5 * read{b,w,l,q}/write{b,w,l,q} are for PCI,
6 * while in{b,w,l}/out{b,w,l} are for ISA
8 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
9 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
12 * automatically, there are also __raw versions, which do not.
14 * Historically, we have also had ctrl_in{b,w,l,q}/ctrl_out{b,w,l,q} for
15 * SuperH specific I/O (raw I/O to on-chip CPU peripherals). In practice
16 * these have the same semantics as the __raw variants, and as such, all
17 * new code should be using the __raw versions.
19 * All ISA I/O routines are wrapped through the machine vector. If a
20 * board does not provide overrides, a generic set that are copied in
21 * from the default machine vector are used instead. These are largely
22 * for old compat code for I/O offseting to SuperIOs, all of which are
23 * better handled through the machvec ioport mapping routines these days.
25 #include <asm/cache.h>
26 #include <asm/system.h>
27 #include <asm/addrspace.h>
28 #include <asm/machvec.h>
29 #include <asm/pgtable.h>
30 #include <asm-generic/iomap.h>
34 * Depending on which platform we are running on, we need different
37 #define __IO_PREFIX generic
38 #include <asm/io_generic.h>
39 #include <asm/io_trapped.h>
41 #define inb(p) sh_mv.mv_inb((p))
42 #define inw(p) sh_mv.mv_inw((p))
43 #define inl(p) sh_mv.mv_inl((p))
44 #define outb(x,p) sh_mv.mv_outb((x),(p))
45 #define outw(x,p) sh_mv.mv_outw((x),(p))
46 #define outl(x,p) sh_mv.mv_outl((x),(p))
48 #define inb_p(p) sh_mv.mv_inb_p((p))
49 #define inw_p(p) sh_mv.mv_inw_p((p))
50 #define inl_p(p) sh_mv.mv_inl_p((p))
51 #define outb_p(x,p) sh_mv.mv_outb_p((x),(p))
52 #define outw_p(x,p) sh_mv.mv_outw_p((x),(p))
53 #define outl_p(x,p) sh_mv.mv_outl_p((x),(p))
55 #define insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
56 #define insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
57 #define insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
58 #define outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
59 #define outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
60 #define outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
62 #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
63 #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
64 #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
65 #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
67 #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
68 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
69 #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
70 #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
72 #define readb(a) ({ u8 r_ = __raw_readb(a); mb(); r_; })
73 #define readw(a) ({ u16 r_ = __raw_readw(a); mb(); r_; })
74 #define readl(a) ({ u32 r_ = __raw_readl(a); mb(); r_; })
75 #define readq(a) ({ u64 r_ = __raw_readq(a); mb(); r_; })
77 #define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
78 #define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
79 #define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
80 #define writeq(v,a) ({ __raw_writeq((v),(a)); mb(); })
82 /* SuperH on-chip I/O functions */
83 #define ctrl_inb __raw_readb
84 #define ctrl_inw __raw_readw
85 #define ctrl_inl __raw_readl
86 #define ctrl_inq __raw_readq
88 #define ctrl_outb __raw_writeb
89 #define ctrl_outw __raw_writew
90 #define ctrl_outl __raw_writel
91 #define ctrl_outq __raw_writeq
93 static inline void ctrl_delay(void)
100 #define __BUILD_MEMORY_STRING(bwlq, type) \
102 static inline void __raw_writes##bwlq(volatile void __iomem *mem, \
103 const void *addr, unsigned int count) \
105 const volatile type *__addr = addr; \
108 __raw_write##bwlq(*__addr, mem); \
113 static inline void __raw_reads##bwlq(volatile void __iomem *mem, \
114 void *addr, unsigned int count) \
116 volatile type *__addr = addr; \
119 *__addr = __raw_read##bwlq(mem); \
124 __BUILD_MEMORY_STRING(b
, u8
)
125 __BUILD_MEMORY_STRING(w
, u16
)
127 #ifdef CONFIG_SUPERH32
128 void __raw_writesl(void __iomem
*addr
, const void *data
, int longlen
);
129 void __raw_readsl(const void __iomem
*addr
, void *data
, int longlen
);
131 __BUILD_MEMORY_STRING(l
, u32
)
134 __BUILD_MEMORY_STRING(q
, u64
)
136 #define writesb __raw_writesb
137 #define writesw __raw_writesw
138 #define writesl __raw_writesl
140 #define readsb __raw_readsb
141 #define readsw __raw_readsw
142 #define readsl __raw_readsl
144 #define readb_relaxed(a) readb(a)
145 #define readw_relaxed(a) readw(a)
146 #define readl_relaxed(a) readl(a)
147 #define readq_relaxed(a) readq(a)
150 #define ioread8(a) __raw_readb(a)
151 #define ioread16(a) __raw_readw(a)
152 #define ioread16be(a) be16_to_cpu(__raw_readw((a)))
153 #define ioread32(a) __raw_readl(a)
154 #define ioread32be(a) be32_to_cpu(__raw_readl((a)))
156 #define iowrite8(v,a) __raw_writeb((v),(a))
157 #define iowrite16(v,a) __raw_writew((v),(a))
158 #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
159 #define iowrite32(v,a) __raw_writel((v),(a))
160 #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
162 #define ioread8_rep(a, d, c) __raw_readsb((a), (d), (c))
163 #define ioread16_rep(a, d, c) __raw_readsw((a), (d), (c))
164 #define ioread32_rep(a, d, c) __raw_readsl((a), (d), (c))
166 #define iowrite8_rep(a, s, c) __raw_writesb((a), (s), (c))
167 #define iowrite16_rep(a, s, c) __raw_writesw((a), (s), (c))
168 #define iowrite32_rep(a, s, c) __raw_writesl((a), (s), (c))
170 /* synco on SH-4A, otherwise a nop */
171 #define mmiowb() wmb()
173 #define IO_SPACE_LIMIT 0xffffffff
175 extern unsigned long generic_io_base
;
178 * This function provides a method for the generic case where a
179 * board-specific ioport_map simply needs to return the port + some
180 * arbitrary port base.
182 * We use this at board setup time to implicitly set the port base, and
183 * as a result, we can use the generic ioport_map.
185 static inline void __set_io_port_base(unsigned long pbase
)
187 generic_io_base
= pbase
;
190 #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n))
192 /* We really want to try and get these to memcpy etc */
193 void memcpy_fromio(void *, const volatile void __iomem
*, unsigned long);
194 void memcpy_toio(volatile void __iomem
*, const void *, unsigned long);
195 void memset_io(volatile void __iomem
*, int, unsigned long);
197 /* Quad-word real-mode I/O, don't ask.. */
198 unsigned long long peek_real_address_q(unsigned long long addr
);
199 unsigned long long poke_real_address_q(unsigned long long addr
,
200 unsigned long long val
);
202 #if !defined(CONFIG_MMU)
203 #define virt_to_phys(address) ((unsigned long)(address))
204 #define phys_to_virt(address) ((void *)(address))
206 #define virt_to_phys(address) (__pa(address))
207 #define phys_to_virt(address) (__va(address))
211 * On 32-bit SH, we traditionally have the whole physical address space
212 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
213 * not need to do anything but place the address in the proper segment.
214 * This is true for P1 and P2 addresses, as well as some P3 ones.
215 * However, most of the P3 addresses and newer cores using extended
216 * addressing need to map through page tables, so the ioremap()
217 * implementation becomes a bit more complicated.
219 * See arch/sh/mm/ioremap.c for additional notes on this.
221 * We cheat a bit and always return uncachable areas until we've fixed
222 * the drivers to handle caching properly.
224 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
225 * doesn't exist, so everything must go through page tables.
228 void __iomem
*__ioremap(unsigned long offset
, unsigned long size
,
229 unsigned long flags
);
230 void __iounmap(void __iomem
*addr
);
232 static inline void __iomem
*
233 __ioremap_mode(unsigned long offset
, unsigned long size
, unsigned long flags
)
235 #if defined(CONFIG_SUPERH32) && !defined(CONFIG_PMB_FIXED)
236 unsigned long last_addr
= offset
+ size
- 1;
240 ret
= __ioremap_trapped(offset
, size
);
244 #if defined(CONFIG_SUPERH32) && !defined(CONFIG_PMB_FIXED)
246 * For P1 and P2 space this is trivial, as everything is already
247 * mapped. Uncached access for P1 addresses are done through P2.
248 * In the P3 case or for addresses outside of the 29-bit space,
249 * mapping must be done by the PMB or by using page tables.
251 if (likely(PXSEG(offset
) < P3SEG
&& PXSEG(last_addr
) < P3SEG
)) {
252 if (unlikely(flags
& _PAGE_CACHABLE
))
253 return (void __iomem
*)P1SEGADDR(offset
);
255 return (void __iomem
*)P2SEGADDR(offset
);
258 /* P4 above the store queues are always mapped. */
259 if (unlikely(offset
>= P3_ADDR_MAX
))
260 return (void __iomem
*)P4SEGADDR(offset
);
263 return __ioremap(offset
, size
, flags
);
266 #define __ioremap_mode(offset, size, flags) ((void __iomem *)(offset))
267 #define __iounmap(addr) do { } while (0)
268 #endif /* CONFIG_MMU */
270 #define ioremap(offset, size) \
271 __ioremap_mode((offset), (size), 0)
272 #define ioremap_nocache(offset, size) \
273 __ioremap_mode((offset), (size), 0)
274 #define ioremap_cache(offset, size) \
275 __ioremap_mode((offset), (size), _PAGE_CACHABLE)
276 #define p3_ioremap(offset, size, flags) \
277 __ioremap((offset), (size), (flags))
278 #define ioremap_prot(offset, size, flags) \
279 __ioremap_mode((offset), (size), (flags))
280 #define iounmap(addr) \
283 #define maybebadio(port) \
284 printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
285 __func__, __LINE__, (port), (u32)__builtin_return_address(0))
288 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
291 #define xlate_dev_mem_ptr(p) __va(p)
294 * Convert a virtual cached pointer to an uncached pointer
296 #define xlate_dev_kmem_ptr(p) p
298 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
299 int valid_phys_addr_range(unsigned long addr
, size_t size
);
300 int valid_mmap_phys_addr_range(unsigned long pfn
, size_t size
);
302 #endif /* __KERNEL__ */
304 #endif /* __ASM_SH_IO_H */