2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
32 #include <asm/irq_regs.h>
34 #include "tick-internal.h"
36 #include <trace/events/timer.h>
39 * Per-CPU nohz control structure
41 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
43 struct tick_sched
*tick_get_tick_sched(int cpu
)
45 return &per_cpu(tick_cpu_sched
, cpu
);
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
52 static ktime_t last_jiffies_update
;
55 * Called after resume. Make sure that jiffies are not fast forwarded due to
56 * clock monotonic being forwarded by the suspended time.
58 void tick_sched_forward_next_period(void)
60 last_jiffies_update
= tick_next_period
;
64 * Must be called with interrupts disabled !
66 static void tick_do_update_jiffies64(ktime_t now
)
68 unsigned long ticks
= 0;
72 * Do a quick check without holding jiffies_lock:
74 delta
= ktime_sub(now
, last_jiffies_update
);
75 if (delta
< tick_period
)
78 /* Reevaluate with jiffies_lock held */
79 write_seqlock(&jiffies_lock
);
81 delta
= ktime_sub(now
, last_jiffies_update
);
82 if (delta
>= tick_period
) {
84 delta
= ktime_sub(delta
, tick_period
);
85 last_jiffies_update
= ktime_add(last_jiffies_update
,
88 /* Slow path for long timeouts */
89 if (unlikely(delta
>= tick_period
)) {
90 s64 incr
= ktime_to_ns(tick_period
);
92 ticks
= ktime_divns(delta
, incr
);
94 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
99 /* Keep the tick_next_period variable up to date */
100 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
102 write_sequnlock(&jiffies_lock
);
105 write_sequnlock(&jiffies_lock
);
110 * Initialize and return retrieve the jiffies update.
112 static ktime_t
tick_init_jiffy_update(void)
116 write_seqlock(&jiffies_lock
);
117 /* Did we start the jiffies update yet ? */
118 if (last_jiffies_update
== 0)
119 last_jiffies_update
= tick_next_period
;
120 period
= last_jiffies_update
;
121 write_sequnlock(&jiffies_lock
);
126 static void tick_sched_do_timer(ktime_t now
)
128 int cpu
= smp_processor_id();
130 #ifdef CONFIG_NO_HZ_COMMON
132 * Check if the do_timer duty was dropped. We don't care about
133 * concurrency: This happens only when the CPU in charge went
134 * into a long sleep. If two CPUs happen to assign themselves to
135 * this duty, then the jiffies update is still serialized by
138 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
139 && !tick_nohz_full_cpu(cpu
))
140 tick_do_timer_cpu
= cpu
;
143 /* Check, if the jiffies need an update */
144 if (tick_do_timer_cpu
== cpu
)
145 tick_do_update_jiffies64(now
);
148 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
150 #ifdef CONFIG_NO_HZ_COMMON
152 * When we are idle and the tick is stopped, we have to touch
153 * the watchdog as we might not schedule for a really long
154 * time. This happens on complete idle SMP systems while
155 * waiting on the login prompt. We also increment the "start of
156 * idle" jiffy stamp so the idle accounting adjustment we do
157 * when we go busy again does not account too much ticks.
159 if (ts
->tick_stopped
) {
160 touch_softlockup_watchdog_sched();
161 if (is_idle_task(current
))
164 * In case the current tick fired too early past its expected
165 * expiration, make sure we don't bypass the next clock reprogramming
166 * to the same deadline.
171 update_process_times(user_mode(regs
));
172 profile_tick(CPU_PROFILING
);
176 #ifdef CONFIG_NO_HZ_FULL
177 cpumask_var_t tick_nohz_full_mask
;
178 bool tick_nohz_full_running
;
179 static atomic_t tick_dep_mask
;
181 static bool check_tick_dependency(atomic_t
*dep
)
183 int val
= atomic_read(dep
);
185 if (val
& TICK_DEP_MASK_POSIX_TIMER
) {
186 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER
);
190 if (val
& TICK_DEP_MASK_PERF_EVENTS
) {
191 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS
);
195 if (val
& TICK_DEP_MASK_SCHED
) {
196 trace_tick_stop(0, TICK_DEP_MASK_SCHED
);
200 if (val
& TICK_DEP_MASK_CLOCK_UNSTABLE
) {
201 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE
);
208 static bool can_stop_full_tick(int cpu
, struct tick_sched
*ts
)
210 lockdep_assert_irqs_disabled();
212 if (unlikely(!cpu_online(cpu
)))
215 if (check_tick_dependency(&tick_dep_mask
))
218 if (check_tick_dependency(&ts
->tick_dep_mask
))
221 if (check_tick_dependency(¤t
->tick_dep_mask
))
224 if (check_tick_dependency(¤t
->signal
->tick_dep_mask
))
230 static void nohz_full_kick_func(struct irq_work
*work
)
232 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
235 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
236 .func
= nohz_full_kick_func
,
240 * Kick this CPU if it's full dynticks in order to force it to
241 * re-evaluate its dependency on the tick and restart it if necessary.
242 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
245 static void tick_nohz_full_kick(void)
247 if (!tick_nohz_full_cpu(smp_processor_id()))
250 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work
));
254 * Kick the CPU if it's full dynticks in order to force it to
255 * re-evaluate its dependency on the tick and restart it if necessary.
257 void tick_nohz_full_kick_cpu(int cpu
)
259 if (!tick_nohz_full_cpu(cpu
))
262 irq_work_queue_on(&per_cpu(nohz_full_kick_work
, cpu
), cpu
);
266 * Kick all full dynticks CPUs in order to force these to re-evaluate
267 * their dependency on the tick and restart it if necessary.
269 static void tick_nohz_full_kick_all(void)
273 if (!tick_nohz_full_running
)
277 for_each_cpu_and(cpu
, tick_nohz_full_mask
, cpu_online_mask
)
278 tick_nohz_full_kick_cpu(cpu
);
282 static void tick_nohz_dep_set_all(atomic_t
*dep
,
283 enum tick_dep_bits bit
)
287 prev
= atomic_fetch_or(BIT(bit
), dep
);
289 tick_nohz_full_kick_all();
293 * Set a global tick dependency. Used by perf events that rely on freq and
296 void tick_nohz_dep_set(enum tick_dep_bits bit
)
298 tick_nohz_dep_set_all(&tick_dep_mask
, bit
);
301 void tick_nohz_dep_clear(enum tick_dep_bits bit
)
303 atomic_andnot(BIT(bit
), &tick_dep_mask
);
307 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
308 * manage events throttling.
310 void tick_nohz_dep_set_cpu(int cpu
, enum tick_dep_bits bit
)
313 struct tick_sched
*ts
;
315 ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
317 prev
= atomic_fetch_or(BIT(bit
), &ts
->tick_dep_mask
);
320 /* Perf needs local kick that is NMI safe */
321 if (cpu
== smp_processor_id()) {
322 tick_nohz_full_kick();
324 /* Remote irq work not NMI-safe */
325 if (!WARN_ON_ONCE(in_nmi()))
326 tick_nohz_full_kick_cpu(cpu
);
332 void tick_nohz_dep_clear_cpu(int cpu
, enum tick_dep_bits bit
)
334 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
336 atomic_andnot(BIT(bit
), &ts
->tick_dep_mask
);
340 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
343 void tick_nohz_dep_set_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
346 * We could optimize this with just kicking the target running the task
347 * if that noise matters for nohz full users.
349 tick_nohz_dep_set_all(&tsk
->tick_dep_mask
, bit
);
352 void tick_nohz_dep_clear_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
354 atomic_andnot(BIT(bit
), &tsk
->tick_dep_mask
);
358 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
359 * per process timers.
361 void tick_nohz_dep_set_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
363 tick_nohz_dep_set_all(&sig
->tick_dep_mask
, bit
);
366 void tick_nohz_dep_clear_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
368 atomic_andnot(BIT(bit
), &sig
->tick_dep_mask
);
372 * Re-evaluate the need for the tick as we switch the current task.
373 * It might need the tick due to per task/process properties:
374 * perf events, posix CPU timers, ...
376 void __tick_nohz_task_switch(void)
379 struct tick_sched
*ts
;
381 local_irq_save(flags
);
383 if (!tick_nohz_full_cpu(smp_processor_id()))
386 ts
= this_cpu_ptr(&tick_cpu_sched
);
388 if (ts
->tick_stopped
) {
389 if (atomic_read(¤t
->tick_dep_mask
) ||
390 atomic_read(¤t
->signal
->tick_dep_mask
))
391 tick_nohz_full_kick();
394 local_irq_restore(flags
);
397 /* Get the boot-time nohz CPU list from the kernel parameters. */
398 void __init
tick_nohz_full_setup(cpumask_var_t cpumask
)
400 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
401 cpumask_copy(tick_nohz_full_mask
, cpumask
);
402 tick_nohz_full_running
= true;
405 static int tick_nohz_cpu_down(unsigned int cpu
)
408 * The boot CPU handles housekeeping duty (unbound timers,
409 * workqueues, timekeeping, ...) on behalf of full dynticks
410 * CPUs. It must remain online when nohz full is enabled.
412 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
417 void __init
tick_nohz_init(void)
421 if (!tick_nohz_full_running
)
425 * Full dynticks uses irq work to drive the tick rescheduling on safe
426 * locking contexts. But then we need irq work to raise its own
427 * interrupts to avoid circular dependency on the tick
429 if (!arch_irq_work_has_interrupt()) {
430 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
431 cpumask_clear(tick_nohz_full_mask
);
432 tick_nohz_full_running
= false;
436 cpu
= smp_processor_id();
438 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
439 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
441 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
444 for_each_cpu(cpu
, tick_nohz_full_mask
)
445 context_tracking_cpu_set(cpu
);
447 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
448 "kernel/nohz:predown", NULL
,
451 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
452 cpumask_pr_args(tick_nohz_full_mask
));
457 * NOHZ - aka dynamic tick functionality
459 #ifdef CONFIG_NO_HZ_COMMON
463 bool tick_nohz_enabled __read_mostly
= true;
464 unsigned long tick_nohz_active __read_mostly
;
466 * Enable / Disable tickless mode
468 static int __init
setup_tick_nohz(char *str
)
470 return (kstrtobool(str
, &tick_nohz_enabled
) == 0);
473 __setup("nohz=", setup_tick_nohz
);
475 bool tick_nohz_tick_stopped(void)
477 return __this_cpu_read(tick_cpu_sched
.tick_stopped
);
480 bool tick_nohz_tick_stopped_cpu(int cpu
)
482 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
484 return ts
->tick_stopped
;
488 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
490 * Called from interrupt entry when the CPU was idle
492 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
493 * must be updated. Otherwise an interrupt handler could use a stale jiffy
494 * value. We do this unconditionally on any CPU, as we don't know whether the
495 * CPU, which has the update task assigned is in a long sleep.
497 static void tick_nohz_update_jiffies(ktime_t now
)
501 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
503 local_irq_save(flags
);
504 tick_do_update_jiffies64(now
);
505 local_irq_restore(flags
);
507 touch_softlockup_watchdog_sched();
511 * Updates the per-CPU time idle statistics counters
514 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
518 if (ts
->idle_active
) {
519 delta
= ktime_sub(now
, ts
->idle_entrytime
);
520 if (nr_iowait_cpu(cpu
) > 0)
521 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
523 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
524 ts
->idle_entrytime
= now
;
527 if (last_update_time
)
528 *last_update_time
= ktime_to_us(now
);
532 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
534 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
537 sched_clock_idle_wakeup_event();
540 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
542 ktime_t now
= ktime_get();
544 ts
->idle_entrytime
= now
;
546 sched_clock_idle_sleep_event();
551 * get_cpu_idle_time_us - get the total idle time of a CPU
552 * @cpu: CPU number to query
553 * @last_update_time: variable to store update time in. Do not update
556 * Return the cumulative idle time (since boot) for a given
557 * CPU, in microseconds.
559 * This time is measured via accounting rather than sampling,
560 * and is as accurate as ktime_get() is.
562 * This function returns -1 if NOHZ is not enabled.
564 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
566 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
569 if (!tick_nohz_active
)
573 if (last_update_time
) {
574 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
575 idle
= ts
->idle_sleeptime
;
577 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
578 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
580 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
582 idle
= ts
->idle_sleeptime
;
586 return ktime_to_us(idle
);
589 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
592 * get_cpu_iowait_time_us - get the total iowait time of a CPU
593 * @cpu: CPU number to query
594 * @last_update_time: variable to store update time in. Do not update
597 * Return the cumulative iowait time (since boot) for a given
598 * CPU, in microseconds.
600 * This time is measured via accounting rather than sampling,
601 * and is as accurate as ktime_get() is.
603 * This function returns -1 if NOHZ is not enabled.
605 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
607 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
610 if (!tick_nohz_active
)
614 if (last_update_time
) {
615 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
616 iowait
= ts
->iowait_sleeptime
;
618 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
619 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
621 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
623 iowait
= ts
->iowait_sleeptime
;
627 return ktime_to_us(iowait
);
629 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
631 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
633 hrtimer_cancel(&ts
->sched_timer
);
634 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
636 /* Forward the time to expire in the future */
637 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
639 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
640 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
642 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
645 * Reset to make sure next tick stop doesn't get fooled by past
646 * cached clock deadline.
651 static inline bool local_timer_softirq_pending(void)
653 return local_softirq_pending() & TIMER_SOFTIRQ
;
656 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
657 ktime_t now
, int cpu
)
659 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
660 u64 basemono
, next_tick
, next_tmr
, next_rcu
, delta
, expires
;
661 unsigned long seq
, basejiff
;
664 /* Read jiffies and the time when jiffies were updated last */
666 seq
= read_seqbegin(&jiffies_lock
);
667 basemono
= last_jiffies_update
;
669 } while (read_seqretry(&jiffies_lock
, seq
));
670 ts
->last_jiffies
= basejiff
;
673 * Keep the periodic tick, when RCU, architecture or irq_work
675 * Aside of that check whether the local timer softirq is
676 * pending. If so its a bad idea to call get_next_timer_interrupt()
677 * because there is an already expired timer, so it will request
678 * immeditate expiry, which rearms the hardware timer with a
679 * minimal delta which brings us back to this place
680 * immediately. Lather, rinse and repeat...
682 if (rcu_needs_cpu(basemono
, &next_rcu
) || arch_needs_cpu() ||
683 irq_work_needs_cpu() || local_timer_softirq_pending()) {
684 next_tick
= basemono
+ TICK_NSEC
;
687 * Get the next pending timer. If high resolution
688 * timers are enabled this only takes the timer wheel
689 * timers into account. If high resolution timers are
690 * disabled this also looks at the next expiring
693 next_tmr
= get_next_timer_interrupt(basejiff
, basemono
);
694 ts
->next_timer
= next_tmr
;
695 /* Take the next rcu event into account */
696 next_tick
= next_rcu
< next_tmr
? next_rcu
: next_tmr
;
700 * If the tick is due in the next period, keep it ticking or
701 * force prod the timer.
703 delta
= next_tick
- basemono
;
704 if (delta
<= (u64
)TICK_NSEC
) {
706 * Tell the timer code that the base is not idle, i.e. undo
707 * the effect of get_next_timer_interrupt():
711 * We've not stopped the tick yet, and there's a timer in the
712 * next period, so no point in stopping it either, bail.
714 if (!ts
->tick_stopped
) {
721 * If this CPU is the one which updates jiffies, then give up
722 * the assignment and let it be taken by the CPU which runs
723 * the tick timer next, which might be this CPU as well. If we
724 * don't drop this here the jiffies might be stale and
725 * do_timer() never invoked. Keep track of the fact that it
726 * was the one which had the do_timer() duty last. If this CPU
727 * is the one which had the do_timer() duty last, we limit the
728 * sleep time to the timekeeping max_deferment value.
729 * Otherwise we can sleep as long as we want.
731 delta
= timekeeping_max_deferment();
732 if (cpu
== tick_do_timer_cpu
) {
733 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
734 ts
->do_timer_last
= 1;
735 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
737 ts
->do_timer_last
= 0;
738 } else if (!ts
->do_timer_last
) {
742 /* Calculate the next expiry time */
743 if (delta
< (KTIME_MAX
- basemono
))
744 expires
= basemono
+ delta
;
748 expires
= min_t(u64
, expires
, next_tick
);
751 /* Skip reprogram of event if its not changed */
752 if (ts
->tick_stopped
&& (expires
== ts
->next_tick
)) {
753 /* Sanity check: make sure clockevent is actually programmed */
754 if (tick
== KTIME_MAX
|| ts
->next_tick
== hrtimer_get_expires(&ts
->sched_timer
))
758 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
759 basemono
, ts
->next_tick
, dev
->next_event
,
760 hrtimer_active(&ts
->sched_timer
), hrtimer_get_expires(&ts
->sched_timer
));
764 * nohz_stop_sched_tick can be called several times before
765 * the nohz_restart_sched_tick is called. This happens when
766 * interrupts arrive which do not cause a reschedule. In the
767 * first call we save the current tick time, so we can restart
768 * the scheduler tick in nohz_restart_sched_tick.
770 if (!ts
->tick_stopped
) {
771 calc_load_nohz_start();
772 cpu_load_update_nohz_start();
775 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
776 ts
->tick_stopped
= 1;
777 trace_tick_stop(1, TICK_DEP_MASK_NONE
);
780 ts
->next_tick
= tick
;
783 * If the expiration time == KTIME_MAX, then we simply stop
786 if (unlikely(expires
== KTIME_MAX
)) {
787 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
788 hrtimer_cancel(&ts
->sched_timer
);
792 hrtimer_set_expires(&ts
->sched_timer
, tick
);
794 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
795 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
797 tick_program_event(tick
, 1);
800 * Update the estimated sleep length until the next timer
801 * (not only the tick).
803 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
807 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
809 /* Update jiffies first */
810 tick_do_update_jiffies64(now
);
811 cpu_load_update_nohz_stop();
814 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
815 * the clock forward checks in the enqueue path:
819 calc_load_nohz_stop();
820 touch_softlockup_watchdog_sched();
822 * Cancel the scheduled timer and restore the tick
824 ts
->tick_stopped
= 0;
825 ts
->idle_exittime
= now
;
827 tick_nohz_restart(ts
, now
);
830 static void tick_nohz_full_update_tick(struct tick_sched
*ts
)
832 #ifdef CONFIG_NO_HZ_FULL
833 int cpu
= smp_processor_id();
835 if (!tick_nohz_full_cpu(cpu
))
838 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
841 if (can_stop_full_tick(cpu
, ts
))
842 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
843 else if (ts
->tick_stopped
)
844 tick_nohz_restart_sched_tick(ts
, ktime_get());
848 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
851 * If this CPU is offline and it is the one which updates
852 * jiffies, then give up the assignment and let it be taken by
853 * the CPU which runs the tick timer next. If we don't drop
854 * this here the jiffies might be stale and do_timer() never
857 if (unlikely(!cpu_online(cpu
))) {
858 if (cpu
== tick_do_timer_cpu
)
859 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
861 * Make sure the CPU doesn't get fooled by obsolete tick
862 * deadline if it comes back online later.
868 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
869 ts
->sleep_length
= NSEC_PER_SEC
/ HZ
;
876 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
877 static int ratelimit
;
879 if (ratelimit
< 10 &&
880 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
881 pr_warn("NOHZ: local_softirq_pending %02x\n",
882 (unsigned int) local_softirq_pending());
888 if (tick_nohz_full_enabled()) {
890 * Keep the tick alive to guarantee timekeeping progression
891 * if there are full dynticks CPUs around
893 if (tick_do_timer_cpu
== cpu
)
896 * Boot safety: make sure the timekeeping duty has been
897 * assigned before entering dyntick-idle mode,
899 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
906 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
908 ktime_t now
, expires
;
909 int cpu
= smp_processor_id();
911 now
= tick_nohz_start_idle(ts
);
913 if (can_stop_idle_tick(cpu
, ts
)) {
914 int was_stopped
= ts
->tick_stopped
;
918 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
921 ts
->idle_expires
= expires
;
924 if (!was_stopped
&& ts
->tick_stopped
) {
925 ts
->idle_jiffies
= ts
->last_jiffies
;
926 nohz_balance_enter_idle(cpu
);
932 * tick_nohz_idle_enter - stop the idle tick from the idle task
934 * When the next event is more than a tick into the future, stop the idle tick
935 * Called when we start the idle loop.
937 * The arch is responsible of calling:
939 * - rcu_idle_enter() after its last use of RCU before the CPU is put
941 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
943 void tick_nohz_idle_enter(void)
945 struct tick_sched
*ts
;
947 lockdep_assert_irqs_enabled();
951 ts
= this_cpu_ptr(&tick_cpu_sched
);
953 __tick_nohz_idle_enter(ts
);
959 * tick_nohz_irq_exit - update next tick event from interrupt exit
961 * When an interrupt fires while we are idle and it doesn't cause
962 * a reschedule, it may still add, modify or delete a timer, enqueue
963 * an RCU callback, etc...
964 * So we need to re-calculate and reprogram the next tick event.
966 void tick_nohz_irq_exit(void)
968 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
971 __tick_nohz_idle_enter(ts
);
973 tick_nohz_full_update_tick(ts
);
977 * tick_nohz_get_sleep_length - return the length of the current sleep
979 * Called from power state control code with interrupts disabled
981 ktime_t
tick_nohz_get_sleep_length(void)
983 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
985 return ts
->sleep_length
;
989 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
990 * for a particular CPU.
992 * Called from the schedutil frequency scaling governor in scheduler context.
994 unsigned long tick_nohz_get_idle_calls_cpu(int cpu
)
996 struct tick_sched
*ts
= tick_get_tick_sched(cpu
);
998 return ts
->idle_calls
;
1002 * tick_nohz_get_idle_calls - return the current idle calls counter value
1004 * Called from the schedutil frequency scaling governor in scheduler context.
1006 unsigned long tick_nohz_get_idle_calls(void)
1008 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1010 return ts
->idle_calls
;
1013 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
1015 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1016 unsigned long ticks
;
1018 if (vtime_accounting_cpu_enabled())
1021 * We stopped the tick in idle. Update process times would miss the
1022 * time we slept as update_process_times does only a 1 tick
1023 * accounting. Enforce that this is accounted to idle !
1025 ticks
= jiffies
- ts
->idle_jiffies
;
1027 * We might be one off. Do not randomly account a huge number of ticks!
1029 if (ticks
&& ticks
< LONG_MAX
)
1030 account_idle_ticks(ticks
);
1035 * tick_nohz_idle_exit - restart the idle tick from the idle task
1037 * Restart the idle tick when the CPU is woken up from idle
1038 * This also exit the RCU extended quiescent state. The CPU
1039 * can use RCU again after this function is called.
1041 void tick_nohz_idle_exit(void)
1043 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1046 local_irq_disable();
1048 WARN_ON_ONCE(!ts
->inidle
);
1052 if (ts
->idle_active
|| ts
->tick_stopped
)
1055 if (ts
->idle_active
)
1056 tick_nohz_stop_idle(ts
, now
);
1058 if (ts
->tick_stopped
) {
1059 tick_nohz_restart_sched_tick(ts
, now
);
1060 tick_nohz_account_idle_ticks(ts
);
1067 * The nohz low res interrupt handler
1069 static void tick_nohz_handler(struct clock_event_device
*dev
)
1071 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1072 struct pt_regs
*regs
= get_irq_regs();
1073 ktime_t now
= ktime_get();
1075 dev
->next_event
= KTIME_MAX
;
1077 tick_sched_do_timer(now
);
1078 tick_sched_handle(ts
, regs
);
1080 /* No need to reprogram if we are running tickless */
1081 if (unlikely(ts
->tick_stopped
))
1084 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1085 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1088 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
)
1090 if (!tick_nohz_enabled
)
1092 ts
->nohz_mode
= mode
;
1093 /* One update is enough */
1094 if (!test_and_set_bit(0, &tick_nohz_active
))
1095 timers_update_nohz();
1099 * tick_nohz_switch_to_nohz - switch to nohz mode
1101 static void tick_nohz_switch_to_nohz(void)
1103 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1106 if (!tick_nohz_enabled
)
1109 if (tick_switch_to_oneshot(tick_nohz_handler
))
1113 * Recycle the hrtimer in ts, so we can share the
1114 * hrtimer_forward with the highres code.
1116 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1117 /* Get the next period */
1118 next
= tick_init_jiffy_update();
1120 hrtimer_set_expires(&ts
->sched_timer
, next
);
1121 hrtimer_forward_now(&ts
->sched_timer
, tick_period
);
1122 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1123 tick_nohz_activate(ts
, NOHZ_MODE_LOWRES
);
1126 static inline void tick_nohz_irq_enter(void)
1128 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1131 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1134 if (ts
->idle_active
)
1135 tick_nohz_stop_idle(ts
, now
);
1136 if (ts
->tick_stopped
)
1137 tick_nohz_update_jiffies(now
);
1142 static inline void tick_nohz_switch_to_nohz(void) { }
1143 static inline void tick_nohz_irq_enter(void) { }
1144 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
) { }
1146 #endif /* CONFIG_NO_HZ_COMMON */
1149 * Called from irq_enter to notify about the possible interruption of idle()
1151 void tick_irq_enter(void)
1153 tick_check_oneshot_broadcast_this_cpu();
1154 tick_nohz_irq_enter();
1158 * High resolution timer specific code
1160 #ifdef CONFIG_HIGH_RES_TIMERS
1162 * We rearm the timer until we get disabled by the idle code.
1163 * Called with interrupts disabled.
1165 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1167 struct tick_sched
*ts
=
1168 container_of(timer
, struct tick_sched
, sched_timer
);
1169 struct pt_regs
*regs
= get_irq_regs();
1170 ktime_t now
= ktime_get();
1172 tick_sched_do_timer(now
);
1175 * Do not call, when we are not in irq context and have
1176 * no valid regs pointer
1179 tick_sched_handle(ts
, regs
);
1183 /* No need to reprogram if we are in idle or full dynticks mode */
1184 if (unlikely(ts
->tick_stopped
))
1185 return HRTIMER_NORESTART
;
1187 hrtimer_forward(timer
, now
, tick_period
);
1189 return HRTIMER_RESTART
;
1192 static int sched_skew_tick
;
1194 static int __init
skew_tick(char *str
)
1196 get_option(&str
, &sched_skew_tick
);
1200 early_param("skew_tick", skew_tick
);
1203 * tick_setup_sched_timer - setup the tick emulation timer
1205 void tick_setup_sched_timer(void)
1207 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1208 ktime_t now
= ktime_get();
1211 * Emulate tick processing via per-CPU hrtimers:
1213 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1214 ts
->sched_timer
.function
= tick_sched_timer
;
1216 /* Get the next period (per-CPU) */
1217 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1219 /* Offset the tick to avert jiffies_lock contention. */
1220 if (sched_skew_tick
) {
1221 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1222 do_div(offset
, num_possible_cpus());
1223 offset
*= smp_processor_id();
1224 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1227 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1228 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
1229 tick_nohz_activate(ts
, NOHZ_MODE_HIGHRES
);
1231 #endif /* HIGH_RES_TIMERS */
1233 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1234 void tick_cancel_sched_timer(int cpu
)
1236 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1238 # ifdef CONFIG_HIGH_RES_TIMERS
1239 if (ts
->sched_timer
.base
)
1240 hrtimer_cancel(&ts
->sched_timer
);
1243 memset(ts
, 0, sizeof(*ts
));
1248 * Async notification about clocksource changes
1250 void tick_clock_notify(void)
1254 for_each_possible_cpu(cpu
)
1255 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1259 * Async notification about clock event changes
1261 void tick_oneshot_notify(void)
1263 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1265 set_bit(0, &ts
->check_clocks
);
1269 * Check, if a change happened, which makes oneshot possible.
1271 * Called cyclic from the hrtimer softirq (driven by the timer
1272 * softirq) allow_nohz signals, that we can switch into low-res nohz
1273 * mode, because high resolution timers are disabled (either compile
1274 * or runtime). Called with interrupts disabled.
1276 int tick_check_oneshot_change(int allow_nohz
)
1278 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1280 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1283 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1286 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1292 tick_nohz_switch_to_nohz();