ext3: Update MAINTAINERS for ext3 and JBD
[linux/fpc-iii.git] / drivers / net / 3c59x.c
blob7adff4d0960ddc09d3b430b1ac88b596bcf85fc4
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
32 #define DRV_NAME "3c59x"
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
63 #define tx_interrupt_mitigation 1
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
100 #define RUN_AT(x) (jiffies + (x))
102 #include <linux/delay.h>
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
113 /* Operational parameter that usually are not changed. */
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
127 #define PFX DRV_NAME ": "
132 Theory of Operation
134 I. Board Compatibility
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
145 II. Board-specific settings
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
155 III. Driver operation
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
194 IV. Notes
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
266 CH_905BT4,
267 CH_920B_EMB_WNM,
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] __devinitdata = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
374 {NULL,}, /* NULL terminated list. */
378 static struct pci_device_id vortex_pci_tbl[] = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
426 {0,} /* 0 terminated list. */
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
438 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
439 #define EL3_CMD 0x0e
440 #define EL3_STATUS 0x0e
442 /* The top five bits written to EL3_CMD are a command, the lower
443 11 bits are the parameter, if applicable.
444 Note that 11 parameters bits was fine for ethernet, but the new chip
445 can handle FDDI length frames (~4500 octets) and now parameters count
446 32-bit 'Dwords' rather than octets. */
448 enum vortex_cmd {
449 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
450 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
451 UpStall = 6<<11, UpUnstall = (6<<11)+1,
452 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
453 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
454 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
455 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
456 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
457 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
458 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
460 /* The SetRxFilter command accepts the following classes: */
461 enum RxFilter {
462 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
464 /* Bits in the general status register. */
465 enum vortex_status {
466 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
467 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
468 IntReq = 0x0040, StatsFull = 0x0080,
469 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
470 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
471 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
474 /* Register window 1 offsets, the window used in normal operation.
475 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
476 enum Window1 {
477 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
478 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
479 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
481 enum Window0 {
482 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
483 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
484 IntrStatus=0x0E, /* Valid in all windows. */
486 enum Win0_EEPROM_bits {
487 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
488 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
489 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
491 /* EEPROM locations. */
492 enum eeprom_offset {
493 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
494 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
495 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
496 DriverTune=13, Checksum=15};
498 enum Window2 { /* Window 2. */
499 Wn2_ResetOptions=12,
501 enum Window3 { /* Window 3: MAC/config bits. */
502 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
505 #define BFEXT(value, offset, bitcount) \
506 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
508 #define BFINS(lhs, rhs, offset, bitcount) \
509 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
510 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
512 #define RAM_SIZE(v) BFEXT(v, 0, 3)
513 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
514 #define RAM_SPEED(v) BFEXT(v, 4, 2)
515 #define ROM_SIZE(v) BFEXT(v, 6, 2)
516 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
517 #define XCVR(v) BFEXT(v, 20, 4)
518 #define AUTOSELECT(v) BFEXT(v, 24, 1)
520 enum Window4 { /* Window 4: Xcvr/media bits. */
521 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
523 enum Win4_Media_bits {
524 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
525 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
526 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
527 Media_LnkBeat = 0x0800,
529 enum Window7 { /* Window 7: Bus Master control. */
530 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
531 Wn7_MasterStatus = 12,
533 /* Boomerang bus master control registers. */
534 enum MasterCtrl {
535 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
536 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
539 /* The Rx and Tx descriptor lists.
540 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
541 alignment contraint on tx_ring[] and rx_ring[]. */
542 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
543 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
544 struct boom_rx_desc {
545 __le32 next; /* Last entry points to 0. */
546 __le32 status;
547 __le32 addr; /* Up to 63 addr/len pairs possible. */
548 __le32 length; /* Set LAST_FRAG to indicate last pair. */
550 /* Values for the Rx status entry. */
551 enum rx_desc_status {
552 RxDComplete=0x00008000, RxDError=0x4000,
553 /* See boomerang_rx() for actual error bits */
554 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
555 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
558 #ifdef MAX_SKB_FRAGS
559 #define DO_ZEROCOPY 1
560 #else
561 #define DO_ZEROCOPY 0
562 #endif
564 struct boom_tx_desc {
565 __le32 next; /* Last entry points to 0. */
566 __le32 status; /* bits 0:12 length, others see below. */
567 #if DO_ZEROCOPY
568 struct {
569 __le32 addr;
570 __le32 length;
571 } frag[1+MAX_SKB_FRAGS];
572 #else
573 __le32 addr;
574 __le32 length;
575 #endif
578 /* Values for the Tx status entry. */
579 enum tx_desc_status {
580 CRCDisable=0x2000, TxDComplete=0x8000,
581 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
582 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
585 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
586 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
588 struct vortex_extra_stats {
589 unsigned long tx_deferred;
590 unsigned long tx_max_collisions;
591 unsigned long tx_multiple_collisions;
592 unsigned long tx_single_collisions;
593 unsigned long rx_bad_ssd;
596 struct vortex_private {
597 /* The Rx and Tx rings should be quad-word-aligned. */
598 struct boom_rx_desc* rx_ring;
599 struct boom_tx_desc* tx_ring;
600 dma_addr_t rx_ring_dma;
601 dma_addr_t tx_ring_dma;
602 /* The addresses of transmit- and receive-in-place skbuffs. */
603 struct sk_buff* rx_skbuff[RX_RING_SIZE];
604 struct sk_buff* tx_skbuff[TX_RING_SIZE];
605 unsigned int cur_rx, cur_tx; /* The next free ring entry */
606 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
607 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
608 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
609 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
611 /* PCI configuration space information. */
612 struct device *gendev;
613 void __iomem *ioaddr; /* IO address space */
614 void __iomem *cb_fn_base; /* CardBus function status addr space. */
616 /* Some values here only for performance evaluation and path-coverage */
617 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
618 int card_idx;
620 /* The remainder are related to chip state, mostly media selection. */
621 struct timer_list timer; /* Media selection timer. */
622 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
623 int options; /* User-settable misc. driver options. */
624 unsigned int media_override:4, /* Passed-in media type. */
625 default_media:4, /* Read from the EEPROM/Wn3_Config. */
626 full_duplex:1, autoselect:1,
627 bus_master:1, /* Vortex can only do a fragment bus-m. */
628 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
629 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
630 partner_flow_ctrl:1, /* Partner supports flow control */
631 has_nway:1,
632 enable_wol:1, /* Wake-on-LAN is enabled */
633 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
634 open:1,
635 medialock:1,
636 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
637 large_frames:1; /* accept large frames */
638 int drv_flags;
639 u16 status_enable;
640 u16 intr_enable;
641 u16 available_media; /* From Wn3_Options. */
642 u16 capabilities, info1, info2; /* Various, from EEPROM. */
643 u16 advertising; /* NWay media advertisement */
644 unsigned char phys[2]; /* MII device addresses. */
645 u16 deferred; /* Resend these interrupts when we
646 * bale from the ISR */
647 u16 io_size; /* Size of PCI region (for release_region) */
648 spinlock_t lock; /* Serialise access to device & its vortex_private */
649 struct mii_if_info mii; /* MII lib hooks/info */
652 #ifdef CONFIG_PCI
653 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
654 #else
655 #define DEVICE_PCI(dev) NULL
656 #endif
658 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
660 #ifdef CONFIG_EISA
661 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
662 #else
663 #define DEVICE_EISA(dev) NULL
664 #endif
666 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
668 /* The action to take with a media selection timer tick.
669 Note that we deviate from the 3Com order by checking 10base2 before AUI.
671 enum xcvr_types {
672 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
673 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
676 static const struct media_table {
677 char *name;
678 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
679 mask:8, /* The transceiver-present bit in Wn3_Config.*/
680 next:8; /* The media type to try next. */
681 int wait; /* Time before we check media status. */
682 } media_tbl[] = {
683 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
684 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
685 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
686 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
687 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
688 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
689 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
690 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
691 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
692 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
693 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
696 static struct {
697 const char str[ETH_GSTRING_LEN];
698 } ethtool_stats_keys[] = {
699 { "tx_deferred" },
700 { "tx_max_collisions" },
701 { "tx_multiple_collisions" },
702 { "tx_single_collisions" },
703 { "rx_bad_ssd" },
706 /* number of ETHTOOL_GSTATS u64's */
707 #define VORTEX_NUM_STATS 5
709 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
710 int chip_idx, int card_idx);
711 static int vortex_up(struct net_device *dev);
712 static void vortex_down(struct net_device *dev, int final);
713 static int vortex_open(struct net_device *dev);
714 static void mdio_sync(void __iomem *ioaddr, int bits);
715 static int mdio_read(struct net_device *dev, int phy_id, int location);
716 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
717 static void vortex_timer(unsigned long arg);
718 static void rx_oom_timer(unsigned long arg);
719 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
720 struct net_device *dev);
721 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
722 struct net_device *dev);
723 static int vortex_rx(struct net_device *dev);
724 static int boomerang_rx(struct net_device *dev);
725 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
726 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
727 static int vortex_close(struct net_device *dev);
728 static void dump_tx_ring(struct net_device *dev);
729 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
730 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
731 static void set_rx_mode(struct net_device *dev);
732 #ifdef CONFIG_PCI
733 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
734 #endif
735 static void vortex_tx_timeout(struct net_device *dev);
736 static void acpi_set_WOL(struct net_device *dev);
737 static const struct ethtool_ops vortex_ethtool_ops;
738 static void set_8021q_mode(struct net_device *dev, int enable);
740 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
741 /* Option count limit only -- unlimited interfaces are supported. */
742 #define MAX_UNITS 8
743 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
744 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
745 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
746 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
747 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
748 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
749 static int global_options = -1;
750 static int global_full_duplex = -1;
751 static int global_enable_wol = -1;
752 static int global_use_mmio = -1;
754 /* Variables to work-around the Compaq PCI BIOS32 problem. */
755 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
756 static struct net_device *compaq_net_device;
758 static int vortex_cards_found;
760 module_param(debug, int, 0);
761 module_param(global_options, int, 0);
762 module_param_array(options, int, NULL, 0);
763 module_param(global_full_duplex, int, 0);
764 module_param_array(full_duplex, int, NULL, 0);
765 module_param_array(hw_checksums, int, NULL, 0);
766 module_param_array(flow_ctrl, int, NULL, 0);
767 module_param(global_enable_wol, int, 0);
768 module_param_array(enable_wol, int, NULL, 0);
769 module_param(rx_copybreak, int, 0);
770 module_param(max_interrupt_work, int, 0);
771 module_param(compaq_ioaddr, int, 0);
772 module_param(compaq_irq, int, 0);
773 module_param(compaq_device_id, int, 0);
774 module_param(watchdog, int, 0);
775 module_param(global_use_mmio, int, 0);
776 module_param_array(use_mmio, int, NULL, 0);
777 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
778 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
779 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
780 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
781 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
782 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
783 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
784 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
785 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
786 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
787 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
788 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
789 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
790 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
791 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
792 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
793 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
795 #ifdef CONFIG_NET_POLL_CONTROLLER
796 static void poll_vortex(struct net_device *dev)
798 struct vortex_private *vp = netdev_priv(dev);
799 unsigned long flags;
800 local_irq_save(flags);
801 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
802 local_irq_restore(flags);
804 #endif
806 #ifdef CONFIG_PM
808 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
810 struct net_device *dev = pci_get_drvdata(pdev);
812 if (dev && netdev_priv(dev)) {
813 if (netif_running(dev)) {
814 netif_device_detach(dev);
815 vortex_down(dev, 1);
817 pci_save_state(pdev);
818 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
819 free_irq(dev->irq, dev);
820 pci_disable_device(pdev);
821 pci_set_power_state(pdev, pci_choose_state(pdev, state));
823 return 0;
826 static int vortex_resume(struct pci_dev *pdev)
828 struct net_device *dev = pci_get_drvdata(pdev);
829 struct vortex_private *vp = netdev_priv(dev);
830 int err;
832 if (dev && vp) {
833 pci_set_power_state(pdev, PCI_D0);
834 pci_restore_state(pdev);
835 err = pci_enable_device(pdev);
836 if (err) {
837 pr_warning("%s: Could not enable device\n",
838 dev->name);
839 return err;
841 pci_set_master(pdev);
842 if (request_irq(dev->irq, vp->full_bus_master_rx ?
843 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
844 pr_warning("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
845 pci_disable_device(pdev);
846 return -EBUSY;
848 if (netif_running(dev)) {
849 err = vortex_up(dev);
850 if (err)
851 return err;
852 else
853 netif_device_attach(dev);
856 return 0;
859 #endif /* CONFIG_PM */
861 #ifdef CONFIG_EISA
862 static struct eisa_device_id vortex_eisa_ids[] = {
863 { "TCM5920", CH_3C592 },
864 { "TCM5970", CH_3C597 },
865 { "" }
867 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
869 static int __init vortex_eisa_probe(struct device *device)
871 void __iomem *ioaddr;
872 struct eisa_device *edev;
874 edev = to_eisa_device(device);
876 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
877 return -EBUSY;
879 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
881 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
882 edev->id.driver_data, vortex_cards_found)) {
883 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
884 return -ENODEV;
887 vortex_cards_found++;
889 return 0;
892 static int __devexit vortex_eisa_remove(struct device *device)
894 struct eisa_device *edev;
895 struct net_device *dev;
896 struct vortex_private *vp;
897 void __iomem *ioaddr;
899 edev = to_eisa_device(device);
900 dev = eisa_get_drvdata(edev);
902 if (!dev) {
903 pr_err("vortex_eisa_remove called for Compaq device!\n");
904 BUG();
907 vp = netdev_priv(dev);
908 ioaddr = vp->ioaddr;
910 unregister_netdev(dev);
911 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
912 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
914 free_netdev(dev);
915 return 0;
918 static struct eisa_driver vortex_eisa_driver = {
919 .id_table = vortex_eisa_ids,
920 .driver = {
921 .name = "3c59x",
922 .probe = vortex_eisa_probe,
923 .remove = __devexit_p(vortex_eisa_remove)
927 #endif /* CONFIG_EISA */
929 /* returns count found (>= 0), or negative on error */
930 static int __init vortex_eisa_init(void)
932 int eisa_found = 0;
933 int orig_cards_found = vortex_cards_found;
935 #ifdef CONFIG_EISA
936 int err;
938 err = eisa_driver_register (&vortex_eisa_driver);
939 if (!err) {
941 * Because of the way EISA bus is probed, we cannot assume
942 * any device have been found when we exit from
943 * eisa_driver_register (the bus root driver may not be
944 * initialized yet). So we blindly assume something was
945 * found, and let the sysfs magic happend...
947 eisa_found = 1;
949 #endif
951 /* Special code to work-around the Compaq PCI BIOS32 problem. */
952 if (compaq_ioaddr) {
953 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
954 compaq_irq, compaq_device_id, vortex_cards_found++);
957 return vortex_cards_found - orig_cards_found + eisa_found;
960 /* returns count (>= 0), or negative on error */
961 static int __devinit vortex_init_one(struct pci_dev *pdev,
962 const struct pci_device_id *ent)
964 int rc, unit, pci_bar;
965 struct vortex_chip_info *vci;
966 void __iomem *ioaddr;
968 /* wake up and enable device */
969 rc = pci_enable_device(pdev);
970 if (rc < 0)
971 goto out;
973 unit = vortex_cards_found;
975 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
976 /* Determine the default if the user didn't override us */
977 vci = &vortex_info_tbl[ent->driver_data];
978 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
979 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
980 pci_bar = use_mmio[unit] ? 1 : 0;
981 else
982 pci_bar = global_use_mmio ? 1 : 0;
984 ioaddr = pci_iomap(pdev, pci_bar, 0);
985 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
986 ioaddr = pci_iomap(pdev, 0, 0);
988 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
989 ent->driver_data, unit);
990 if (rc < 0) {
991 pci_disable_device(pdev);
992 goto out;
995 vortex_cards_found++;
997 out:
998 return rc;
1001 static const struct net_device_ops boomrang_netdev_ops = {
1002 .ndo_open = vortex_open,
1003 .ndo_stop = vortex_close,
1004 .ndo_start_xmit = boomerang_start_xmit,
1005 .ndo_tx_timeout = vortex_tx_timeout,
1006 .ndo_get_stats = vortex_get_stats,
1007 #ifdef CONFIG_PCI
1008 .ndo_do_ioctl = vortex_ioctl,
1009 #endif
1010 .ndo_set_multicast_list = set_rx_mode,
1011 .ndo_change_mtu = eth_change_mtu,
1012 .ndo_set_mac_address = eth_mac_addr,
1013 .ndo_validate_addr = eth_validate_addr,
1014 #ifdef CONFIG_NET_POLL_CONTROLLER
1015 .ndo_poll_controller = poll_vortex,
1016 #endif
1019 static const struct net_device_ops vortex_netdev_ops = {
1020 .ndo_open = vortex_open,
1021 .ndo_stop = vortex_close,
1022 .ndo_start_xmit = vortex_start_xmit,
1023 .ndo_tx_timeout = vortex_tx_timeout,
1024 .ndo_get_stats = vortex_get_stats,
1025 #ifdef CONFIG_PCI
1026 .ndo_do_ioctl = vortex_ioctl,
1027 #endif
1028 .ndo_set_multicast_list = set_rx_mode,
1029 .ndo_change_mtu = eth_change_mtu,
1030 .ndo_set_mac_address = eth_mac_addr,
1031 .ndo_validate_addr = eth_validate_addr,
1032 #ifdef CONFIG_NET_POLL_CONTROLLER
1033 .ndo_poll_controller = poll_vortex,
1034 #endif
1038 * Start up the PCI/EISA device which is described by *gendev.
1039 * Return 0 on success.
1041 * NOTE: pdev can be NULL, for the case of a Compaq device
1043 static int __devinit vortex_probe1(struct device *gendev,
1044 void __iomem *ioaddr, int irq,
1045 int chip_idx, int card_idx)
1047 struct vortex_private *vp;
1048 int option;
1049 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1050 int i, step;
1051 struct net_device *dev;
1052 static int printed_version;
1053 int retval, print_info;
1054 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1055 const char *print_name = "3c59x";
1056 struct pci_dev *pdev = NULL;
1057 struct eisa_device *edev = NULL;
1059 if (!printed_version) {
1060 pr_info("%s", version);
1061 printed_version = 1;
1064 if (gendev) {
1065 if ((pdev = DEVICE_PCI(gendev))) {
1066 print_name = pci_name(pdev);
1069 if ((edev = DEVICE_EISA(gendev))) {
1070 print_name = dev_name(&edev->dev);
1074 dev = alloc_etherdev(sizeof(*vp));
1075 retval = -ENOMEM;
1076 if (!dev) {
1077 pr_err(PFX "unable to allocate etherdev, aborting\n");
1078 goto out;
1080 SET_NETDEV_DEV(dev, gendev);
1081 vp = netdev_priv(dev);
1083 option = global_options;
1085 /* The lower four bits are the media type. */
1086 if (dev->mem_start) {
1088 * The 'options' param is passed in as the third arg to the
1089 * LILO 'ether=' argument for non-modular use
1091 option = dev->mem_start;
1093 else if (card_idx < MAX_UNITS) {
1094 if (options[card_idx] >= 0)
1095 option = options[card_idx];
1098 if (option > 0) {
1099 if (option & 0x8000)
1100 vortex_debug = 7;
1101 if (option & 0x4000)
1102 vortex_debug = 2;
1103 if (option & 0x0400)
1104 vp->enable_wol = 1;
1107 print_info = (vortex_debug > 1);
1108 if (print_info)
1109 pr_info("See Documentation/networking/vortex.txt\n");
1111 pr_info("%s: 3Com %s %s at %p.\n",
1112 print_name,
1113 pdev ? "PCI" : "EISA",
1114 vci->name,
1115 ioaddr);
1117 dev->base_addr = (unsigned long)ioaddr;
1118 dev->irq = irq;
1119 dev->mtu = mtu;
1120 vp->ioaddr = ioaddr;
1121 vp->large_frames = mtu > 1500;
1122 vp->drv_flags = vci->drv_flags;
1123 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1124 vp->io_size = vci->io_size;
1125 vp->card_idx = card_idx;
1127 /* module list only for Compaq device */
1128 if (gendev == NULL) {
1129 compaq_net_device = dev;
1132 /* PCI-only startup logic */
1133 if (pdev) {
1134 /* EISA resources already marked, so only PCI needs to do this here */
1135 /* Ignore return value, because Cardbus drivers already allocate for us */
1136 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1137 vp->must_free_region = 1;
1139 /* enable bus-mastering if necessary */
1140 if (vci->flags & PCI_USES_MASTER)
1141 pci_set_master(pdev);
1143 if (vci->drv_flags & IS_VORTEX) {
1144 u8 pci_latency;
1145 u8 new_latency = 248;
1147 /* Check the PCI latency value. On the 3c590 series the latency timer
1148 must be set to the maximum value to avoid data corruption that occurs
1149 when the timer expires during a transfer. This bug exists the Vortex
1150 chip only. */
1151 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1152 if (pci_latency < new_latency) {
1153 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1154 print_name, pci_latency, new_latency);
1155 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1160 spin_lock_init(&vp->lock);
1161 vp->gendev = gendev;
1162 vp->mii.dev = dev;
1163 vp->mii.mdio_read = mdio_read;
1164 vp->mii.mdio_write = mdio_write;
1165 vp->mii.phy_id_mask = 0x1f;
1166 vp->mii.reg_num_mask = 0x1f;
1168 /* Makes sure rings are at least 16 byte aligned. */
1169 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1170 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1171 &vp->rx_ring_dma);
1172 retval = -ENOMEM;
1173 if (!vp->rx_ring)
1174 goto free_region;
1176 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1177 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1179 /* if we are a PCI driver, we store info in pdev->driver_data
1180 * instead of a module list */
1181 if (pdev)
1182 pci_set_drvdata(pdev, dev);
1183 if (edev)
1184 eisa_set_drvdata(edev, dev);
1186 vp->media_override = 7;
1187 if (option >= 0) {
1188 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1189 if (vp->media_override != 7)
1190 vp->medialock = 1;
1191 vp->full_duplex = (option & 0x200) ? 1 : 0;
1192 vp->bus_master = (option & 16) ? 1 : 0;
1195 if (global_full_duplex > 0)
1196 vp->full_duplex = 1;
1197 if (global_enable_wol > 0)
1198 vp->enable_wol = 1;
1200 if (card_idx < MAX_UNITS) {
1201 if (full_duplex[card_idx] > 0)
1202 vp->full_duplex = 1;
1203 if (flow_ctrl[card_idx] > 0)
1204 vp->flow_ctrl = 1;
1205 if (enable_wol[card_idx] > 0)
1206 vp->enable_wol = 1;
1209 vp->mii.force_media = vp->full_duplex;
1210 vp->options = option;
1211 /* Read the station address from the EEPROM. */
1212 EL3WINDOW(0);
1214 int base;
1216 if (vci->drv_flags & EEPROM_8BIT)
1217 base = 0x230;
1218 else if (vci->drv_flags & EEPROM_OFFSET)
1219 base = EEPROM_Read + 0x30;
1220 else
1221 base = EEPROM_Read;
1223 for (i = 0; i < 0x40; i++) {
1224 int timer;
1225 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1226 /* Pause for at least 162 us. for the read to take place. */
1227 for (timer = 10; timer >= 0; timer--) {
1228 udelay(162);
1229 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1230 break;
1232 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1235 for (i = 0; i < 0x18; i++)
1236 checksum ^= eeprom[i];
1237 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1238 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1239 while (i < 0x21)
1240 checksum ^= eeprom[i++];
1241 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1243 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1244 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1245 for (i = 0; i < 3; i++)
1246 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1247 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1248 if (print_info)
1249 pr_cont(" %pM", dev->dev_addr);
1250 /* Unfortunately an all zero eeprom passes the checksum and this
1251 gets found in the wild in failure cases. Crypto is hard 8) */
1252 if (!is_valid_ether_addr(dev->dev_addr)) {
1253 retval = -EINVAL;
1254 pr_err("*** EEPROM MAC address is invalid.\n");
1255 goto free_ring; /* With every pack */
1257 EL3WINDOW(2);
1258 for (i = 0; i < 6; i++)
1259 iowrite8(dev->dev_addr[i], ioaddr + i);
1261 if (print_info)
1262 pr_cont(", IRQ %d\n", dev->irq);
1263 /* Tell them about an invalid IRQ. */
1264 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1265 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1266 dev->irq);
1268 EL3WINDOW(4);
1269 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1270 if (print_info) {
1271 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1272 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1273 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1277 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1278 unsigned short n;
1280 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1281 if (!vp->cb_fn_base) {
1282 retval = -ENOMEM;
1283 goto free_ring;
1286 if (print_info) {
1287 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1288 print_name,
1289 (unsigned long long)pci_resource_start(pdev, 2),
1290 vp->cb_fn_base);
1292 EL3WINDOW(2);
1294 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1295 if (vp->drv_flags & INVERT_LED_PWR)
1296 n |= 0x10;
1297 if (vp->drv_flags & INVERT_MII_PWR)
1298 n |= 0x4000;
1299 iowrite16(n, ioaddr + Wn2_ResetOptions);
1300 if (vp->drv_flags & WNO_XCVR_PWR) {
1301 EL3WINDOW(0);
1302 iowrite16(0x0800, ioaddr);
1306 /* Extract our information from the EEPROM data. */
1307 vp->info1 = eeprom[13];
1308 vp->info2 = eeprom[15];
1309 vp->capabilities = eeprom[16];
1311 if (vp->info1 & 0x8000) {
1312 vp->full_duplex = 1;
1313 if (print_info)
1314 pr_info("Full duplex capable\n");
1318 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1319 unsigned int config;
1320 EL3WINDOW(3);
1321 vp->available_media = ioread16(ioaddr + Wn3_Options);
1322 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1323 vp->available_media = 0x40;
1324 config = ioread32(ioaddr + Wn3_Config);
1325 if (print_info) {
1326 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1327 config, ioread16(ioaddr + Wn3_Options));
1328 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1329 8 << RAM_SIZE(config),
1330 RAM_WIDTH(config) ? "word" : "byte",
1331 ram_split[RAM_SPLIT(config)],
1332 AUTOSELECT(config) ? "autoselect/" : "",
1333 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1334 media_tbl[XCVR(config)].name);
1336 vp->default_media = XCVR(config);
1337 if (vp->default_media == XCVR_NWAY)
1338 vp->has_nway = 1;
1339 vp->autoselect = AUTOSELECT(config);
1342 if (vp->media_override != 7) {
1343 pr_info("%s: Media override to transceiver type %d (%s).\n",
1344 print_name, vp->media_override,
1345 media_tbl[vp->media_override].name);
1346 dev->if_port = vp->media_override;
1347 } else
1348 dev->if_port = vp->default_media;
1350 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1351 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1352 int phy, phy_idx = 0;
1353 EL3WINDOW(4);
1354 mii_preamble_required++;
1355 if (vp->drv_flags & EXTRA_PREAMBLE)
1356 mii_preamble_required++;
1357 mdio_sync(ioaddr, 32);
1358 mdio_read(dev, 24, MII_BMSR);
1359 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1360 int mii_status, phyx;
1363 * For the 3c905CX we look at index 24 first, because it bogusly
1364 * reports an external PHY at all indices
1366 if (phy == 0)
1367 phyx = 24;
1368 else if (phy <= 24)
1369 phyx = phy - 1;
1370 else
1371 phyx = phy;
1372 mii_status = mdio_read(dev, phyx, MII_BMSR);
1373 if (mii_status && mii_status != 0xffff) {
1374 vp->phys[phy_idx++] = phyx;
1375 if (print_info) {
1376 pr_info(" MII transceiver found at address %d, status %4x.\n",
1377 phyx, mii_status);
1379 if ((mii_status & 0x0040) == 0)
1380 mii_preamble_required++;
1383 mii_preamble_required--;
1384 if (phy_idx == 0) {
1385 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1386 vp->phys[0] = 24;
1387 } else {
1388 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1389 if (vp->full_duplex) {
1390 /* Only advertise the FD media types. */
1391 vp->advertising &= ~0x02A0;
1392 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1395 vp->mii.phy_id = vp->phys[0];
1398 if (vp->capabilities & CapBusMaster) {
1399 vp->full_bus_master_tx = 1;
1400 if (print_info) {
1401 pr_info(" Enabling bus-master transmits and %s receives.\n",
1402 (vp->info2 & 1) ? "early" : "whole-frame" );
1404 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1405 vp->bus_master = 0; /* AKPM: vortex only */
1408 /* The 3c59x-specific entries in the device structure. */
1409 if (vp->full_bus_master_tx) {
1410 dev->netdev_ops = &boomrang_netdev_ops;
1411 /* Actually, it still should work with iommu. */
1412 if (card_idx < MAX_UNITS &&
1413 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1414 hw_checksums[card_idx] == 1)) {
1415 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1417 } else
1418 dev->netdev_ops = &vortex_netdev_ops;
1420 if (print_info) {
1421 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1422 print_name,
1423 (dev->features & NETIF_F_SG) ? "en":"dis",
1424 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1427 dev->ethtool_ops = &vortex_ethtool_ops;
1428 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1430 if (pdev) {
1431 vp->pm_state_valid = 1;
1432 pci_save_state(VORTEX_PCI(vp));
1433 acpi_set_WOL(dev);
1435 retval = register_netdev(dev);
1436 if (retval == 0)
1437 return 0;
1439 free_ring:
1440 pci_free_consistent(pdev,
1441 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1442 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1443 vp->rx_ring,
1444 vp->rx_ring_dma);
1445 free_region:
1446 if (vp->must_free_region)
1447 release_region(dev->base_addr, vci->io_size);
1448 free_netdev(dev);
1449 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1450 out:
1451 return retval;
1454 static void
1455 issue_and_wait(struct net_device *dev, int cmd)
1457 struct vortex_private *vp = netdev_priv(dev);
1458 void __iomem *ioaddr = vp->ioaddr;
1459 int i;
1461 iowrite16(cmd, ioaddr + EL3_CMD);
1462 for (i = 0; i < 2000; i++) {
1463 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1464 return;
1467 /* OK, that didn't work. Do it the slow way. One second */
1468 for (i = 0; i < 100000; i++) {
1469 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1470 if (vortex_debug > 1)
1471 pr_info("%s: command 0x%04x took %d usecs\n",
1472 dev->name, cmd, i * 10);
1473 return;
1475 udelay(10);
1477 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1478 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1481 static void
1482 vortex_set_duplex(struct net_device *dev)
1484 struct vortex_private *vp = netdev_priv(dev);
1485 void __iomem *ioaddr = vp->ioaddr;
1487 pr_info("%s: setting %s-duplex.\n",
1488 dev->name, (vp->full_duplex) ? "full" : "half");
1490 EL3WINDOW(3);
1491 /* Set the full-duplex bit. */
1492 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1493 (vp->large_frames ? 0x40 : 0) |
1494 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1495 0x100 : 0),
1496 ioaddr + Wn3_MAC_Ctrl);
1499 static void vortex_check_media(struct net_device *dev, unsigned int init)
1501 struct vortex_private *vp = netdev_priv(dev);
1502 unsigned int ok_to_print = 0;
1504 if (vortex_debug > 3)
1505 ok_to_print = 1;
1507 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1508 vp->full_duplex = vp->mii.full_duplex;
1509 vortex_set_duplex(dev);
1510 } else if (init) {
1511 vortex_set_duplex(dev);
1515 static int
1516 vortex_up(struct net_device *dev)
1518 struct vortex_private *vp = netdev_priv(dev);
1519 void __iomem *ioaddr = vp->ioaddr;
1520 unsigned int config;
1521 int i, mii_reg1, mii_reg5, err = 0;
1523 if (VORTEX_PCI(vp)) {
1524 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1525 if (vp->pm_state_valid)
1526 pci_restore_state(VORTEX_PCI(vp));
1527 err = pci_enable_device(VORTEX_PCI(vp));
1528 if (err) {
1529 pr_warning("%s: Could not enable device\n",
1530 dev->name);
1531 goto err_out;
1535 /* Before initializing select the active media port. */
1536 EL3WINDOW(3);
1537 config = ioread32(ioaddr + Wn3_Config);
1539 if (vp->media_override != 7) {
1540 pr_info("%s: Media override to transceiver %d (%s).\n",
1541 dev->name, vp->media_override,
1542 media_tbl[vp->media_override].name);
1543 dev->if_port = vp->media_override;
1544 } else if (vp->autoselect) {
1545 if (vp->has_nway) {
1546 if (vortex_debug > 1)
1547 pr_info("%s: using NWAY device table, not %d\n",
1548 dev->name, dev->if_port);
1549 dev->if_port = XCVR_NWAY;
1550 } else {
1551 /* Find first available media type, starting with 100baseTx. */
1552 dev->if_port = XCVR_100baseTx;
1553 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1554 dev->if_port = media_tbl[dev->if_port].next;
1555 if (vortex_debug > 1)
1556 pr_info("%s: first available media type: %s\n",
1557 dev->name, media_tbl[dev->if_port].name);
1559 } else {
1560 dev->if_port = vp->default_media;
1561 if (vortex_debug > 1)
1562 pr_info("%s: using default media %s\n",
1563 dev->name, media_tbl[dev->if_port].name);
1566 init_timer(&vp->timer);
1567 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1568 vp->timer.data = (unsigned long)dev;
1569 vp->timer.function = vortex_timer; /* timer handler */
1570 add_timer(&vp->timer);
1572 init_timer(&vp->rx_oom_timer);
1573 vp->rx_oom_timer.data = (unsigned long)dev;
1574 vp->rx_oom_timer.function = rx_oom_timer;
1576 if (vortex_debug > 1)
1577 pr_debug("%s: Initial media type %s.\n",
1578 dev->name, media_tbl[dev->if_port].name);
1580 vp->full_duplex = vp->mii.force_media;
1581 config = BFINS(config, dev->if_port, 20, 4);
1582 if (vortex_debug > 6)
1583 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1584 iowrite32(config, ioaddr + Wn3_Config);
1586 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1587 EL3WINDOW(4);
1588 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1589 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1590 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1591 vp->mii.full_duplex = vp->full_duplex;
1593 vortex_check_media(dev, 1);
1595 else
1596 vortex_set_duplex(dev);
1598 issue_and_wait(dev, TxReset);
1600 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1602 issue_and_wait(dev, RxReset|0x04);
1605 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1607 if (vortex_debug > 1) {
1608 EL3WINDOW(4);
1609 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1610 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1613 /* Set the station address and mask in window 2 each time opened. */
1614 EL3WINDOW(2);
1615 for (i = 0; i < 6; i++)
1616 iowrite8(dev->dev_addr[i], ioaddr + i);
1617 for (; i < 12; i+=2)
1618 iowrite16(0, ioaddr + i);
1620 if (vp->cb_fn_base) {
1621 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1622 if (vp->drv_flags & INVERT_LED_PWR)
1623 n |= 0x10;
1624 if (vp->drv_flags & INVERT_MII_PWR)
1625 n |= 0x4000;
1626 iowrite16(n, ioaddr + Wn2_ResetOptions);
1629 if (dev->if_port == XCVR_10base2)
1630 /* Start the thinnet transceiver. We should really wait 50ms...*/
1631 iowrite16(StartCoax, ioaddr + EL3_CMD);
1632 if (dev->if_port != XCVR_NWAY) {
1633 EL3WINDOW(4);
1634 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1635 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1638 /* Switch to the stats window, and clear all stats by reading. */
1639 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1640 EL3WINDOW(6);
1641 for (i = 0; i < 10; i++)
1642 ioread8(ioaddr + i);
1643 ioread16(ioaddr + 10);
1644 ioread16(ioaddr + 12);
1645 /* New: On the Vortex we must also clear the BadSSD counter. */
1646 EL3WINDOW(4);
1647 ioread8(ioaddr + 12);
1648 /* ..and on the Boomerang we enable the extra statistics bits. */
1649 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1651 /* Switch to register set 7 for normal use. */
1652 EL3WINDOW(7);
1654 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1655 vp->cur_rx = vp->dirty_rx = 0;
1656 /* Initialize the RxEarly register as recommended. */
1657 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1658 iowrite32(0x0020, ioaddr + PktStatus);
1659 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1661 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1662 vp->cur_tx = vp->dirty_tx = 0;
1663 if (vp->drv_flags & IS_BOOMERANG)
1664 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1665 /* Clear the Rx, Tx rings. */
1666 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1667 vp->rx_ring[i].status = 0;
1668 for (i = 0; i < TX_RING_SIZE; i++)
1669 vp->tx_skbuff[i] = NULL;
1670 iowrite32(0, ioaddr + DownListPtr);
1672 /* Set receiver mode: presumably accept b-case and phys addr only. */
1673 set_rx_mode(dev);
1674 /* enable 802.1q tagged frames */
1675 set_8021q_mode(dev, 1);
1676 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1678 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1679 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1680 /* Allow status bits to be seen. */
1681 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1682 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1683 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1684 (vp->bus_master ? DMADone : 0);
1685 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1686 (vp->full_bus_master_rx ? 0 : RxComplete) |
1687 StatsFull | HostError | TxComplete | IntReq
1688 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1689 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1690 /* Ack all pending events, and set active indicator mask. */
1691 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1692 ioaddr + EL3_CMD);
1693 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1694 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1695 iowrite32(0x8000, vp->cb_fn_base + 4);
1696 netif_start_queue (dev);
1697 err_out:
1698 return err;
1701 static int
1702 vortex_open(struct net_device *dev)
1704 struct vortex_private *vp = netdev_priv(dev);
1705 int i;
1706 int retval;
1708 /* Use the now-standard shared IRQ implementation. */
1709 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1710 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1711 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1712 goto err;
1715 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1716 if (vortex_debug > 2)
1717 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1718 for (i = 0; i < RX_RING_SIZE; i++) {
1719 struct sk_buff *skb;
1720 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1721 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1722 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1724 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1725 GFP_KERNEL);
1726 vp->rx_skbuff[i] = skb;
1727 if (skb == NULL)
1728 break; /* Bad news! */
1730 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1731 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1733 if (i != RX_RING_SIZE) {
1734 int j;
1735 pr_emerg("%s: no memory for rx ring\n", dev->name);
1736 for (j = 0; j < i; j++) {
1737 if (vp->rx_skbuff[j]) {
1738 dev_kfree_skb(vp->rx_skbuff[j]);
1739 vp->rx_skbuff[j] = NULL;
1742 retval = -ENOMEM;
1743 goto err_free_irq;
1745 /* Wrap the ring. */
1746 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1749 retval = vortex_up(dev);
1750 if (!retval)
1751 goto out;
1753 err_free_irq:
1754 free_irq(dev->irq, dev);
1755 err:
1756 if (vortex_debug > 1)
1757 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1758 out:
1759 return retval;
1762 static void
1763 vortex_timer(unsigned long data)
1765 struct net_device *dev = (struct net_device *)data;
1766 struct vortex_private *vp = netdev_priv(dev);
1767 void __iomem *ioaddr = vp->ioaddr;
1768 int next_tick = 60*HZ;
1769 int ok = 0;
1770 int media_status, old_window;
1772 if (vortex_debug > 2) {
1773 pr_debug("%s: Media selection timer tick happened, %s.\n",
1774 dev->name, media_tbl[dev->if_port].name);
1775 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1778 disable_irq_lockdep(dev->irq);
1779 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1780 EL3WINDOW(4);
1781 media_status = ioread16(ioaddr + Wn4_Media);
1782 switch (dev->if_port) {
1783 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1784 if (media_status & Media_LnkBeat) {
1785 netif_carrier_on(dev);
1786 ok = 1;
1787 if (vortex_debug > 1)
1788 pr_debug("%s: Media %s has link beat, %x.\n",
1789 dev->name, media_tbl[dev->if_port].name, media_status);
1790 } else {
1791 netif_carrier_off(dev);
1792 if (vortex_debug > 1) {
1793 pr_debug("%s: Media %s has no link beat, %x.\n",
1794 dev->name, media_tbl[dev->if_port].name, media_status);
1797 break;
1798 case XCVR_MII: case XCVR_NWAY:
1800 ok = 1;
1801 /* Interrupts are already disabled */
1802 spin_lock(&vp->lock);
1803 vortex_check_media(dev, 0);
1804 spin_unlock(&vp->lock);
1806 break;
1807 default: /* Other media types handled by Tx timeouts. */
1808 if (vortex_debug > 1)
1809 pr_debug("%s: Media %s has no indication, %x.\n",
1810 dev->name, media_tbl[dev->if_port].name, media_status);
1811 ok = 1;
1814 if (!netif_carrier_ok(dev))
1815 next_tick = 5*HZ;
1817 if (vp->medialock)
1818 goto leave_media_alone;
1820 if (!ok) {
1821 unsigned int config;
1823 do {
1824 dev->if_port = media_tbl[dev->if_port].next;
1825 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1826 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1827 dev->if_port = vp->default_media;
1828 if (vortex_debug > 1)
1829 pr_debug("%s: Media selection failing, using default %s port.\n",
1830 dev->name, media_tbl[dev->if_port].name);
1831 } else {
1832 if (vortex_debug > 1)
1833 pr_debug("%s: Media selection failed, now trying %s port.\n",
1834 dev->name, media_tbl[dev->if_port].name);
1835 next_tick = media_tbl[dev->if_port].wait;
1837 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1838 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1840 EL3WINDOW(3);
1841 config = ioread32(ioaddr + Wn3_Config);
1842 config = BFINS(config, dev->if_port, 20, 4);
1843 iowrite32(config, ioaddr + Wn3_Config);
1845 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1846 ioaddr + EL3_CMD);
1847 if (vortex_debug > 1)
1848 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1849 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1852 leave_media_alone:
1853 if (vortex_debug > 2)
1854 pr_debug("%s: Media selection timer finished, %s.\n",
1855 dev->name, media_tbl[dev->if_port].name);
1857 EL3WINDOW(old_window);
1858 enable_irq_lockdep(dev->irq);
1859 mod_timer(&vp->timer, RUN_AT(next_tick));
1860 if (vp->deferred)
1861 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1862 return;
1865 static void vortex_tx_timeout(struct net_device *dev)
1867 struct vortex_private *vp = netdev_priv(dev);
1868 void __iomem *ioaddr = vp->ioaddr;
1870 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1871 dev->name, ioread8(ioaddr + TxStatus),
1872 ioread16(ioaddr + EL3_STATUS));
1873 EL3WINDOW(4);
1874 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1875 ioread16(ioaddr + Wn4_NetDiag),
1876 ioread16(ioaddr + Wn4_Media),
1877 ioread32(ioaddr + PktStatus),
1878 ioread16(ioaddr + Wn4_FIFODiag));
1879 /* Slight code bloat to be user friendly. */
1880 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1881 pr_err("%s: Transmitter encountered 16 collisions --"
1882 " network cable problem?\n", dev->name);
1883 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1884 pr_err("%s: Interrupt posted but not delivered --"
1885 " IRQ blocked by another device?\n", dev->name);
1886 /* Bad idea here.. but we might as well handle a few events. */
1889 * Block interrupts because vortex_interrupt does a bare spin_lock()
1891 unsigned long flags;
1892 local_irq_save(flags);
1893 if (vp->full_bus_master_tx)
1894 boomerang_interrupt(dev->irq, dev);
1895 else
1896 vortex_interrupt(dev->irq, dev);
1897 local_irq_restore(flags);
1901 if (vortex_debug > 0)
1902 dump_tx_ring(dev);
1904 issue_and_wait(dev, TxReset);
1906 dev->stats.tx_errors++;
1907 if (vp->full_bus_master_tx) {
1908 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1909 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1910 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1911 ioaddr + DownListPtr);
1912 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1913 netif_wake_queue (dev);
1914 if (vp->drv_flags & IS_BOOMERANG)
1915 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1916 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1917 } else {
1918 dev->stats.tx_dropped++;
1919 netif_wake_queue(dev);
1922 /* Issue Tx Enable */
1923 iowrite16(TxEnable, ioaddr + EL3_CMD);
1924 dev->trans_start = jiffies;
1926 /* Switch to register set 7 for normal use. */
1927 EL3WINDOW(7);
1931 * Handle uncommon interrupt sources. This is a separate routine to minimize
1932 * the cache impact.
1934 static void
1935 vortex_error(struct net_device *dev, int status)
1937 struct vortex_private *vp = netdev_priv(dev);
1938 void __iomem *ioaddr = vp->ioaddr;
1939 int do_tx_reset = 0, reset_mask = 0;
1940 unsigned char tx_status = 0;
1942 if (vortex_debug > 2) {
1943 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1946 if (status & TxComplete) { /* Really "TxError" for us. */
1947 tx_status = ioread8(ioaddr + TxStatus);
1948 /* Presumably a tx-timeout. We must merely re-enable. */
1949 if (vortex_debug > 2
1950 || (tx_status != 0x88 && vortex_debug > 0)) {
1951 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1952 dev->name, tx_status);
1953 if (tx_status == 0x82) {
1954 pr_err("Probably a duplex mismatch. See "
1955 "Documentation/networking/vortex.txt\n");
1957 dump_tx_ring(dev);
1959 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1960 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1961 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1962 iowrite8(0, ioaddr + TxStatus);
1963 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1964 do_tx_reset = 1;
1965 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1966 do_tx_reset = 1;
1967 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1968 } else { /* Merely re-enable the transmitter. */
1969 iowrite16(TxEnable, ioaddr + EL3_CMD);
1973 if (status & RxEarly) { /* Rx early is unused. */
1974 vortex_rx(dev);
1975 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1977 if (status & StatsFull) { /* Empty statistics. */
1978 static int DoneDidThat;
1979 if (vortex_debug > 4)
1980 pr_debug("%s: Updating stats.\n", dev->name);
1981 update_stats(ioaddr, dev);
1982 /* HACK: Disable statistics as an interrupt source. */
1983 /* This occurs when we have the wrong media type! */
1984 if (DoneDidThat == 0 &&
1985 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1986 pr_warning("%s: Updating statistics failed, disabling "
1987 "stats as an interrupt source.\n", dev->name);
1988 EL3WINDOW(5);
1989 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1990 vp->intr_enable &= ~StatsFull;
1991 EL3WINDOW(7);
1992 DoneDidThat++;
1995 if (status & IntReq) { /* Restore all interrupt sources. */
1996 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1997 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1999 if (status & HostError) {
2000 u16 fifo_diag;
2001 EL3WINDOW(4);
2002 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2003 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2004 dev->name, fifo_diag);
2005 /* Adapter failure requires Tx/Rx reset and reinit. */
2006 if (vp->full_bus_master_tx) {
2007 int bus_status = ioread32(ioaddr + PktStatus);
2008 /* 0x80000000 PCI master abort. */
2009 /* 0x40000000 PCI target abort. */
2010 if (vortex_debug)
2011 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2013 /* In this case, blow the card away */
2014 /* Must not enter D3 or we can't legally issue the reset! */
2015 vortex_down(dev, 0);
2016 issue_and_wait(dev, TotalReset | 0xff);
2017 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2018 } else if (fifo_diag & 0x0400)
2019 do_tx_reset = 1;
2020 if (fifo_diag & 0x3000) {
2021 /* Reset Rx fifo and upload logic */
2022 issue_and_wait(dev, RxReset|0x07);
2023 /* Set the Rx filter to the current state. */
2024 set_rx_mode(dev);
2025 /* enable 802.1q VLAN tagged frames */
2026 set_8021q_mode(dev, 1);
2027 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2028 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2032 if (do_tx_reset) {
2033 issue_and_wait(dev, TxReset|reset_mask);
2034 iowrite16(TxEnable, ioaddr + EL3_CMD);
2035 if (!vp->full_bus_master_tx)
2036 netif_wake_queue(dev);
2040 static netdev_tx_t
2041 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2043 struct vortex_private *vp = netdev_priv(dev);
2044 void __iomem *ioaddr = vp->ioaddr;
2046 /* Put out the doubleword header... */
2047 iowrite32(skb->len, ioaddr + TX_FIFO);
2048 if (vp->bus_master) {
2049 /* Set the bus-master controller to transfer the packet. */
2050 int len = (skb->len + 3) & ~3;
2051 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2052 ioaddr + Wn7_MasterAddr);
2053 iowrite16(len, ioaddr + Wn7_MasterLen);
2054 vp->tx_skb = skb;
2055 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2056 /* netif_wake_queue() will be called at the DMADone interrupt. */
2057 } else {
2058 /* ... and the packet rounded to a doubleword. */
2059 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2060 dev_kfree_skb (skb);
2061 if (ioread16(ioaddr + TxFree) > 1536) {
2062 netif_start_queue (dev); /* AKPM: redundant? */
2063 } else {
2064 /* Interrupt us when the FIFO has room for max-sized packet. */
2065 netif_stop_queue(dev);
2066 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2070 dev->trans_start = jiffies;
2072 /* Clear the Tx status stack. */
2074 int tx_status;
2075 int i = 32;
2077 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2078 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2079 if (vortex_debug > 2)
2080 pr_debug("%s: Tx error, status %2.2x.\n",
2081 dev->name, tx_status);
2082 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2083 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2084 if (tx_status & 0x30) {
2085 issue_and_wait(dev, TxReset);
2087 iowrite16(TxEnable, ioaddr + EL3_CMD);
2089 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2092 return NETDEV_TX_OK;
2095 static netdev_tx_t
2096 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2098 struct vortex_private *vp = netdev_priv(dev);
2099 void __iomem *ioaddr = vp->ioaddr;
2100 /* Calculate the next Tx descriptor entry. */
2101 int entry = vp->cur_tx % TX_RING_SIZE;
2102 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2103 unsigned long flags;
2105 if (vortex_debug > 6) {
2106 pr_debug("boomerang_start_xmit()\n");
2107 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2108 dev->name, vp->cur_tx);
2111 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2112 if (vortex_debug > 0)
2113 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2114 dev->name);
2115 netif_stop_queue(dev);
2116 return NETDEV_TX_BUSY;
2119 vp->tx_skbuff[entry] = skb;
2121 vp->tx_ring[entry].next = 0;
2122 #if DO_ZEROCOPY
2123 if (skb->ip_summed != CHECKSUM_PARTIAL)
2124 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2125 else
2126 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2128 if (!skb_shinfo(skb)->nr_frags) {
2129 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2130 skb->len, PCI_DMA_TODEVICE));
2131 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2132 } else {
2133 int i;
2135 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2136 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2137 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2140 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2142 vp->tx_ring[entry].frag[i+1].addr =
2143 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2144 (void*)page_address(frag->page) + frag->page_offset,
2145 frag->size, PCI_DMA_TODEVICE));
2147 if (i == skb_shinfo(skb)->nr_frags-1)
2148 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2149 else
2150 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2153 #else
2154 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2155 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2156 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2157 #endif
2159 spin_lock_irqsave(&vp->lock, flags);
2160 /* Wait for the stall to complete. */
2161 issue_and_wait(dev, DownStall);
2162 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2163 if (ioread32(ioaddr + DownListPtr) == 0) {
2164 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2165 vp->queued_packet++;
2168 vp->cur_tx++;
2169 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2170 netif_stop_queue (dev);
2171 } else { /* Clear previous interrupt enable. */
2172 #if defined(tx_interrupt_mitigation)
2173 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2174 * were selected, this would corrupt DN_COMPLETE. No?
2176 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2177 #endif
2179 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2180 spin_unlock_irqrestore(&vp->lock, flags);
2181 dev->trans_start = jiffies;
2182 return NETDEV_TX_OK;
2185 /* The interrupt handler does all of the Rx thread work and cleans up
2186 after the Tx thread. */
2189 * This is the ISR for the vortex series chips.
2190 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2193 static irqreturn_t
2194 vortex_interrupt(int irq, void *dev_id)
2196 struct net_device *dev = dev_id;
2197 struct vortex_private *vp = netdev_priv(dev);
2198 void __iomem *ioaddr;
2199 int status;
2200 int work_done = max_interrupt_work;
2201 int handled = 0;
2203 ioaddr = vp->ioaddr;
2204 spin_lock(&vp->lock);
2206 status = ioread16(ioaddr + EL3_STATUS);
2208 if (vortex_debug > 6)
2209 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2211 if ((status & IntLatch) == 0)
2212 goto handler_exit; /* No interrupt: shared IRQs cause this */
2213 handled = 1;
2215 if (status & IntReq) {
2216 status |= vp->deferred;
2217 vp->deferred = 0;
2220 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2221 goto handler_exit;
2223 if (vortex_debug > 4)
2224 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2225 dev->name, status, ioread8(ioaddr + Timer));
2227 do {
2228 if (vortex_debug > 5)
2229 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2230 dev->name, status);
2231 if (status & RxComplete)
2232 vortex_rx(dev);
2234 if (status & TxAvailable) {
2235 if (vortex_debug > 5)
2236 pr_debug(" TX room bit was handled.\n");
2237 /* There's room in the FIFO for a full-sized packet. */
2238 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2239 netif_wake_queue (dev);
2242 if (status & DMADone) {
2243 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2244 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2245 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2246 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2247 if (ioread16(ioaddr + TxFree) > 1536) {
2249 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2250 * insufficient FIFO room, the TxAvailable test will succeed and call
2251 * netif_wake_queue()
2253 netif_wake_queue(dev);
2254 } else { /* Interrupt when FIFO has room for max-sized packet. */
2255 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2256 netif_stop_queue(dev);
2260 /* Check for all uncommon interrupts at once. */
2261 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2262 if (status == 0xffff)
2263 break;
2264 vortex_error(dev, status);
2267 if (--work_done < 0) {
2268 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2269 dev->name, status);
2270 /* Disable all pending interrupts. */
2271 do {
2272 vp->deferred |= status;
2273 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2274 ioaddr + EL3_CMD);
2275 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2276 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2277 /* The timer will reenable interrupts. */
2278 mod_timer(&vp->timer, jiffies + 1*HZ);
2279 break;
2281 /* Acknowledge the IRQ. */
2282 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2283 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2285 if (vortex_debug > 4)
2286 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2287 dev->name, status);
2288 handler_exit:
2289 spin_unlock(&vp->lock);
2290 return IRQ_RETVAL(handled);
2294 * This is the ISR for the boomerang series chips.
2295 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2298 static irqreturn_t
2299 boomerang_interrupt(int irq, void *dev_id)
2301 struct net_device *dev = dev_id;
2302 struct vortex_private *vp = netdev_priv(dev);
2303 void __iomem *ioaddr;
2304 int status;
2305 int work_done = max_interrupt_work;
2307 ioaddr = vp->ioaddr;
2310 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2311 * and boomerang_start_xmit
2313 spin_lock(&vp->lock);
2315 status = ioread16(ioaddr + EL3_STATUS);
2317 if (vortex_debug > 6)
2318 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2320 if ((status & IntLatch) == 0)
2321 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2323 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2324 if (vortex_debug > 1)
2325 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2326 goto handler_exit;
2329 if (status & IntReq) {
2330 status |= vp->deferred;
2331 vp->deferred = 0;
2334 if (vortex_debug > 4)
2335 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2336 dev->name, status, ioread8(ioaddr + Timer));
2337 do {
2338 if (vortex_debug > 5)
2339 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2340 dev->name, status);
2341 if (status & UpComplete) {
2342 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2343 if (vortex_debug > 5)
2344 pr_debug("boomerang_interrupt->boomerang_rx\n");
2345 boomerang_rx(dev);
2348 if (status & DownComplete) {
2349 unsigned int dirty_tx = vp->dirty_tx;
2351 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2352 while (vp->cur_tx - dirty_tx > 0) {
2353 int entry = dirty_tx % TX_RING_SIZE;
2354 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2355 if (ioread32(ioaddr + DownListPtr) ==
2356 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2357 break; /* It still hasn't been processed. */
2358 #else
2359 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2360 break; /* It still hasn't been processed. */
2361 #endif
2363 if (vp->tx_skbuff[entry]) {
2364 struct sk_buff *skb = vp->tx_skbuff[entry];
2365 #if DO_ZEROCOPY
2366 int i;
2367 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2368 pci_unmap_single(VORTEX_PCI(vp),
2369 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2370 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2371 PCI_DMA_TODEVICE);
2372 #else
2373 pci_unmap_single(VORTEX_PCI(vp),
2374 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2375 #endif
2376 dev_kfree_skb_irq(skb);
2377 vp->tx_skbuff[entry] = NULL;
2378 } else {
2379 pr_debug("boomerang_interrupt: no skb!\n");
2381 /* dev->stats.tx_packets++; Counted below. */
2382 dirty_tx++;
2384 vp->dirty_tx = dirty_tx;
2385 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2386 if (vortex_debug > 6)
2387 pr_debug("boomerang_interrupt: wake queue\n");
2388 netif_wake_queue (dev);
2392 /* Check for all uncommon interrupts at once. */
2393 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2394 vortex_error(dev, status);
2396 if (--work_done < 0) {
2397 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2398 dev->name, status);
2399 /* Disable all pending interrupts. */
2400 do {
2401 vp->deferred |= status;
2402 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2403 ioaddr + EL3_CMD);
2404 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2405 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2406 /* The timer will reenable interrupts. */
2407 mod_timer(&vp->timer, jiffies + 1*HZ);
2408 break;
2410 /* Acknowledge the IRQ. */
2411 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2412 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2413 iowrite32(0x8000, vp->cb_fn_base + 4);
2415 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2417 if (vortex_debug > 4)
2418 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2419 dev->name, status);
2420 handler_exit:
2421 spin_unlock(&vp->lock);
2422 return IRQ_HANDLED;
2425 static int vortex_rx(struct net_device *dev)
2427 struct vortex_private *vp = netdev_priv(dev);
2428 void __iomem *ioaddr = vp->ioaddr;
2429 int i;
2430 short rx_status;
2432 if (vortex_debug > 5)
2433 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2434 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2435 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2436 if (rx_status & 0x4000) { /* Error, update stats. */
2437 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2438 if (vortex_debug > 2)
2439 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2440 dev->stats.rx_errors++;
2441 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2442 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2443 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2444 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2445 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2446 } else {
2447 /* The packet length: up to 4.5K!. */
2448 int pkt_len = rx_status & 0x1fff;
2449 struct sk_buff *skb;
2451 skb = dev_alloc_skb(pkt_len + 5);
2452 if (vortex_debug > 4)
2453 pr_debug("Receiving packet size %d status %4.4x.\n",
2454 pkt_len, rx_status);
2455 if (skb != NULL) {
2456 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2457 /* 'skb_put()' points to the start of sk_buff data area. */
2458 if (vp->bus_master &&
2459 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2460 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2461 pkt_len, PCI_DMA_FROMDEVICE);
2462 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2463 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2464 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2465 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2467 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2468 } else {
2469 ioread32_rep(ioaddr + RX_FIFO,
2470 skb_put(skb, pkt_len),
2471 (pkt_len + 3) >> 2);
2473 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2474 skb->protocol = eth_type_trans(skb, dev);
2475 netif_rx(skb);
2476 dev->stats.rx_packets++;
2477 /* Wait a limited time to go to next packet. */
2478 for (i = 200; i >= 0; i--)
2479 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2480 break;
2481 continue;
2482 } else if (vortex_debug > 0)
2483 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2484 dev->name, pkt_len);
2485 dev->stats.rx_dropped++;
2487 issue_and_wait(dev, RxDiscard);
2490 return 0;
2493 static int
2494 boomerang_rx(struct net_device *dev)
2496 struct vortex_private *vp = netdev_priv(dev);
2497 int entry = vp->cur_rx % RX_RING_SIZE;
2498 void __iomem *ioaddr = vp->ioaddr;
2499 int rx_status;
2500 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2502 if (vortex_debug > 5)
2503 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2505 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2506 if (--rx_work_limit < 0)
2507 break;
2508 if (rx_status & RxDError) { /* Error, update stats. */
2509 unsigned char rx_error = rx_status >> 16;
2510 if (vortex_debug > 2)
2511 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2512 dev->stats.rx_errors++;
2513 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2514 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2515 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2516 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2517 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2518 } else {
2519 /* The packet length: up to 4.5K!. */
2520 int pkt_len = rx_status & 0x1fff;
2521 struct sk_buff *skb;
2522 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2524 if (vortex_debug > 4)
2525 pr_debug("Receiving packet size %d status %4.4x.\n",
2526 pkt_len, rx_status);
2528 /* Check if the packet is long enough to just accept without
2529 copying to a properly sized skbuff. */
2530 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2531 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2532 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2533 /* 'skb_put()' points to the start of sk_buff data area. */
2534 memcpy(skb_put(skb, pkt_len),
2535 vp->rx_skbuff[entry]->data,
2536 pkt_len);
2537 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2538 vp->rx_copy++;
2539 } else {
2540 /* Pass up the skbuff already on the Rx ring. */
2541 skb = vp->rx_skbuff[entry];
2542 vp->rx_skbuff[entry] = NULL;
2543 skb_put(skb, pkt_len);
2544 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2545 vp->rx_nocopy++;
2547 skb->protocol = eth_type_trans(skb, dev);
2548 { /* Use hardware checksum info. */
2549 int csum_bits = rx_status & 0xee000000;
2550 if (csum_bits &&
2551 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2552 csum_bits == (IPChksumValid | UDPChksumValid))) {
2553 skb->ip_summed = CHECKSUM_UNNECESSARY;
2554 vp->rx_csumhits++;
2557 netif_rx(skb);
2558 dev->stats.rx_packets++;
2560 entry = (++vp->cur_rx) % RX_RING_SIZE;
2562 /* Refill the Rx ring buffers. */
2563 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2564 struct sk_buff *skb;
2565 entry = vp->dirty_rx % RX_RING_SIZE;
2566 if (vp->rx_skbuff[entry] == NULL) {
2567 skb = netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN);
2568 if (skb == NULL) {
2569 static unsigned long last_jif;
2570 if (time_after(jiffies, last_jif + 10 * HZ)) {
2571 pr_warning("%s: memory shortage\n", dev->name);
2572 last_jif = jiffies;
2574 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2575 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2576 break; /* Bad news! */
2579 skb_reserve(skb, NET_IP_ALIGN);
2580 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2581 vp->rx_skbuff[entry] = skb;
2583 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2584 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2586 return 0;
2590 * If we've hit a total OOM refilling the Rx ring we poll once a second
2591 * for some memory. Otherwise there is no way to restart the rx process.
2593 static void
2594 rx_oom_timer(unsigned long arg)
2596 struct net_device *dev = (struct net_device *)arg;
2597 struct vortex_private *vp = netdev_priv(dev);
2599 spin_lock_irq(&vp->lock);
2600 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2601 boomerang_rx(dev);
2602 if (vortex_debug > 1) {
2603 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2604 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2606 spin_unlock_irq(&vp->lock);
2609 static void
2610 vortex_down(struct net_device *dev, int final_down)
2612 struct vortex_private *vp = netdev_priv(dev);
2613 void __iomem *ioaddr = vp->ioaddr;
2615 netif_stop_queue (dev);
2617 del_timer_sync(&vp->rx_oom_timer);
2618 del_timer_sync(&vp->timer);
2620 /* Turn off statistics ASAP. We update dev->stats below. */
2621 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2623 /* Disable the receiver and transmitter. */
2624 iowrite16(RxDisable, ioaddr + EL3_CMD);
2625 iowrite16(TxDisable, ioaddr + EL3_CMD);
2627 /* Disable receiving 802.1q tagged frames */
2628 set_8021q_mode(dev, 0);
2630 if (dev->if_port == XCVR_10base2)
2631 /* Turn off thinnet power. Green! */
2632 iowrite16(StopCoax, ioaddr + EL3_CMD);
2634 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2636 update_stats(ioaddr, dev);
2637 if (vp->full_bus_master_rx)
2638 iowrite32(0, ioaddr + UpListPtr);
2639 if (vp->full_bus_master_tx)
2640 iowrite32(0, ioaddr + DownListPtr);
2642 if (final_down && VORTEX_PCI(vp)) {
2643 vp->pm_state_valid = 1;
2644 pci_save_state(VORTEX_PCI(vp));
2645 acpi_set_WOL(dev);
2649 static int
2650 vortex_close(struct net_device *dev)
2652 struct vortex_private *vp = netdev_priv(dev);
2653 void __iomem *ioaddr = vp->ioaddr;
2654 int i;
2656 if (netif_device_present(dev))
2657 vortex_down(dev, 1);
2659 if (vortex_debug > 1) {
2660 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2661 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2662 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2663 " tx_queued %d Rx pre-checksummed %d.\n",
2664 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2667 #if DO_ZEROCOPY
2668 if (vp->rx_csumhits &&
2669 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2670 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2671 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2673 #endif
2675 free_irq(dev->irq, dev);
2677 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2678 for (i = 0; i < RX_RING_SIZE; i++)
2679 if (vp->rx_skbuff[i]) {
2680 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2681 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2682 dev_kfree_skb(vp->rx_skbuff[i]);
2683 vp->rx_skbuff[i] = NULL;
2686 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2687 for (i = 0; i < TX_RING_SIZE; i++) {
2688 if (vp->tx_skbuff[i]) {
2689 struct sk_buff *skb = vp->tx_skbuff[i];
2690 #if DO_ZEROCOPY
2691 int k;
2693 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2694 pci_unmap_single(VORTEX_PCI(vp),
2695 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2696 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2697 PCI_DMA_TODEVICE);
2698 #else
2699 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2700 #endif
2701 dev_kfree_skb(skb);
2702 vp->tx_skbuff[i] = NULL;
2707 return 0;
2710 static void
2711 dump_tx_ring(struct net_device *dev)
2713 if (vortex_debug > 0) {
2714 struct vortex_private *vp = netdev_priv(dev);
2715 void __iomem *ioaddr = vp->ioaddr;
2717 if (vp->full_bus_master_tx) {
2718 int i;
2719 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2721 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2722 vp->full_bus_master_tx,
2723 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2724 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2725 pr_err(" Transmit list %8.8x vs. %p.\n",
2726 ioread32(ioaddr + DownListPtr),
2727 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2728 issue_and_wait(dev, DownStall);
2729 for (i = 0; i < TX_RING_SIZE; i++) {
2730 unsigned int length;
2732 #if DO_ZEROCOPY
2733 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2734 #else
2735 length = le32_to_cpu(vp->tx_ring[i].length);
2736 #endif
2737 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2738 i, &vp->tx_ring[i], length,
2739 le32_to_cpu(vp->tx_ring[i].status));
2741 if (!stalled)
2742 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2747 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2749 struct vortex_private *vp = netdev_priv(dev);
2750 void __iomem *ioaddr = vp->ioaddr;
2751 unsigned long flags;
2753 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2754 spin_lock_irqsave (&vp->lock, flags);
2755 update_stats(ioaddr, dev);
2756 spin_unlock_irqrestore (&vp->lock, flags);
2758 return &dev->stats;
2761 /* Update statistics.
2762 Unlike with the EL3 we need not worry about interrupts changing
2763 the window setting from underneath us, but we must still guard
2764 against a race condition with a StatsUpdate interrupt updating the
2765 table. This is done by checking that the ASM (!) code generated uses
2766 atomic updates with '+='.
2768 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2770 struct vortex_private *vp = netdev_priv(dev);
2771 int old_window = ioread16(ioaddr + EL3_CMD);
2773 if (old_window == 0xffff) /* Chip suspended or ejected. */
2774 return;
2775 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2776 /* Switch to the stats window, and read everything. */
2777 EL3WINDOW(6);
2778 dev->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2779 dev->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2780 dev->stats.tx_window_errors += ioread8(ioaddr + 4);
2781 dev->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2782 dev->stats.tx_packets += ioread8(ioaddr + 6);
2783 dev->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2784 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2785 /* Don't bother with register 9, an extension of registers 6&7.
2786 If we do use the 6&7 values the atomic update assumption above
2787 is invalid. */
2788 dev->stats.rx_bytes += ioread16(ioaddr + 10);
2789 dev->stats.tx_bytes += ioread16(ioaddr + 12);
2790 /* Extra stats for get_ethtool_stats() */
2791 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2792 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2793 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2794 EL3WINDOW(4);
2795 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2797 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2798 + vp->xstats.tx_single_collisions
2799 + vp->xstats.tx_max_collisions;
2802 u8 up = ioread8(ioaddr + 13);
2803 dev->stats.rx_bytes += (up & 0x0f) << 16;
2804 dev->stats.tx_bytes += (up & 0xf0) << 12;
2807 EL3WINDOW(old_window >> 13);
2808 return;
2811 static int vortex_nway_reset(struct net_device *dev)
2813 struct vortex_private *vp = netdev_priv(dev);
2814 void __iomem *ioaddr = vp->ioaddr;
2815 unsigned long flags;
2816 int rc;
2818 spin_lock_irqsave(&vp->lock, flags);
2819 EL3WINDOW(4);
2820 rc = mii_nway_restart(&vp->mii);
2821 spin_unlock_irqrestore(&vp->lock, flags);
2822 return rc;
2825 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2827 struct vortex_private *vp = netdev_priv(dev);
2828 void __iomem *ioaddr = vp->ioaddr;
2829 unsigned long flags;
2830 int rc;
2832 spin_lock_irqsave(&vp->lock, flags);
2833 EL3WINDOW(4);
2834 rc = mii_ethtool_gset(&vp->mii, cmd);
2835 spin_unlock_irqrestore(&vp->lock, flags);
2836 return rc;
2839 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2841 struct vortex_private *vp = netdev_priv(dev);
2842 void __iomem *ioaddr = vp->ioaddr;
2843 unsigned long flags;
2844 int rc;
2846 spin_lock_irqsave(&vp->lock, flags);
2847 EL3WINDOW(4);
2848 rc = mii_ethtool_sset(&vp->mii, cmd);
2849 spin_unlock_irqrestore(&vp->lock, flags);
2850 return rc;
2853 static u32 vortex_get_msglevel(struct net_device *dev)
2855 return vortex_debug;
2858 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2860 vortex_debug = dbg;
2863 static int vortex_get_sset_count(struct net_device *dev, int sset)
2865 switch (sset) {
2866 case ETH_SS_STATS:
2867 return VORTEX_NUM_STATS;
2868 default:
2869 return -EOPNOTSUPP;
2873 static void vortex_get_ethtool_stats(struct net_device *dev,
2874 struct ethtool_stats *stats, u64 *data)
2876 struct vortex_private *vp = netdev_priv(dev);
2877 void __iomem *ioaddr = vp->ioaddr;
2878 unsigned long flags;
2880 spin_lock_irqsave(&vp->lock, flags);
2881 update_stats(ioaddr, dev);
2882 spin_unlock_irqrestore(&vp->lock, flags);
2884 data[0] = vp->xstats.tx_deferred;
2885 data[1] = vp->xstats.tx_max_collisions;
2886 data[2] = vp->xstats.tx_multiple_collisions;
2887 data[3] = vp->xstats.tx_single_collisions;
2888 data[4] = vp->xstats.rx_bad_ssd;
2892 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2894 switch (stringset) {
2895 case ETH_SS_STATS:
2896 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2897 break;
2898 default:
2899 WARN_ON(1);
2900 break;
2904 static void vortex_get_drvinfo(struct net_device *dev,
2905 struct ethtool_drvinfo *info)
2907 struct vortex_private *vp = netdev_priv(dev);
2909 strcpy(info->driver, DRV_NAME);
2910 if (VORTEX_PCI(vp)) {
2911 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2912 } else {
2913 if (VORTEX_EISA(vp))
2914 strcpy(info->bus_info, dev_name(vp->gendev));
2915 else
2916 sprintf(info->bus_info, "EISA 0x%lx %d",
2917 dev->base_addr, dev->irq);
2921 static const struct ethtool_ops vortex_ethtool_ops = {
2922 .get_drvinfo = vortex_get_drvinfo,
2923 .get_strings = vortex_get_strings,
2924 .get_msglevel = vortex_get_msglevel,
2925 .set_msglevel = vortex_set_msglevel,
2926 .get_ethtool_stats = vortex_get_ethtool_stats,
2927 .get_sset_count = vortex_get_sset_count,
2928 .get_settings = vortex_get_settings,
2929 .set_settings = vortex_set_settings,
2930 .get_link = ethtool_op_get_link,
2931 .nway_reset = vortex_nway_reset,
2934 #ifdef CONFIG_PCI
2936 * Must power the device up to do MDIO operations
2938 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2940 int err;
2941 struct vortex_private *vp = netdev_priv(dev);
2942 void __iomem *ioaddr = vp->ioaddr;
2943 unsigned long flags;
2944 pci_power_t state = 0;
2946 if(VORTEX_PCI(vp))
2947 state = VORTEX_PCI(vp)->current_state;
2949 /* The kernel core really should have pci_get_power_state() */
2951 if(state != 0)
2952 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2953 spin_lock_irqsave(&vp->lock, flags);
2954 EL3WINDOW(4);
2955 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2956 spin_unlock_irqrestore(&vp->lock, flags);
2957 if(state != 0)
2958 pci_set_power_state(VORTEX_PCI(vp), state);
2960 return err;
2962 #endif
2965 /* Pre-Cyclone chips have no documented multicast filter, so the only
2966 multicast setting is to receive all multicast frames. At least
2967 the chip has a very clean way to set the mode, unlike many others. */
2968 static void set_rx_mode(struct net_device *dev)
2970 struct vortex_private *vp = netdev_priv(dev);
2971 void __iomem *ioaddr = vp->ioaddr;
2972 int new_mode;
2974 if (dev->flags & IFF_PROMISC) {
2975 if (vortex_debug > 3)
2976 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
2977 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2978 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2979 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2980 } else
2981 new_mode = SetRxFilter | RxStation | RxBroadcast;
2983 iowrite16(new_mode, ioaddr + EL3_CMD);
2986 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2987 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2988 Note that this must be done after each RxReset due to some backwards
2989 compatibility logic in the Cyclone and Tornado ASICs */
2991 /* The Ethernet Type used for 802.1q tagged frames */
2992 #define VLAN_ETHER_TYPE 0x8100
2994 static void set_8021q_mode(struct net_device *dev, int enable)
2996 struct vortex_private *vp = netdev_priv(dev);
2997 void __iomem *ioaddr = vp->ioaddr;
2998 int old_window = ioread16(ioaddr + EL3_CMD);
2999 int mac_ctrl;
3001 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3002 /* cyclone and tornado chipsets can recognize 802.1q
3003 * tagged frames and treat them correctly */
3005 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3006 if (enable)
3007 max_pkt_size += 4; /* 802.1Q VLAN tag */
3009 EL3WINDOW(3);
3010 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3012 /* set VlanEtherType to let the hardware checksumming
3013 treat tagged frames correctly */
3014 EL3WINDOW(7);
3015 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3016 } else {
3017 /* on older cards we have to enable large frames */
3019 vp->large_frames = dev->mtu > 1500 || enable;
3021 EL3WINDOW(3);
3022 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3023 if (vp->large_frames)
3024 mac_ctrl |= 0x40;
3025 else
3026 mac_ctrl &= ~0x40;
3027 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3030 EL3WINDOW(old_window);
3032 #else
3034 static void set_8021q_mode(struct net_device *dev, int enable)
3039 #endif
3041 /* MII transceiver control section.
3042 Read and write the MII registers using software-generated serial
3043 MDIO protocol. See the MII specifications or DP83840A data sheet
3044 for details. */
3046 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3047 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3048 "overclocking" issues. */
3049 #define mdio_delay() ioread32(mdio_addr)
3051 #define MDIO_SHIFT_CLK 0x01
3052 #define MDIO_DIR_WRITE 0x04
3053 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3054 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3055 #define MDIO_DATA_READ 0x02
3056 #define MDIO_ENB_IN 0x00
3058 /* Generate the preamble required for initial synchronization and
3059 a few older transceivers. */
3060 static void mdio_sync(void __iomem *ioaddr, int bits)
3062 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3064 /* Establish sync by sending at least 32 logic ones. */
3065 while (-- bits >= 0) {
3066 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3067 mdio_delay();
3068 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3069 mdio_delay();
3073 static int mdio_read(struct net_device *dev, int phy_id, int location)
3075 int i;
3076 struct vortex_private *vp = netdev_priv(dev);
3077 void __iomem *ioaddr = vp->ioaddr;
3078 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3079 unsigned int retval = 0;
3080 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3082 if (mii_preamble_required)
3083 mdio_sync(ioaddr, 32);
3085 /* Shift the read command bits out. */
3086 for (i = 14; i >= 0; i--) {
3087 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3088 iowrite16(dataval, mdio_addr);
3089 mdio_delay();
3090 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3091 mdio_delay();
3093 /* Read the two transition, 16 data, and wire-idle bits. */
3094 for (i = 19; i > 0; i--) {
3095 iowrite16(MDIO_ENB_IN, mdio_addr);
3096 mdio_delay();
3097 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3098 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3099 mdio_delay();
3101 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3104 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3106 struct vortex_private *vp = netdev_priv(dev);
3107 void __iomem *ioaddr = vp->ioaddr;
3108 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3109 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3110 int i;
3112 if (mii_preamble_required)
3113 mdio_sync(ioaddr, 32);
3115 /* Shift the command bits out. */
3116 for (i = 31; i >= 0; i--) {
3117 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3118 iowrite16(dataval, mdio_addr);
3119 mdio_delay();
3120 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3121 mdio_delay();
3123 /* Leave the interface idle. */
3124 for (i = 1; i >= 0; i--) {
3125 iowrite16(MDIO_ENB_IN, mdio_addr);
3126 mdio_delay();
3127 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3128 mdio_delay();
3130 return;
3133 /* ACPI: Advanced Configuration and Power Interface. */
3134 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3135 static void acpi_set_WOL(struct net_device *dev)
3137 struct vortex_private *vp = netdev_priv(dev);
3138 void __iomem *ioaddr = vp->ioaddr;
3140 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3142 if (vp->enable_wol) {
3143 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3144 EL3WINDOW(7);
3145 iowrite16(2, ioaddr + 0x0c);
3146 /* The RxFilter must accept the WOL frames. */
3147 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3148 iowrite16(RxEnable, ioaddr + EL3_CMD);
3150 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3151 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3153 vp->enable_wol = 0;
3154 return;
3157 /* Change the power state to D3; RxEnable doesn't take effect. */
3158 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3163 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3165 struct net_device *dev = pci_get_drvdata(pdev);
3166 struct vortex_private *vp;
3168 if (!dev) {
3169 pr_err("vortex_remove_one called for Compaq device!\n");
3170 BUG();
3173 vp = netdev_priv(dev);
3175 if (vp->cb_fn_base)
3176 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3178 unregister_netdev(dev);
3180 if (VORTEX_PCI(vp)) {
3181 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3182 if (vp->pm_state_valid)
3183 pci_restore_state(VORTEX_PCI(vp));
3184 pci_disable_device(VORTEX_PCI(vp));
3186 /* Should really use issue_and_wait() here */
3187 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3188 vp->ioaddr + EL3_CMD);
3190 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3192 pci_free_consistent(pdev,
3193 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3194 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3195 vp->rx_ring,
3196 vp->rx_ring_dma);
3197 if (vp->must_free_region)
3198 release_region(dev->base_addr, vp->io_size);
3199 free_netdev(dev);
3203 static struct pci_driver vortex_driver = {
3204 .name = "3c59x",
3205 .probe = vortex_init_one,
3206 .remove = __devexit_p(vortex_remove_one),
3207 .id_table = vortex_pci_tbl,
3208 #ifdef CONFIG_PM
3209 .suspend = vortex_suspend,
3210 .resume = vortex_resume,
3211 #endif
3215 static int vortex_have_pci;
3216 static int vortex_have_eisa;
3219 static int __init vortex_init(void)
3221 int pci_rc, eisa_rc;
3223 pci_rc = pci_register_driver(&vortex_driver);
3224 eisa_rc = vortex_eisa_init();
3226 if (pci_rc == 0)
3227 vortex_have_pci = 1;
3228 if (eisa_rc > 0)
3229 vortex_have_eisa = 1;
3231 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3235 static void __exit vortex_eisa_cleanup(void)
3237 struct vortex_private *vp;
3238 void __iomem *ioaddr;
3240 #ifdef CONFIG_EISA
3241 /* Take care of the EISA devices */
3242 eisa_driver_unregister(&vortex_eisa_driver);
3243 #endif
3245 if (compaq_net_device) {
3246 vp = netdev_priv(compaq_net_device);
3247 ioaddr = ioport_map(compaq_net_device->base_addr,
3248 VORTEX_TOTAL_SIZE);
3250 unregister_netdev(compaq_net_device);
3251 iowrite16(TotalReset, ioaddr + EL3_CMD);
3252 release_region(compaq_net_device->base_addr,
3253 VORTEX_TOTAL_SIZE);
3255 free_netdev(compaq_net_device);
3260 static void __exit vortex_cleanup(void)
3262 if (vortex_have_pci)
3263 pci_unregister_driver(&vortex_driver);
3264 if (vortex_have_eisa)
3265 vortex_eisa_cleanup();
3269 module_init(vortex_init);
3270 module_exit(vortex_cleanup);