ext3: Update MAINTAINERS for ext3 and JBD
[linux/fpc-iii.git] / drivers / media / dvb / frontends / tda1004x.c
blobf2a8abe0a243b87b09d09df9098991ba23036562
1 /*
2 Driver for Philips tda1004xh OFDM Demodulator
4 (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * This driver needs external firmware. Please use the commands
24 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25 * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26 * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27 * or /lib/firmware (depending on configuration of firmware hotplug).
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/jiffies.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
39 #include "dvb_frontend.h"
40 #include "tda1004x.h"
42 static int debug;
43 #define dprintk(args...) \
44 do { \
45 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
46 } while (0)
48 #define TDA1004X_CHIPID 0x00
49 #define TDA1004X_AUTO 0x01
50 #define TDA1004X_IN_CONF1 0x02
51 #define TDA1004X_IN_CONF2 0x03
52 #define TDA1004X_OUT_CONF1 0x04
53 #define TDA1004X_OUT_CONF2 0x05
54 #define TDA1004X_STATUS_CD 0x06
55 #define TDA1004X_CONFC4 0x07
56 #define TDA1004X_DSSPARE2 0x0C
57 #define TDA10045H_CODE_IN 0x0D
58 #define TDA10045H_FWPAGE 0x0E
59 #define TDA1004X_SCAN_CPT 0x10
60 #define TDA1004X_DSP_CMD 0x11
61 #define TDA1004X_DSP_ARG 0x12
62 #define TDA1004X_DSP_DATA1 0x13
63 #define TDA1004X_DSP_DATA2 0x14
64 #define TDA1004X_CONFADC1 0x15
65 #define TDA1004X_CONFC1 0x16
66 #define TDA10045H_S_AGC 0x1a
67 #define TDA10046H_AGC_TUN_LEVEL 0x1a
68 #define TDA1004X_SNR 0x1c
69 #define TDA1004X_CONF_TS1 0x1e
70 #define TDA1004X_CONF_TS2 0x1f
71 #define TDA1004X_CBER_RESET 0x20
72 #define TDA1004X_CBER_MSB 0x21
73 #define TDA1004X_CBER_LSB 0x22
74 #define TDA1004X_CVBER_LUT 0x23
75 #define TDA1004X_VBER_MSB 0x24
76 #define TDA1004X_VBER_MID 0x25
77 #define TDA1004X_VBER_LSB 0x26
78 #define TDA1004X_UNCOR 0x27
80 #define TDA10045H_CONFPLL_P 0x2D
81 #define TDA10045H_CONFPLL_M_MSB 0x2E
82 #define TDA10045H_CONFPLL_M_LSB 0x2F
83 #define TDA10045H_CONFPLL_N 0x30
85 #define TDA10046H_CONFPLL1 0x2D
86 #define TDA10046H_CONFPLL2 0x2F
87 #define TDA10046H_CONFPLL3 0x30
88 #define TDA10046H_TIME_WREF1 0x31
89 #define TDA10046H_TIME_WREF2 0x32
90 #define TDA10046H_TIME_WREF3 0x33
91 #define TDA10046H_TIME_WREF4 0x34
92 #define TDA10046H_TIME_WREF5 0x35
94 #define TDA10045H_UNSURW_MSB 0x31
95 #define TDA10045H_UNSURW_LSB 0x32
96 #define TDA10045H_WREF_MSB 0x33
97 #define TDA10045H_WREF_MID 0x34
98 #define TDA10045H_WREF_LSB 0x35
99 #define TDA10045H_MUXOUT 0x36
100 #define TDA1004X_CONFADC2 0x37
102 #define TDA10045H_IOFFSET 0x38
104 #define TDA10046H_CONF_TRISTATE1 0x3B
105 #define TDA10046H_CONF_TRISTATE2 0x3C
106 #define TDA10046H_CONF_POLARITY 0x3D
107 #define TDA10046H_FREQ_OFFSET 0x3E
108 #define TDA10046H_GPIO_OUT_SEL 0x41
109 #define TDA10046H_GPIO_SELECT 0x42
110 #define TDA10046H_AGC_CONF 0x43
111 #define TDA10046H_AGC_THR 0x44
112 #define TDA10046H_AGC_RENORM 0x45
113 #define TDA10046H_AGC_GAINS 0x46
114 #define TDA10046H_AGC_TUN_MIN 0x47
115 #define TDA10046H_AGC_TUN_MAX 0x48
116 #define TDA10046H_AGC_IF_MIN 0x49
117 #define TDA10046H_AGC_IF_MAX 0x4A
119 #define TDA10046H_FREQ_PHY2_MSB 0x4D
120 #define TDA10046H_FREQ_PHY2_LSB 0x4E
122 #define TDA10046H_CVBER_CTRL 0x4F
123 #define TDA10046H_AGC_IF_LEVEL 0x52
124 #define TDA10046H_CODE_CPT 0x57
125 #define TDA10046H_CODE_IN 0x58
128 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
130 int ret;
131 u8 buf[] = { reg, data };
132 struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
134 dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data);
136 msg.addr = state->config->demod_address;
137 ret = i2c_transfer(state->i2c, &msg, 1);
139 if (ret != 1)
140 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
141 __func__, reg, data, ret);
143 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
144 reg, data, ret);
145 return (ret != 1) ? -1 : 0;
148 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
150 int ret;
151 u8 b0[] = { reg };
152 u8 b1[] = { 0 };
153 struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
154 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
156 dprintk("%s: reg=0x%x\n", __func__, reg);
158 msg[0].addr = state->config->demod_address;
159 msg[1].addr = state->config->demod_address;
160 ret = i2c_transfer(state->i2c, msg, 2);
162 if (ret != 2) {
163 dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg,
164 ret);
165 return -EINVAL;
168 dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
169 reg, b1[0], ret);
170 return b1[0];
173 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
175 int val;
176 dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg,
177 mask, data);
179 // read a byte and check
180 val = tda1004x_read_byte(state, reg);
181 if (val < 0)
182 return val;
184 // mask if off
185 val = val & ~mask;
186 val |= data & 0xff;
188 // write it out again
189 return tda1004x_write_byteI(state, reg, val);
192 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
194 int i;
195 int result;
197 dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len);
199 result = 0;
200 for (i = 0; i < len; i++) {
201 result = tda1004x_write_byteI(state, reg + i, buf[i]);
202 if (result != 0)
203 break;
206 return result;
209 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
211 int result;
212 dprintk("%s\n", __func__);
214 result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
215 msleep(20);
216 return result;
219 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
221 dprintk("%s\n", __func__);
223 return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
226 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
227 fe_bandwidth_t bandwidth)
229 static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
230 static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
231 static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
233 switch (bandwidth) {
234 case BANDWIDTH_6_MHZ:
235 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
236 break;
238 case BANDWIDTH_7_MHZ:
239 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
240 break;
242 case BANDWIDTH_8_MHZ:
243 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
244 break;
246 default:
247 return -EINVAL;
250 tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
252 return 0;
255 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
256 fe_bandwidth_t bandwidth)
258 static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
259 static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
260 static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
262 static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
263 static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
264 static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
265 int tda10046_clk53m;
267 if ((state->config->if_freq == TDA10046_FREQ_045) ||
268 (state->config->if_freq == TDA10046_FREQ_052))
269 tda10046_clk53m = 0;
270 else
271 tda10046_clk53m = 1;
272 switch (bandwidth) {
273 case BANDWIDTH_6_MHZ:
274 if (tda10046_clk53m)
275 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
276 sizeof(bandwidth_6mhz_53M));
277 else
278 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
279 sizeof(bandwidth_6mhz_48M));
280 if (state->config->if_freq == TDA10046_FREQ_045) {
281 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
282 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
284 break;
286 case BANDWIDTH_7_MHZ:
287 if (tda10046_clk53m)
288 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
289 sizeof(bandwidth_7mhz_53M));
290 else
291 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
292 sizeof(bandwidth_7mhz_48M));
293 if (state->config->if_freq == TDA10046_FREQ_045) {
294 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
295 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
297 break;
299 case BANDWIDTH_8_MHZ:
300 if (tda10046_clk53m)
301 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
302 sizeof(bandwidth_8mhz_53M));
303 else
304 tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
305 sizeof(bandwidth_8mhz_48M));
306 if (state->config->if_freq == TDA10046_FREQ_045) {
307 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
308 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
310 break;
312 default:
313 return -EINVAL;
316 return 0;
319 static int tda1004x_do_upload(struct tda1004x_state *state,
320 const unsigned char *mem, unsigned int len,
321 u8 dspCodeCounterReg, u8 dspCodeInReg)
323 u8 buf[65];
324 struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
325 int tx_size;
326 int pos = 0;
328 /* clear code counter */
329 tda1004x_write_byteI(state, dspCodeCounterReg, 0);
330 fw_msg.addr = state->config->demod_address;
332 buf[0] = dspCodeInReg;
333 while (pos != len) {
334 // work out how much to send this time
335 tx_size = len - pos;
336 if (tx_size > 0x10)
337 tx_size = 0x10;
339 // send the chunk
340 memcpy(buf + 1, mem + pos, tx_size);
341 fw_msg.len = tx_size + 1;
342 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
343 printk(KERN_ERR "tda1004x: Error during firmware upload\n");
344 return -EIO;
346 pos += tx_size;
348 dprintk("%s: fw_pos=0x%x\n", __func__, pos);
350 // give the DSP a chance to settle 03/10/05 Hac
351 msleep(100);
353 return 0;
356 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
358 u8 data1, data2;
359 unsigned long timeout;
361 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
362 timeout = jiffies + 2 * HZ;
363 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
364 if (time_after(jiffies, timeout)) {
365 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
366 break;
368 msleep(1);
370 } else
371 msleep(100);
373 // check upload was OK
374 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
375 tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
377 data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
378 data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
379 if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
380 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
381 return -EIO;
383 printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
384 return 0;
387 static int tda10045_fwupload(struct dvb_frontend* fe)
389 struct tda1004x_state* state = fe->demodulator_priv;
390 int ret;
391 const struct firmware *fw;
393 /* don't re-upload unless necessary */
394 if (tda1004x_check_upload_ok(state) == 0)
395 return 0;
397 /* request the firmware, this will block until someone uploads it */
398 printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
399 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
400 if (ret) {
401 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
402 return ret;
405 /* reset chip */
406 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
407 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
408 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
409 msleep(10);
411 /* set parameters */
412 tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
414 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
415 release_firmware(fw);
416 if (ret)
417 return ret;
418 printk(KERN_INFO "tda1004x: firmware upload complete\n");
420 /* wait for DSP to initialise */
421 /* DSPREADY doesn't seem to work on the TDA10045H */
422 msleep(100);
424 return tda1004x_check_upload_ok(state);
427 static void tda10046_init_plls(struct dvb_frontend* fe)
429 struct tda1004x_state* state = fe->demodulator_priv;
430 int tda10046_clk53m;
432 if ((state->config->if_freq == TDA10046_FREQ_045) ||
433 (state->config->if_freq == TDA10046_FREQ_052))
434 tda10046_clk53m = 0;
435 else
436 tda10046_clk53m = 1;
438 tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
439 if(tda10046_clk53m) {
440 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
441 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
442 } else {
443 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
444 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
446 if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
447 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__);
448 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
449 } else {
450 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__);
451 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
453 if(tda10046_clk53m)
454 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
455 else
456 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
457 /* Note clock frequency is handled implicitly */
458 switch (state->config->if_freq) {
459 case TDA10046_FREQ_045:
460 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
461 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
462 break;
463 case TDA10046_FREQ_052:
464 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
465 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
466 break;
467 case TDA10046_FREQ_3617:
468 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
469 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
470 break;
471 case TDA10046_FREQ_3613:
472 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
473 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
474 break;
476 tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
477 /* let the PLLs settle */
478 msleep(120);
481 static int tda10046_fwupload(struct dvb_frontend* fe)
483 struct tda1004x_state* state = fe->demodulator_priv;
484 int ret, confc4;
485 const struct firmware *fw;
487 /* reset + wake up chip */
488 if (state->config->xtal_freq == TDA10046_XTAL_4M) {
489 confc4 = 0;
490 } else {
491 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__);
492 confc4 = 0x80;
494 tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
496 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
497 /* set GPIO 1 and 3 */
498 if (state->config->gpio_config != TDA10046_GPTRI) {
499 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
500 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
502 /* let the clocks recover from sleep */
503 msleep(10);
505 /* The PLLs need to be reprogrammed after sleep */
506 tda10046_init_plls(fe);
507 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
509 /* don't re-upload unless necessary */
510 if (tda1004x_check_upload_ok(state) == 0)
511 return 0;
514 For i2c normal work, we need to slow down the bus speed.
515 However, the slow down breaks the eeprom firmware load.
516 So, use normal speed for eeprom booting and then restore the
517 i2c speed after that. Tested with MSI TV @nyware A/D board,
518 that comes with firmware version 29 inside their eeprom.
520 It should also be noticed that no other I2C transfer should
521 be in course while booting from eeprom, otherwise, tda10046
522 goes into an instable state. So, proper locking are needed
523 at the i2c bus master.
525 printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
526 tda1004x_write_byteI(state, TDA1004X_CONFC4, 4);
527 msleep(300);
528 tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
530 /* Checks if eeprom firmware went without troubles */
531 if (tda1004x_check_upload_ok(state) == 0)
532 return 0;
534 /* eeprom firmware didn't work. Load one manually. */
536 if (state->config->request_firmware != NULL) {
537 /* request the firmware, this will block until someone uploads it */
538 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
539 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
540 if (ret) {
541 /* remain compatible to old bug: try to load with tda10045 image name */
542 ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
543 if (ret) {
544 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
545 return ret;
546 } else {
547 printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
548 TDA10046_DEFAULT_FIRMWARE);
551 } else {
552 printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
553 return -EIO;
555 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
556 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
557 release_firmware(fw);
558 return tda1004x_check_upload_ok(state);
561 static int tda1004x_encode_fec(int fec)
563 // convert known FEC values
564 switch (fec) {
565 case FEC_1_2:
566 return 0;
567 case FEC_2_3:
568 return 1;
569 case FEC_3_4:
570 return 2;
571 case FEC_5_6:
572 return 3;
573 case FEC_7_8:
574 return 4;
577 // unsupported
578 return -EINVAL;
581 static int tda1004x_decode_fec(int tdafec)
583 // convert known FEC values
584 switch (tdafec) {
585 case 0:
586 return FEC_1_2;
587 case 1:
588 return FEC_2_3;
589 case 2:
590 return FEC_3_4;
591 case 3:
592 return FEC_5_6;
593 case 4:
594 return FEC_7_8;
597 // unsupported
598 return -1;
601 static int tda1004x_write(struct dvb_frontend* fe, u8 *buf, int len)
603 struct tda1004x_state* state = fe->demodulator_priv;
605 if (len != 2)
606 return -EINVAL;
608 return tda1004x_write_byteI(state, buf[0], buf[1]);
611 static int tda10045_init(struct dvb_frontend* fe)
613 struct tda1004x_state* state = fe->demodulator_priv;
615 dprintk("%s\n", __func__);
617 if (tda10045_fwupload(fe)) {
618 printk("tda1004x: firmware upload failed\n");
619 return -EIO;
622 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
624 // tda setup
625 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
626 tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
627 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
628 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
629 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
630 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
631 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
632 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
633 tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
634 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
635 tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
637 tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
639 return 0;
642 static int tda10046_init(struct dvb_frontend* fe)
644 struct tda1004x_state* state = fe->demodulator_priv;
645 dprintk("%s\n", __func__);
647 if (tda10046_fwupload(fe)) {
648 printk("tda1004x: firmware upload failed\n");
649 return -EIO;
652 // tda setup
653 tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
654 tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
655 tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer
657 switch (state->config->agc_config) {
658 case TDA10046_AGC_DEFAULT:
659 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
660 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
661 break;
662 case TDA10046_AGC_IFO_AUTO_NEG:
663 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
664 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
665 break;
666 case TDA10046_AGC_IFO_AUTO_POS:
667 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
668 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00); // set AGC polarities
669 break;
670 case TDA10046_AGC_TDA827X:
671 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
672 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
673 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
674 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
675 break;
677 if (state->config->ts_mode == 0) {
678 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
679 tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
680 } else {
681 tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
682 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
683 state->config->invert_oclk << 4);
685 tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
686 tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
687 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
688 tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
689 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
690 tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
691 tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
692 tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
693 tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
694 tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
695 // tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes
697 return 0;
700 static int tda1004x_set_fe(struct dvb_frontend* fe,
701 struct dvb_frontend_parameters *fe_params)
703 struct tda1004x_state* state = fe->demodulator_priv;
704 int tmp;
705 int inversion;
707 dprintk("%s\n", __func__);
709 if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
710 // setup auto offset
711 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
712 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
713 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
715 // disable agc_conf[2]
716 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
719 // set frequency
720 if (fe->ops.tuner_ops.set_params) {
721 fe->ops.tuner_ops.set_params(fe, fe_params);
722 if (fe->ops.i2c_gate_ctrl)
723 fe->ops.i2c_gate_ctrl(fe, 0);
726 // Hardcoded to use auto as much as possible on the TDA10045 as it
727 // is very unreliable if AUTO mode is _not_ used.
728 if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
729 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
730 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
731 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
734 // Set standard params.. or put them to auto
735 if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
736 (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
737 (fe_params->u.ofdm.constellation == QAM_AUTO) ||
738 (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
739 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
740 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
741 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
742 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
743 } else {
744 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
746 // set HP FEC
747 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
748 if (tmp < 0)
749 return tmp;
750 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
752 // set LP FEC
753 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
754 if (tmp < 0)
755 return tmp;
756 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
758 // set constellation
759 switch (fe_params->u.ofdm.constellation) {
760 case QPSK:
761 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
762 break;
764 case QAM_16:
765 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
766 break;
768 case QAM_64:
769 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
770 break;
772 default:
773 return -EINVAL;
776 // set hierarchy
777 switch (fe_params->u.ofdm.hierarchy_information) {
778 case HIERARCHY_NONE:
779 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
780 break;
782 case HIERARCHY_1:
783 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
784 break;
786 case HIERARCHY_2:
787 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
788 break;
790 case HIERARCHY_4:
791 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
792 break;
794 default:
795 return -EINVAL;
799 // set bandwidth
800 switch (state->demod_type) {
801 case TDA1004X_DEMOD_TDA10045:
802 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
803 break;
805 case TDA1004X_DEMOD_TDA10046:
806 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
807 break;
810 // set inversion
811 inversion = fe_params->inversion;
812 if (state->config->invert)
813 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
814 switch (inversion) {
815 case INVERSION_OFF:
816 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
817 break;
819 case INVERSION_ON:
820 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
821 break;
823 default:
824 return -EINVAL;
827 // set guard interval
828 switch (fe_params->u.ofdm.guard_interval) {
829 case GUARD_INTERVAL_1_32:
830 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
831 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
832 break;
834 case GUARD_INTERVAL_1_16:
835 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
836 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
837 break;
839 case GUARD_INTERVAL_1_8:
840 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
841 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
842 break;
844 case GUARD_INTERVAL_1_4:
845 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
846 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
847 break;
849 case GUARD_INTERVAL_AUTO:
850 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
851 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
852 break;
854 default:
855 return -EINVAL;
858 // set transmission mode
859 switch (fe_params->u.ofdm.transmission_mode) {
860 case TRANSMISSION_MODE_2K:
861 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
862 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
863 break;
865 case TRANSMISSION_MODE_8K:
866 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
867 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
868 break;
870 case TRANSMISSION_MODE_AUTO:
871 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
872 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
873 break;
875 default:
876 return -EINVAL;
879 // start the lock
880 switch (state->demod_type) {
881 case TDA1004X_DEMOD_TDA10045:
882 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
883 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
884 break;
886 case TDA1004X_DEMOD_TDA10046:
887 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
888 msleep(1);
889 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
890 break;
893 msleep(10);
895 return 0;
898 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
900 struct tda1004x_state* state = fe->demodulator_priv;
902 dprintk("%s\n", __func__);
904 // inversion status
905 fe_params->inversion = INVERSION_OFF;
906 if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
907 fe_params->inversion = INVERSION_ON;
908 if (state->config->invert)
909 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
911 // bandwidth
912 switch (state->demod_type) {
913 case TDA1004X_DEMOD_TDA10045:
914 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
915 case 0x14:
916 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
917 break;
918 case 0xdb:
919 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
920 break;
921 case 0x4f:
922 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
923 break;
925 break;
926 case TDA1004X_DEMOD_TDA10046:
927 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
928 case 0x5c:
929 case 0x54:
930 fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
931 break;
932 case 0x6a:
933 case 0x60:
934 fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
935 break;
936 case 0x7b:
937 case 0x70:
938 fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
939 break;
941 break;
944 // FEC
945 fe_params->u.ofdm.code_rate_HP =
946 tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
947 fe_params->u.ofdm.code_rate_LP =
948 tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
950 // constellation
951 switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
952 case 0:
953 fe_params->u.ofdm.constellation = QPSK;
954 break;
955 case 1:
956 fe_params->u.ofdm.constellation = QAM_16;
957 break;
958 case 2:
959 fe_params->u.ofdm.constellation = QAM_64;
960 break;
963 // transmission mode
964 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
965 if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
966 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
968 // guard interval
969 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
970 case 0:
971 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
972 break;
973 case 1:
974 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
975 break;
976 case 2:
977 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
978 break;
979 case 3:
980 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
981 break;
984 // hierarchy
985 switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
986 case 0:
987 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
988 break;
989 case 1:
990 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
991 break;
992 case 2:
993 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
994 break;
995 case 3:
996 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
997 break;
1000 return 0;
1003 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
1005 struct tda1004x_state* state = fe->demodulator_priv;
1006 int status;
1007 int cber;
1008 int vber;
1010 dprintk("%s\n", __func__);
1012 // read status
1013 status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
1014 if (status == -1)
1015 return -EIO;
1017 // decode
1018 *fe_status = 0;
1019 if (status & 4)
1020 *fe_status |= FE_HAS_SIGNAL;
1021 if (status & 2)
1022 *fe_status |= FE_HAS_CARRIER;
1023 if (status & 8)
1024 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1026 // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1027 // is getting anything valid
1028 if (!(*fe_status & FE_HAS_VITERBI)) {
1029 // read the CBER
1030 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1031 if (cber == -1)
1032 return -EIO;
1033 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1034 if (status == -1)
1035 return -EIO;
1036 cber |= (status << 8);
1037 // The address 0x20 should be read to cope with a TDA10046 bug
1038 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1040 if (cber != 65535)
1041 *fe_status |= FE_HAS_VITERBI;
1044 // if we DO have some valid VITERBI output, but don't already have SYNC
1045 // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1046 if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1047 // read the VBER
1048 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1049 if (vber == -1)
1050 return -EIO;
1051 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1052 if (status == -1)
1053 return -EIO;
1054 vber |= (status << 8);
1055 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1056 if (status == -1)
1057 return -EIO;
1058 vber |= (status & 0x0f) << 16;
1059 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1060 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1062 // if RS has passed some valid TS packets, then we must be
1063 // getting some SYNC bytes
1064 if (vber < 16632)
1065 *fe_status |= FE_HAS_SYNC;
1068 // success
1069 dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
1070 return 0;
1073 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1075 struct tda1004x_state* state = fe->demodulator_priv;
1076 int tmp;
1077 int reg = 0;
1079 dprintk("%s\n", __func__);
1081 // determine the register to use
1082 switch (state->demod_type) {
1083 case TDA1004X_DEMOD_TDA10045:
1084 reg = TDA10045H_S_AGC;
1085 break;
1087 case TDA1004X_DEMOD_TDA10046:
1088 reg = TDA10046H_AGC_IF_LEVEL;
1089 break;
1092 // read it
1093 tmp = tda1004x_read_byte(state, reg);
1094 if (tmp < 0)
1095 return -EIO;
1097 *signal = (tmp << 8) | tmp;
1098 dprintk("%s: signal=0x%x\n", __func__, *signal);
1099 return 0;
1102 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1104 struct tda1004x_state* state = fe->demodulator_priv;
1105 int tmp;
1107 dprintk("%s\n", __func__);
1109 // read it
1110 tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1111 if (tmp < 0)
1112 return -EIO;
1113 tmp = 255 - tmp;
1115 *snr = ((tmp << 8) | tmp);
1116 dprintk("%s: snr=0x%x\n", __func__, *snr);
1117 return 0;
1120 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1122 struct tda1004x_state* state = fe->demodulator_priv;
1123 int tmp;
1124 int tmp2;
1125 int counter;
1127 dprintk("%s\n", __func__);
1129 // read the UCBLOCKS and reset
1130 counter = 0;
1131 tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1132 if (tmp < 0)
1133 return -EIO;
1134 tmp &= 0x7f;
1135 while (counter++ < 5) {
1136 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1137 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1138 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1140 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1141 if (tmp2 < 0)
1142 return -EIO;
1143 tmp2 &= 0x7f;
1144 if ((tmp2 < tmp) || (tmp2 == 0))
1145 break;
1148 if (tmp != 0x7f)
1149 *ucblocks = tmp;
1150 else
1151 *ucblocks = 0xffffffff;
1153 dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks);
1154 return 0;
1157 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1159 struct tda1004x_state* state = fe->demodulator_priv;
1160 int tmp;
1162 dprintk("%s\n", __func__);
1164 // read it in
1165 tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1166 if (tmp < 0)
1167 return -EIO;
1168 *ber = tmp << 1;
1169 tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1170 if (tmp < 0)
1171 return -EIO;
1172 *ber |= (tmp << 9);
1173 // The address 0x20 should be read to cope with a TDA10046 bug
1174 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1176 dprintk("%s: ber=0x%x\n", __func__, *ber);
1177 return 0;
1180 static int tda1004x_sleep(struct dvb_frontend* fe)
1182 struct tda1004x_state* state = fe->demodulator_priv;
1183 int gpio_conf;
1185 switch (state->demod_type) {
1186 case TDA1004X_DEMOD_TDA10045:
1187 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1188 break;
1190 case TDA1004X_DEMOD_TDA10046:
1191 /* set outputs to tristate */
1192 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1193 /* invert GPIO 1 and 3 if desired*/
1194 gpio_conf = state->config->gpio_config;
1195 if (gpio_conf >= TDA10046_GP00_I)
1196 tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
1197 (gpio_conf & 0x0f) ^ 0x0a);
1199 tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
1200 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1201 break;
1204 return 0;
1207 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1209 struct tda1004x_state* state = fe->demodulator_priv;
1211 if (enable) {
1212 return tda1004x_enable_tuner_i2c(state);
1213 } else {
1214 return tda1004x_disable_tuner_i2c(state);
1218 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1220 fesettings->min_delay_ms = 800;
1221 /* Drift compensation makes no sense for DVB-T */
1222 fesettings->step_size = 0;
1223 fesettings->max_drift = 0;
1224 return 0;
1227 static void tda1004x_release(struct dvb_frontend* fe)
1229 struct tda1004x_state *state = fe->demodulator_priv;
1230 kfree(state);
1233 static struct dvb_frontend_ops tda10045_ops = {
1234 .info = {
1235 .name = "Philips TDA10045H DVB-T",
1236 .type = FE_OFDM,
1237 .frequency_min = 51000000,
1238 .frequency_max = 858000000,
1239 .frequency_stepsize = 166667,
1240 .caps =
1241 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1242 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1243 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1244 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1247 .release = tda1004x_release,
1249 .init = tda10045_init,
1250 .sleep = tda1004x_sleep,
1251 .write = tda1004x_write,
1252 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1254 .set_frontend = tda1004x_set_fe,
1255 .get_frontend = tda1004x_get_fe,
1256 .get_tune_settings = tda1004x_get_tune_settings,
1258 .read_status = tda1004x_read_status,
1259 .read_ber = tda1004x_read_ber,
1260 .read_signal_strength = tda1004x_read_signal_strength,
1261 .read_snr = tda1004x_read_snr,
1262 .read_ucblocks = tda1004x_read_ucblocks,
1265 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1266 struct i2c_adapter* i2c)
1268 struct tda1004x_state *state;
1269 int id;
1271 /* allocate memory for the internal state */
1272 state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1273 if (!state) {
1274 printk(KERN_ERR "Can't alocate memory for tda10045 state\n");
1275 return NULL;
1278 /* setup the state */
1279 state->config = config;
1280 state->i2c = i2c;
1281 state->demod_type = TDA1004X_DEMOD_TDA10045;
1283 /* check if the demod is there */
1284 id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1285 if (id < 0) {
1286 printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n");
1287 kfree(state);
1288 return NULL;
1291 if (id != 0x25) {
1292 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1293 kfree(state);
1294 return NULL;
1297 /* create dvb_frontend */
1298 memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1299 state->frontend.demodulator_priv = state;
1300 return &state->frontend;
1303 static struct dvb_frontend_ops tda10046_ops = {
1304 .info = {
1305 .name = "Philips TDA10046H DVB-T",
1306 .type = FE_OFDM,
1307 .frequency_min = 51000000,
1308 .frequency_max = 858000000,
1309 .frequency_stepsize = 166667,
1310 .caps =
1311 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1312 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1313 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1314 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1317 .release = tda1004x_release,
1319 .init = tda10046_init,
1320 .sleep = tda1004x_sleep,
1321 .write = tda1004x_write,
1322 .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1324 .set_frontend = tda1004x_set_fe,
1325 .get_frontend = tda1004x_get_fe,
1326 .get_tune_settings = tda1004x_get_tune_settings,
1328 .read_status = tda1004x_read_status,
1329 .read_ber = tda1004x_read_ber,
1330 .read_signal_strength = tda1004x_read_signal_strength,
1331 .read_snr = tda1004x_read_snr,
1332 .read_ucblocks = tda1004x_read_ucblocks,
1335 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1336 struct i2c_adapter* i2c)
1338 struct tda1004x_state *state;
1339 int id;
1341 /* allocate memory for the internal state */
1342 state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1343 if (!state) {
1344 printk(KERN_ERR "Can't alocate memory for tda10046 state\n");
1345 return NULL;
1348 /* setup the state */
1349 state->config = config;
1350 state->i2c = i2c;
1351 state->demod_type = TDA1004X_DEMOD_TDA10046;
1353 /* check if the demod is there */
1354 id = tda1004x_read_byte(state, TDA1004X_CHIPID);
1355 if (id < 0) {
1356 printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n");
1357 kfree(state);
1358 return NULL;
1360 if (id != 0x46) {
1361 printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
1362 kfree(state);
1363 return NULL;
1366 /* create dvb_frontend */
1367 memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1368 state->frontend.demodulator_priv = state;
1369 return &state->frontend;
1372 module_param(debug, int, 0644);
1373 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1375 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1376 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1377 MODULE_LICENSE("GPL");
1379 EXPORT_SYMBOL(tda10045_attach);
1380 EXPORT_SYMBOL(tda10046_attach);