ext3: Update MAINTAINERS for ext3 and JBD
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem_tiling.c
bloba2d527b22ec4f7ba837d9787f11585cf141cf844
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <linux/acpi.h>
29 #include <linux/pnp.h>
30 #include "linux/string.h"
31 #include "linux/bitops.h"
32 #include "drmP.h"
33 #include "drm.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
37 /** @file i915_gem_tiling.c
39 * Support for managing tiling state of buffer objects.
41 * The idea behind tiling is to increase cache hit rates by rearranging
42 * pixel data so that a group of pixel accesses are in the same cacheline.
43 * Performance improvement from doing this on the back/depth buffer are on
44 * the order of 30%.
46 * Intel architectures make this somewhat more complicated, though, by
47 * adjustments made to addressing of data when the memory is in interleaved
48 * mode (matched pairs of DIMMS) to improve memory bandwidth.
49 * For interleaved memory, the CPU sends every sequential 64 bytes
50 * to an alternate memory channel so it can get the bandwidth from both.
52 * The GPU also rearranges its accesses for increased bandwidth to interleaved
53 * memory, and it matches what the CPU does for non-tiled. However, when tiled
54 * it does it a little differently, since one walks addresses not just in the
55 * X direction but also Y. So, along with alternating channels when bit
56 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
57 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
58 * are common to both the 915 and 965-class hardware.
60 * The CPU also sometimes XORs in higher bits as well, to improve
61 * bandwidth doing strided access like we do so frequently in graphics. This
62 * is called "Channel XOR Randomization" in the MCH documentation. The result
63 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
64 * decode.
66 * All of this bit 6 XORing has an effect on our memory management,
67 * as we need to make sure that the 3d driver can correctly address object
68 * contents.
70 * If we don't have interleaved memory, all tiling is safe and no swizzling is
71 * required.
73 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
74 * 17 is not just a page offset, so as we page an objet out and back in,
75 * individual pages in it will have different bit 17 addresses, resulting in
76 * each 64 bytes being swapped with its neighbor!
78 * Otherwise, if interleaved, we have to tell the 3d driver what the address
79 * swizzling it needs to do is, since it's writing with the CPU to the pages
80 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
81 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
82 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
83 * to match what the GPU expects.
86 #define MCHBAR_I915 0x44
87 #define MCHBAR_I965 0x48
88 #define MCHBAR_SIZE (4*4096)
90 #define DEVEN_REG 0x54
91 #define DEVEN_MCHBAR_EN (1 << 28)
93 /* Allocate space for the MCH regs if needed, return nonzero on error */
94 static int
95 intel_alloc_mchbar_resource(struct drm_device *dev)
97 struct pci_dev *bridge_dev;
98 drm_i915_private_t *dev_priv = dev->dev_private;
99 int reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915;
100 u32 temp_lo, temp_hi = 0;
101 u64 mchbar_addr;
102 int ret = 0;
104 bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0,0));
105 if (!bridge_dev) {
106 DRM_DEBUG("no bridge dev?!\n");
107 ret = -ENODEV;
108 goto out;
111 if (IS_I965G(dev))
112 pci_read_config_dword(bridge_dev, reg + 4, &temp_hi);
113 pci_read_config_dword(bridge_dev, reg, &temp_lo);
114 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
116 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
117 #ifdef CONFIG_PNP
118 if (mchbar_addr &&
119 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE)) {
120 ret = 0;
121 goto out_put;
123 #endif
125 /* Get some space for it */
126 ret = pci_bus_alloc_resource(bridge_dev->bus, &dev_priv->mch_res,
127 MCHBAR_SIZE, MCHBAR_SIZE,
128 PCIBIOS_MIN_MEM,
129 0, pcibios_align_resource,
130 bridge_dev);
131 if (ret) {
132 DRM_DEBUG("failed bus alloc: %d\n", ret);
133 dev_priv->mch_res.start = 0;
134 goto out_put;
137 if (IS_I965G(dev))
138 pci_write_config_dword(bridge_dev, reg + 4,
139 upper_32_bits(dev_priv->mch_res.start));
141 pci_write_config_dword(bridge_dev, reg,
142 lower_32_bits(dev_priv->mch_res.start));
143 out_put:
144 pci_dev_put(bridge_dev);
145 out:
146 return ret;
149 /* Setup MCHBAR if possible, return true if we should disable it again */
150 static bool
151 intel_setup_mchbar(struct drm_device *dev)
153 struct pci_dev *bridge_dev;
154 int mchbar_reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915;
155 u32 temp;
156 bool need_disable = false, enabled;
158 bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0,0));
159 if (!bridge_dev) {
160 DRM_DEBUG("no bridge dev?!\n");
161 goto out;
164 if (IS_I915G(dev) || IS_I915GM(dev)) {
165 pci_read_config_dword(bridge_dev, DEVEN_REG, &temp);
166 enabled = !!(temp & DEVEN_MCHBAR_EN);
167 } else {
168 pci_read_config_dword(bridge_dev, mchbar_reg, &temp);
169 enabled = temp & 1;
172 /* If it's already enabled, don't have to do anything */
173 if (enabled)
174 goto out_put;
176 if (intel_alloc_mchbar_resource(dev))
177 goto out_put;
179 need_disable = true;
181 /* Space is allocated or reserved, so enable it. */
182 if (IS_I915G(dev) || IS_I915GM(dev)) {
183 pci_write_config_dword(bridge_dev, DEVEN_REG,
184 temp | DEVEN_MCHBAR_EN);
185 } else {
186 pci_read_config_dword(bridge_dev, mchbar_reg, &temp);
187 pci_write_config_dword(bridge_dev, mchbar_reg, temp | 1);
189 out_put:
190 pci_dev_put(bridge_dev);
191 out:
192 return need_disable;
195 static void
196 intel_teardown_mchbar(struct drm_device *dev, bool disable)
198 drm_i915_private_t *dev_priv = dev->dev_private;
199 struct pci_dev *bridge_dev;
200 int mchbar_reg = IS_I965G(dev) ? MCHBAR_I965 : MCHBAR_I915;
201 u32 temp;
203 bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0,0));
204 if (!bridge_dev) {
205 DRM_DEBUG("no bridge dev?!\n");
206 return;
209 if (disable) {
210 if (IS_I915G(dev) || IS_I915GM(dev)) {
211 pci_read_config_dword(bridge_dev, DEVEN_REG, &temp);
212 temp &= ~DEVEN_MCHBAR_EN;
213 pci_write_config_dword(bridge_dev, DEVEN_REG, temp);
214 } else {
215 pci_read_config_dword(bridge_dev, mchbar_reg, &temp);
216 temp &= ~1;
217 pci_write_config_dword(bridge_dev, mchbar_reg, temp);
221 if (dev_priv->mch_res.start)
222 release_resource(&dev_priv->mch_res);
226 * Detects bit 6 swizzling of address lookup between IGD access and CPU
227 * access through main memory.
229 void
230 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
232 drm_i915_private_t *dev_priv = dev->dev_private;
233 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
234 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
235 bool need_disable;
237 if (!IS_I9XX(dev)) {
238 /* As far as we know, the 865 doesn't have these bit 6
239 * swizzling issues.
241 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
242 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
243 } else if (IS_MOBILE(dev)) {
244 uint32_t dcc;
246 /* Try to make sure MCHBAR is enabled before poking at it */
247 need_disable = intel_setup_mchbar(dev);
249 /* On mobile 9xx chipsets, channel interleave by the CPU is
250 * determined by DCC. For single-channel, neither the CPU
251 * nor the GPU do swizzling. For dual channel interleaved,
252 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
253 * 9 for Y tiled. The CPU's interleave is independent, and
254 * can be based on either bit 11 (haven't seen this yet) or
255 * bit 17 (common).
257 dcc = I915_READ(DCC);
258 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
259 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
260 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
261 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
262 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
263 break;
264 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
265 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
266 /* This is the base swizzling by the GPU for
267 * tiled buffers.
269 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
270 swizzle_y = I915_BIT_6_SWIZZLE_9;
271 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
272 /* Bit 11 swizzling by the CPU in addition. */
273 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
274 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
275 } else {
276 /* Bit 17 swizzling by the CPU in addition. */
277 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
278 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
280 break;
282 if (dcc == 0xffffffff) {
283 DRM_ERROR("Couldn't read from MCHBAR. "
284 "Disabling tiling.\n");
285 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
286 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
289 intel_teardown_mchbar(dev, need_disable);
290 } else {
291 /* The 965, G33, and newer, have a very flexible memory
292 * configuration. It will enable dual-channel mode
293 * (interleaving) on as much memory as it can, and the GPU
294 * will additionally sometimes enable different bit 6
295 * swizzling for tiled objects from the CPU.
297 * Here's what I found on the G965:
298 * slot fill memory size swizzling
299 * 0A 0B 1A 1B 1-ch 2-ch
300 * 512 0 0 0 512 0 O
301 * 512 0 512 0 16 1008 X
302 * 512 0 0 512 16 1008 X
303 * 0 512 0 512 16 1008 X
304 * 1024 1024 1024 0 2048 1024 O
306 * We could probably detect this based on either the DRB
307 * matching, which was the case for the swizzling required in
308 * the table above, or from the 1-ch value being less than
309 * the minimum size of a rank.
311 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
312 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
313 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
314 } else {
315 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
316 swizzle_y = I915_BIT_6_SWIZZLE_9;
320 /* FIXME: check with memory config on IGDNG */
321 if (IS_IGDNG(dev)) {
322 DRM_ERROR("disable tiling on IGDNG...\n");
323 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
324 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
327 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
328 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
333 * Returns the size of the fence for a tiled object of the given size.
335 static int
336 i915_get_fence_size(struct drm_device *dev, int size)
338 int i;
339 int start;
341 if (IS_I965G(dev)) {
342 /* The 965 can have fences at any page boundary. */
343 return ALIGN(size, 4096);
344 } else {
345 /* Align the size to a power of two greater than the smallest
346 * fence size.
348 if (IS_I9XX(dev))
349 start = 1024 * 1024;
350 else
351 start = 512 * 1024;
353 for (i = start; i < size; i <<= 1)
356 return i;
360 /* Check pitch constriants for all chips & tiling formats */
361 static bool
362 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
364 int tile_width;
366 /* Linear is always fine */
367 if (tiling_mode == I915_TILING_NONE)
368 return true;
370 if (!IS_I9XX(dev) ||
371 (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
372 tile_width = 128;
373 else
374 tile_width = 512;
376 /* check maximum stride & object size */
377 if (IS_I965G(dev)) {
378 /* i965 stores the end address of the gtt mapping in the fence
379 * reg, so dont bother to check the size */
380 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
381 return false;
382 } else if (IS_I9XX(dev)) {
383 uint32_t pitch_val = ffs(stride / tile_width) - 1;
385 /* XXX: For Y tiling, FENCE_MAX_PITCH_VAL is actually 6 (8KB)
386 * instead of 4 (2KB) on 945s.
388 if (pitch_val > I915_FENCE_MAX_PITCH_VAL ||
389 size > (I830_FENCE_MAX_SIZE_VAL << 20))
390 return false;
391 } else {
392 uint32_t pitch_val = ffs(stride / tile_width) - 1;
394 if (pitch_val > I830_FENCE_MAX_PITCH_VAL ||
395 size > (I830_FENCE_MAX_SIZE_VAL << 19))
396 return false;
399 /* 965+ just needs multiples of tile width */
400 if (IS_I965G(dev)) {
401 if (stride & (tile_width - 1))
402 return false;
403 return true;
406 /* Pre-965 needs power of two tile widths */
407 if (stride < tile_width)
408 return false;
410 if (stride & (stride - 1))
411 return false;
413 /* We don't 0handle the aperture area covered by the fence being bigger
414 * than the object size.
416 if (i915_get_fence_size(dev, size) != size)
417 return false;
419 return true;
422 static bool
423 i915_gem_object_fence_offset_ok(struct drm_gem_object *obj, int tiling_mode)
425 struct drm_device *dev = obj->dev;
426 struct drm_i915_gem_object *obj_priv = obj->driver_private;
428 if (obj_priv->gtt_space == NULL)
429 return true;
431 if (tiling_mode == I915_TILING_NONE)
432 return true;
434 if (!IS_I965G(dev)) {
435 if (obj_priv->gtt_offset & (obj->size - 1))
436 return false;
437 if (IS_I9XX(dev)) {
438 if (obj_priv->gtt_offset & ~I915_FENCE_START_MASK)
439 return false;
440 } else {
441 if (obj_priv->gtt_offset & ~I830_FENCE_START_MASK)
442 return false;
446 return true;
450 * Sets the tiling mode of an object, returning the required swizzling of
451 * bit 6 of addresses in the object.
454 i915_gem_set_tiling(struct drm_device *dev, void *data,
455 struct drm_file *file_priv)
457 struct drm_i915_gem_set_tiling *args = data;
458 drm_i915_private_t *dev_priv = dev->dev_private;
459 struct drm_gem_object *obj;
460 struct drm_i915_gem_object *obj_priv;
461 int ret = 0;
463 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
464 if (obj == NULL)
465 return -EINVAL;
466 obj_priv = obj->driver_private;
468 if (!i915_tiling_ok(dev, args->stride, obj->size, args->tiling_mode)) {
469 mutex_lock(&dev->struct_mutex);
470 drm_gem_object_unreference(obj);
471 mutex_unlock(&dev->struct_mutex);
472 return -EINVAL;
475 if (args->tiling_mode == I915_TILING_NONE) {
476 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
477 args->stride = 0;
478 } else {
479 if (args->tiling_mode == I915_TILING_X)
480 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
481 else
482 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
484 /* Hide bit 17 swizzling from the user. This prevents old Mesa
485 * from aborting the application on sw fallbacks to bit 17,
486 * and we use the pread/pwrite bit17 paths to swizzle for it.
487 * If there was a user that was relying on the swizzle
488 * information for drm_intel_bo_map()ed reads/writes this would
489 * break it, but we don't have any of those.
491 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
492 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
493 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
494 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
496 /* If we can't handle the swizzling, make it untiled. */
497 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
498 args->tiling_mode = I915_TILING_NONE;
499 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
500 args->stride = 0;
504 mutex_lock(&dev->struct_mutex);
505 if (args->tiling_mode != obj_priv->tiling_mode ||
506 args->stride != obj_priv->stride) {
507 /* We need to rebind the object if its current allocation
508 * no longer meets the alignment restrictions for its new
509 * tiling mode. Otherwise we can just leave it alone, but
510 * need to ensure that any fence register is cleared.
512 if (!i915_gem_object_fence_offset_ok(obj, args->tiling_mode))
513 ret = i915_gem_object_unbind(obj);
514 else
515 ret = i915_gem_object_put_fence_reg(obj);
516 if (ret != 0) {
517 WARN(ret != -ERESTARTSYS,
518 "failed to reset object for tiling switch");
519 args->tiling_mode = obj_priv->tiling_mode;
520 args->stride = obj_priv->stride;
521 goto err;
524 /* If we've changed tiling, GTT-mappings of the object
525 * need to re-fault to ensure that the correct fence register
526 * setup is in place.
528 i915_gem_release_mmap(obj);
530 obj_priv->tiling_mode = args->tiling_mode;
531 obj_priv->stride = args->stride;
533 err:
534 drm_gem_object_unreference(obj);
535 mutex_unlock(&dev->struct_mutex);
537 return ret;
541 * Returns the current tiling mode and required bit 6 swizzling for the object.
544 i915_gem_get_tiling(struct drm_device *dev, void *data,
545 struct drm_file *file_priv)
547 struct drm_i915_gem_get_tiling *args = data;
548 drm_i915_private_t *dev_priv = dev->dev_private;
549 struct drm_gem_object *obj;
550 struct drm_i915_gem_object *obj_priv;
552 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
553 if (obj == NULL)
554 return -EINVAL;
555 obj_priv = obj->driver_private;
557 mutex_lock(&dev->struct_mutex);
559 args->tiling_mode = obj_priv->tiling_mode;
560 switch (obj_priv->tiling_mode) {
561 case I915_TILING_X:
562 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
563 break;
564 case I915_TILING_Y:
565 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
566 break;
567 case I915_TILING_NONE:
568 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
569 break;
570 default:
571 DRM_ERROR("unknown tiling mode\n");
574 /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
575 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
576 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
577 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
578 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
580 drm_gem_object_unreference(obj);
581 mutex_unlock(&dev->struct_mutex);
583 return 0;
587 * Swap every 64 bytes of this page around, to account for it having a new
588 * bit 17 of its physical address and therefore being interpreted differently
589 * by the GPU.
591 static int
592 i915_gem_swizzle_page(struct page *page)
594 char *vaddr;
595 int i;
596 char temp[64];
598 vaddr = kmap(page);
599 if (vaddr == NULL)
600 return -ENOMEM;
602 for (i = 0; i < PAGE_SIZE; i += 128) {
603 memcpy(temp, &vaddr[i], 64);
604 memcpy(&vaddr[i], &vaddr[i + 64], 64);
605 memcpy(&vaddr[i + 64], temp, 64);
608 kunmap(page);
610 return 0;
613 void
614 i915_gem_object_do_bit_17_swizzle(struct drm_gem_object *obj)
616 struct drm_device *dev = obj->dev;
617 drm_i915_private_t *dev_priv = dev->dev_private;
618 struct drm_i915_gem_object *obj_priv = obj->driver_private;
619 int page_count = obj->size >> PAGE_SHIFT;
620 int i;
622 if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
623 return;
625 if (obj_priv->bit_17 == NULL)
626 return;
628 for (i = 0; i < page_count; i++) {
629 char new_bit_17 = page_to_phys(obj_priv->pages[i]) >> 17;
630 if ((new_bit_17 & 0x1) !=
631 (test_bit(i, obj_priv->bit_17) != 0)) {
632 int ret = i915_gem_swizzle_page(obj_priv->pages[i]);
633 if (ret != 0) {
634 DRM_ERROR("Failed to swizzle page\n");
635 return;
637 set_page_dirty(obj_priv->pages[i]);
642 void
643 i915_gem_object_save_bit_17_swizzle(struct drm_gem_object *obj)
645 struct drm_device *dev = obj->dev;
646 drm_i915_private_t *dev_priv = dev->dev_private;
647 struct drm_i915_gem_object *obj_priv = obj->driver_private;
648 int page_count = obj->size >> PAGE_SHIFT;
649 int i;
651 if (dev_priv->mm.bit_6_swizzle_x != I915_BIT_6_SWIZZLE_9_10_17)
652 return;
654 if (obj_priv->bit_17 == NULL) {
655 obj_priv->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
656 sizeof(long), GFP_KERNEL);
657 if (obj_priv->bit_17 == NULL) {
658 DRM_ERROR("Failed to allocate memory for bit 17 "
659 "record\n");
660 return;
664 for (i = 0; i < page_count; i++) {
665 if (page_to_phys(obj_priv->pages[i]) & (1 << 17))
666 __set_bit(i, obj_priv->bit_17);
667 else
668 __clear_bit(i, obj_priv->bit_17);