd
, int cpu
)
1724 if (sd
&& (sd
->flags
& SD_SHARE_CPUCAPACITY
) && (sd
->span_weight
> 1))
1725 return sd
->smt_gain
/ sd
->span_weight
;
1727 return SCHED_CAPACITY_SCALE
;
1731 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1733 rq
->rt_avg
+= rt_delta
* arch_scale_freq_capacity(cpu_of(rq
));
1734 sched_avg_update(rq
);
1737 #ifndef arch_scale_cpu_capacity
1738 static __always_inline
1739 unsigned long arch_scale_cpu_capacity(void __always_unused
*sd
, int cpu
)
1741 return SCHED_CAPACITY_SCALE
;
1744 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
1745 static inline void sched_avg_update(struct rq
*rq
) { }
1748 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1749 __acquires(rq
->lock
);
1751 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
1752 __acquires(p
->pi_lock
)
1753 __acquires(rq
->lock
);
1755 static inline void __task_rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1756 __releases(rq
->lock
)
1758 rq_unpin_lock(rq
, rf
);
1759 raw_spin_unlock(&rq
->lock
);
1763 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1764 __releases(rq
->lock
)
1765 __releases(p
->pi_lock
)
1767 rq_unpin_lock(rq
, rf
);
1768 raw_spin_unlock(&rq
->lock
);
1769 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
1773 rq_lock_irqsave(struct rq
*rq
, struct rq_flags
*rf
)
1774 __acquires(rq
->lock
)
1776 raw_spin_lock_irqsave(&rq
->lock
, rf
->flags
);
1777 rq_pin_lock(rq
, rf
);
1781 rq_lock_irq(struct rq
*rq
, struct rq_flags
*rf
)
1782 __acquires(rq
->lock
)
1784 raw_spin_lock_irq(&rq
->lock
);
1785 rq_pin_lock(rq
, rf
);
1789 rq_lock(struct rq
*rq
, struct rq_flags
*rf
)
1790 __acquires(rq
->lock
)
1792 raw_spin_lock(&rq
->lock
);
1793 rq_pin_lock(rq
, rf
);
1797 rq_relock(struct rq
*rq
, struct rq_flags
*rf
)
1798 __acquires(rq
->lock
)
1800 raw_spin_lock(&rq
->lock
);
1801 rq_repin_lock(rq
, rf
);
1805 rq_unlock_irqrestore(struct rq
*rq
, struct rq_flags
*rf
)
1806 __releases(rq
->lock
)
1808 rq_unpin_lock(rq
, rf
);
1809 raw_spin_unlock_irqrestore(&rq
->lock
, rf
->flags
);
1813 rq_unlock_irq(struct rq
*rq
, struct rq_flags
*rf
)
1814 __releases(rq
->lock
)
1816 rq_unpin_lock(rq
, rf
);
1817 raw_spin_unlock_irq(&rq
->lock
);
1821 rq_unlock(struct rq
*rq
, struct rq_flags
*rf
)
1822 __releases(rq
->lock
)
1824 rq_unpin_lock(rq
, rf
);
1825 raw_spin_unlock(&rq
->lock
);
1829 #ifdef CONFIG_PREEMPT
1831 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1834 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1835 * way at the expense of forcing extra atomic operations in all
1836 * invocations. This assures that the double_lock is acquired using the
1837 * same underlying policy as the spinlock_t on this architecture, which
1838 * reduces latency compared to the unfair variant below. However, it
1839 * also adds more overhead and therefore may reduce throughput.
1841 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1842 __releases(this_rq
->lock
)
1843 __acquires(busiest
->lock
)
1844 __acquires(this_rq
->lock
)
1846 raw_spin_unlock(&this_rq
->lock
);
1847 double_rq_lock(this_rq
, busiest
);
1854 * Unfair double_lock_balance: Optimizes throughput at the expense of
1855 * latency by eliminating extra atomic operations when the locks are
1856 * already in proper order on entry. This favors lower CPU-ids and will
1857 * grant the double lock to lower CPUs over higher ids under contention,
1858 * regardless of entry order into the function.
1860 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1861 __releases(this_rq
->lock
)
1862 __acquires(busiest
->lock
)
1863 __acquires(this_rq
->lock
)
1867 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1868 if (busiest
< this_rq
) {
1869 raw_spin_unlock(&this_rq
->lock
);
1870 raw_spin_lock(&busiest
->lock
);
1871 raw_spin_lock_nested(&this_rq
->lock
,
1872 SINGLE_DEPTH_NESTING
);
1875 raw_spin_lock_nested(&busiest
->lock
,
1876 SINGLE_DEPTH_NESTING
);
1881 #endif /* CONFIG_PREEMPT */
1884 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1886 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1888 if (unlikely(!irqs_disabled())) {
1889 /* printk() doesn't work well under rq->lock */
1890 raw_spin_unlock(&this_rq
->lock
);
1894 return _double_lock_balance(this_rq
, busiest
);
1897 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1898 __releases(busiest
->lock
)
1900 raw_spin_unlock(&busiest
->lock
);
1901 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1904 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
1910 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1913 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
1919 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1922 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
1928 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1932 * double_rq_lock - safely lock two runqueues
1934 * Note this does not disable interrupts like task_rq_lock,
1935 * you need to do so manually before calling.
1937 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1938 __acquires(rq1
->lock
)
1939 __acquires(rq2
->lock
)
1941 BUG_ON(!irqs_disabled());
1943 raw_spin_lock(&rq1
->lock
);
1944 __acquire(rq2
->lock
); /* Fake it out ;) */
1947 raw_spin_lock(&rq1
->lock
);
1948 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1950 raw_spin_lock(&rq2
->lock
);
1951 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1957 * double_rq_unlock - safely unlock two runqueues
1959 * Note this does not restore interrupts like task_rq_unlock,
1960 * you need to do so manually after calling.
1962 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1963 __releases(rq1
->lock
)
1964 __releases(rq2
->lock
)
1966 raw_spin_unlock(&rq1
->lock
);
1968 raw_spin_unlock(&rq2
->lock
);
1970 __release(rq2
->lock
);
1973 extern void set_rq_online (struct rq
*rq
);
1974 extern void set_rq_offline(struct rq
*rq
);
1975 extern bool sched_smp_initialized
;
1977 #else /* CONFIG_SMP */
1980 * double_rq_lock - safely lock two runqueues
1982 * Note this does not disable interrupts like task_rq_lock,
1983 * you need to do so manually before calling.
1985 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1986 __acquires(rq1
->lock
)
1987 __acquires(rq2
->lock
)
1989 BUG_ON(!irqs_disabled());
1991 raw_spin_lock(&rq1
->lock
);
1992 __acquire(rq2
->lock
); /* Fake it out ;) */
1996 * double_rq_unlock - safely unlock two runqueues
1998 * Note this does not restore interrupts like task_rq_unlock,
1999 * you need to do so manually after calling.
2001 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2002 __releases(rq1
->lock
)
2003 __releases(rq2
->lock
)
2006 raw_spin_unlock(&rq1
->lock
);
2007 __release(rq2
->lock
);
2012 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
2013 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
2015 #ifdef CONFIG_SCHED_DEBUG
2016 extern bool sched_debug_enabled
;
2018 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
2019 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
2020 extern void print_dl_stats(struct seq_file
*m
, int cpu
);
2022 print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
2023 #ifdef CONFIG_NUMA_BALANCING
2025 show_numa_stats(struct task_struct
*p
, struct seq_file
*m
);
2027 print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
2028 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
);
2029 #endif /* CONFIG_NUMA_BALANCING */
2030 #endif /* CONFIG_SCHED_DEBUG */
2032 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
2033 extern void init_rt_rq(struct rt_rq
*rt_rq
);
2034 extern void init_dl_rq(struct dl_rq
*dl_rq
);
2036 extern void cfs_bandwidth_usage_inc(void);
2037 extern void cfs_bandwidth_usage_dec(void);
2039 #ifdef CONFIG_NO_HZ_COMMON
2040 #define NOHZ_BALANCE_KICK_BIT 0
2041 #define NOHZ_STATS_KICK_BIT 1
2043 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2044 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2046 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2048 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2050 extern void nohz_balance_exit_idle(struct rq
*rq
);
2052 static inline void nohz_balance_exit_idle(struct rq
*rq
) { }
2058 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
2060 struct root_domain
*rd
= container_of(dl_b
, struct root_domain
, dl_bw
);
2063 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2064 "sched RCU must be held");
2065 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
) {
2066 struct rq
*rq
= cpu_rq(i
);
2068 rq
->dl
.extra_bw
+= bw
;
2073 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
2075 struct dl_rq
*dl
= container_of(dl_b
, struct dl_rq
, dl_bw
);
2082 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2087 struct u64_stats_sync sync
;
2090 DECLARE_PER_CPU(struct irqtime
, cpu_irqtime
);
2093 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2094 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2095 * and never move forward.
2097 static inline u64
irq_time_read(int cpu
)
2099 struct irqtime
*irqtime
= &per_cpu(cpu_irqtime
, cpu
);
2104 seq
= __u64_stats_fetch_begin(&irqtime
->sync
);
2105 total
= irqtime
->total
;
2106 } while (__u64_stats_fetch_retry(&irqtime
->sync
, seq
));
2110 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2112 #ifdef CONFIG_CPU_FREQ
2113 DECLARE_PER_CPU(struct update_util_data
*, cpufreq_update_util_data
);
2116 * cpufreq_update_util - Take a note about CPU utilization changes.
2117 * @rq: Runqueue to carry out the update for.
2118 * @flags: Update reason flags.
2120 * This function is called by the scheduler on the CPU whose utilization is
2123 * It can only be called from RCU-sched read-side critical sections.
2125 * The way cpufreq is currently arranged requires it to evaluate the CPU
2126 * performance state (frequency/voltage) on a regular basis to prevent it from
2127 * being stuck in a completely inadequate performance level for too long.
2128 * That is not guaranteed to happen if the updates are only triggered from CFS
2129 * and DL, though, because they may not be coming in if only RT tasks are
2130 * active all the time (or there are RT tasks only).
2132 * As a workaround for that issue, this function is called periodically by the
2133 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2134 * but that really is a band-aid. Going forward it should be replaced with
2135 * solutions targeted more specifically at RT tasks.
2137 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
)
2139 struct update_util_data
*data
;
2141 data
= rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data
,
2144 data
->func(data
, rq_clock(rq
), flags
);
2147 static inline void cpufreq_update_util(struct rq
*rq
, unsigned int flags
) {}
2148 #endif /* CONFIG_CPU_FREQ */
2150 #ifdef arch_scale_freq_capacity
2151 # ifndef arch_scale_freq_invariant
2152 # define arch_scale_freq_invariant() true
2155 # define arch_scale_freq_invariant() false
2158 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2159 static inline unsigned long cpu_util_dl(struct rq
*rq
)
2161 return (rq
->dl
.running_bw
* SCHED_CAPACITY_SCALE
) >> BW_SHIFT
;
2164 static inline unsigned long cpu_util_cfs(struct rq
*rq
)
2166 unsigned long util
= READ_ONCE(rq
->cfs
.avg
.util_avg
);
2168 if (sched_feat(UTIL_EST
)) {
2169 util
= max_t(unsigned long, util
,
2170 READ_ONCE(rq
->cfs
.avg
.util_est
.enqueued
));