2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
29 * RAID10 provides a combination of RAID0 and RAID1 functionality.
30 * The layout of data is defined by
33 * near_copies (stored in low byte of layout)
34 * far_copies (stored in second byte of layout)
35 * far_offset (stored in bit 16 of layout )
37 * The data to be stored is divided into chunks using chunksize.
38 * Each device is divided into far_copies sections.
39 * In each section, chunks are laid out in a style similar to raid0, but
40 * near_copies copies of each chunk is stored (each on a different drive).
41 * The starting device for each section is offset near_copies from the starting
42 * device of the previous section.
43 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
45 * near_copies and far_copies must be at least one, and their product is at most
48 * If far_offset is true, then the far_copies are handled a bit differently.
49 * The copies are still in different stripes, but instead of be very far apart
50 * on disk, there are adjacent stripes.
54 * Number of guaranteed r10bios in case of extreme VM load:
56 #define NR_RAID10_BIOS 256
58 static void unplug_slaves(mddev_t
*mddev
);
60 static void allow_barrier(conf_t
*conf
);
61 static void lower_barrier(conf_t
*conf
);
63 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
67 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
70 r10_bio
= kzalloc(size
, gfp_flags
);
72 unplug_slaves(conf
->mddev
);
77 static void r10bio_pool_free(void *r10_bio
, void *data
)
82 /* Maximum size of each resync request */
83 #define RESYNC_BLOCK_SIZE (64*1024)
84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
85 /* amount of memory to reserve for resync requests */
86 #define RESYNC_WINDOW (1024*1024)
87 /* maximum number of concurrent requests, memory permitting */
88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91 * When performing a resync, we need to read and compare, so
92 * we need as many pages are there are copies.
93 * When performing a recovery, we need 2 bios, one for read,
94 * one for write (we recover only one drive per r10buf)
97 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
106 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
108 unplug_slaves(conf
->mddev
);
112 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
113 nalloc
= conf
->copies
; /* resync */
115 nalloc
= 2; /* recovery */
120 for (j
= nalloc
; j
-- ; ) {
121 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
124 r10_bio
->devs
[j
].bio
= bio
;
127 * Allocate RESYNC_PAGES data pages and attach them
130 for (j
= 0 ; j
< nalloc
; j
++) {
131 bio
= r10_bio
->devs
[j
].bio
;
132 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
133 page
= alloc_page(gfp_flags
);
137 bio
->bi_io_vec
[i
].bv_page
= page
;
145 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
147 for (i
= 0; i
< RESYNC_PAGES
; i
++)
148 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
151 while ( ++j
< nalloc
)
152 bio_put(r10_bio
->devs
[j
].bio
);
153 r10bio_pool_free(r10_bio
, conf
);
157 static void r10buf_pool_free(void *__r10_bio
, void *data
)
161 r10bio_t
*r10bio
= __r10_bio
;
164 for (j
=0; j
< conf
->copies
; j
++) {
165 struct bio
*bio
= r10bio
->devs
[j
].bio
;
167 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
168 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
169 bio
->bi_io_vec
[i
].bv_page
= NULL
;
174 r10bio_pool_free(r10bio
, conf
);
177 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
181 for (i
= 0; i
< conf
->copies
; i
++) {
182 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
183 if (*bio
&& *bio
!= IO_BLOCKED
)
189 static void free_r10bio(r10bio_t
*r10_bio
)
191 conf_t
*conf
= r10_bio
->mddev
->private;
194 * Wake up any possible resync thread that waits for the device
199 put_all_bios(conf
, r10_bio
);
200 mempool_free(r10_bio
, conf
->r10bio_pool
);
203 static void put_buf(r10bio_t
*r10_bio
)
205 conf_t
*conf
= r10_bio
->mddev
->private;
207 mempool_free(r10_bio
, conf
->r10buf_pool
);
212 static void reschedule_retry(r10bio_t
*r10_bio
)
215 mddev_t
*mddev
= r10_bio
->mddev
;
216 conf_t
*conf
= mddev
->private;
218 spin_lock_irqsave(&conf
->device_lock
, flags
);
219 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
221 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
223 /* wake up frozen array... */
224 wake_up(&conf
->wait_barrier
);
226 md_wakeup_thread(mddev
->thread
);
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
234 static void raid_end_bio_io(r10bio_t
*r10_bio
)
236 struct bio
*bio
= r10_bio
->master_bio
;
239 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
240 free_r10bio(r10_bio
);
244 * Update disk head position estimator based on IRQ completion info.
246 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
248 conf_t
*conf
= r10_bio
->mddev
->private;
250 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
251 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
254 static void raid10_end_read_request(struct bio
*bio
, int error
)
256 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
257 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
259 conf_t
*conf
= r10_bio
->mddev
->private;
262 slot
= r10_bio
->read_slot
;
263 dev
= r10_bio
->devs
[slot
].devnum
;
265 * this branch is our 'one mirror IO has finished' event handler:
267 update_head_pos(slot
, r10_bio
);
271 * Set R10BIO_Uptodate in our master bio, so that
272 * we will return a good error code to the higher
273 * levels even if IO on some other mirrored buffer fails.
275 * The 'master' represents the composite IO operation to
276 * user-side. So if something waits for IO, then it will
277 * wait for the 'master' bio.
279 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
280 raid_end_bio_io(r10_bio
);
285 char b
[BDEVNAME_SIZE
];
286 if (printk_ratelimit())
287 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
288 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
289 reschedule_retry(r10_bio
);
292 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
295 static void raid10_end_write_request(struct bio
*bio
, int error
)
297 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
298 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
300 conf_t
*conf
= r10_bio
->mddev
->private;
302 for (slot
= 0; slot
< conf
->copies
; slot
++)
303 if (r10_bio
->devs
[slot
].bio
== bio
)
305 dev
= r10_bio
->devs
[slot
].devnum
;
308 * this branch is our 'one mirror IO has finished' event handler:
311 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
312 /* an I/O failed, we can't clear the bitmap */
313 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
316 * Set R10BIO_Uptodate in our master bio, so that
317 * we will return a good error code for to the higher
318 * levels even if IO on some other mirrored buffer fails.
320 * The 'master' represents the composite IO operation to
321 * user-side. So if something waits for IO, then it will
322 * wait for the 'master' bio.
324 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
326 update_head_pos(slot
, r10_bio
);
330 * Let's see if all mirrored write operations have finished
333 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
334 /* clear the bitmap if all writes complete successfully */
335 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
337 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
339 md_write_end(r10_bio
->mddev
);
340 raid_end_bio_io(r10_bio
);
343 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
348 * RAID10 layout manager
349 * Aswell as the chunksize and raid_disks count, there are two
350 * parameters: near_copies and far_copies.
351 * near_copies * far_copies must be <= raid_disks.
352 * Normally one of these will be 1.
353 * If both are 1, we get raid0.
354 * If near_copies == raid_disks, we get raid1.
356 * Chunks are layed out in raid0 style with near_copies copies of the
357 * first chunk, followed by near_copies copies of the next chunk and
359 * If far_copies > 1, then after 1/far_copies of the array has been assigned
360 * as described above, we start again with a device offset of near_copies.
361 * So we effectively have another copy of the whole array further down all
362 * the drives, but with blocks on different drives.
363 * With this layout, and block is never stored twice on the one device.
365 * raid10_find_phys finds the sector offset of a given virtual sector
366 * on each device that it is on.
368 * raid10_find_virt does the reverse mapping, from a device and a
369 * sector offset to a virtual address
372 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
382 /* now calculate first sector/dev */
383 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
384 sector
= r10bio
->sector
& conf
->chunk_mask
;
386 chunk
*= conf
->near_copies
;
388 dev
= sector_div(stripe
, conf
->raid_disks
);
389 if (conf
->far_offset
)
390 stripe
*= conf
->far_copies
;
392 sector
+= stripe
<< conf
->chunk_shift
;
394 /* and calculate all the others */
395 for (n
=0; n
< conf
->near_copies
; n
++) {
398 r10bio
->devs
[slot
].addr
= sector
;
399 r10bio
->devs
[slot
].devnum
= d
;
402 for (f
= 1; f
< conf
->far_copies
; f
++) {
403 d
+= conf
->near_copies
;
404 if (d
>= conf
->raid_disks
)
405 d
-= conf
->raid_disks
;
407 r10bio
->devs
[slot
].devnum
= d
;
408 r10bio
->devs
[slot
].addr
= s
;
412 if (dev
>= conf
->raid_disks
) {
414 sector
+= (conf
->chunk_mask
+ 1);
417 BUG_ON(slot
!= conf
->copies
);
420 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
422 sector_t offset
, chunk
, vchunk
;
424 offset
= sector
& conf
->chunk_mask
;
425 if (conf
->far_offset
) {
427 chunk
= sector
>> conf
->chunk_shift
;
428 fc
= sector_div(chunk
, conf
->far_copies
);
429 dev
-= fc
* conf
->near_copies
;
431 dev
+= conf
->raid_disks
;
433 while (sector
>= conf
->stride
) {
434 sector
-= conf
->stride
;
435 if (dev
< conf
->near_copies
)
436 dev
+= conf
->raid_disks
- conf
->near_copies
;
438 dev
-= conf
->near_copies
;
440 chunk
= sector
>> conf
->chunk_shift
;
442 vchunk
= chunk
* conf
->raid_disks
+ dev
;
443 sector_div(vchunk
, conf
->near_copies
);
444 return (vchunk
<< conf
->chunk_shift
) + offset
;
448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
450 * @bvm: properties of new bio
451 * @biovec: the request that could be merged to it.
453 * Return amount of bytes we can accept at this offset
454 * If near_copies == raid_disk, there are no striping issues,
455 * but in that case, the function isn't called at all.
457 static int raid10_mergeable_bvec(struct request_queue
*q
,
458 struct bvec_merge_data
*bvm
,
459 struct bio_vec
*biovec
)
461 mddev_t
*mddev
= q
->queuedata
;
462 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
464 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
465 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
467 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
468 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
469 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
470 return biovec
->bv_len
;
476 * This routine returns the disk from which the requested read should
477 * be done. There is a per-array 'next expected sequential IO' sector
478 * number - if this matches on the next IO then we use the last disk.
479 * There is also a per-disk 'last know head position' sector that is
480 * maintained from IRQ contexts, both the normal and the resync IO
481 * completion handlers update this position correctly. If there is no
482 * perfect sequential match then we pick the disk whose head is closest.
484 * If there are 2 mirrors in the same 2 devices, performance degrades
485 * because position is mirror, not device based.
487 * The rdev for the device selected will have nr_pending incremented.
491 * FIXME: possibly should rethink readbalancing and do it differently
492 * depending on near_copies / far_copies geometry.
494 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
496 const unsigned long this_sector
= r10_bio
->sector
;
497 int disk
, slot
, nslot
;
498 const int sectors
= r10_bio
->sectors
;
499 sector_t new_distance
, current_distance
;
502 raid10_find_phys(conf
, r10_bio
);
505 * Check if we can balance. We can balance on the whole
506 * device if no resync is going on (recovery is ok), or below
507 * the resync window. We take the first readable disk when
508 * above the resync window.
510 if (conf
->mddev
->recovery_cp
< MaxSector
511 && (this_sector
+ sectors
>= conf
->next_resync
)) {
512 /* make sure that disk is operational */
514 disk
= r10_bio
->devs
[slot
].devnum
;
516 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
517 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
518 !test_bit(In_sync
, &rdev
->flags
)) {
520 if (slot
== conf
->copies
) {
525 disk
= r10_bio
->devs
[slot
].devnum
;
531 /* make sure the disk is operational */
533 disk
= r10_bio
->devs
[slot
].devnum
;
534 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
535 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
536 !test_bit(In_sync
, &rdev
->flags
)) {
538 if (slot
== conf
->copies
) {
542 disk
= r10_bio
->devs
[slot
].devnum
;
546 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
547 conf
->mirrors
[disk
].head_position
);
549 /* Find the disk whose head is closest,
550 * or - for far > 1 - find the closest to partition beginning */
552 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
553 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
556 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
557 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
558 !test_bit(In_sync
, &rdev
->flags
))
561 /* This optimisation is debatable, and completely destroys
562 * sequential read speed for 'far copies' arrays. So only
563 * keep it for 'near' arrays, and review those later.
565 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
571 /* for far > 1 always use the lowest address */
572 if (conf
->far_copies
> 1)
573 new_distance
= r10_bio
->devs
[nslot
].addr
;
575 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
576 conf
->mirrors
[ndisk
].head_position
);
577 if (new_distance
< current_distance
) {
578 current_distance
= new_distance
;
585 r10_bio
->read_slot
= slot
;
586 /* conf->next_seq_sect = this_sector + sectors;*/
588 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
589 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
597 static void unplug_slaves(mddev_t
*mddev
)
599 conf_t
*conf
= mddev
->private;
603 for (i
=0; i
<mddev
->raid_disks
; i
++) {
604 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
605 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
606 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
608 atomic_inc(&rdev
->nr_pending
);
613 rdev_dec_pending(rdev
, mddev
);
620 static void raid10_unplug(struct request_queue
*q
)
622 mddev_t
*mddev
= q
->queuedata
;
624 unplug_slaves(q
->queuedata
);
625 md_wakeup_thread(mddev
->thread
);
628 static int raid10_congested(void *data
, int bits
)
630 mddev_t
*mddev
= data
;
631 conf_t
*conf
= mddev
->private;
635 for (i
= 0; i
< mddev
->raid_disks
&& ret
== 0; i
++) {
636 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
637 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
638 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
640 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
647 static int flush_pending_writes(conf_t
*conf
)
649 /* Any writes that have been queued but are awaiting
650 * bitmap updates get flushed here.
651 * We return 1 if any requests were actually submitted.
655 spin_lock_irq(&conf
->device_lock
);
657 if (conf
->pending_bio_list
.head
) {
659 bio
= bio_list_get(&conf
->pending_bio_list
);
660 blk_remove_plug(conf
->mddev
->queue
);
661 spin_unlock_irq(&conf
->device_lock
);
662 /* flush any pending bitmap writes to disk
663 * before proceeding w/ I/O */
664 bitmap_unplug(conf
->mddev
->bitmap
);
666 while (bio
) { /* submit pending writes */
667 struct bio
*next
= bio
->bi_next
;
669 generic_make_request(bio
);
674 spin_unlock_irq(&conf
->device_lock
);
678 * Sometimes we need to suspend IO while we do something else,
679 * either some resync/recovery, or reconfigure the array.
680 * To do this we raise a 'barrier'.
681 * The 'barrier' is a counter that can be raised multiple times
682 * to count how many activities are happening which preclude
684 * We can only raise the barrier if there is no pending IO.
685 * i.e. if nr_pending == 0.
686 * We choose only to raise the barrier if no-one is waiting for the
687 * barrier to go down. This means that as soon as an IO request
688 * is ready, no other operations which require a barrier will start
689 * until the IO request has had a chance.
691 * So: regular IO calls 'wait_barrier'. When that returns there
692 * is no backgroup IO happening, It must arrange to call
693 * allow_barrier when it has finished its IO.
694 * backgroup IO calls must call raise_barrier. Once that returns
695 * there is no normal IO happeing. It must arrange to call
696 * lower_barrier when the particular background IO completes.
699 static void raise_barrier(conf_t
*conf
, int force
)
701 BUG_ON(force
&& !conf
->barrier
);
702 spin_lock_irq(&conf
->resync_lock
);
704 /* Wait until no block IO is waiting (unless 'force') */
705 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
707 raid10_unplug(conf
->mddev
->queue
));
709 /* block any new IO from starting */
712 /* No wait for all pending IO to complete */
713 wait_event_lock_irq(conf
->wait_barrier
,
714 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
716 raid10_unplug(conf
->mddev
->queue
));
718 spin_unlock_irq(&conf
->resync_lock
);
721 static void lower_barrier(conf_t
*conf
)
724 spin_lock_irqsave(&conf
->resync_lock
, flags
);
726 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
727 wake_up(&conf
->wait_barrier
);
730 static void wait_barrier(conf_t
*conf
)
732 spin_lock_irq(&conf
->resync_lock
);
735 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
737 raid10_unplug(conf
->mddev
->queue
));
741 spin_unlock_irq(&conf
->resync_lock
);
744 static void allow_barrier(conf_t
*conf
)
747 spin_lock_irqsave(&conf
->resync_lock
, flags
);
749 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
750 wake_up(&conf
->wait_barrier
);
753 static void freeze_array(conf_t
*conf
)
755 /* stop syncio and normal IO and wait for everything to
757 * We increment barrier and nr_waiting, and then
758 * wait until nr_pending match nr_queued+1
759 * This is called in the context of one normal IO request
760 * that has failed. Thus any sync request that might be pending
761 * will be blocked by nr_pending, and we need to wait for
762 * pending IO requests to complete or be queued for re-try.
763 * Thus the number queued (nr_queued) plus this request (1)
764 * must match the number of pending IOs (nr_pending) before
767 spin_lock_irq(&conf
->resync_lock
);
770 wait_event_lock_irq(conf
->wait_barrier
,
771 conf
->nr_pending
== conf
->nr_queued
+1,
773 ({ flush_pending_writes(conf
);
774 raid10_unplug(conf
->mddev
->queue
); }));
775 spin_unlock_irq(&conf
->resync_lock
);
778 static void unfreeze_array(conf_t
*conf
)
780 /* reverse the effect of the freeze */
781 spin_lock_irq(&conf
->resync_lock
);
784 wake_up(&conf
->wait_barrier
);
785 spin_unlock_irq(&conf
->resync_lock
);
788 static int make_request(struct request_queue
*q
, struct bio
* bio
)
790 mddev_t
*mddev
= q
->queuedata
;
791 conf_t
*conf
= mddev
->private;
792 mirror_info_t
*mirror
;
794 struct bio
*read_bio
;
797 int chunk_sects
= conf
->chunk_mask
+ 1;
798 const int rw
= bio_data_dir(bio
);
799 const bool do_sync
= bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
802 mdk_rdev_t
*blocked_rdev
;
804 if (unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
))) {
805 bio_endio(bio
, -EOPNOTSUPP
);
809 /* If this request crosses a chunk boundary, we need to
810 * split it. This will only happen for 1 PAGE (or less) requests.
812 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
814 conf
->near_copies
< conf
->raid_disks
)) {
816 /* Sanity check -- queue functions should prevent this happening */
817 if (bio
->bi_vcnt
!= 1 ||
820 /* This is a one page bio that upper layers
821 * refuse to split for us, so we need to split it.
824 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
825 if (make_request(q
, &bp
->bio1
))
826 generic_make_request(&bp
->bio1
);
827 if (make_request(q
, &bp
->bio2
))
828 generic_make_request(&bp
->bio2
);
830 bio_pair_release(bp
);
833 printk("raid10_make_request bug: can't convert block across chunks"
834 " or bigger than %dk %llu %d\n", chunk_sects
/2,
835 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
841 md_write_start(mddev
, bio
);
844 * Register the new request and wait if the reconstruction
845 * thread has put up a bar for new requests.
846 * Continue immediately if no resync is active currently.
850 cpu
= part_stat_lock();
851 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
852 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
856 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
858 r10_bio
->master_bio
= bio
;
859 r10_bio
->sectors
= bio
->bi_size
>> 9;
861 r10_bio
->mddev
= mddev
;
862 r10_bio
->sector
= bio
->bi_sector
;
867 * read balancing logic:
869 int disk
= read_balance(conf
, r10_bio
);
870 int slot
= r10_bio
->read_slot
;
872 raid_end_bio_io(r10_bio
);
875 mirror
= conf
->mirrors
+ disk
;
877 read_bio
= bio_clone(bio
, GFP_NOIO
);
879 r10_bio
->devs
[slot
].bio
= read_bio
;
881 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
882 mirror
->rdev
->data_offset
;
883 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
884 read_bio
->bi_end_io
= raid10_end_read_request
;
885 read_bio
->bi_rw
= READ
| do_sync
;
886 read_bio
->bi_private
= r10_bio
;
888 generic_make_request(read_bio
);
895 /* first select target devices under rcu_lock and
896 * inc refcount on their rdev. Record them by setting
899 raid10_find_phys(conf
, r10_bio
);
903 for (i
= 0; i
< conf
->copies
; i
++) {
904 int d
= r10_bio
->devs
[i
].devnum
;
905 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
906 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
907 atomic_inc(&rdev
->nr_pending
);
911 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
912 atomic_inc(&rdev
->nr_pending
);
913 r10_bio
->devs
[i
].bio
= bio
;
915 r10_bio
->devs
[i
].bio
= NULL
;
916 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
921 if (unlikely(blocked_rdev
)) {
922 /* Have to wait for this device to get unblocked, then retry */
926 for (j
= 0; j
< i
; j
++)
927 if (r10_bio
->devs
[j
].bio
) {
928 d
= r10_bio
->devs
[j
].devnum
;
929 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
932 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
937 atomic_set(&r10_bio
->remaining
, 0);
940 for (i
= 0; i
< conf
->copies
; i
++) {
942 int d
= r10_bio
->devs
[i
].devnum
;
943 if (!r10_bio
->devs
[i
].bio
)
946 mbio
= bio_clone(bio
, GFP_NOIO
);
947 r10_bio
->devs
[i
].bio
= mbio
;
949 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
950 conf
->mirrors
[d
].rdev
->data_offset
;
951 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
952 mbio
->bi_end_io
= raid10_end_write_request
;
953 mbio
->bi_rw
= WRITE
| do_sync
;
954 mbio
->bi_private
= r10_bio
;
956 atomic_inc(&r10_bio
->remaining
);
957 bio_list_add(&bl
, mbio
);
960 if (unlikely(!atomic_read(&r10_bio
->remaining
))) {
961 /* the array is dead */
963 raid_end_bio_io(r10_bio
);
967 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
968 spin_lock_irqsave(&conf
->device_lock
, flags
);
969 bio_list_merge(&conf
->pending_bio_list
, &bl
);
970 blk_plug_device(mddev
->queue
);
971 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
973 /* In case raid10d snuck in to freeze_array */
974 wake_up(&conf
->wait_barrier
);
977 md_wakeup_thread(mddev
->thread
);
982 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
984 conf_t
*conf
= mddev
->private;
987 if (conf
->near_copies
< conf
->raid_disks
)
988 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
989 if (conf
->near_copies
> 1)
990 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
991 if (conf
->far_copies
> 1) {
992 if (conf
->far_offset
)
993 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
995 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
997 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
998 conf
->raid_disks
- mddev
->degraded
);
999 for (i
= 0; i
< conf
->raid_disks
; i
++)
1000 seq_printf(seq
, "%s",
1001 conf
->mirrors
[i
].rdev
&&
1002 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1003 seq_printf(seq
, "]");
1006 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1008 char b
[BDEVNAME_SIZE
];
1009 conf_t
*conf
= mddev
->private;
1012 * If it is not operational, then we have already marked it as dead
1013 * else if it is the last working disks, ignore the error, let the
1014 * next level up know.
1015 * else mark the drive as failed
1017 if (test_bit(In_sync
, &rdev
->flags
)
1018 && conf
->raid_disks
-mddev
->degraded
== 1)
1020 * Don't fail the drive, just return an IO error.
1021 * The test should really be more sophisticated than
1022 * "working_disks == 1", but it isn't critical, and
1023 * can wait until we do more sophisticated "is the drive
1024 * really dead" tests...
1027 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1028 unsigned long flags
;
1029 spin_lock_irqsave(&conf
->device_lock
, flags
);
1031 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1033 * if recovery is running, make sure it aborts.
1035 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1037 set_bit(Faulty
, &rdev
->flags
);
1038 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1039 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device.\n"
1040 "raid10: Operation continuing on %d devices.\n",
1041 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1044 static void print_conf(conf_t
*conf
)
1049 printk("RAID10 conf printout:\n");
1051 printk("(!conf)\n");
1054 printk(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1057 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1058 char b
[BDEVNAME_SIZE
];
1059 tmp
= conf
->mirrors
+ i
;
1061 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1062 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1063 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1064 bdevname(tmp
->rdev
->bdev
,b
));
1068 static void close_sync(conf_t
*conf
)
1071 allow_barrier(conf
);
1073 mempool_destroy(conf
->r10buf_pool
);
1074 conf
->r10buf_pool
= NULL
;
1077 /* check if there are enough drives for
1078 * every block to appear on atleast one
1080 static int enough(conf_t
*conf
)
1085 int n
= conf
->copies
;
1088 if (conf
->mirrors
[first
].rdev
)
1090 first
= (first
+1) % conf
->raid_disks
;
1094 } while (first
!= 0);
1098 static int raid10_spare_active(mddev_t
*mddev
)
1101 conf_t
*conf
= mddev
->private;
1105 * Find all non-in_sync disks within the RAID10 configuration
1106 * and mark them in_sync
1108 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1109 tmp
= conf
->mirrors
+ i
;
1111 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1112 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1113 unsigned long flags
;
1114 spin_lock_irqsave(&conf
->device_lock
, flags
);
1116 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1125 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1127 conf_t
*conf
= mddev
->private;
1132 int last
= mddev
->raid_disks
- 1;
1134 if (mddev
->recovery_cp
< MaxSector
)
1135 /* only hot-add to in-sync arrays, as recovery is
1136 * very different from resync
1142 if (rdev
->raid_disk
>= 0)
1143 first
= last
= rdev
->raid_disk
;
1145 if (rdev
->saved_raid_disk
>= 0 &&
1146 rdev
->saved_raid_disk
>= first
&&
1147 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1148 mirror
= rdev
->saved_raid_disk
;
1151 for ( ; mirror
<= last
; mirror
++)
1152 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1154 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1155 rdev
->data_offset
<< 9);
1156 /* as we don't honour merge_bvec_fn, we must never risk
1157 * violating it, so limit ->max_sector to one PAGE, as
1158 * a one page request is never in violation.
1160 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1161 queue_max_sectors(mddev
->queue
) > (PAGE_SIZE
>>9))
1162 blk_queue_max_sectors(mddev
->queue
, PAGE_SIZE
>>9);
1164 p
->head_position
= 0;
1165 rdev
->raid_disk
= mirror
;
1167 if (rdev
->saved_raid_disk
!= mirror
)
1169 rcu_assign_pointer(p
->rdev
, rdev
);
1173 md_integrity_add_rdev(rdev
, mddev
);
1178 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1180 conf_t
*conf
= mddev
->private;
1183 mirror_info_t
*p
= conf
->mirrors
+ number
;
1188 if (test_bit(In_sync
, &rdev
->flags
) ||
1189 atomic_read(&rdev
->nr_pending
)) {
1193 /* Only remove faulty devices in recovery
1196 if (!test_bit(Faulty
, &rdev
->flags
) &&
1203 if (atomic_read(&rdev
->nr_pending
)) {
1204 /* lost the race, try later */
1209 md_integrity_register(mddev
);
1218 static void end_sync_read(struct bio
*bio
, int error
)
1220 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1221 conf_t
*conf
= r10_bio
->mddev
->private;
1224 for (i
=0; i
<conf
->copies
; i
++)
1225 if (r10_bio
->devs
[i
].bio
== bio
)
1227 BUG_ON(i
== conf
->copies
);
1228 update_head_pos(i
, r10_bio
);
1229 d
= r10_bio
->devs
[i
].devnum
;
1231 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1232 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1234 atomic_add(r10_bio
->sectors
,
1235 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1236 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1237 md_error(r10_bio
->mddev
,
1238 conf
->mirrors
[d
].rdev
);
1241 /* for reconstruct, we always reschedule after a read.
1242 * for resync, only after all reads
1244 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1245 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1246 atomic_dec_and_test(&r10_bio
->remaining
)) {
1247 /* we have read all the blocks,
1248 * do the comparison in process context in raid10d
1250 reschedule_retry(r10_bio
);
1254 static void end_sync_write(struct bio
*bio
, int error
)
1256 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1257 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1258 mddev_t
*mddev
= r10_bio
->mddev
;
1259 conf_t
*conf
= mddev
->private;
1262 for (i
= 0; i
< conf
->copies
; i
++)
1263 if (r10_bio
->devs
[i
].bio
== bio
)
1265 d
= r10_bio
->devs
[i
].devnum
;
1268 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1270 update_head_pos(i
, r10_bio
);
1272 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1273 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1274 if (r10_bio
->master_bio
== NULL
) {
1275 /* the primary of several recovery bios */
1276 sector_t s
= r10_bio
->sectors
;
1278 md_done_sync(mddev
, s
, 1);
1281 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1289 * Note: sync and recover and handled very differently for raid10
1290 * This code is for resync.
1291 * For resync, we read through virtual addresses and read all blocks.
1292 * If there is any error, we schedule a write. The lowest numbered
1293 * drive is authoritative.
1294 * However requests come for physical address, so we need to map.
1295 * For every physical address there are raid_disks/copies virtual addresses,
1296 * which is always are least one, but is not necessarly an integer.
1297 * This means that a physical address can span multiple chunks, so we may
1298 * have to submit multiple io requests for a single sync request.
1301 * We check if all blocks are in-sync and only write to blocks that
1304 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1306 conf_t
*conf
= mddev
->private;
1308 struct bio
*tbio
, *fbio
;
1310 atomic_set(&r10_bio
->remaining
, 1);
1312 /* find the first device with a block */
1313 for (i
=0; i
<conf
->copies
; i
++)
1314 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1317 if (i
== conf
->copies
)
1321 fbio
= r10_bio
->devs
[i
].bio
;
1323 /* now find blocks with errors */
1324 for (i
=0 ; i
< conf
->copies
; i
++) {
1326 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1328 tbio
= r10_bio
->devs
[i
].bio
;
1330 if (tbio
->bi_end_io
!= end_sync_read
)
1334 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1335 /* We know that the bi_io_vec layout is the same for
1336 * both 'first' and 'i', so we just compare them.
1337 * All vec entries are PAGE_SIZE;
1339 for (j
= 0; j
< vcnt
; j
++)
1340 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1341 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1346 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1348 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1349 /* Don't fix anything. */
1351 /* Ok, we need to write this bio
1352 * First we need to fixup bv_offset, bv_len and
1353 * bi_vecs, as the read request might have corrupted these
1355 tbio
->bi_vcnt
= vcnt
;
1356 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1358 tbio
->bi_phys_segments
= 0;
1359 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1360 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1361 tbio
->bi_next
= NULL
;
1362 tbio
->bi_rw
= WRITE
;
1363 tbio
->bi_private
= r10_bio
;
1364 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1366 for (j
=0; j
< vcnt
; j
++) {
1367 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1368 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1370 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1371 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1374 tbio
->bi_end_io
= end_sync_write
;
1376 d
= r10_bio
->devs
[i
].devnum
;
1377 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1378 atomic_inc(&r10_bio
->remaining
);
1379 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1381 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1382 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1383 generic_make_request(tbio
);
1387 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1388 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1394 * Now for the recovery code.
1395 * Recovery happens across physical sectors.
1396 * We recover all non-is_sync drives by finding the virtual address of
1397 * each, and then choose a working drive that also has that virt address.
1398 * There is a separate r10_bio for each non-in_sync drive.
1399 * Only the first two slots are in use. The first for reading,
1400 * The second for writing.
1404 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1406 conf_t
*conf
= mddev
->private;
1408 struct bio
*bio
, *wbio
;
1411 /* move the pages across to the second bio
1412 * and submit the write request
1414 bio
= r10_bio
->devs
[0].bio
;
1415 wbio
= r10_bio
->devs
[1].bio
;
1416 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1417 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1418 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1419 wbio
->bi_io_vec
[i
].bv_page
= p
;
1421 d
= r10_bio
->devs
[1].devnum
;
1423 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1424 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1425 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1426 generic_make_request(wbio
);
1428 bio_endio(wbio
, -EIO
);
1433 * This is a kernel thread which:
1435 * 1. Retries failed read operations on working mirrors.
1436 * 2. Updates the raid superblock when problems encounter.
1437 * 3. Performs writes following reads for array synchronising.
1440 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1442 int sect
= 0; /* Offset from r10_bio->sector */
1443 int sectors
= r10_bio
->sectors
;
1447 int sl
= r10_bio
->read_slot
;
1451 if (s
> (PAGE_SIZE
>>9))
1456 int d
= r10_bio
->devs
[sl
].devnum
;
1457 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1459 test_bit(In_sync
, &rdev
->flags
)) {
1460 atomic_inc(&rdev
->nr_pending
);
1462 success
= sync_page_io(rdev
->bdev
,
1463 r10_bio
->devs
[sl
].addr
+
1464 sect
+ rdev
->data_offset
,
1466 conf
->tmppage
, READ
);
1467 rdev_dec_pending(rdev
, mddev
);
1473 if (sl
== conf
->copies
)
1475 } while (!success
&& sl
!= r10_bio
->read_slot
);
1479 /* Cannot read from anywhere -- bye bye array */
1480 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1481 md_error(mddev
, conf
->mirrors
[dn
].rdev
);
1486 /* write it back and re-read */
1488 while (sl
!= r10_bio
->read_slot
) {
1493 d
= r10_bio
->devs
[sl
].devnum
;
1494 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1496 test_bit(In_sync
, &rdev
->flags
)) {
1497 atomic_inc(&rdev
->nr_pending
);
1499 atomic_add(s
, &rdev
->corrected_errors
);
1500 if (sync_page_io(rdev
->bdev
,
1501 r10_bio
->devs
[sl
].addr
+
1502 sect
+ rdev
->data_offset
,
1503 s
<<9, conf
->tmppage
, WRITE
)
1505 /* Well, this device is dead */
1506 md_error(mddev
, rdev
);
1507 rdev_dec_pending(rdev
, mddev
);
1512 while (sl
!= r10_bio
->read_slot
) {
1517 d
= r10_bio
->devs
[sl
].devnum
;
1518 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1520 test_bit(In_sync
, &rdev
->flags
)) {
1521 char b
[BDEVNAME_SIZE
];
1522 atomic_inc(&rdev
->nr_pending
);
1524 if (sync_page_io(rdev
->bdev
,
1525 r10_bio
->devs
[sl
].addr
+
1526 sect
+ rdev
->data_offset
,
1527 s
<<9, conf
->tmppage
, READ
) == 0)
1528 /* Well, this device is dead */
1529 md_error(mddev
, rdev
);
1532 "raid10:%s: read error corrected"
1533 " (%d sectors at %llu on %s)\n",
1535 (unsigned long long)(sect
+
1537 bdevname(rdev
->bdev
, b
));
1539 rdev_dec_pending(rdev
, mddev
);
1550 static void raid10d(mddev_t
*mddev
)
1554 unsigned long flags
;
1555 conf_t
*conf
= mddev
->private;
1556 struct list_head
*head
= &conf
->retry_list
;
1560 md_check_recovery(mddev
);
1563 char b
[BDEVNAME_SIZE
];
1565 unplug
+= flush_pending_writes(conf
);
1567 spin_lock_irqsave(&conf
->device_lock
, flags
);
1568 if (list_empty(head
)) {
1569 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1572 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1573 list_del(head
->prev
);
1575 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1577 mddev
= r10_bio
->mddev
;
1578 conf
= mddev
->private;
1579 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1580 sync_request_write(mddev
, r10_bio
);
1582 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1583 recovery_request_write(mddev
, r10_bio
);
1587 /* we got a read error. Maybe the drive is bad. Maybe just
1588 * the block and we can fix it.
1589 * We freeze all other IO, and try reading the block from
1590 * other devices. When we find one, we re-write
1591 * and check it that fixes the read error.
1592 * This is all done synchronously while the array is
1595 if (mddev
->ro
== 0) {
1597 fix_read_error(conf
, mddev
, r10_bio
);
1598 unfreeze_array(conf
);
1601 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1602 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1603 mddev
->ro
? IO_BLOCKED
: NULL
;
1604 mirror
= read_balance(conf
, r10_bio
);
1606 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1607 " read error for block %llu\n",
1608 bdevname(bio
->bi_bdev
,b
),
1609 (unsigned long long)r10_bio
->sector
);
1610 raid_end_bio_io(r10_bio
);
1613 const bool do_sync
= bio_rw_flagged(r10_bio
->master_bio
, BIO_RW_SYNCIO
);
1615 rdev
= conf
->mirrors
[mirror
].rdev
;
1616 if (printk_ratelimit())
1617 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1618 " another mirror\n",
1619 bdevname(rdev
->bdev
,b
),
1620 (unsigned long long)r10_bio
->sector
);
1621 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1622 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1623 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1624 + rdev
->data_offset
;
1625 bio
->bi_bdev
= rdev
->bdev
;
1626 bio
->bi_rw
= READ
| do_sync
;
1627 bio
->bi_private
= r10_bio
;
1628 bio
->bi_end_io
= raid10_end_read_request
;
1630 generic_make_request(bio
);
1635 unplug_slaves(mddev
);
1639 static int init_resync(conf_t
*conf
)
1643 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1644 BUG_ON(conf
->r10buf_pool
);
1645 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1646 if (!conf
->r10buf_pool
)
1648 conf
->next_resync
= 0;
1653 * perform a "sync" on one "block"
1655 * We need to make sure that no normal I/O request - particularly write
1656 * requests - conflict with active sync requests.
1658 * This is achieved by tracking pending requests and a 'barrier' concept
1659 * that can be installed to exclude normal IO requests.
1661 * Resync and recovery are handled very differently.
1662 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1664 * For resync, we iterate over virtual addresses, read all copies,
1665 * and update if there are differences. If only one copy is live,
1667 * For recovery, we iterate over physical addresses, read a good
1668 * value for each non-in_sync drive, and over-write.
1670 * So, for recovery we may have several outstanding complex requests for a
1671 * given address, one for each out-of-sync device. We model this by allocating
1672 * a number of r10_bio structures, one for each out-of-sync device.
1673 * As we setup these structures, we collect all bio's together into a list
1674 * which we then process collectively to add pages, and then process again
1675 * to pass to generic_make_request.
1677 * The r10_bio structures are linked using a borrowed master_bio pointer.
1678 * This link is counted in ->remaining. When the r10_bio that points to NULL
1679 * has its remaining count decremented to 0, the whole complex operation
1684 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1686 conf_t
*conf
= mddev
->private;
1688 struct bio
*biolist
= NULL
, *bio
;
1689 sector_t max_sector
, nr_sectors
;
1695 sector_t sectors_skipped
= 0;
1696 int chunks_skipped
= 0;
1698 if (!conf
->r10buf_pool
)
1699 if (init_resync(conf
))
1703 max_sector
= mddev
->dev_sectors
;
1704 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1705 max_sector
= mddev
->resync_max_sectors
;
1706 if (sector_nr
>= max_sector
) {
1707 /* If we aborted, we need to abort the
1708 * sync on the 'current' bitmap chucks (there can
1709 * be several when recovering multiple devices).
1710 * as we may have started syncing it but not finished.
1711 * We can find the current address in
1712 * mddev->curr_resync, but for recovery,
1713 * we need to convert that to several
1714 * virtual addresses.
1716 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1717 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1718 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1720 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1722 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1723 bitmap_end_sync(mddev
->bitmap
, sect
,
1726 } else /* completed sync */
1729 bitmap_close_sync(mddev
->bitmap
);
1732 return sectors_skipped
;
1734 if (chunks_skipped
>= conf
->raid_disks
) {
1735 /* if there has been nothing to do on any drive,
1736 * then there is nothing to do at all..
1739 return (max_sector
- sector_nr
) + sectors_skipped
;
1742 if (max_sector
> mddev
->resync_max
)
1743 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1745 /* make sure whole request will fit in a chunk - if chunks
1748 if (conf
->near_copies
< conf
->raid_disks
&&
1749 max_sector
> (sector_nr
| conf
->chunk_mask
))
1750 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1752 * If there is non-resync activity waiting for us then
1753 * put in a delay to throttle resync.
1755 if (!go_faster
&& conf
->nr_waiting
)
1756 msleep_interruptible(1000);
1758 /* Again, very different code for resync and recovery.
1759 * Both must result in an r10bio with a list of bios that
1760 * have bi_end_io, bi_sector, bi_bdev set,
1761 * and bi_private set to the r10bio.
1762 * For recovery, we may actually create several r10bios
1763 * with 2 bios in each, that correspond to the bios in the main one.
1764 * In this case, the subordinate r10bios link back through a
1765 * borrowed master_bio pointer, and the counter in the master
1766 * includes a ref from each subordinate.
1768 /* First, we decide what to do and set ->bi_end_io
1769 * To end_sync_read if we want to read, and
1770 * end_sync_write if we will want to write.
1773 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1774 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1775 /* recovery... the complicated one */
1779 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1780 if (conf
->mirrors
[i
].rdev
&&
1781 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1782 int still_degraded
= 0;
1783 /* want to reconstruct this device */
1784 r10bio_t
*rb2
= r10_bio
;
1785 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1787 /* Unless we are doing a full sync, we only need
1788 * to recover the block if it is set in the bitmap
1790 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1792 if (sync_blocks
< max_sync
)
1793 max_sync
= sync_blocks
;
1796 /* yep, skip the sync_blocks here, but don't assume
1797 * that there will never be anything to do here
1799 chunks_skipped
= -1;
1803 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1804 raise_barrier(conf
, rb2
!= NULL
);
1805 atomic_set(&r10_bio
->remaining
, 0);
1807 r10_bio
->master_bio
= (struct bio
*)rb2
;
1809 atomic_inc(&rb2
->remaining
);
1810 r10_bio
->mddev
= mddev
;
1811 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1812 r10_bio
->sector
= sect
;
1814 raid10_find_phys(conf
, r10_bio
);
1816 /* Need to check if the array will still be
1819 for (j
=0; j
<conf
->raid_disks
; j
++)
1820 if (conf
->mirrors
[j
].rdev
== NULL
||
1821 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
1826 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1827 &sync_blocks
, still_degraded
);
1829 for (j
=0; j
<conf
->copies
;j
++) {
1830 int d
= r10_bio
->devs
[j
].devnum
;
1831 if (conf
->mirrors
[d
].rdev
&&
1832 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1833 /* This is where we read from */
1834 bio
= r10_bio
->devs
[0].bio
;
1835 bio
->bi_next
= biolist
;
1837 bio
->bi_private
= r10_bio
;
1838 bio
->bi_end_io
= end_sync_read
;
1840 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1841 conf
->mirrors
[d
].rdev
->data_offset
;
1842 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1843 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1844 atomic_inc(&r10_bio
->remaining
);
1845 /* and we write to 'i' */
1847 for (k
=0; k
<conf
->copies
; k
++)
1848 if (r10_bio
->devs
[k
].devnum
== i
)
1850 BUG_ON(k
== conf
->copies
);
1851 bio
= r10_bio
->devs
[1].bio
;
1852 bio
->bi_next
= biolist
;
1854 bio
->bi_private
= r10_bio
;
1855 bio
->bi_end_io
= end_sync_write
;
1857 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1858 conf
->mirrors
[i
].rdev
->data_offset
;
1859 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1861 r10_bio
->devs
[0].devnum
= d
;
1862 r10_bio
->devs
[1].devnum
= i
;
1867 if (j
== conf
->copies
) {
1868 /* Cannot recover, so abort the recovery */
1871 atomic_dec(&rb2
->remaining
);
1873 if (!test_and_set_bit(MD_RECOVERY_INTR
,
1875 printk(KERN_INFO
"raid10: %s: insufficient working devices for recovery.\n",
1880 if (biolist
== NULL
) {
1882 r10bio_t
*rb2
= r10_bio
;
1883 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1884 rb2
->master_bio
= NULL
;
1890 /* resync. Schedule a read for every block at this virt offset */
1893 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1895 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1896 &sync_blocks
, mddev
->degraded
) &&
1897 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1898 /* We can skip this block */
1900 return sync_blocks
+ sectors_skipped
;
1902 if (sync_blocks
< max_sync
)
1903 max_sync
= sync_blocks
;
1904 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1906 r10_bio
->mddev
= mddev
;
1907 atomic_set(&r10_bio
->remaining
, 0);
1908 raise_barrier(conf
, 0);
1909 conf
->next_resync
= sector_nr
;
1911 r10_bio
->master_bio
= NULL
;
1912 r10_bio
->sector
= sector_nr
;
1913 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1914 raid10_find_phys(conf
, r10_bio
);
1915 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
1917 for (i
=0; i
<conf
->copies
; i
++) {
1918 int d
= r10_bio
->devs
[i
].devnum
;
1919 bio
= r10_bio
->devs
[i
].bio
;
1920 bio
->bi_end_io
= NULL
;
1921 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1922 if (conf
->mirrors
[d
].rdev
== NULL
||
1923 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
1925 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1926 atomic_inc(&r10_bio
->remaining
);
1927 bio
->bi_next
= biolist
;
1929 bio
->bi_private
= r10_bio
;
1930 bio
->bi_end_io
= end_sync_read
;
1932 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
1933 conf
->mirrors
[d
].rdev
->data_offset
;
1934 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1939 for (i
=0; i
<conf
->copies
; i
++) {
1940 int d
= r10_bio
->devs
[i
].devnum
;
1941 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
1942 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1950 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1952 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1954 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1957 bio
->bi_phys_segments
= 0;
1962 if (sector_nr
+ max_sync
< max_sector
)
1963 max_sector
= sector_nr
+ max_sync
;
1966 int len
= PAGE_SIZE
;
1968 if (sector_nr
+ (len
>>9) > max_sector
)
1969 len
= (max_sector
- sector_nr
) << 9;
1972 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1973 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1974 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1977 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1978 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
1979 /* remove last page from this bio */
1981 bio2
->bi_size
-= len
;
1982 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1988 nr_sectors
+= len
>>9;
1989 sector_nr
+= len
>>9;
1990 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
1992 r10_bio
->sectors
= nr_sectors
;
1996 biolist
= biolist
->bi_next
;
1998 bio
->bi_next
= NULL
;
1999 r10_bio
= bio
->bi_private
;
2000 r10_bio
->sectors
= nr_sectors
;
2002 if (bio
->bi_end_io
== end_sync_read
) {
2003 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2004 generic_make_request(bio
);
2008 if (sectors_skipped
)
2009 /* pretend they weren't skipped, it makes
2010 * no important difference in this case
2012 md_done_sync(mddev
, sectors_skipped
, 1);
2014 return sectors_skipped
+ nr_sectors
;
2016 /* There is nowhere to write, so all non-sync
2017 * drives must be failed, so try the next chunk...
2019 if (sector_nr
+ max_sync
< max_sector
)
2020 max_sector
= sector_nr
+ max_sync
;
2022 sectors_skipped
+= (max_sector
- sector_nr
);
2024 sector_nr
= max_sector
;
2029 raid10_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
2032 conf_t
*conf
= mddev
->private;
2035 raid_disks
= mddev
->raid_disks
;
2037 sectors
= mddev
->dev_sectors
;
2039 size
= sectors
>> conf
->chunk_shift
;
2040 sector_div(size
, conf
->far_copies
);
2041 size
= size
* raid_disks
;
2042 sector_div(size
, conf
->near_copies
);
2044 return size
<< conf
->chunk_shift
;
2047 static int run(mddev_t
*mddev
)
2050 int i
, disk_idx
, chunk_size
;
2051 mirror_info_t
*disk
;
2054 sector_t stride
, size
;
2056 if (mddev
->chunk_sectors
< (PAGE_SIZE
>> 9) ||
2057 !is_power_of_2(mddev
->chunk_sectors
)) {
2058 printk(KERN_ERR
"md/raid10: chunk size must be "
2059 "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE
);
2063 nc
= mddev
->layout
& 255;
2064 fc
= (mddev
->layout
>> 8) & 255;
2065 fo
= mddev
->layout
& (1<<16);
2066 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2067 (mddev
->layout
>> 17)) {
2068 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
2069 mdname(mddev
), mddev
->layout
);
2073 * copy the already verified devices into our private RAID10
2074 * bookkeeping area. [whatever we allocate in run(),
2075 * should be freed in stop()]
2077 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2078 mddev
->private = conf
;
2080 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2084 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2086 if (!conf
->mirrors
) {
2087 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2092 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2096 conf
->mddev
= mddev
;
2097 conf
->raid_disks
= mddev
->raid_disks
;
2098 conf
->near_copies
= nc
;
2099 conf
->far_copies
= fc
;
2100 conf
->copies
= nc
*fc
;
2101 conf
->far_offset
= fo
;
2102 conf
->chunk_mask
= mddev
->chunk_sectors
- 1;
2103 conf
->chunk_shift
= ffz(~mddev
->chunk_sectors
);
2104 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
2105 sector_div(size
, fc
);
2106 size
= size
* conf
->raid_disks
;
2107 sector_div(size
, nc
);
2108 /* 'size' is now the number of chunks in the array */
2109 /* calculate "used chunks per device" in 'stride' */
2110 stride
= size
* conf
->copies
;
2112 /* We need to round up when dividing by raid_disks to
2113 * get the stride size.
2115 stride
+= conf
->raid_disks
- 1;
2116 sector_div(stride
, conf
->raid_disks
);
2117 mddev
->dev_sectors
= stride
<< conf
->chunk_shift
;
2122 sector_div(stride
, fc
);
2123 conf
->stride
= stride
<< conf
->chunk_shift
;
2125 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2126 r10bio_pool_free
, conf
);
2127 if (!conf
->r10bio_pool
) {
2128 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2133 spin_lock_init(&conf
->device_lock
);
2134 mddev
->queue
->queue_lock
= &conf
->device_lock
;
2136 chunk_size
= mddev
->chunk_sectors
<< 9;
2137 blk_queue_io_min(mddev
->queue
, chunk_size
);
2138 if (conf
->raid_disks
% conf
->near_copies
)
2139 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
2141 blk_queue_io_opt(mddev
->queue
, chunk_size
*
2142 (conf
->raid_disks
/ conf
->near_copies
));
2144 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2145 disk_idx
= rdev
->raid_disk
;
2146 if (disk_idx
>= mddev
->raid_disks
2149 disk
= conf
->mirrors
+ disk_idx
;
2152 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2153 rdev
->data_offset
<< 9);
2154 /* as we don't honour merge_bvec_fn, we must never risk
2155 * violating it, so limit ->max_sector to one PAGE, as
2156 * a one page request is never in violation.
2158 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
2159 queue_max_sectors(mddev
->queue
) > (PAGE_SIZE
>>9))
2160 blk_queue_max_sectors(mddev
->queue
, PAGE_SIZE
>>9);
2162 disk
->head_position
= 0;
2164 INIT_LIST_HEAD(&conf
->retry_list
);
2166 spin_lock_init(&conf
->resync_lock
);
2167 init_waitqueue_head(&conf
->wait_barrier
);
2169 /* need to check that every block has at least one working mirror */
2170 if (!enough(conf
)) {
2171 printk(KERN_ERR
"raid10: not enough operational mirrors for %s\n",
2176 mddev
->degraded
= 0;
2177 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2179 disk
= conf
->mirrors
+ i
;
2182 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2183 disk
->head_position
= 0;
2191 mddev
->thread
= md_register_thread(raid10d
, mddev
, "%s_raid10");
2192 if (!mddev
->thread
) {
2194 "raid10: couldn't allocate thread for %s\n",
2199 if (mddev
->recovery_cp
!= MaxSector
)
2200 printk(KERN_NOTICE
"raid10: %s is not clean"
2201 " -- starting background reconstruction\n",
2204 "raid10: raid set %s active with %d out of %d devices\n",
2205 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2208 * Ok, everything is just fine now
2210 md_set_array_sectors(mddev
, raid10_size(mddev
, 0, 0));
2211 mddev
->resync_max_sectors
= raid10_size(mddev
, 0, 0);
2213 mddev
->queue
->unplug_fn
= raid10_unplug
;
2214 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2215 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2217 /* Calculate max read-ahead size.
2218 * We need to readahead at least twice a whole stripe....
2222 int stripe
= conf
->raid_disks
*
2223 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
2224 stripe
/= conf
->near_copies
;
2225 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2226 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2229 if (conf
->near_copies
< mddev
->raid_disks
)
2230 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2231 md_integrity_register(mddev
);
2235 if (conf
->r10bio_pool
)
2236 mempool_destroy(conf
->r10bio_pool
);
2237 safe_put_page(conf
->tmppage
);
2238 kfree(conf
->mirrors
);
2240 mddev
->private = NULL
;
2245 static int stop(mddev_t
*mddev
)
2247 conf_t
*conf
= mddev
->private;
2249 raise_barrier(conf
, 0);
2250 lower_barrier(conf
);
2252 md_unregister_thread(mddev
->thread
);
2253 mddev
->thread
= NULL
;
2254 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2255 if (conf
->r10bio_pool
)
2256 mempool_destroy(conf
->r10bio_pool
);
2257 kfree(conf
->mirrors
);
2259 mddev
->private = NULL
;
2263 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2265 conf_t
*conf
= mddev
->private;
2269 raise_barrier(conf
, 0);
2272 lower_barrier(conf
);
2275 if (mddev
->thread
) {
2277 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
2279 mddev
->thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
2280 md_wakeup_thread(mddev
->thread
);
2284 static struct mdk_personality raid10_personality
=
2288 .owner
= THIS_MODULE
,
2289 .make_request
= make_request
,
2293 .error_handler
= error
,
2294 .hot_add_disk
= raid10_add_disk
,
2295 .hot_remove_disk
= raid10_remove_disk
,
2296 .spare_active
= raid10_spare_active
,
2297 .sync_request
= sync_request
,
2298 .quiesce
= raid10_quiesce
,
2299 .size
= raid10_size
,
2302 static int __init
raid_init(void)
2304 return register_md_personality(&raid10_personality
);
2307 static void raid_exit(void)
2309 unregister_md_personality(&raid10_personality
);
2312 module_init(raid_init
);
2313 module_exit(raid_exit
);
2314 MODULE_LICENSE("GPL");
2315 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2316 MODULE_ALIAS("md-raid10");
2317 MODULE_ALIAS("md-level-10");