ext3: Update MAINTAINERS for ext3 and JBD
[linux/fpc-iii.git] / drivers / media / dvb / frontends / nxt6000.c
bloba763ec756f7f84df840bcb38bfb3816ee016e174
1 /*
2 NxtWave Communications - NXT6000 demodulator driver
4 Copyright (C) 2002-2003 Florian Schirmer <jolt@tuxbox.org>
5 Copyright (C) 2003 Paul Andreassen <paul@andreassen.com.au>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
34 struct nxt6000_state {
35 struct i2c_adapter* i2c;
36 /* configuration settings */
37 const struct nxt6000_config* config;
38 struct dvb_frontend frontend;
41 static int debug;
42 #define dprintk if (debug) printk
44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
46 u8 buf[] = { reg, data };
47 struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
48 int ret;
50 if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
51 dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
53 return (ret != 1) ? -EFAULT : 0;
56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
58 int ret;
59 u8 b0[] = { reg };
60 u8 b1[] = { 0 };
61 struct i2c_msg msgs[] = {
62 {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
63 {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
66 ret = i2c_transfer(state->i2c, msgs, 2);
68 if (ret != 2)
69 dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
71 return b1[0];
74 static void nxt6000_reset(struct nxt6000_state* state)
76 u8 val;
78 val = nxt6000_readreg(state, OFDM_COR_CTL);
80 nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
81 nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
84 static int nxt6000_set_bandwidth(struct nxt6000_state* state, fe_bandwidth_t bandwidth)
86 u16 nominal_rate;
87 int result;
89 switch (bandwidth) {
91 case BANDWIDTH_6_MHZ:
92 nominal_rate = 0x55B7;
93 break;
95 case BANDWIDTH_7_MHZ:
96 nominal_rate = 0x6400;
97 break;
99 case BANDWIDTH_8_MHZ:
100 nominal_rate = 0x7249;
101 break;
103 default:
104 return -EINVAL;
107 if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
108 return result;
110 return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
113 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
115 switch (guard_interval) {
117 case GUARD_INTERVAL_1_32:
118 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
120 case GUARD_INTERVAL_1_16:
121 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
123 case GUARD_INTERVAL_AUTO:
124 case GUARD_INTERVAL_1_8:
125 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
127 case GUARD_INTERVAL_1_4:
128 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
130 default:
131 return -EINVAL;
135 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
137 switch (inversion) {
139 case INVERSION_OFF:
140 return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
142 case INVERSION_ON:
143 return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
145 default:
146 return -EINVAL;
151 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
153 int result;
155 switch (transmission_mode) {
157 case TRANSMISSION_MODE_2K:
158 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
159 return result;
161 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
163 case TRANSMISSION_MODE_8K:
164 case TRANSMISSION_MODE_AUTO:
165 if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
166 return result;
168 return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
170 default:
171 return -EINVAL;
176 static void nxt6000_setup(struct dvb_frontend* fe)
178 struct nxt6000_state* state = fe->demodulator_priv;
180 nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
181 nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
182 nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits
183 nxt6000_writereg(state, VIT_BERTIME_1, 0x02); //
184 nxt6000_writereg(state, VIT_BERTIME_0, 0x00); //
185 nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
186 nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement
187 nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
188 nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
189 nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
190 nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
191 nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
192 nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
193 nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
194 nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
195 nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
196 nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
197 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
198 nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
199 nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
200 nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
201 nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
203 if (state->config->clock_inversion)
204 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
205 else
206 nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
208 nxt6000_writereg(state, TS_FORMAT, 0);
211 static void nxt6000_dump_status(struct nxt6000_state *state)
213 u8 val;
216 printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
217 printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
218 printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
219 printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
220 printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
221 printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
222 printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
223 printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
224 printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
225 printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
227 printk("NXT6000 status:");
229 val = nxt6000_readreg(state, RS_COR_STAT);
231 printk(" DATA DESCR LOCK: %d,", val & 0x01);
232 printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
234 val = nxt6000_readreg(state, VIT_SYNC_STATUS);
236 printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
238 switch ((val >> 4) & 0x07) {
240 case 0x00:
241 printk(" VITERBI CODERATE: 1/2,");
242 break;
244 case 0x01:
245 printk(" VITERBI CODERATE: 2/3,");
246 break;
248 case 0x02:
249 printk(" VITERBI CODERATE: 3/4,");
250 break;
252 case 0x03:
253 printk(" VITERBI CODERATE: 5/6,");
254 break;
256 case 0x04:
257 printk(" VITERBI CODERATE: 7/8,");
258 break;
260 default:
261 printk(" VITERBI CODERATE: Reserved,");
265 val = nxt6000_readreg(state, OFDM_COR_STAT);
267 printk(" CHCTrack: %d,", (val >> 7) & 0x01);
268 printk(" TPSLock: %d,", (val >> 6) & 0x01);
269 printk(" SYRLock: %d,", (val >> 5) & 0x01);
270 printk(" AGCLock: %d,", (val >> 4) & 0x01);
272 switch (val & 0x0F) {
274 case 0x00:
275 printk(" CoreState: IDLE,");
276 break;
278 case 0x02:
279 printk(" CoreState: WAIT_AGC,");
280 break;
282 case 0x03:
283 printk(" CoreState: WAIT_SYR,");
284 break;
286 case 0x04:
287 printk(" CoreState: WAIT_PPM,");
288 break;
290 case 0x01:
291 printk(" CoreState: WAIT_TRL,");
292 break;
294 case 0x05:
295 printk(" CoreState: WAIT_TPS,");
296 break;
298 case 0x06:
299 printk(" CoreState: MONITOR_TPS,");
300 break;
302 default:
303 printk(" CoreState: Reserved,");
307 val = nxt6000_readreg(state, OFDM_SYR_STAT);
309 printk(" SYRLock: %d,", (val >> 4) & 0x01);
310 printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
312 switch ((val >> 4) & 0x03) {
314 case 0x00:
315 printk(" SYRGuard: 1/32,");
316 break;
318 case 0x01:
319 printk(" SYRGuard: 1/16,");
320 break;
322 case 0x02:
323 printk(" SYRGuard: 1/8,");
324 break;
326 case 0x03:
327 printk(" SYRGuard: 1/4,");
328 break;
331 val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
333 switch ((val >> 4) & 0x07) {
335 case 0x00:
336 printk(" TPSLP: 1/2,");
337 break;
339 case 0x01:
340 printk(" TPSLP: 2/3,");
341 break;
343 case 0x02:
344 printk(" TPSLP: 3/4,");
345 break;
347 case 0x03:
348 printk(" TPSLP: 5/6,");
349 break;
351 case 0x04:
352 printk(" TPSLP: 7/8,");
353 break;
355 default:
356 printk(" TPSLP: Reserved,");
360 switch (val & 0x07) {
362 case 0x00:
363 printk(" TPSHP: 1/2,");
364 break;
366 case 0x01:
367 printk(" TPSHP: 2/3,");
368 break;
370 case 0x02:
371 printk(" TPSHP: 3/4,");
372 break;
374 case 0x03:
375 printk(" TPSHP: 5/6,");
376 break;
378 case 0x04:
379 printk(" TPSHP: 7/8,");
380 break;
382 default:
383 printk(" TPSHP: Reserved,");
387 val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
389 printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
391 switch ((val >> 4) & 0x03) {
393 case 0x00:
394 printk(" TPSGuard: 1/32,");
395 break;
397 case 0x01:
398 printk(" TPSGuard: 1/16,");
399 break;
401 case 0x02:
402 printk(" TPSGuard: 1/8,");
403 break;
405 case 0x03:
406 printk(" TPSGuard: 1/4,");
407 break;
411 /* Strange magic required to gain access to RF_AGC_STATUS */
412 nxt6000_readreg(state, RF_AGC_VAL_1);
413 val = nxt6000_readreg(state, RF_AGC_STATUS);
414 val = nxt6000_readreg(state, RF_AGC_STATUS);
416 printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
417 printk("\n");
420 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
422 u8 core_status;
423 struct nxt6000_state* state = fe->demodulator_priv;
425 *status = 0;
427 core_status = nxt6000_readreg(state, OFDM_COR_STAT);
429 if (core_status & AGCLOCKED)
430 *status |= FE_HAS_SIGNAL;
432 if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
433 *status |= FE_HAS_CARRIER;
435 if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
436 *status |= FE_HAS_VITERBI;
438 if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
439 *status |= FE_HAS_SYNC;
441 if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
442 *status |= FE_HAS_LOCK;
444 if (debug)
445 nxt6000_dump_status(state);
447 return 0;
450 static int nxt6000_init(struct dvb_frontend* fe)
452 struct nxt6000_state* state = fe->demodulator_priv;
454 nxt6000_reset(state);
455 nxt6000_setup(fe);
457 return 0;
460 static int nxt6000_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *param)
462 struct nxt6000_state* state = fe->demodulator_priv;
463 int result;
465 if (fe->ops.tuner_ops.set_params) {
466 fe->ops.tuner_ops.set_params(fe, param);
467 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
470 if ((result = nxt6000_set_bandwidth(state, param->u.ofdm.bandwidth)) < 0)
471 return result;
472 if ((result = nxt6000_set_guard_interval(state, param->u.ofdm.guard_interval)) < 0)
473 return result;
474 if ((result = nxt6000_set_transmission_mode(state, param->u.ofdm.transmission_mode)) < 0)
475 return result;
476 if ((result = nxt6000_set_inversion(state, param->inversion)) < 0)
477 return result;
479 msleep(500);
480 return 0;
483 static void nxt6000_release(struct dvb_frontend* fe)
485 struct nxt6000_state* state = fe->demodulator_priv;
486 kfree(state);
489 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
491 struct nxt6000_state* state = fe->demodulator_priv;
493 *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
495 return 0;
498 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
500 struct nxt6000_state* state = fe->demodulator_priv;
502 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
504 *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
505 nxt6000_readreg( state, VIT_BER_0 );
507 nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
509 return 0;
512 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
514 struct nxt6000_state* state = fe->demodulator_priv;
516 *signal_strength = (short) (511 -
517 (nxt6000_readreg(state, AGC_GAIN_1) +
518 ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
520 return 0;
523 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
525 tune->min_delay_ms = 500;
526 return 0;
529 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
531 struct nxt6000_state* state = fe->demodulator_priv;
533 if (enable) {
534 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
535 } else {
536 return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
540 static struct dvb_frontend_ops nxt6000_ops;
542 struct dvb_frontend* nxt6000_attach(const struct nxt6000_config* config,
543 struct i2c_adapter* i2c)
545 struct nxt6000_state* state = NULL;
547 /* allocate memory for the internal state */
548 state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
549 if (state == NULL) goto error;
551 /* setup the state */
552 state->config = config;
553 state->i2c = i2c;
555 /* check if the demod is there */
556 if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
558 /* create dvb_frontend */
559 memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
560 state->frontend.demodulator_priv = state;
561 return &state->frontend;
563 error:
564 kfree(state);
565 return NULL;
568 static struct dvb_frontend_ops nxt6000_ops = {
570 .info = {
571 .name = "NxtWave NXT6000 DVB-T",
572 .type = FE_OFDM,
573 .frequency_min = 0,
574 .frequency_max = 863250000,
575 .frequency_stepsize = 62500,
576 /*.frequency_tolerance = *//* FIXME: 12% of SR */
577 .symbol_rate_min = 0, /* FIXME */
578 .symbol_rate_max = 9360000, /* FIXME */
579 .symbol_rate_tolerance = 4000,
580 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
581 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
582 FE_CAN_FEC_7_8 | FE_CAN_FEC_8_9 | FE_CAN_FEC_AUTO |
583 FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
584 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
585 FE_CAN_HIERARCHY_AUTO,
588 .release = nxt6000_release,
590 .init = nxt6000_init,
591 .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
593 .get_tune_settings = nxt6000_fe_get_tune_settings,
595 .set_frontend = nxt6000_set_frontend,
597 .read_status = nxt6000_read_status,
598 .read_ber = nxt6000_read_ber,
599 .read_signal_strength = nxt6000_read_signal_strength,
600 .read_snr = nxt6000_read_snr,
603 module_param(debug, int, 0644);
604 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
606 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
607 MODULE_AUTHOR("Florian Schirmer");
608 MODULE_LICENSE("GPL");
610 EXPORT_SYMBOL(nxt6000_attach);