rps: inet_rps_save_rxhash() argument is not const
[linux/fpc-iii.git] / lib / bitmap.c
blobffb78c916ccdf85ffb0d8ec7d0f3f1e4f41ab3ef
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
19 * BITS_PER_LONG.
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
28 * results.
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
33 * in output bitmaps.
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
43 int k, lim = bits/BITS_PER_LONG;
44 for (k = 0; k < lim; ++k)
45 if (bitmap[k])
46 return 0;
48 if (bits % BITS_PER_LONG)
49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 return 0;
52 return 1;
54 EXPORT_SYMBOL(__bitmap_empty);
56 int __bitmap_full(const unsigned long *bitmap, int bits)
58 int k, lim = bits/BITS_PER_LONG;
59 for (k = 0; k < lim; ++k)
60 if (~bitmap[k])
61 return 0;
63 if (bits % BITS_PER_LONG)
64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 return 0;
67 return 1;
69 EXPORT_SYMBOL(__bitmap_full);
71 int __bitmap_equal(const unsigned long *bitmap1,
72 const unsigned long *bitmap2, int bits)
74 int k, lim = bits/BITS_PER_LONG;
75 for (k = 0; k < lim; ++k)
76 if (bitmap1[k] != bitmap2[k])
77 return 0;
79 if (bits % BITS_PER_LONG)
80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 return 0;
83 return 1;
85 EXPORT_SYMBOL(__bitmap_equal);
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
89 int k, lim = bits/BITS_PER_LONG;
90 for (k = 0; k < lim; ++k)
91 dst[k] = ~src[k];
93 if (bits % BITS_PER_LONG)
94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
96 EXPORT_SYMBOL(__bitmap_complement);
98 /**
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 * @dst : destination bitmap
101 * @src : source bitmap
102 * @shift : shift by this many bits
103 * @bits : bitmap size, in bits
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
109 void __bitmap_shift_right(unsigned long *dst,
110 const unsigned long *src, int shift, int bits)
112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 unsigned long mask = (1UL << left) - 1;
115 for (k = 0; off + k < lim; ++k) {
116 unsigned long upper, lower;
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
122 if (!rem || off + k + 1 >= lim)
123 upper = 0;
124 else {
125 upper = src[off + k + 1];
126 if (off + k + 1 == lim - 1 && left)
127 upper &= mask;
129 lower = src[off + k];
130 if (left && off + k == lim - 1)
131 lower &= mask;
132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 if (left && k == lim - 1)
134 dst[k] &= mask;
136 if (off)
137 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
139 EXPORT_SYMBOL(__bitmap_shift_right);
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 * @dst : destination bitmap
145 * @src : source bitmap
146 * @shift : shift by this many bits
147 * @bits : bitmap size, in bits
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
154 void __bitmap_shift_left(unsigned long *dst,
155 const unsigned long *src, int shift, int bits)
157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 for (k = lim - off - 1; k >= 0; --k) {
160 unsigned long upper, lower;
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
166 if (rem && k > 0)
167 lower = src[k - 1];
168 else
169 lower = 0;
170 upper = src[k];
171 if (left && k == lim - 1)
172 upper &= (1UL << left) - 1;
173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
174 if (left && k + off == lim - 1)
175 dst[k + off] &= (1UL << left) - 1;
177 if (off)
178 memset(dst, 0, off*sizeof(unsigned long));
180 EXPORT_SYMBOL(__bitmap_shift_left);
182 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 const unsigned long *bitmap2, int bits)
185 int k;
186 int nr = BITS_TO_LONGS(bits);
187 unsigned long result = 0;
189 for (k = 0; k < nr; k++)
190 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
191 return result != 0;
193 EXPORT_SYMBOL(__bitmap_and);
195 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
196 const unsigned long *bitmap2, int bits)
198 int k;
199 int nr = BITS_TO_LONGS(bits);
201 for (k = 0; k < nr; k++)
202 dst[k] = bitmap1[k] | bitmap2[k];
204 EXPORT_SYMBOL(__bitmap_or);
206 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
207 const unsigned long *bitmap2, int bits)
209 int k;
210 int nr = BITS_TO_LONGS(bits);
212 for (k = 0; k < nr; k++)
213 dst[k] = bitmap1[k] ^ bitmap2[k];
215 EXPORT_SYMBOL(__bitmap_xor);
217 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
218 const unsigned long *bitmap2, int bits)
220 int k;
221 int nr = BITS_TO_LONGS(bits);
222 unsigned long result = 0;
224 for (k = 0; k < nr; k++)
225 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
226 return result != 0;
228 EXPORT_SYMBOL(__bitmap_andnot);
230 int __bitmap_intersects(const unsigned long *bitmap1,
231 const unsigned long *bitmap2, int bits)
233 int k, lim = bits/BITS_PER_LONG;
234 for (k = 0; k < lim; ++k)
235 if (bitmap1[k] & bitmap2[k])
236 return 1;
238 if (bits % BITS_PER_LONG)
239 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
240 return 1;
241 return 0;
243 EXPORT_SYMBOL(__bitmap_intersects);
245 int __bitmap_subset(const unsigned long *bitmap1,
246 const unsigned long *bitmap2, int bits)
248 int k, lim = bits/BITS_PER_LONG;
249 for (k = 0; k < lim; ++k)
250 if (bitmap1[k] & ~bitmap2[k])
251 return 0;
253 if (bits % BITS_PER_LONG)
254 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
255 return 0;
256 return 1;
258 EXPORT_SYMBOL(__bitmap_subset);
260 int __bitmap_weight(const unsigned long *bitmap, int bits)
262 int k, w = 0, lim = bits/BITS_PER_LONG;
264 for (k = 0; k < lim; k++)
265 w += hweight_long(bitmap[k]);
267 if (bits % BITS_PER_LONG)
268 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
270 return w;
272 EXPORT_SYMBOL(__bitmap_weight);
274 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
276 void bitmap_set(unsigned long *map, int start, int nr)
278 unsigned long *p = map + BIT_WORD(start);
279 const int size = start + nr;
280 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
281 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
283 while (nr - bits_to_set >= 0) {
284 *p |= mask_to_set;
285 nr -= bits_to_set;
286 bits_to_set = BITS_PER_LONG;
287 mask_to_set = ~0UL;
288 p++;
290 if (nr) {
291 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
292 *p |= mask_to_set;
295 EXPORT_SYMBOL(bitmap_set);
297 void bitmap_clear(unsigned long *map, int start, int nr)
299 unsigned long *p = map + BIT_WORD(start);
300 const int size = start + nr;
301 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
302 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
304 while (nr - bits_to_clear >= 0) {
305 *p &= ~mask_to_clear;
306 nr -= bits_to_clear;
307 bits_to_clear = BITS_PER_LONG;
308 mask_to_clear = ~0UL;
309 p++;
311 if (nr) {
312 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
313 *p &= ~mask_to_clear;
316 EXPORT_SYMBOL(bitmap_clear);
319 * bitmap_find_next_zero_area - find a contiguous aligned zero area
320 * @map: The address to base the search on
321 * @size: The bitmap size in bits
322 * @start: The bitnumber to start searching at
323 * @nr: The number of zeroed bits we're looking for
324 * @align_mask: Alignment mask for zero area
326 * The @align_mask should be one less than a power of 2; the effect is that
327 * the bit offset of all zero areas this function finds is multiples of that
328 * power of 2. A @align_mask of 0 means no alignment is required.
330 unsigned long bitmap_find_next_zero_area(unsigned long *map,
331 unsigned long size,
332 unsigned long start,
333 unsigned int nr,
334 unsigned long align_mask)
336 unsigned long index, end, i;
337 again:
338 index = find_next_zero_bit(map, size, start);
340 /* Align allocation */
341 index = __ALIGN_MASK(index, align_mask);
343 end = index + nr;
344 if (end > size)
345 return end;
346 i = find_next_bit(map, end, index);
347 if (i < end) {
348 start = i + 1;
349 goto again;
351 return index;
353 EXPORT_SYMBOL(bitmap_find_next_zero_area);
356 * Bitmap printing & parsing functions: first version by Bill Irwin,
357 * second version by Paul Jackson, third by Joe Korty.
360 #define CHUNKSZ 32
361 #define nbits_to_hold_value(val) fls(val)
362 #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
363 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
366 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
367 * @buf: byte buffer into which string is placed
368 * @buflen: reserved size of @buf, in bytes
369 * @maskp: pointer to bitmap to convert
370 * @nmaskbits: size of bitmap, in bits
372 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
373 * comma-separated sets of eight digits per set.
375 int bitmap_scnprintf(char *buf, unsigned int buflen,
376 const unsigned long *maskp, int nmaskbits)
378 int i, word, bit, len = 0;
379 unsigned long val;
380 const char *sep = "";
381 int chunksz;
382 u32 chunkmask;
384 chunksz = nmaskbits & (CHUNKSZ - 1);
385 if (chunksz == 0)
386 chunksz = CHUNKSZ;
388 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
389 for (; i >= 0; i -= CHUNKSZ) {
390 chunkmask = ((1ULL << chunksz) - 1);
391 word = i / BITS_PER_LONG;
392 bit = i % BITS_PER_LONG;
393 val = (maskp[word] >> bit) & chunkmask;
394 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
395 (chunksz+3)/4, val);
396 chunksz = CHUNKSZ;
397 sep = ",";
399 return len;
401 EXPORT_SYMBOL(bitmap_scnprintf);
404 * __bitmap_parse - convert an ASCII hex string into a bitmap.
405 * @buf: pointer to buffer containing string.
406 * @buflen: buffer size in bytes. If string is smaller than this
407 * then it must be terminated with a \0.
408 * @is_user: location of buffer, 0 indicates kernel space
409 * @maskp: pointer to bitmap array that will contain result.
410 * @nmaskbits: size of bitmap, in bits.
412 * Commas group hex digits into chunks. Each chunk defines exactly 32
413 * bits of the resultant bitmask. No chunk may specify a value larger
414 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
415 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
416 * characters and for grouping errors such as "1,,5", ",44", "," and "".
417 * Leading and trailing whitespace accepted, but not embedded whitespace.
419 int __bitmap_parse(const char *buf, unsigned int buflen,
420 int is_user, unsigned long *maskp,
421 int nmaskbits)
423 int c, old_c, totaldigits, ndigits, nchunks, nbits;
424 u32 chunk;
425 const char __user *ubuf = buf;
427 bitmap_zero(maskp, nmaskbits);
429 nchunks = nbits = totaldigits = c = 0;
430 do {
431 chunk = ndigits = 0;
433 /* Get the next chunk of the bitmap */
434 while (buflen) {
435 old_c = c;
436 if (is_user) {
437 if (__get_user(c, ubuf++))
438 return -EFAULT;
440 else
441 c = *buf++;
442 buflen--;
443 if (isspace(c))
444 continue;
447 * If the last character was a space and the current
448 * character isn't '\0', we've got embedded whitespace.
449 * This is a no-no, so throw an error.
451 if (totaldigits && c && isspace(old_c))
452 return -EINVAL;
454 /* A '\0' or a ',' signal the end of the chunk */
455 if (c == '\0' || c == ',')
456 break;
458 if (!isxdigit(c))
459 return -EINVAL;
462 * Make sure there are at least 4 free bits in 'chunk'.
463 * If not, this hexdigit will overflow 'chunk', so
464 * throw an error.
466 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
467 return -EOVERFLOW;
469 chunk = (chunk << 4) | unhex(c);
470 ndigits++; totaldigits++;
472 if (ndigits == 0)
473 return -EINVAL;
474 if (nchunks == 0 && chunk == 0)
475 continue;
477 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
478 *maskp |= chunk;
479 nchunks++;
480 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
481 if (nbits > nmaskbits)
482 return -EOVERFLOW;
483 } while (buflen && c == ',');
485 return 0;
487 EXPORT_SYMBOL(__bitmap_parse);
490 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
492 * @ubuf: pointer to user buffer containing string.
493 * @ulen: buffer size in bytes. If string is smaller than this
494 * then it must be terminated with a \0.
495 * @maskp: pointer to bitmap array that will contain result.
496 * @nmaskbits: size of bitmap, in bits.
498 * Wrapper for __bitmap_parse(), providing it with user buffer.
500 * We cannot have this as an inline function in bitmap.h because it needs
501 * linux/uaccess.h to get the access_ok() declaration and this causes
502 * cyclic dependencies.
504 int bitmap_parse_user(const char __user *ubuf,
505 unsigned int ulen, unsigned long *maskp,
506 int nmaskbits)
508 if (!access_ok(VERIFY_READ, ubuf, ulen))
509 return -EFAULT;
510 return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
512 EXPORT_SYMBOL(bitmap_parse_user);
515 * bscnl_emit(buf, buflen, rbot, rtop, bp)
517 * Helper routine for bitmap_scnlistprintf(). Write decimal number
518 * or range to buf, suppressing output past buf+buflen, with optional
519 * comma-prefix. Return len of what would be written to buf, if it
520 * all fit.
522 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
524 if (len > 0)
525 len += scnprintf(buf + len, buflen - len, ",");
526 if (rbot == rtop)
527 len += scnprintf(buf + len, buflen - len, "%d", rbot);
528 else
529 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
530 return len;
534 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
535 * @buf: byte buffer into which string is placed
536 * @buflen: reserved size of @buf, in bytes
537 * @maskp: pointer to bitmap to convert
538 * @nmaskbits: size of bitmap, in bits
540 * Output format is a comma-separated list of decimal numbers and
541 * ranges. Consecutively set bits are shown as two hyphen-separated
542 * decimal numbers, the smallest and largest bit numbers set in
543 * the range. Output format is compatible with the format
544 * accepted as input by bitmap_parselist().
546 * The return value is the number of characters which would be
547 * generated for the given input, excluding the trailing '\0', as
548 * per ISO C99.
550 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
551 const unsigned long *maskp, int nmaskbits)
553 int len = 0;
554 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
555 int cur, rbot, rtop;
557 if (buflen == 0)
558 return 0;
559 buf[0] = 0;
561 rbot = cur = find_first_bit(maskp, nmaskbits);
562 while (cur < nmaskbits) {
563 rtop = cur;
564 cur = find_next_bit(maskp, nmaskbits, cur+1);
565 if (cur >= nmaskbits || cur > rtop + 1) {
566 len = bscnl_emit(buf, buflen, rbot, rtop, len);
567 rbot = cur;
570 return len;
572 EXPORT_SYMBOL(bitmap_scnlistprintf);
575 * bitmap_parselist - convert list format ASCII string to bitmap
576 * @bp: read nul-terminated user string from this buffer
577 * @maskp: write resulting mask here
578 * @nmaskbits: number of bits in mask to be written
580 * Input format is a comma-separated list of decimal numbers and
581 * ranges. Consecutively set bits are shown as two hyphen-separated
582 * decimal numbers, the smallest and largest bit numbers set in
583 * the range.
585 * Returns 0 on success, -errno on invalid input strings.
586 * Error values:
587 * %-EINVAL: second number in range smaller than first
588 * %-EINVAL: invalid character in string
589 * %-ERANGE: bit number specified too large for mask
591 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
593 unsigned a, b;
595 bitmap_zero(maskp, nmaskbits);
596 do {
597 if (!isdigit(*bp))
598 return -EINVAL;
599 b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
600 if (*bp == '-') {
601 bp++;
602 if (!isdigit(*bp))
603 return -EINVAL;
604 b = simple_strtoul(bp, (char **)&bp, BASEDEC);
606 if (!(a <= b))
607 return -EINVAL;
608 if (b >= nmaskbits)
609 return -ERANGE;
610 while (a <= b) {
611 set_bit(a, maskp);
612 a++;
614 if (*bp == ',')
615 bp++;
616 } while (*bp != '\0' && *bp != '\n');
617 return 0;
619 EXPORT_SYMBOL(bitmap_parselist);
622 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
623 * @buf: pointer to a bitmap
624 * @pos: a bit position in @buf (0 <= @pos < @bits)
625 * @bits: number of valid bit positions in @buf
627 * Map the bit at position @pos in @buf (of length @bits) to the
628 * ordinal of which set bit it is. If it is not set or if @pos
629 * is not a valid bit position, map to -1.
631 * If for example, just bits 4 through 7 are set in @buf, then @pos
632 * values 4 through 7 will get mapped to 0 through 3, respectively,
633 * and other @pos values will get mapped to 0. When @pos value 7
634 * gets mapped to (returns) @ord value 3 in this example, that means
635 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
637 * The bit positions 0 through @bits are valid positions in @buf.
639 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
641 int i, ord;
643 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
644 return -1;
646 i = find_first_bit(buf, bits);
647 ord = 0;
648 while (i < pos) {
649 i = find_next_bit(buf, bits, i + 1);
650 ord++;
652 BUG_ON(i != pos);
654 return ord;
658 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
659 * @buf: pointer to bitmap
660 * @ord: ordinal bit position (n-th set bit, n >= 0)
661 * @bits: number of valid bit positions in @buf
663 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
664 * Value of @ord should be in range 0 <= @ord < weight(buf), else
665 * results are undefined.
667 * If for example, just bits 4 through 7 are set in @buf, then @ord
668 * values 0 through 3 will get mapped to 4 through 7, respectively,
669 * and all other @ord values return undefined values. When @ord value 3
670 * gets mapped to (returns) @pos value 7 in this example, that means
671 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
673 * The bit positions 0 through @bits are valid positions in @buf.
675 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
677 int pos = 0;
679 if (ord >= 0 && ord < bits) {
680 int i;
682 for (i = find_first_bit(buf, bits);
683 i < bits && ord > 0;
684 i = find_next_bit(buf, bits, i + 1))
685 ord--;
686 if (i < bits && ord == 0)
687 pos = i;
690 return pos;
694 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
695 * @dst: remapped result
696 * @src: subset to be remapped
697 * @old: defines domain of map
698 * @new: defines range of map
699 * @bits: number of bits in each of these bitmaps
701 * Let @old and @new define a mapping of bit positions, such that
702 * whatever position is held by the n-th set bit in @old is mapped
703 * to the n-th set bit in @new. In the more general case, allowing
704 * for the possibility that the weight 'w' of @new is less than the
705 * weight of @old, map the position of the n-th set bit in @old to
706 * the position of the m-th set bit in @new, where m == n % w.
708 * If either of the @old and @new bitmaps are empty, or if @src and
709 * @dst point to the same location, then this routine copies @src
710 * to @dst.
712 * The positions of unset bits in @old are mapped to themselves
713 * (the identify map).
715 * Apply the above specified mapping to @src, placing the result in
716 * @dst, clearing any bits previously set in @dst.
718 * For example, lets say that @old has bits 4 through 7 set, and
719 * @new has bits 12 through 15 set. This defines the mapping of bit
720 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
721 * bit positions unchanged. So if say @src comes into this routine
722 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
723 * 13 and 15 set.
725 void bitmap_remap(unsigned long *dst, const unsigned long *src,
726 const unsigned long *old, const unsigned long *new,
727 int bits)
729 int oldbit, w;
731 if (dst == src) /* following doesn't handle inplace remaps */
732 return;
733 bitmap_zero(dst, bits);
735 w = bitmap_weight(new, bits);
736 for_each_set_bit(oldbit, src, bits) {
737 int n = bitmap_pos_to_ord(old, oldbit, bits);
739 if (n < 0 || w == 0)
740 set_bit(oldbit, dst); /* identity map */
741 else
742 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
745 EXPORT_SYMBOL(bitmap_remap);
748 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
749 * @oldbit: bit position to be mapped
750 * @old: defines domain of map
751 * @new: defines range of map
752 * @bits: number of bits in each of these bitmaps
754 * Let @old and @new define a mapping of bit positions, such that
755 * whatever position is held by the n-th set bit in @old is mapped
756 * to the n-th set bit in @new. In the more general case, allowing
757 * for the possibility that the weight 'w' of @new is less than the
758 * weight of @old, map the position of the n-th set bit in @old to
759 * the position of the m-th set bit in @new, where m == n % w.
761 * The positions of unset bits in @old are mapped to themselves
762 * (the identify map).
764 * Apply the above specified mapping to bit position @oldbit, returning
765 * the new bit position.
767 * For example, lets say that @old has bits 4 through 7 set, and
768 * @new has bits 12 through 15 set. This defines the mapping of bit
769 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
770 * bit positions unchanged. So if say @oldbit is 5, then this routine
771 * returns 13.
773 int bitmap_bitremap(int oldbit, const unsigned long *old,
774 const unsigned long *new, int bits)
776 int w = bitmap_weight(new, bits);
777 int n = bitmap_pos_to_ord(old, oldbit, bits);
778 if (n < 0 || w == 0)
779 return oldbit;
780 else
781 return bitmap_ord_to_pos(new, n % w, bits);
783 EXPORT_SYMBOL(bitmap_bitremap);
786 * bitmap_onto - translate one bitmap relative to another
787 * @dst: resulting translated bitmap
788 * @orig: original untranslated bitmap
789 * @relmap: bitmap relative to which translated
790 * @bits: number of bits in each of these bitmaps
792 * Set the n-th bit of @dst iff there exists some m such that the
793 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
794 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
795 * (If you understood the previous sentence the first time your
796 * read it, you're overqualified for your current job.)
798 * In other words, @orig is mapped onto (surjectively) @dst,
799 * using the the map { <n, m> | the n-th bit of @relmap is the
800 * m-th set bit of @relmap }.
802 * Any set bits in @orig above bit number W, where W is the
803 * weight of (number of set bits in) @relmap are mapped nowhere.
804 * In particular, if for all bits m set in @orig, m >= W, then
805 * @dst will end up empty. In situations where the possibility
806 * of such an empty result is not desired, one way to avoid it is
807 * to use the bitmap_fold() operator, below, to first fold the
808 * @orig bitmap over itself so that all its set bits x are in the
809 * range 0 <= x < W. The bitmap_fold() operator does this by
810 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
812 * Example [1] for bitmap_onto():
813 * Let's say @relmap has bits 30-39 set, and @orig has bits
814 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
815 * @dst will have bits 31, 33, 35, 37 and 39 set.
817 * When bit 0 is set in @orig, it means turn on the bit in
818 * @dst corresponding to whatever is the first bit (if any)
819 * that is turned on in @relmap. Since bit 0 was off in the
820 * above example, we leave off that bit (bit 30) in @dst.
822 * When bit 1 is set in @orig (as in the above example), it
823 * means turn on the bit in @dst corresponding to whatever
824 * is the second bit that is turned on in @relmap. The second
825 * bit in @relmap that was turned on in the above example was
826 * bit 31, so we turned on bit 31 in @dst.
828 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
829 * because they were the 4th, 6th, 8th and 10th set bits
830 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
831 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
833 * When bit 11 is set in @orig, it means turn on the bit in
834 * @dst corresponding to whatever is the twelth bit that is
835 * turned on in @relmap. In the above example, there were
836 * only ten bits turned on in @relmap (30..39), so that bit
837 * 11 was set in @orig had no affect on @dst.
839 * Example [2] for bitmap_fold() + bitmap_onto():
840 * Let's say @relmap has these ten bits set:
841 * 40 41 42 43 45 48 53 61 74 95
842 * (for the curious, that's 40 plus the first ten terms of the
843 * Fibonacci sequence.)
845 * Further lets say we use the following code, invoking
846 * bitmap_fold() then bitmap_onto, as suggested above to
847 * avoid the possitility of an empty @dst result:
849 * unsigned long *tmp; // a temporary bitmap's bits
851 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
852 * bitmap_onto(dst, tmp, relmap, bits);
854 * Then this table shows what various values of @dst would be, for
855 * various @orig's. I list the zero-based positions of each set bit.
856 * The tmp column shows the intermediate result, as computed by
857 * using bitmap_fold() to fold the @orig bitmap modulo ten
858 * (the weight of @relmap).
860 * @orig tmp @dst
861 * 0 0 40
862 * 1 1 41
863 * 9 9 95
864 * 10 0 40 (*)
865 * 1 3 5 7 1 3 5 7 41 43 48 61
866 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
867 * 0 9 18 27 0 9 8 7 40 61 74 95
868 * 0 10 20 30 0 40
869 * 0 11 22 33 0 1 2 3 40 41 42 43
870 * 0 12 24 36 0 2 4 6 40 42 45 53
871 * 78 102 211 1 2 8 41 42 74 (*)
873 * (*) For these marked lines, if we hadn't first done bitmap_fold()
874 * into tmp, then the @dst result would have been empty.
876 * If either of @orig or @relmap is empty (no set bits), then @dst
877 * will be returned empty.
879 * If (as explained above) the only set bits in @orig are in positions
880 * m where m >= W, (where W is the weight of @relmap) then @dst will
881 * once again be returned empty.
883 * All bits in @dst not set by the above rule are cleared.
885 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
886 const unsigned long *relmap, int bits)
888 int n, m; /* same meaning as in above comment */
890 if (dst == orig) /* following doesn't handle inplace mappings */
891 return;
892 bitmap_zero(dst, bits);
895 * The following code is a more efficient, but less
896 * obvious, equivalent to the loop:
897 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
898 * n = bitmap_ord_to_pos(orig, m, bits);
899 * if (test_bit(m, orig))
900 * set_bit(n, dst);
904 m = 0;
905 for_each_set_bit(n, relmap, bits) {
906 /* m == bitmap_pos_to_ord(relmap, n, bits) */
907 if (test_bit(m, orig))
908 set_bit(n, dst);
909 m++;
912 EXPORT_SYMBOL(bitmap_onto);
915 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
916 * @dst: resulting smaller bitmap
917 * @orig: original larger bitmap
918 * @sz: specified size
919 * @bits: number of bits in each of these bitmaps
921 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
922 * Clear all other bits in @dst. See further the comment and
923 * Example [2] for bitmap_onto() for why and how to use this.
925 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
926 int sz, int bits)
928 int oldbit;
930 if (dst == orig) /* following doesn't handle inplace mappings */
931 return;
932 bitmap_zero(dst, bits);
934 for_each_set_bit(oldbit, orig, bits)
935 set_bit(oldbit % sz, dst);
937 EXPORT_SYMBOL(bitmap_fold);
940 * Common code for bitmap_*_region() routines.
941 * bitmap: array of unsigned longs corresponding to the bitmap
942 * pos: the beginning of the region
943 * order: region size (log base 2 of number of bits)
944 * reg_op: operation(s) to perform on that region of bitmap
946 * Can set, verify and/or release a region of bits in a bitmap,
947 * depending on which combination of REG_OP_* flag bits is set.
949 * A region of a bitmap is a sequence of bits in the bitmap, of
950 * some size '1 << order' (a power of two), aligned to that same
951 * '1 << order' power of two.
953 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
954 * Returns 0 in all other cases and reg_ops.
957 enum {
958 REG_OP_ISFREE, /* true if region is all zero bits */
959 REG_OP_ALLOC, /* set all bits in region */
960 REG_OP_RELEASE, /* clear all bits in region */
963 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
965 int nbits_reg; /* number of bits in region */
966 int index; /* index first long of region in bitmap */
967 int offset; /* bit offset region in bitmap[index] */
968 int nlongs_reg; /* num longs spanned by region in bitmap */
969 int nbitsinlong; /* num bits of region in each spanned long */
970 unsigned long mask; /* bitmask for one long of region */
971 int i; /* scans bitmap by longs */
972 int ret = 0; /* return value */
975 * Either nlongs_reg == 1 (for small orders that fit in one long)
976 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
978 nbits_reg = 1 << order;
979 index = pos / BITS_PER_LONG;
980 offset = pos - (index * BITS_PER_LONG);
981 nlongs_reg = BITS_TO_LONGS(nbits_reg);
982 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
985 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
986 * overflows if nbitsinlong == BITS_PER_LONG.
988 mask = (1UL << (nbitsinlong - 1));
989 mask += mask - 1;
990 mask <<= offset;
992 switch (reg_op) {
993 case REG_OP_ISFREE:
994 for (i = 0; i < nlongs_reg; i++) {
995 if (bitmap[index + i] & mask)
996 goto done;
998 ret = 1; /* all bits in region free (zero) */
999 break;
1001 case REG_OP_ALLOC:
1002 for (i = 0; i < nlongs_reg; i++)
1003 bitmap[index + i] |= mask;
1004 break;
1006 case REG_OP_RELEASE:
1007 for (i = 0; i < nlongs_reg; i++)
1008 bitmap[index + i] &= ~mask;
1009 break;
1011 done:
1012 return ret;
1016 * bitmap_find_free_region - find a contiguous aligned mem region
1017 * @bitmap: array of unsigned longs corresponding to the bitmap
1018 * @bits: number of bits in the bitmap
1019 * @order: region size (log base 2 of number of bits) to find
1021 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1022 * allocate them (set them to one). Only consider regions of length
1023 * a power (@order) of two, aligned to that power of two, which
1024 * makes the search algorithm much faster.
1026 * Return the bit offset in bitmap of the allocated region,
1027 * or -errno on failure.
1029 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1031 int pos, end; /* scans bitmap by regions of size order */
1033 for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1034 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1035 continue;
1036 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1037 return pos;
1039 return -ENOMEM;
1041 EXPORT_SYMBOL(bitmap_find_free_region);
1044 * bitmap_release_region - release allocated bitmap region
1045 * @bitmap: array of unsigned longs corresponding to the bitmap
1046 * @pos: beginning of bit region to release
1047 * @order: region size (log base 2 of number of bits) to release
1049 * This is the complement to __bitmap_find_free_region() and releases
1050 * the found region (by clearing it in the bitmap).
1052 * No return value.
1054 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1056 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1058 EXPORT_SYMBOL(bitmap_release_region);
1061 * bitmap_allocate_region - allocate bitmap region
1062 * @bitmap: array of unsigned longs corresponding to the bitmap
1063 * @pos: beginning of bit region to allocate
1064 * @order: region size (log base 2 of number of bits) to allocate
1066 * Allocate (set bits in) a specified region of a bitmap.
1068 * Return 0 on success, or %-EBUSY if specified region wasn't
1069 * free (not all bits were zero).
1071 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1073 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1074 return -EBUSY;
1075 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1076 return 0;
1078 EXPORT_SYMBOL(bitmap_allocate_region);
1081 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1082 * @dst: destination buffer
1083 * @src: bitmap to copy
1084 * @nbits: number of bits in the bitmap
1086 * Require nbits % BITS_PER_LONG == 0.
1088 void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1090 unsigned long *d = dst;
1091 int i;
1093 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1094 if (BITS_PER_LONG == 64)
1095 d[i] = cpu_to_le64(src[i]);
1096 else
1097 d[i] = cpu_to_le32(src[i]);
1100 EXPORT_SYMBOL(bitmap_copy_le);