2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
20 #include "kvm_cache_regs.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
32 #include <asm/virtext.h>
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
50 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
51 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
52 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
62 #define nsvm_printk(fmt, args...) do {} while(0)
65 static const u32 host_save_user_msrs
[] = {
67 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
70 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
82 /* These are the merged vectors */
85 /* gpa pointers to the real vectors */
88 /* cache for intercepts of the guest */
89 u16 intercept_cr_read
;
90 u16 intercept_cr_write
;
91 u16 intercept_dr_read
;
92 u16 intercept_dr_write
;
93 u32 intercept_exceptions
;
101 unsigned long vmcb_pa
;
102 struct svm_cpu_data
*svm_data
;
103 uint64_t asid_generation
;
104 uint64_t sysenter_esp
;
105 uint64_t sysenter_eip
;
109 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
114 struct nested_state nested
;
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 static bool npt_enabled
= true;
121 static bool npt_enabled
= false;
125 module_param(npt
, int, S_IRUGO
);
127 static int nested
= 1;
128 module_param(nested
, int, S_IRUGO
);
130 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
131 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
133 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
134 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
135 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
136 bool has_error_code
, u32 error_code
);
138 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
140 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
143 static inline bool is_nested(struct vcpu_svm
*svm
)
145 return svm
->nested
.vmcb
;
148 static inline void enable_gif(struct vcpu_svm
*svm
)
150 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
153 static inline void disable_gif(struct vcpu_svm
*svm
)
155 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
158 static inline bool gif_set(struct vcpu_svm
*svm
)
160 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
163 static unsigned long iopm_base
;
165 struct kvm_ldttss_desc
{
168 unsigned base1
: 8, type
: 5, dpl
: 2, p
: 1;
169 unsigned limit1
: 4, zero0
: 3, g
: 1, base2
: 8;
172 } __attribute__((packed
));
174 struct svm_cpu_data
{
180 struct kvm_ldttss_desc
*tss_desc
;
182 struct page
*save_area
;
185 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
186 static uint32_t svm_features
;
188 struct svm_init_data
{
193 static u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
195 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
196 #define MSRS_RANGE_SIZE 2048
197 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
199 #define MAX_INST_SIZE 15
201 static inline u32
svm_has(u32 feat
)
203 return svm_features
& feat
;
206 static inline void clgi(void)
208 asm volatile (__ex(SVM_CLGI
));
211 static inline void stgi(void)
213 asm volatile (__ex(SVM_STGI
));
216 static inline void invlpga(unsigned long addr
, u32 asid
)
218 asm volatile (__ex(SVM_INVLPGA
) :: "a"(addr
), "c"(asid
));
221 static inline void force_new_asid(struct kvm_vcpu
*vcpu
)
223 to_svm(vcpu
)->asid_generation
--;
226 static inline void flush_guest_tlb(struct kvm_vcpu
*vcpu
)
228 force_new_asid(vcpu
);
231 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
233 if (!npt_enabled
&& !(efer
& EFER_LMA
))
236 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
237 vcpu
->arch
.shadow_efer
= efer
;
240 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
241 bool has_error_code
, u32 error_code
)
243 struct vcpu_svm
*svm
= to_svm(vcpu
);
245 /* If we are within a nested VM we'd better #VMEXIT and let the
246 guest handle the exception */
247 if (nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
250 svm
->vmcb
->control
.event_inj
= nr
252 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
253 | SVM_EVTINJ_TYPE_EXEPT
;
254 svm
->vmcb
->control
.event_inj_err
= error_code
;
257 static int is_external_interrupt(u32 info
)
259 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
260 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
263 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
265 struct vcpu_svm
*svm
= to_svm(vcpu
);
268 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
269 ret
|= X86_SHADOW_INT_STI
| X86_SHADOW_INT_MOV_SS
;
273 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
275 struct vcpu_svm
*svm
= to_svm(vcpu
);
278 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
280 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
284 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
286 struct vcpu_svm
*svm
= to_svm(vcpu
);
288 if (!svm
->next_rip
) {
289 if (emulate_instruction(vcpu
, vcpu
->run
, 0, 0, EMULTYPE_SKIP
) !=
291 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
294 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
295 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
296 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
298 kvm_rip_write(vcpu
, svm
->next_rip
);
299 svm_set_interrupt_shadow(vcpu
, 0);
302 static int has_svm(void)
306 if (!cpu_has_svm(&msg
)) {
307 printk(KERN_INFO
"has_svm: %s\n", msg
);
314 static void svm_hardware_disable(void *garbage
)
319 static void svm_hardware_enable(void *garbage
)
322 struct svm_cpu_data
*svm_data
;
324 struct descriptor_table gdt_descr
;
325 struct desc_struct
*gdt
;
326 int me
= raw_smp_processor_id();
329 printk(KERN_ERR
"svm_cpu_init: err EOPNOTSUPP on %d\n", me
);
332 svm_data
= per_cpu(svm_data
, me
);
335 printk(KERN_ERR
"svm_cpu_init: svm_data is NULL on %d\n",
340 svm_data
->asid_generation
= 1;
341 svm_data
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
342 svm_data
->next_asid
= svm_data
->max_asid
+ 1;
344 kvm_get_gdt(&gdt_descr
);
345 gdt
= (struct desc_struct
*)gdt_descr
.base
;
346 svm_data
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
348 rdmsrl(MSR_EFER
, efer
);
349 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
351 wrmsrl(MSR_VM_HSAVE_PA
,
352 page_to_pfn(svm_data
->save_area
) << PAGE_SHIFT
);
355 static void svm_cpu_uninit(int cpu
)
357 struct svm_cpu_data
*svm_data
358 = per_cpu(svm_data
, raw_smp_processor_id());
363 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
364 __free_page(svm_data
->save_area
);
368 static int svm_cpu_init(int cpu
)
370 struct svm_cpu_data
*svm_data
;
373 svm_data
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
377 svm_data
->save_area
= alloc_page(GFP_KERNEL
);
379 if (!svm_data
->save_area
)
382 per_cpu(svm_data
, cpu
) = svm_data
;
392 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
397 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
398 if (msr
>= msrpm_ranges
[i
] &&
399 msr
< msrpm_ranges
[i
] + MSRS_IN_RANGE
) {
400 u32 msr_offset
= (i
* MSRS_IN_RANGE
+ msr
-
401 msrpm_ranges
[i
]) * 2;
403 u32
*base
= msrpm
+ (msr_offset
/ 32);
404 u32 msr_shift
= msr_offset
% 32;
405 u32 mask
= ((write
) ? 0 : 2) | ((read
) ? 0 : 1);
406 *base
= (*base
& ~(0x3 << msr_shift
)) |
414 static void svm_vcpu_init_msrpm(u32
*msrpm
)
416 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
419 set_msr_interception(msrpm
, MSR_GS_BASE
, 1, 1);
420 set_msr_interception(msrpm
, MSR_FS_BASE
, 1, 1);
421 set_msr_interception(msrpm
, MSR_KERNEL_GS_BASE
, 1, 1);
422 set_msr_interception(msrpm
, MSR_LSTAR
, 1, 1);
423 set_msr_interception(msrpm
, MSR_CSTAR
, 1, 1);
424 set_msr_interception(msrpm
, MSR_SYSCALL_MASK
, 1, 1);
426 set_msr_interception(msrpm
, MSR_K6_STAR
, 1, 1);
427 set_msr_interception(msrpm
, MSR_IA32_SYSENTER_CS
, 1, 1);
430 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
432 u32
*msrpm
= svm
->msrpm
;
434 svm
->vmcb
->control
.lbr_ctl
= 1;
435 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
436 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
437 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
438 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
441 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
443 u32
*msrpm
= svm
->msrpm
;
445 svm
->vmcb
->control
.lbr_ctl
= 0;
446 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
447 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
448 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
449 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
452 static __init
int svm_hardware_setup(void)
455 struct page
*iopm_pages
;
459 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
464 iopm_va
= page_address(iopm_pages
);
465 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
466 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
468 if (boot_cpu_has(X86_FEATURE_NX
))
469 kvm_enable_efer_bits(EFER_NX
);
471 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
472 kvm_enable_efer_bits(EFER_FFXSR
);
475 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
476 kvm_enable_efer_bits(EFER_SVME
);
479 for_each_online_cpu(cpu
) {
480 r
= svm_cpu_init(cpu
);
485 svm_features
= cpuid_edx(SVM_CPUID_FUNC
);
487 if (!svm_has(SVM_FEATURE_NPT
))
490 if (npt_enabled
&& !npt
) {
491 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
496 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
504 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
509 static __exit
void svm_hardware_unsetup(void)
513 for_each_online_cpu(cpu
)
516 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
520 static void init_seg(struct vmcb_seg
*seg
)
523 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
524 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
529 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
532 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
537 static void init_vmcb(struct vcpu_svm
*svm
)
539 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
540 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
542 control
->intercept_cr_read
= INTERCEPT_CR0_MASK
|
546 control
->intercept_cr_write
= INTERCEPT_CR0_MASK
|
551 control
->intercept_dr_read
= INTERCEPT_DR0_MASK
|
556 control
->intercept_dr_write
= INTERCEPT_DR0_MASK
|
563 control
->intercept_exceptions
= (1 << PF_VECTOR
) |
568 control
->intercept
= (1ULL << INTERCEPT_INTR
) |
569 (1ULL << INTERCEPT_NMI
) |
570 (1ULL << INTERCEPT_SMI
) |
571 (1ULL << INTERCEPT_CPUID
) |
572 (1ULL << INTERCEPT_INVD
) |
573 (1ULL << INTERCEPT_HLT
) |
574 (1ULL << INTERCEPT_INVLPG
) |
575 (1ULL << INTERCEPT_INVLPGA
) |
576 (1ULL << INTERCEPT_IOIO_PROT
) |
577 (1ULL << INTERCEPT_MSR_PROT
) |
578 (1ULL << INTERCEPT_TASK_SWITCH
) |
579 (1ULL << INTERCEPT_SHUTDOWN
) |
580 (1ULL << INTERCEPT_VMRUN
) |
581 (1ULL << INTERCEPT_VMMCALL
) |
582 (1ULL << INTERCEPT_VMLOAD
) |
583 (1ULL << INTERCEPT_VMSAVE
) |
584 (1ULL << INTERCEPT_STGI
) |
585 (1ULL << INTERCEPT_CLGI
) |
586 (1ULL << INTERCEPT_SKINIT
) |
587 (1ULL << INTERCEPT_WBINVD
) |
588 (1ULL << INTERCEPT_MONITOR
) |
589 (1ULL << INTERCEPT_MWAIT
);
591 control
->iopm_base_pa
= iopm_base
;
592 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
593 control
->tsc_offset
= 0;
594 control
->int_ctl
= V_INTR_MASKING_MASK
;
602 save
->cs
.selector
= 0xf000;
603 /* Executable/Readable Code Segment */
604 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
605 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
606 save
->cs
.limit
= 0xffff;
608 * cs.base should really be 0xffff0000, but vmx can't handle that, so
609 * be consistent with it.
611 * Replace when we have real mode working for vmx.
613 save
->cs
.base
= 0xf0000;
615 save
->gdtr
.limit
= 0xffff;
616 save
->idtr
.limit
= 0xffff;
618 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
619 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
621 save
->efer
= EFER_SVME
;
622 save
->dr6
= 0xffff0ff0;
625 save
->rip
= 0x0000fff0;
626 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
629 * cr0 val on cpu init should be 0x60000010, we enable cpu
630 * cache by default. the orderly way is to enable cache in bios.
632 save
->cr0
= 0x00000010 | X86_CR0_PG
| X86_CR0_WP
;
633 save
->cr4
= X86_CR4_PAE
;
637 /* Setup VMCB for Nested Paging */
638 control
->nested_ctl
= 1;
639 control
->intercept
&= ~((1ULL << INTERCEPT_TASK_SWITCH
) |
640 (1ULL << INTERCEPT_INVLPG
));
641 control
->intercept_exceptions
&= ~(1 << PF_VECTOR
);
642 control
->intercept_cr_read
&= ~(INTERCEPT_CR0_MASK
|
644 control
->intercept_cr_write
&= ~(INTERCEPT_CR0_MASK
|
646 save
->g_pat
= 0x0007040600070406ULL
;
647 /* enable caching because the QEMU Bios doesn't enable it */
648 save
->cr0
= X86_CR0_ET
;
652 force_new_asid(&svm
->vcpu
);
654 svm
->nested
.vmcb
= 0;
655 svm
->vcpu
.arch
.hflags
= 0;
660 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
662 struct vcpu_svm
*svm
= to_svm(vcpu
);
666 if (!kvm_vcpu_is_bsp(vcpu
)) {
667 kvm_rip_write(vcpu
, 0);
668 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
669 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
671 vcpu
->arch
.regs_avail
= ~0;
672 vcpu
->arch
.regs_dirty
= ~0;
677 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
679 struct vcpu_svm
*svm
;
681 struct page
*msrpm_pages
;
682 struct page
*hsave_page
;
683 struct page
*nested_msrpm_pages
;
686 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
692 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
696 page
= alloc_page(GFP_KERNEL
);
703 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
707 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
708 if (!nested_msrpm_pages
)
711 svm
->msrpm
= page_address(msrpm_pages
);
712 svm_vcpu_init_msrpm(svm
->msrpm
);
714 hsave_page
= alloc_page(GFP_KERNEL
);
717 svm
->nested
.hsave
= page_address(hsave_page
);
719 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
721 svm
->vmcb
= page_address(page
);
722 clear_page(svm
->vmcb
);
723 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
724 svm
->asid_generation
= 0;
728 svm
->vcpu
.fpu_active
= 1;
729 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
730 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
731 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
736 kvm_vcpu_uninit(&svm
->vcpu
);
738 kmem_cache_free(kvm_vcpu_cache
, svm
);
743 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
745 struct vcpu_svm
*svm
= to_svm(vcpu
);
747 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
748 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
749 __free_page(virt_to_page(svm
->nested
.hsave
));
750 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
751 kvm_vcpu_uninit(vcpu
);
752 kmem_cache_free(kvm_vcpu_cache
, svm
);
755 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
757 struct vcpu_svm
*svm
= to_svm(vcpu
);
760 if (unlikely(cpu
!= vcpu
->cpu
)) {
764 * Make sure that the guest sees a monotonically
768 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
769 svm
->vmcb
->control
.tsc_offset
+= delta
;
771 kvm_migrate_timers(vcpu
);
772 svm
->asid_generation
= 0;
775 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
776 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
779 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
781 struct vcpu_svm
*svm
= to_svm(vcpu
);
784 ++vcpu
->stat
.host_state_reload
;
785 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
786 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
788 rdtscll(vcpu
->arch
.host_tsc
);
791 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
793 return to_svm(vcpu
)->vmcb
->save
.rflags
;
796 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
798 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
801 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
804 case VCPU_EXREG_PDPTR
:
805 BUG_ON(!npt_enabled
);
806 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
813 static void svm_set_vintr(struct vcpu_svm
*svm
)
815 svm
->vmcb
->control
.intercept
|= 1ULL << INTERCEPT_VINTR
;
818 static void svm_clear_vintr(struct vcpu_svm
*svm
)
820 svm
->vmcb
->control
.intercept
&= ~(1ULL << INTERCEPT_VINTR
);
823 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
825 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
828 case VCPU_SREG_CS
: return &save
->cs
;
829 case VCPU_SREG_DS
: return &save
->ds
;
830 case VCPU_SREG_ES
: return &save
->es
;
831 case VCPU_SREG_FS
: return &save
->fs
;
832 case VCPU_SREG_GS
: return &save
->gs
;
833 case VCPU_SREG_SS
: return &save
->ss
;
834 case VCPU_SREG_TR
: return &save
->tr
;
835 case VCPU_SREG_LDTR
: return &save
->ldtr
;
841 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
843 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
848 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
849 struct kvm_segment
*var
, int seg
)
851 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
854 var
->limit
= s
->limit
;
855 var
->selector
= s
->selector
;
856 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
857 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
858 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
859 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
860 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
861 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
862 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
863 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
865 /* AMD's VMCB does not have an explicit unusable field, so emulate it
866 * for cross vendor migration purposes by "not present"
868 var
->unusable
= !var
->present
|| (var
->type
== 0);
873 * SVM always stores 0 for the 'G' bit in the CS selector in
874 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
875 * Intel's VMENTRY has a check on the 'G' bit.
877 var
->g
= s
->limit
> 0xfffff;
881 * Work around a bug where the busy flag in the tr selector
891 * The accessed bit must always be set in the segment
892 * descriptor cache, although it can be cleared in the
893 * descriptor, the cached bit always remains at 1. Since
894 * Intel has a check on this, set it here to support
895 * cross-vendor migration.
901 /* On AMD CPUs sometimes the DB bit in the segment
902 * descriptor is left as 1, although the whole segment has
903 * been made unusable. Clear it here to pass an Intel VMX
904 * entry check when cross vendor migrating.
912 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
914 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
919 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
921 struct vcpu_svm
*svm
= to_svm(vcpu
);
923 dt
->limit
= svm
->vmcb
->save
.idtr
.limit
;
924 dt
->base
= svm
->vmcb
->save
.idtr
.base
;
927 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
929 struct vcpu_svm
*svm
= to_svm(vcpu
);
931 svm
->vmcb
->save
.idtr
.limit
= dt
->limit
;
932 svm
->vmcb
->save
.idtr
.base
= dt
->base
;
935 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
937 struct vcpu_svm
*svm
= to_svm(vcpu
);
939 dt
->limit
= svm
->vmcb
->save
.gdtr
.limit
;
940 dt
->base
= svm
->vmcb
->save
.gdtr
.base
;
943 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
945 struct vcpu_svm
*svm
= to_svm(vcpu
);
947 svm
->vmcb
->save
.gdtr
.limit
= dt
->limit
;
948 svm
->vmcb
->save
.gdtr
.base
= dt
->base
;
951 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
955 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
957 struct vcpu_svm
*svm
= to_svm(vcpu
);
960 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
961 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
962 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
963 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
966 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
967 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
968 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
975 if ((vcpu
->arch
.cr0
& X86_CR0_TS
) && !(cr0
& X86_CR0_TS
)) {
976 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
977 vcpu
->fpu_active
= 1;
980 vcpu
->arch
.cr0
= cr0
;
981 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
982 if (!vcpu
->fpu_active
) {
983 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
988 * re-enable caching here because the QEMU bios
989 * does not do it - this results in some delay at
992 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
993 svm
->vmcb
->save
.cr0
= cr0
;
996 static void svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
998 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
999 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1001 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1002 force_new_asid(vcpu
);
1004 vcpu
->arch
.cr4
= cr4
;
1007 cr4
|= host_cr4_mce
;
1008 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1011 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1012 struct kvm_segment
*var
, int seg
)
1014 struct vcpu_svm
*svm
= to_svm(vcpu
);
1015 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1017 s
->base
= var
->base
;
1018 s
->limit
= var
->limit
;
1019 s
->selector
= var
->selector
;
1023 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1024 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1025 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1026 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1027 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1028 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1029 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1030 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1032 if (seg
== VCPU_SREG_CS
)
1034 = (svm
->vmcb
->save
.cs
.attrib
1035 >> SVM_SELECTOR_DPL_SHIFT
) & 3;
1039 static void update_db_intercept(struct kvm_vcpu
*vcpu
)
1041 struct vcpu_svm
*svm
= to_svm(vcpu
);
1043 svm
->vmcb
->control
.intercept_exceptions
&=
1044 ~((1 << DB_VECTOR
) | (1 << BP_VECTOR
));
1046 if (vcpu
->arch
.singlestep
)
1047 svm
->vmcb
->control
.intercept_exceptions
|= (1 << DB_VECTOR
);
1049 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1050 if (vcpu
->guest_debug
&
1051 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1052 svm
->vmcb
->control
.intercept_exceptions
|=
1054 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1055 svm
->vmcb
->control
.intercept_exceptions
|=
1058 vcpu
->guest_debug
= 0;
1061 static int svm_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1063 int old_debug
= vcpu
->guest_debug
;
1064 struct vcpu_svm
*svm
= to_svm(vcpu
);
1066 vcpu
->guest_debug
= dbg
->control
;
1068 update_db_intercept(vcpu
);
1070 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1071 svm
->vmcb
->save
.dr7
= dbg
->arch
.debugreg
[7];
1073 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1075 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
1076 svm
->vmcb
->save
.rflags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1077 else if (old_debug
& KVM_GUESTDBG_SINGLESTEP
)
1078 svm
->vmcb
->save
.rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1083 static void load_host_msrs(struct kvm_vcpu
*vcpu
)
1085 #ifdef CONFIG_X86_64
1086 wrmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1090 static void save_host_msrs(struct kvm_vcpu
*vcpu
)
1092 #ifdef CONFIG_X86_64
1093 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1097 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*svm_data
)
1099 if (svm_data
->next_asid
> svm_data
->max_asid
) {
1100 ++svm_data
->asid_generation
;
1101 svm_data
->next_asid
= 1;
1102 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1105 svm
->asid_generation
= svm_data
->asid_generation
;
1106 svm
->vmcb
->control
.asid
= svm_data
->next_asid
++;
1109 static unsigned long svm_get_dr(struct kvm_vcpu
*vcpu
, int dr
)
1111 struct vcpu_svm
*svm
= to_svm(vcpu
);
1116 val
= vcpu
->arch
.db
[dr
];
1119 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1120 val
= vcpu
->arch
.dr6
;
1122 val
= svm
->vmcb
->save
.dr6
;
1125 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1126 val
= vcpu
->arch
.dr7
;
1128 val
= svm
->vmcb
->save
.dr7
;
1137 static void svm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long value
,
1140 struct vcpu_svm
*svm
= to_svm(vcpu
);
1146 vcpu
->arch
.db
[dr
] = value
;
1147 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1148 vcpu
->arch
.eff_db
[dr
] = value
;
1151 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
1152 *exception
= UD_VECTOR
;
1155 if (value
& 0xffffffff00000000ULL
) {
1156 *exception
= GP_VECTOR
;
1159 vcpu
->arch
.dr6
= (value
& DR6_VOLATILE
) | DR6_FIXED_1
;
1162 if (value
& 0xffffffff00000000ULL
) {
1163 *exception
= GP_VECTOR
;
1166 vcpu
->arch
.dr7
= (value
& DR7_VOLATILE
) | DR7_FIXED_1
;
1167 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
1168 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1169 vcpu
->arch
.switch_db_regs
= (value
& DR7_BP_EN_MASK
);
1173 /* FIXME: Possible case? */
1174 printk(KERN_DEBUG
"%s: unexpected dr %u\n",
1176 *exception
= UD_VECTOR
;
1181 static int pf_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1186 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1187 error_code
= svm
->vmcb
->control
.exit_info_1
;
1189 trace_kvm_page_fault(fault_address
, error_code
);
1190 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1191 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1192 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
);
1195 static int db_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1197 if (!(svm
->vcpu
.guest_debug
&
1198 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1199 !svm
->vcpu
.arch
.singlestep
) {
1200 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1204 if (svm
->vcpu
.arch
.singlestep
) {
1205 svm
->vcpu
.arch
.singlestep
= false;
1206 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1207 svm
->vmcb
->save
.rflags
&=
1208 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1209 update_db_intercept(&svm
->vcpu
);
1212 if (svm
->vcpu
.guest_debug
&
1213 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)){
1214 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1215 kvm_run
->debug
.arch
.pc
=
1216 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1217 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1224 static int bp_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1226 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1227 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1228 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1232 static int ud_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1236 er
= emulate_instruction(&svm
->vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
1237 if (er
!= EMULATE_DONE
)
1238 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1242 static int nm_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1244 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
1245 if (!(svm
->vcpu
.arch
.cr0
& X86_CR0_TS
))
1246 svm
->vmcb
->save
.cr0
&= ~X86_CR0_TS
;
1247 svm
->vcpu
.fpu_active
= 1;
1252 static int mc_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1255 * On an #MC intercept the MCE handler is not called automatically in
1256 * the host. So do it by hand here.
1260 /* not sure if we ever come back to this point */
1265 static int shutdown_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1268 * VMCB is undefined after a SHUTDOWN intercept
1269 * so reinitialize it.
1271 clear_page(svm
->vmcb
);
1274 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1278 static int io_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1280 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1281 int size
, in
, string
;
1284 ++svm
->vcpu
.stat
.io_exits
;
1286 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1288 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1291 if (emulate_instruction(&svm
->vcpu
,
1292 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
1297 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1298 port
= io_info
>> 16;
1299 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1301 skip_emulated_instruction(&svm
->vcpu
);
1302 return kvm_emulate_pio(&svm
->vcpu
, kvm_run
, in
, size
, port
);
1305 static int nmi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1310 static int intr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1312 ++svm
->vcpu
.stat
.irq_exits
;
1316 static int nop_on_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1321 static int halt_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1323 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1324 skip_emulated_instruction(&svm
->vcpu
);
1325 return kvm_emulate_halt(&svm
->vcpu
);
1328 static int vmmcall_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1330 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1331 skip_emulated_instruction(&svm
->vcpu
);
1332 kvm_emulate_hypercall(&svm
->vcpu
);
1336 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1338 if (!(svm
->vcpu
.arch
.shadow_efer
& EFER_SVME
)
1339 || !is_paging(&svm
->vcpu
)) {
1340 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1344 if (svm
->vmcb
->save
.cpl
) {
1345 kvm_inject_gp(&svm
->vcpu
, 0);
1352 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1353 bool has_error_code
, u32 error_code
)
1355 if (!is_nested(svm
))
1358 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1359 svm
->vmcb
->control
.exit_code_hi
= 0;
1360 svm
->vmcb
->control
.exit_info_1
= error_code
;
1361 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1363 return nested_svm_exit_handled(svm
);
1366 static inline int nested_svm_intr(struct vcpu_svm
*svm
)
1368 if (!is_nested(svm
))
1371 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1374 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1377 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1379 if (nested_svm_exit_handled(svm
)) {
1380 nsvm_printk("VMexit -> INTR\n");
1387 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, enum km_type idx
)
1391 down_read(¤t
->mm
->mmap_sem
);
1392 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
1393 up_read(¤t
->mm
->mmap_sem
);
1395 if (is_error_page(page
))
1398 return kmap_atomic(page
, idx
);
1401 kvm_release_page_clean(page
);
1402 kvm_inject_gp(&svm
->vcpu
, 0);
1407 static void nested_svm_unmap(void *addr
, enum km_type idx
)
1414 page
= kmap_atomic_to_page(addr
);
1416 kunmap_atomic(addr
, idx
);
1417 kvm_release_page_dirty(page
);
1420 static bool nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
1422 u32 param
= svm
->vmcb
->control
.exit_info_1
& 1;
1423 u32 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
1428 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
1431 msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1441 case 0xc0000000 ... 0xc0001fff:
1442 t0
= (8192 + msr
- 0xc0000000) * 2;
1446 case 0xc0010000 ... 0xc0011fff:
1447 t0
= (16384 + msr
- 0xc0010000) * 2;
1456 ret
= msrpm
[t1
] & ((1 << param
) << t0
);
1459 nested_svm_unmap(msrpm
, KM_USER0
);
1464 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
1466 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1468 switch (exit_code
) {
1471 return NESTED_EXIT_HOST
;
1472 /* For now we are always handling NPFs when using them */
1475 return NESTED_EXIT_HOST
;
1477 /* When we're shadowing, trap PFs */
1478 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
1480 return NESTED_EXIT_HOST
;
1486 return NESTED_EXIT_CONTINUE
;
1490 * If this function returns true, this #vmexit was already handled
1492 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
1494 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1495 int vmexit
= NESTED_EXIT_HOST
;
1497 switch (exit_code
) {
1499 vmexit
= nested_svm_exit_handled_msr(svm
);
1501 case SVM_EXIT_READ_CR0
... SVM_EXIT_READ_CR8
: {
1502 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_READ_CR0
);
1503 if (svm
->nested
.intercept_cr_read
& cr_bits
)
1504 vmexit
= NESTED_EXIT_DONE
;
1507 case SVM_EXIT_WRITE_CR0
... SVM_EXIT_WRITE_CR8
: {
1508 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_CR0
);
1509 if (svm
->nested
.intercept_cr_write
& cr_bits
)
1510 vmexit
= NESTED_EXIT_DONE
;
1513 case SVM_EXIT_READ_DR0
... SVM_EXIT_READ_DR7
: {
1514 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_READ_DR0
);
1515 if (svm
->nested
.intercept_dr_read
& dr_bits
)
1516 vmexit
= NESTED_EXIT_DONE
;
1519 case SVM_EXIT_WRITE_DR0
... SVM_EXIT_WRITE_DR7
: {
1520 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_DR0
);
1521 if (svm
->nested
.intercept_dr_write
& dr_bits
)
1522 vmexit
= NESTED_EXIT_DONE
;
1525 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
1526 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
1527 if (svm
->nested
.intercept_exceptions
& excp_bits
)
1528 vmexit
= NESTED_EXIT_DONE
;
1532 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
1533 nsvm_printk("exit code: 0x%x\n", exit_code
);
1534 if (svm
->nested
.intercept
& exit_bits
)
1535 vmexit
= NESTED_EXIT_DONE
;
1539 if (vmexit
== NESTED_EXIT_DONE
) {
1540 nsvm_printk("#VMEXIT reason=%04x\n", exit_code
);
1541 nested_svm_vmexit(svm
);
1547 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
1549 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
1550 struct vmcb_control_area
*from
= &from_vmcb
->control
;
1552 dst
->intercept_cr_read
= from
->intercept_cr_read
;
1553 dst
->intercept_cr_write
= from
->intercept_cr_write
;
1554 dst
->intercept_dr_read
= from
->intercept_dr_read
;
1555 dst
->intercept_dr_write
= from
->intercept_dr_write
;
1556 dst
->intercept_exceptions
= from
->intercept_exceptions
;
1557 dst
->intercept
= from
->intercept
;
1558 dst
->iopm_base_pa
= from
->iopm_base_pa
;
1559 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
1560 dst
->tsc_offset
= from
->tsc_offset
;
1561 dst
->asid
= from
->asid
;
1562 dst
->tlb_ctl
= from
->tlb_ctl
;
1563 dst
->int_ctl
= from
->int_ctl
;
1564 dst
->int_vector
= from
->int_vector
;
1565 dst
->int_state
= from
->int_state
;
1566 dst
->exit_code
= from
->exit_code
;
1567 dst
->exit_code_hi
= from
->exit_code_hi
;
1568 dst
->exit_info_1
= from
->exit_info_1
;
1569 dst
->exit_info_2
= from
->exit_info_2
;
1570 dst
->exit_int_info
= from
->exit_int_info
;
1571 dst
->exit_int_info_err
= from
->exit_int_info_err
;
1572 dst
->nested_ctl
= from
->nested_ctl
;
1573 dst
->event_inj
= from
->event_inj
;
1574 dst
->event_inj_err
= from
->event_inj_err
;
1575 dst
->nested_cr3
= from
->nested_cr3
;
1576 dst
->lbr_ctl
= from
->lbr_ctl
;
1579 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
1581 struct vmcb
*nested_vmcb
;
1582 struct vmcb
*hsave
= svm
->nested
.hsave
;
1583 struct vmcb
*vmcb
= svm
->vmcb
;
1585 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, KM_USER0
);
1589 /* Give the current vmcb to the guest */
1592 nested_vmcb
->save
.es
= vmcb
->save
.es
;
1593 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
1594 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
1595 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
1596 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
1597 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
1599 nested_vmcb
->save
.cr3
= vmcb
->save
.cr3
;
1600 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
1601 nested_vmcb
->save
.rflags
= vmcb
->save
.rflags
;
1602 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
1603 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
1604 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
1605 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
1606 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
1607 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
1609 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
1610 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
1611 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
1612 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
1613 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
1614 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
1615 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
1616 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
1617 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
1618 nested_vmcb
->control
.tlb_ctl
= 0;
1619 nested_vmcb
->control
.event_inj
= 0;
1620 nested_vmcb
->control
.event_inj_err
= 0;
1622 /* We always set V_INTR_MASKING and remember the old value in hflags */
1623 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1624 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
1626 /* Restore the original control entries */
1627 copy_vmcb_control_area(vmcb
, hsave
);
1629 /* Kill any pending exceptions */
1630 if (svm
->vcpu
.arch
.exception
.pending
== true)
1631 nsvm_printk("WARNING: Pending Exception\n");
1633 kvm_clear_exception_queue(&svm
->vcpu
);
1634 kvm_clear_interrupt_queue(&svm
->vcpu
);
1636 /* Restore selected save entries */
1637 svm
->vmcb
->save
.es
= hsave
->save
.es
;
1638 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
1639 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
1640 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
1641 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
1642 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
1643 svm
->vmcb
->save
.rflags
= hsave
->save
.rflags
;
1644 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
1645 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
1646 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
1648 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
1649 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
1651 kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
1653 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
1654 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
1655 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
1656 svm
->vmcb
->save
.dr7
= 0;
1657 svm
->vmcb
->save
.cpl
= 0;
1658 svm
->vmcb
->control
.exit_int_info
= 0;
1660 /* Exit nested SVM mode */
1661 svm
->nested
.vmcb
= 0;
1663 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1665 kvm_mmu_reset_context(&svm
->vcpu
);
1666 kvm_mmu_load(&svm
->vcpu
);
1671 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
1676 nested_msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1680 for (i
=0; i
< PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
) / 4; i
++)
1681 svm
->nested
.msrpm
[i
] = svm
->msrpm
[i
] | nested_msrpm
[i
];
1683 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
1685 nested_svm_unmap(nested_msrpm
, KM_USER0
);
1690 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
1692 struct vmcb
*nested_vmcb
;
1693 struct vmcb
*hsave
= svm
->nested
.hsave
;
1694 struct vmcb
*vmcb
= svm
->vmcb
;
1696 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1700 /* nested_vmcb is our indicator if nested SVM is activated */
1701 svm
->nested
.vmcb
= svm
->vmcb
->save
.rax
;
1703 /* Clear internal status */
1704 kvm_clear_exception_queue(&svm
->vcpu
);
1705 kvm_clear_interrupt_queue(&svm
->vcpu
);
1707 /* Save the old vmcb, so we don't need to pick what we save, but
1708 can restore everything when a VMEXIT occurs */
1709 hsave
->save
.es
= vmcb
->save
.es
;
1710 hsave
->save
.cs
= vmcb
->save
.cs
;
1711 hsave
->save
.ss
= vmcb
->save
.ss
;
1712 hsave
->save
.ds
= vmcb
->save
.ds
;
1713 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
1714 hsave
->save
.idtr
= vmcb
->save
.idtr
;
1715 hsave
->save
.efer
= svm
->vcpu
.arch
.shadow_efer
;
1716 hsave
->save
.cr0
= svm
->vcpu
.arch
.cr0
;
1717 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
1718 hsave
->save
.rflags
= vmcb
->save
.rflags
;
1719 hsave
->save
.rip
= svm
->next_rip
;
1720 hsave
->save
.rsp
= vmcb
->save
.rsp
;
1721 hsave
->save
.rax
= vmcb
->save
.rax
;
1723 hsave
->save
.cr3
= vmcb
->save
.cr3
;
1725 hsave
->save
.cr3
= svm
->vcpu
.arch
.cr3
;
1727 copy_vmcb_control_area(hsave
, vmcb
);
1729 if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_IF
)
1730 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
1732 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
1734 /* Load the nested guest state */
1735 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
1736 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
1737 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
1738 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
1739 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
1740 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
1741 svm
->vmcb
->save
.rflags
= nested_vmcb
->save
.rflags
;
1742 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
1743 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
1744 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
1746 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
1747 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
1749 kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
1750 kvm_mmu_reset_context(&svm
->vcpu
);
1752 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
1753 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
1754 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
1755 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
1756 /* In case we don't even reach vcpu_run, the fields are not updated */
1757 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
1758 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
1759 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
1760 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
1761 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
1762 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
1764 /* We don't want a nested guest to be more powerful than the guest,
1765 so all intercepts are ORed */
1766 svm
->vmcb
->control
.intercept_cr_read
|=
1767 nested_vmcb
->control
.intercept_cr_read
;
1768 svm
->vmcb
->control
.intercept_cr_write
|=
1769 nested_vmcb
->control
.intercept_cr_write
;
1770 svm
->vmcb
->control
.intercept_dr_read
|=
1771 nested_vmcb
->control
.intercept_dr_read
;
1772 svm
->vmcb
->control
.intercept_dr_write
|=
1773 nested_vmcb
->control
.intercept_dr_write
;
1774 svm
->vmcb
->control
.intercept_exceptions
|=
1775 nested_vmcb
->control
.intercept_exceptions
;
1777 svm
->vmcb
->control
.intercept
|= nested_vmcb
->control
.intercept
;
1779 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
;
1781 /* cache intercepts */
1782 svm
->nested
.intercept_cr_read
= nested_vmcb
->control
.intercept_cr_read
;
1783 svm
->nested
.intercept_cr_write
= nested_vmcb
->control
.intercept_cr_write
;
1784 svm
->nested
.intercept_dr_read
= nested_vmcb
->control
.intercept_dr_read
;
1785 svm
->nested
.intercept_dr_write
= nested_vmcb
->control
.intercept_dr_write
;
1786 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
1787 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
1789 force_new_asid(&svm
->vcpu
);
1790 svm
->vmcb
->control
.exit_int_info
= nested_vmcb
->control
.exit_int_info
;
1791 svm
->vmcb
->control
.exit_int_info_err
= nested_vmcb
->control
.exit_int_info_err
;
1792 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
1793 if (nested_vmcb
->control
.int_ctl
& V_IRQ_MASK
) {
1794 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1795 nested_vmcb
->control
.int_ctl
);
1797 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
1798 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
1800 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
1802 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1803 nested_vmcb
->control
.exit_int_info
,
1804 nested_vmcb
->control
.int_state
);
1806 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
1807 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
1808 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
1809 if (nested_vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
)
1810 nsvm_printk("Injecting Event: 0x%x\n",
1811 nested_vmcb
->control
.event_inj
);
1812 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
1813 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
1815 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1822 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
1824 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
1825 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
1826 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
1827 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
1828 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
1829 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
1830 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
1831 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
1832 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
1833 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
1834 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
1835 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
1838 static int vmload_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1840 struct vmcb
*nested_vmcb
;
1842 if (nested_svm_check_permissions(svm
))
1845 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1846 skip_emulated_instruction(&svm
->vcpu
);
1848 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1852 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
1853 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1858 static int vmsave_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1860 struct vmcb
*nested_vmcb
;
1862 if (nested_svm_check_permissions(svm
))
1865 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1866 skip_emulated_instruction(&svm
->vcpu
);
1868 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1872 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
1873 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1878 static int vmrun_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1880 nsvm_printk("VMrun\n");
1882 if (nested_svm_check_permissions(svm
))
1885 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1886 skip_emulated_instruction(&svm
->vcpu
);
1888 if (!nested_svm_vmrun(svm
))
1891 if (!nested_svm_vmrun_msrpm(svm
))
1898 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
1899 svm
->vmcb
->control
.exit_code_hi
= 0;
1900 svm
->vmcb
->control
.exit_info_1
= 0;
1901 svm
->vmcb
->control
.exit_info_2
= 0;
1903 nested_svm_vmexit(svm
);
1908 static int stgi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1910 if (nested_svm_check_permissions(svm
))
1913 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1914 skip_emulated_instruction(&svm
->vcpu
);
1921 static int clgi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1923 if (nested_svm_check_permissions(svm
))
1926 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1927 skip_emulated_instruction(&svm
->vcpu
);
1931 /* After a CLGI no interrupts should come */
1932 svm_clear_vintr(svm
);
1933 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
1938 static int invlpga_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1940 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1941 nsvm_printk("INVLPGA\n");
1943 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1944 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
1946 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1947 skip_emulated_instruction(&svm
->vcpu
);
1951 static int invalid_op_interception(struct vcpu_svm
*svm
,
1952 struct kvm_run
*kvm_run
)
1954 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1958 static int task_switch_interception(struct vcpu_svm
*svm
,
1959 struct kvm_run
*kvm_run
)
1963 int int_type
= svm
->vmcb
->control
.exit_int_info
&
1964 SVM_EXITINTINFO_TYPE_MASK
;
1965 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
1967 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
1969 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
1971 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
1973 if (svm
->vmcb
->control
.exit_info_2
&
1974 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
1975 reason
= TASK_SWITCH_IRET
;
1976 else if (svm
->vmcb
->control
.exit_info_2
&
1977 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
1978 reason
= TASK_SWITCH_JMP
;
1980 reason
= TASK_SWITCH_GATE
;
1982 reason
= TASK_SWITCH_CALL
;
1984 if (reason
== TASK_SWITCH_GATE
) {
1986 case SVM_EXITINTINFO_TYPE_NMI
:
1987 svm
->vcpu
.arch
.nmi_injected
= false;
1989 case SVM_EXITINTINFO_TYPE_EXEPT
:
1990 kvm_clear_exception_queue(&svm
->vcpu
);
1992 case SVM_EXITINTINFO_TYPE_INTR
:
1993 kvm_clear_interrupt_queue(&svm
->vcpu
);
2000 if (reason
!= TASK_SWITCH_GATE
||
2001 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2002 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2003 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2004 skip_emulated_instruction(&svm
->vcpu
);
2006 return kvm_task_switch(&svm
->vcpu
, tss_selector
, reason
);
2009 static int cpuid_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2011 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2012 kvm_emulate_cpuid(&svm
->vcpu
);
2016 static int iret_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2018 ++svm
->vcpu
.stat
.nmi_window_exits
;
2019 svm
->vmcb
->control
.intercept
&= ~(1UL << INTERCEPT_IRET
);
2020 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2024 static int invlpg_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2026 if (emulate_instruction(&svm
->vcpu
, kvm_run
, 0, 0, 0) != EMULATE_DONE
)
2027 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2031 static int emulate_on_interception(struct vcpu_svm
*svm
,
2032 struct kvm_run
*kvm_run
)
2034 if (emulate_instruction(&svm
->vcpu
, NULL
, 0, 0, 0) != EMULATE_DONE
)
2035 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2039 static int cr8_write_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2041 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2042 /* instruction emulation calls kvm_set_cr8() */
2043 emulate_instruction(&svm
->vcpu
, NULL
, 0, 0, 0);
2044 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
2045 svm
->vmcb
->control
.intercept_cr_write
&= ~INTERCEPT_CR8_MASK
;
2048 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2050 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2054 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
2056 struct vcpu_svm
*svm
= to_svm(vcpu
);
2059 case MSR_IA32_TSC
: {
2063 *data
= svm
->vmcb
->control
.tsc_offset
+ tsc
;
2067 *data
= svm
->vmcb
->save
.star
;
2069 #ifdef CONFIG_X86_64
2071 *data
= svm
->vmcb
->save
.lstar
;
2074 *data
= svm
->vmcb
->save
.cstar
;
2076 case MSR_KERNEL_GS_BASE
:
2077 *data
= svm
->vmcb
->save
.kernel_gs_base
;
2079 case MSR_SYSCALL_MASK
:
2080 *data
= svm
->vmcb
->save
.sfmask
;
2083 case MSR_IA32_SYSENTER_CS
:
2084 *data
= svm
->vmcb
->save
.sysenter_cs
;
2086 case MSR_IA32_SYSENTER_EIP
:
2087 *data
= svm
->sysenter_eip
;
2089 case MSR_IA32_SYSENTER_ESP
:
2090 *data
= svm
->sysenter_esp
;
2092 /* Nobody will change the following 5 values in the VMCB so
2093 we can safely return them on rdmsr. They will always be 0
2094 until LBRV is implemented. */
2095 case MSR_IA32_DEBUGCTLMSR
:
2096 *data
= svm
->vmcb
->save
.dbgctl
;
2098 case MSR_IA32_LASTBRANCHFROMIP
:
2099 *data
= svm
->vmcb
->save
.br_from
;
2101 case MSR_IA32_LASTBRANCHTOIP
:
2102 *data
= svm
->vmcb
->save
.br_to
;
2104 case MSR_IA32_LASTINTFROMIP
:
2105 *data
= svm
->vmcb
->save
.last_excp_from
;
2107 case MSR_IA32_LASTINTTOIP
:
2108 *data
= svm
->vmcb
->save
.last_excp_to
;
2110 case MSR_VM_HSAVE_PA
:
2111 *data
= svm
->nested
.hsave_msr
;
2116 case MSR_IA32_UCODE_REV
:
2120 return kvm_get_msr_common(vcpu
, ecx
, data
);
2125 static int rdmsr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2127 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2130 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
))
2131 kvm_inject_gp(&svm
->vcpu
, 0);
2133 trace_kvm_msr_read(ecx
, data
);
2135 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
2136 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
2137 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2138 skip_emulated_instruction(&svm
->vcpu
);
2143 static int svm_set_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64 data
)
2145 struct vcpu_svm
*svm
= to_svm(vcpu
);
2148 case MSR_IA32_TSC
: {
2152 svm
->vmcb
->control
.tsc_offset
= data
- tsc
;
2156 svm
->vmcb
->save
.star
= data
;
2158 #ifdef CONFIG_X86_64
2160 svm
->vmcb
->save
.lstar
= data
;
2163 svm
->vmcb
->save
.cstar
= data
;
2165 case MSR_KERNEL_GS_BASE
:
2166 svm
->vmcb
->save
.kernel_gs_base
= data
;
2168 case MSR_SYSCALL_MASK
:
2169 svm
->vmcb
->save
.sfmask
= data
;
2172 case MSR_IA32_SYSENTER_CS
:
2173 svm
->vmcb
->save
.sysenter_cs
= data
;
2175 case MSR_IA32_SYSENTER_EIP
:
2176 svm
->sysenter_eip
= data
;
2177 svm
->vmcb
->save
.sysenter_eip
= data
;
2179 case MSR_IA32_SYSENTER_ESP
:
2180 svm
->sysenter_esp
= data
;
2181 svm
->vmcb
->save
.sysenter_esp
= data
;
2183 case MSR_IA32_DEBUGCTLMSR
:
2184 if (!svm_has(SVM_FEATURE_LBRV
)) {
2185 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2189 if (data
& DEBUGCTL_RESERVED_BITS
)
2192 svm
->vmcb
->save
.dbgctl
= data
;
2193 if (data
& (1ULL<<0))
2194 svm_enable_lbrv(svm
);
2196 svm_disable_lbrv(svm
);
2198 case MSR_VM_HSAVE_PA
:
2199 svm
->nested
.hsave_msr
= data
;
2203 pr_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
2206 return kvm_set_msr_common(vcpu
, ecx
, data
);
2211 static int wrmsr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2213 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2214 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
2215 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2217 trace_kvm_msr_write(ecx
, data
);
2219 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2220 if (svm_set_msr(&svm
->vcpu
, ecx
, data
))
2221 kvm_inject_gp(&svm
->vcpu
, 0);
2223 skip_emulated_instruction(&svm
->vcpu
);
2227 static int msr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2229 if (svm
->vmcb
->control
.exit_info_1
)
2230 return wrmsr_interception(svm
, kvm_run
);
2232 return rdmsr_interception(svm
, kvm_run
);
2235 static int interrupt_window_interception(struct vcpu_svm
*svm
,
2236 struct kvm_run
*kvm_run
)
2238 svm_clear_vintr(svm
);
2239 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2241 * If the user space waits to inject interrupts, exit as soon as
2244 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
2245 kvm_run
->request_interrupt_window
&&
2246 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
2247 ++svm
->vcpu
.stat
.irq_window_exits
;
2248 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2255 static int (*svm_exit_handlers
[])(struct vcpu_svm
*svm
,
2256 struct kvm_run
*kvm_run
) = {
2257 [SVM_EXIT_READ_CR0
] = emulate_on_interception
,
2258 [SVM_EXIT_READ_CR3
] = emulate_on_interception
,
2259 [SVM_EXIT_READ_CR4
] = emulate_on_interception
,
2260 [SVM_EXIT_READ_CR8
] = emulate_on_interception
,
2262 [SVM_EXIT_WRITE_CR0
] = emulate_on_interception
,
2263 [SVM_EXIT_WRITE_CR3
] = emulate_on_interception
,
2264 [SVM_EXIT_WRITE_CR4
] = emulate_on_interception
,
2265 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
2266 [SVM_EXIT_READ_DR0
] = emulate_on_interception
,
2267 [SVM_EXIT_READ_DR1
] = emulate_on_interception
,
2268 [SVM_EXIT_READ_DR2
] = emulate_on_interception
,
2269 [SVM_EXIT_READ_DR3
] = emulate_on_interception
,
2270 [SVM_EXIT_WRITE_DR0
] = emulate_on_interception
,
2271 [SVM_EXIT_WRITE_DR1
] = emulate_on_interception
,
2272 [SVM_EXIT_WRITE_DR2
] = emulate_on_interception
,
2273 [SVM_EXIT_WRITE_DR3
] = emulate_on_interception
,
2274 [SVM_EXIT_WRITE_DR5
] = emulate_on_interception
,
2275 [SVM_EXIT_WRITE_DR7
] = emulate_on_interception
,
2276 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
2277 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
2278 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
2279 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
2280 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
2281 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
2282 [SVM_EXIT_INTR
] = intr_interception
,
2283 [SVM_EXIT_NMI
] = nmi_interception
,
2284 [SVM_EXIT_SMI
] = nop_on_interception
,
2285 [SVM_EXIT_INIT
] = nop_on_interception
,
2286 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
2287 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2288 [SVM_EXIT_CPUID
] = cpuid_interception
,
2289 [SVM_EXIT_IRET
] = iret_interception
,
2290 [SVM_EXIT_INVD
] = emulate_on_interception
,
2291 [SVM_EXIT_HLT
] = halt_interception
,
2292 [SVM_EXIT_INVLPG
] = invlpg_interception
,
2293 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
2294 [SVM_EXIT_IOIO
] = io_interception
,
2295 [SVM_EXIT_MSR
] = msr_interception
,
2296 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
2297 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
2298 [SVM_EXIT_VMRUN
] = vmrun_interception
,
2299 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
2300 [SVM_EXIT_VMLOAD
] = vmload_interception
,
2301 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
2302 [SVM_EXIT_STGI
] = stgi_interception
,
2303 [SVM_EXIT_CLGI
] = clgi_interception
,
2304 [SVM_EXIT_SKINIT
] = invalid_op_interception
,
2305 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
2306 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
2307 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
2308 [SVM_EXIT_NPF
] = pf_interception
,
2311 static int handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2313 struct vcpu_svm
*svm
= to_svm(vcpu
);
2314 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2316 trace_kvm_exit(exit_code
, svm
->vmcb
->save
.rip
);
2318 if (is_nested(svm
)) {
2321 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2322 exit_code
, svm
->vmcb
->control
.exit_info_1
,
2323 svm
->vmcb
->control
.exit_info_2
, svm
->vmcb
->save
.rip
);
2325 vmexit
= nested_svm_exit_special(svm
);
2327 if (vmexit
== NESTED_EXIT_CONTINUE
)
2328 vmexit
= nested_svm_exit_handled(svm
);
2330 if (vmexit
== NESTED_EXIT_DONE
)
2334 svm_complete_interrupts(svm
);
2338 if ((vcpu
->arch
.cr0
^ svm
->vmcb
->save
.cr0
) & X86_CR0_PG
) {
2339 svm_set_cr0(vcpu
, svm
->vmcb
->save
.cr0
);
2342 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
2343 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
2345 kvm_mmu_reset_context(vcpu
);
2351 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
2352 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2353 kvm_run
->fail_entry
.hardware_entry_failure_reason
2354 = svm
->vmcb
->control
.exit_code
;
2358 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
2359 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
2360 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
)
2361 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
2363 __func__
, svm
->vmcb
->control
.exit_int_info
,
2366 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
2367 || !svm_exit_handlers
[exit_code
]) {
2368 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2369 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
2373 return svm_exit_handlers
[exit_code
](svm
, kvm_run
);
2376 static void reload_tss(struct kvm_vcpu
*vcpu
)
2378 int cpu
= raw_smp_processor_id();
2380 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2381 svm_data
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
2385 static void pre_svm_run(struct vcpu_svm
*svm
)
2387 int cpu
= raw_smp_processor_id();
2389 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2391 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
2392 /* FIXME: handle wraparound of asid_generation */
2393 if (svm
->asid_generation
!= svm_data
->asid_generation
)
2394 new_asid(svm
, svm_data
);
2397 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
2399 struct vcpu_svm
*svm
= to_svm(vcpu
);
2401 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
2402 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
2403 svm
->vmcb
->control
.intercept
|= (1UL << INTERCEPT_IRET
);
2404 ++vcpu
->stat
.nmi_injections
;
2407 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
2409 struct vmcb_control_area
*control
;
2411 trace_kvm_inj_virq(irq
);
2413 ++svm
->vcpu
.stat
.irq_injections
;
2414 control
= &svm
->vmcb
->control
;
2415 control
->int_vector
= irq
;
2416 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
2417 control
->int_ctl
|= V_IRQ_MASK
|
2418 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
2421 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
2423 struct vcpu_svm
*svm
= to_svm(vcpu
);
2425 BUG_ON(!(gif_set(svm
)));
2427 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
2428 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
2431 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
2433 struct vcpu_svm
*svm
= to_svm(vcpu
);
2439 svm
->vmcb
->control
.intercept_cr_write
|= INTERCEPT_CR8_MASK
;
2442 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
2444 struct vcpu_svm
*svm
= to_svm(vcpu
);
2445 struct vmcb
*vmcb
= svm
->vmcb
;
2446 return !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2447 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
2450 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2452 struct vcpu_svm
*svm
= to_svm(vcpu
);
2453 struct vmcb
*vmcb
= svm
->vmcb
;
2454 return (vmcb
->save
.rflags
& X86_EFLAGS_IF
) &&
2455 !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2457 !(is_nested(svm
) && (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
));
2460 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2462 struct vcpu_svm
*svm
= to_svm(vcpu
);
2463 nsvm_printk("Trying to open IRQ window\n");
2465 nested_svm_intr(svm
);
2467 /* In case GIF=0 we can't rely on the CPU to tell us when
2468 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2469 * The next time we get that intercept, this function will be
2470 * called again though and we'll get the vintr intercept. */
2473 svm_inject_irq(svm
, 0x0);
2477 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2479 struct vcpu_svm
*svm
= to_svm(vcpu
);
2481 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
2483 return; /* IRET will cause a vm exit */
2485 /* Something prevents NMI from been injected. Single step over
2486 possible problem (IRET or exception injection or interrupt
2488 vcpu
->arch
.singlestep
= true;
2489 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2490 update_db_intercept(vcpu
);
2493 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2498 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
2500 force_new_asid(vcpu
);
2503 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
2507 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
2509 struct vcpu_svm
*svm
= to_svm(vcpu
);
2511 if (!(svm
->vmcb
->control
.intercept_cr_write
& INTERCEPT_CR8_MASK
)) {
2512 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
2513 kvm_set_cr8(vcpu
, cr8
);
2517 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
2519 struct vcpu_svm
*svm
= to_svm(vcpu
);
2522 cr8
= kvm_get_cr8(vcpu
);
2523 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
2524 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
2527 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
2531 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
2533 if (svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
2534 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
2536 svm
->vcpu
.arch
.nmi_injected
= false;
2537 kvm_clear_exception_queue(&svm
->vcpu
);
2538 kvm_clear_interrupt_queue(&svm
->vcpu
);
2540 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
2543 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
2544 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
2547 case SVM_EXITINTINFO_TYPE_NMI
:
2548 svm
->vcpu
.arch
.nmi_injected
= true;
2550 case SVM_EXITINTINFO_TYPE_EXEPT
:
2551 /* In case of software exception do not reinject an exception
2552 vector, but re-execute and instruction instead */
2555 if (kvm_exception_is_soft(vector
))
2557 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
2558 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
2559 kvm_queue_exception_e(&svm
->vcpu
, vector
, err
);
2562 kvm_queue_exception(&svm
->vcpu
, vector
);
2564 case SVM_EXITINTINFO_TYPE_INTR
:
2565 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
2572 #ifdef CONFIG_X86_64
2578 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2580 struct vcpu_svm
*svm
= to_svm(vcpu
);
2585 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2586 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2587 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
2591 sync_lapic_to_cr8(vcpu
);
2593 save_host_msrs(vcpu
);
2594 fs_selector
= kvm_read_fs();
2595 gs_selector
= kvm_read_gs();
2596 ldt_selector
= kvm_read_ldt();
2597 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
2598 /* required for live migration with NPT */
2600 svm
->vmcb
->save
.cr3
= vcpu
->arch
.cr3
;
2607 "push %%"R
"bp; \n\t"
2608 "mov %c[rbx](%[svm]), %%"R
"bx \n\t"
2609 "mov %c[rcx](%[svm]), %%"R
"cx \n\t"
2610 "mov %c[rdx](%[svm]), %%"R
"dx \n\t"
2611 "mov %c[rsi](%[svm]), %%"R
"si \n\t"
2612 "mov %c[rdi](%[svm]), %%"R
"di \n\t"
2613 "mov %c[rbp](%[svm]), %%"R
"bp \n\t"
2614 #ifdef CONFIG_X86_64
2615 "mov %c[r8](%[svm]), %%r8 \n\t"
2616 "mov %c[r9](%[svm]), %%r9 \n\t"
2617 "mov %c[r10](%[svm]), %%r10 \n\t"
2618 "mov %c[r11](%[svm]), %%r11 \n\t"
2619 "mov %c[r12](%[svm]), %%r12 \n\t"
2620 "mov %c[r13](%[svm]), %%r13 \n\t"
2621 "mov %c[r14](%[svm]), %%r14 \n\t"
2622 "mov %c[r15](%[svm]), %%r15 \n\t"
2625 /* Enter guest mode */
2627 "mov %c[vmcb](%[svm]), %%"R
"ax \n\t"
2628 __ex(SVM_VMLOAD
) "\n\t"
2629 __ex(SVM_VMRUN
) "\n\t"
2630 __ex(SVM_VMSAVE
) "\n\t"
2633 /* Save guest registers, load host registers */
2634 "mov %%"R
"bx, %c[rbx](%[svm]) \n\t"
2635 "mov %%"R
"cx, %c[rcx](%[svm]) \n\t"
2636 "mov %%"R
"dx, %c[rdx](%[svm]) \n\t"
2637 "mov %%"R
"si, %c[rsi](%[svm]) \n\t"
2638 "mov %%"R
"di, %c[rdi](%[svm]) \n\t"
2639 "mov %%"R
"bp, %c[rbp](%[svm]) \n\t"
2640 #ifdef CONFIG_X86_64
2641 "mov %%r8, %c[r8](%[svm]) \n\t"
2642 "mov %%r9, %c[r9](%[svm]) \n\t"
2643 "mov %%r10, %c[r10](%[svm]) \n\t"
2644 "mov %%r11, %c[r11](%[svm]) \n\t"
2645 "mov %%r12, %c[r12](%[svm]) \n\t"
2646 "mov %%r13, %c[r13](%[svm]) \n\t"
2647 "mov %%r14, %c[r14](%[svm]) \n\t"
2648 "mov %%r15, %c[r15](%[svm]) \n\t"
2653 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
2654 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
2655 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
2656 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
2657 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
2658 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
2659 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
2660 #ifdef CONFIG_X86_64
2661 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
2662 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
2663 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
2664 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
2665 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
2666 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
2667 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
2668 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
2671 , R
"bx", R
"cx", R
"dx", R
"si", R
"di"
2672 #ifdef CONFIG_X86_64
2673 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2677 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
2678 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
2679 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
2680 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
2682 kvm_load_fs(fs_selector
);
2683 kvm_load_gs(gs_selector
);
2684 kvm_load_ldt(ldt_selector
);
2685 load_host_msrs(vcpu
);
2689 local_irq_disable();
2693 sync_cr8_to_lapic(vcpu
);
2698 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
2699 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
2705 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
2707 struct vcpu_svm
*svm
= to_svm(vcpu
);
2710 svm
->vmcb
->control
.nested_cr3
= root
;
2711 force_new_asid(vcpu
);
2715 svm
->vmcb
->save
.cr3
= root
;
2716 force_new_asid(vcpu
);
2718 if (vcpu
->fpu_active
) {
2719 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
2720 svm
->vmcb
->save
.cr0
|= X86_CR0_TS
;
2721 vcpu
->fpu_active
= 0;
2725 static int is_disabled(void)
2729 rdmsrl(MSR_VM_CR
, vm_cr
);
2730 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
2737 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2740 * Patch in the VMMCALL instruction:
2742 hypercall
[0] = 0x0f;
2743 hypercall
[1] = 0x01;
2744 hypercall
[2] = 0xd9;
2747 static void svm_check_processor_compat(void *rtn
)
2752 static bool svm_cpu_has_accelerated_tpr(void)
2757 static int get_npt_level(void)
2759 #ifdef CONFIG_X86_64
2760 return PT64_ROOT_LEVEL
;
2762 return PT32E_ROOT_LEVEL
;
2766 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
2771 static const struct trace_print_flags svm_exit_reasons_str
[] = {
2772 { SVM_EXIT_READ_CR0
, "read_cr0" },
2773 { SVM_EXIT_READ_CR3
, "read_cr3" },
2774 { SVM_EXIT_READ_CR4
, "read_cr4" },
2775 { SVM_EXIT_READ_CR8
, "read_cr8" },
2776 { SVM_EXIT_WRITE_CR0
, "write_cr0" },
2777 { SVM_EXIT_WRITE_CR3
, "write_cr3" },
2778 { SVM_EXIT_WRITE_CR4
, "write_cr4" },
2779 { SVM_EXIT_WRITE_CR8
, "write_cr8" },
2780 { SVM_EXIT_READ_DR0
, "read_dr0" },
2781 { SVM_EXIT_READ_DR1
, "read_dr1" },
2782 { SVM_EXIT_READ_DR2
, "read_dr2" },
2783 { SVM_EXIT_READ_DR3
, "read_dr3" },
2784 { SVM_EXIT_WRITE_DR0
, "write_dr0" },
2785 { SVM_EXIT_WRITE_DR1
, "write_dr1" },
2786 { SVM_EXIT_WRITE_DR2
, "write_dr2" },
2787 { SVM_EXIT_WRITE_DR3
, "write_dr3" },
2788 { SVM_EXIT_WRITE_DR5
, "write_dr5" },
2789 { SVM_EXIT_WRITE_DR7
, "write_dr7" },
2790 { SVM_EXIT_EXCP_BASE
+ DB_VECTOR
, "DB excp" },
2791 { SVM_EXIT_EXCP_BASE
+ BP_VECTOR
, "BP excp" },
2792 { SVM_EXIT_EXCP_BASE
+ UD_VECTOR
, "UD excp" },
2793 { SVM_EXIT_EXCP_BASE
+ PF_VECTOR
, "PF excp" },
2794 { SVM_EXIT_EXCP_BASE
+ NM_VECTOR
, "NM excp" },
2795 { SVM_EXIT_EXCP_BASE
+ MC_VECTOR
, "MC excp" },
2796 { SVM_EXIT_INTR
, "interrupt" },
2797 { SVM_EXIT_NMI
, "nmi" },
2798 { SVM_EXIT_SMI
, "smi" },
2799 { SVM_EXIT_INIT
, "init" },
2800 { SVM_EXIT_VINTR
, "vintr" },
2801 { SVM_EXIT_CPUID
, "cpuid" },
2802 { SVM_EXIT_INVD
, "invd" },
2803 { SVM_EXIT_HLT
, "hlt" },
2804 { SVM_EXIT_INVLPG
, "invlpg" },
2805 { SVM_EXIT_INVLPGA
, "invlpga" },
2806 { SVM_EXIT_IOIO
, "io" },
2807 { SVM_EXIT_MSR
, "msr" },
2808 { SVM_EXIT_TASK_SWITCH
, "task_switch" },
2809 { SVM_EXIT_SHUTDOWN
, "shutdown" },
2810 { SVM_EXIT_VMRUN
, "vmrun" },
2811 { SVM_EXIT_VMMCALL
, "hypercall" },
2812 { SVM_EXIT_VMLOAD
, "vmload" },
2813 { SVM_EXIT_VMSAVE
, "vmsave" },
2814 { SVM_EXIT_STGI
, "stgi" },
2815 { SVM_EXIT_CLGI
, "clgi" },
2816 { SVM_EXIT_SKINIT
, "skinit" },
2817 { SVM_EXIT_WBINVD
, "wbinvd" },
2818 { SVM_EXIT_MONITOR
, "monitor" },
2819 { SVM_EXIT_MWAIT
, "mwait" },
2820 { SVM_EXIT_NPF
, "npf" },
2824 static bool svm_gb_page_enable(void)
2829 static struct kvm_x86_ops svm_x86_ops
= {
2830 .cpu_has_kvm_support
= has_svm
,
2831 .disabled_by_bios
= is_disabled
,
2832 .hardware_setup
= svm_hardware_setup
,
2833 .hardware_unsetup
= svm_hardware_unsetup
,
2834 .check_processor_compatibility
= svm_check_processor_compat
,
2835 .hardware_enable
= svm_hardware_enable
,
2836 .hardware_disable
= svm_hardware_disable
,
2837 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
2839 .vcpu_create
= svm_create_vcpu
,
2840 .vcpu_free
= svm_free_vcpu
,
2841 .vcpu_reset
= svm_vcpu_reset
,
2843 .prepare_guest_switch
= svm_prepare_guest_switch
,
2844 .vcpu_load
= svm_vcpu_load
,
2845 .vcpu_put
= svm_vcpu_put
,
2847 .set_guest_debug
= svm_guest_debug
,
2848 .get_msr
= svm_get_msr
,
2849 .set_msr
= svm_set_msr
,
2850 .get_segment_base
= svm_get_segment_base
,
2851 .get_segment
= svm_get_segment
,
2852 .set_segment
= svm_set_segment
,
2853 .get_cpl
= svm_get_cpl
,
2854 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
2855 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
2856 .set_cr0
= svm_set_cr0
,
2857 .set_cr3
= svm_set_cr3
,
2858 .set_cr4
= svm_set_cr4
,
2859 .set_efer
= svm_set_efer
,
2860 .get_idt
= svm_get_idt
,
2861 .set_idt
= svm_set_idt
,
2862 .get_gdt
= svm_get_gdt
,
2863 .set_gdt
= svm_set_gdt
,
2864 .get_dr
= svm_get_dr
,
2865 .set_dr
= svm_set_dr
,
2866 .cache_reg
= svm_cache_reg
,
2867 .get_rflags
= svm_get_rflags
,
2868 .set_rflags
= svm_set_rflags
,
2870 .tlb_flush
= svm_flush_tlb
,
2872 .run
= svm_vcpu_run
,
2873 .handle_exit
= handle_exit
,
2874 .skip_emulated_instruction
= skip_emulated_instruction
,
2875 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
2876 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
2877 .patch_hypercall
= svm_patch_hypercall
,
2878 .set_irq
= svm_set_irq
,
2879 .set_nmi
= svm_inject_nmi
,
2880 .queue_exception
= svm_queue_exception
,
2881 .interrupt_allowed
= svm_interrupt_allowed
,
2882 .nmi_allowed
= svm_nmi_allowed
,
2883 .enable_nmi_window
= enable_nmi_window
,
2884 .enable_irq_window
= enable_irq_window
,
2885 .update_cr8_intercept
= update_cr8_intercept
,
2887 .set_tss_addr
= svm_set_tss_addr
,
2888 .get_tdp_level
= get_npt_level
,
2889 .get_mt_mask
= svm_get_mt_mask
,
2891 .exit_reasons_str
= svm_exit_reasons_str
,
2892 .gb_page_enable
= svm_gb_page_enable
,
2895 static int __init
svm_init(void)
2897 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
2901 static void __exit
svm_exit(void)
2906 module_init(svm_init
)
2907 module_exit(svm_exit
)