3 * Alchemy Au1x00 ethernet driver
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
18 * ########################################################################
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
33 * ########################################################################
37 #include <linux/dma-mapping.h>
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/string.h>
41 #include <linux/timer.h>
42 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/bitops.h>
46 #include <linux/slab.h>
47 #include <linux/interrupt.h>
48 #include <linux/init.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/ethtool.h>
52 #include <linux/mii.h>
53 #include <linux/skbuff.h>
54 #include <linux/delay.h>
55 #include <linux/crc32.h>
56 #include <linux/phy.h>
59 #include <asm/mipsregs.h>
62 #include <asm/processor.h>
67 #include "au1000_eth.h"
69 #ifdef AU1000_ETH_DEBUG
70 static int au1000_debug
= 5;
72 static int au1000_debug
= 3;
75 #define DRV_NAME "au1000_eth"
76 #define DRV_VERSION "1.6"
77 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
78 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
80 MODULE_AUTHOR(DRV_AUTHOR
);
81 MODULE_DESCRIPTION(DRV_DESC
);
82 MODULE_LICENSE("GPL");
87 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
88 * There are four receive and four transmit descriptors. These
89 * descriptors are not in memory; rather, they are just a set of
92 * Since the Au1000 has a coherent data cache, the receive and
93 * transmit buffers are allocated from the KSEG0 segment. The
94 * hardware registers, however, are still mapped at KSEG1 to
95 * make sure there's no out-of-order writes, and that all writes
96 * complete immediately.
99 /* These addresses are only used if yamon doesn't tell us what
100 * the mac address is, and the mac address is not passed on the
103 static unsigned char au1000_mac_addr
[6] __devinitdata
= {
104 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
107 struct au1000_private
*au_macs
[NUM_ETH_INTERFACES
];
110 * board-specific configurations
112 * PHY detection algorithm
114 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
117 * mii_probe() first searches the current MAC's MII bus for a PHY,
118 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
119 * defined) PHY address not already claimed by another netdev.
121 * If nothing was found that way when searching for the 2nd ethernet
122 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
123 * the first MII bus is searched as well for an unclaimed PHY; this is
124 * needed in case of a dual-PHY accessible only through the MAC0's MII
127 * Finally, if no PHY is found, then the corresponding ethernet
128 * controller is not registered to the network subsystem.
131 /* autodetection defaults */
132 #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
133 #define AU1XXX_PHY1_SEARCH_ON_MAC0
137 * most boards PHY setup should be detectable properly with the
138 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
139 * you have a switch attached, or want to use the PHY's interrupt
140 * notification capabilities) you can provide a static PHY
143 * IRQs may only be set, if a PHY address was configured
144 * If a PHY address is given, also a bus id is required to be set
146 * ps: make sure the used irqs are configured properly in the board
150 #if defined(CONFIG_MIPS_BOSPORUS)
152 * Micrel/Kendin 5 port switch attached to MAC0,
153 * MAC0 is associated with PHY address 5 (== WAN port)
154 * MAC1 is not associated with any PHY, since it's connected directly
156 * no interrupts are used
158 # define AU1XXX_PHY_STATIC_CONFIG
160 # define AU1XXX_PHY0_ADDR 5
161 # define AU1XXX_PHY0_BUSID 0
162 # undef AU1XXX_PHY0_IRQ
164 # undef AU1XXX_PHY1_ADDR
165 # undef AU1XXX_PHY1_BUSID
166 # undef AU1XXX_PHY1_IRQ
169 #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
170 # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
173 static void enable_mac(struct net_device
*dev
, int force_reset
)
176 struct au1000_private
*aup
= netdev_priv(dev
);
178 spin_lock_irqsave(&aup
->lock
, flags
);
180 if(force_reset
|| (!aup
->mac_enabled
)) {
181 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
183 *aup
->enable
= (MAC_EN_RESET0
| MAC_EN_RESET1
| MAC_EN_RESET2
184 | MAC_EN_CLOCK_ENABLE
);
187 aup
->mac_enabled
= 1;
190 spin_unlock_irqrestore(&aup
->lock
, flags
);
196 static int au1000_mdio_read(struct net_device
*dev
, int phy_addr
, int reg
)
198 struct au1000_private
*aup
= netdev_priv(dev
);
199 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
200 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
204 while (*mii_control_reg
& MAC_MII_BUSY
) {
206 if (--timedout
== 0) {
207 printk(KERN_ERR
"%s: read_MII busy timeout!!\n",
213 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
214 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_READ
;
216 *mii_control_reg
= mii_control
;
219 while (*mii_control_reg
& MAC_MII_BUSY
) {
221 if (--timedout
== 0) {
222 printk(KERN_ERR
"%s: mdio_read busy timeout!!\n",
227 return (int)*mii_data_reg
;
230 static void au1000_mdio_write(struct net_device
*dev
, int phy_addr
,
233 struct au1000_private
*aup
= netdev_priv(dev
);
234 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
235 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
239 while (*mii_control_reg
& MAC_MII_BUSY
) {
241 if (--timedout
== 0) {
242 printk(KERN_ERR
"%s: mdio_write busy timeout!!\n",
248 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
249 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_WRITE
;
251 *mii_data_reg
= value
;
252 *mii_control_reg
= mii_control
;
255 static int au1000_mdiobus_read(struct mii_bus
*bus
, int phy_addr
, int regnum
)
257 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
258 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
259 struct net_device
*const dev
= bus
->priv
;
261 enable_mac(dev
, 0); /* make sure the MAC associated with this
262 * mii_bus is enabled */
263 return au1000_mdio_read(dev
, phy_addr
, regnum
);
266 static int au1000_mdiobus_write(struct mii_bus
*bus
, int phy_addr
, int regnum
,
269 struct net_device
*const dev
= bus
->priv
;
271 enable_mac(dev
, 0); /* make sure the MAC associated with this
272 * mii_bus is enabled */
273 au1000_mdio_write(dev
, phy_addr
, regnum
, value
);
277 static int au1000_mdiobus_reset(struct mii_bus
*bus
)
279 struct net_device
*const dev
= bus
->priv
;
281 enable_mac(dev
, 0); /* make sure the MAC associated with this
282 * mii_bus is enabled */
286 static void hard_stop(struct net_device
*dev
)
288 struct au1000_private
*aup
= netdev_priv(dev
);
290 if (au1000_debug
> 4)
291 printk(KERN_INFO
"%s: hard stop\n", dev
->name
);
293 aup
->mac
->control
&= ~(MAC_RX_ENABLE
| MAC_TX_ENABLE
);
297 static void enable_rx_tx(struct net_device
*dev
)
299 struct au1000_private
*aup
= netdev_priv(dev
);
301 if (au1000_debug
> 4)
302 printk(KERN_INFO
"%s: enable_rx_tx\n", dev
->name
);
304 aup
->mac
->control
|= (MAC_RX_ENABLE
| MAC_TX_ENABLE
);
309 au1000_adjust_link(struct net_device
*dev
)
311 struct au1000_private
*aup
= netdev_priv(dev
);
312 struct phy_device
*phydev
= aup
->phy_dev
;
315 int status_change
= 0;
317 BUG_ON(!aup
->phy_dev
);
319 spin_lock_irqsave(&aup
->lock
, flags
);
321 if (phydev
->link
&& (aup
->old_speed
!= phydev
->speed
)) {
324 switch(phydev
->speed
) {
330 "%s: Speed (%d) is not 10/100 ???\n",
331 dev
->name
, phydev
->speed
);
335 aup
->old_speed
= phydev
->speed
;
340 if (phydev
->link
&& (aup
->old_duplex
!= phydev
->duplex
)) {
341 // duplex mode changed
343 /* switching duplex mode requires to disable rx and tx! */
346 if (DUPLEX_FULL
== phydev
->duplex
)
347 aup
->mac
->control
= ((aup
->mac
->control
349 & ~MAC_DISABLE_RX_OWN
);
351 aup
->mac
->control
= ((aup
->mac
->control
353 | MAC_DISABLE_RX_OWN
);
357 aup
->old_duplex
= phydev
->duplex
;
362 if(phydev
->link
!= aup
->old_link
) {
363 // link state changed
368 aup
->old_duplex
= -1;
371 aup
->old_link
= phydev
->link
;
375 spin_unlock_irqrestore(&aup
->lock
, flags
);
379 printk(KERN_INFO
"%s: link up (%d/%s)\n",
380 dev
->name
, phydev
->speed
,
381 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
383 printk(KERN_INFO
"%s: link down\n", dev
->name
);
387 static int mii_probe (struct net_device
*dev
)
389 struct au1000_private
*const aup
= netdev_priv(dev
);
390 struct phy_device
*phydev
= NULL
;
392 #if defined(AU1XXX_PHY_STATIC_CONFIG)
393 BUG_ON(aup
->mac_id
< 0 || aup
->mac_id
> 1);
395 if(aup
->mac_id
== 0) { /* get PHY0 */
396 # if defined(AU1XXX_PHY0_ADDR)
397 phydev
= au_macs
[AU1XXX_PHY0_BUSID
]->mii_bus
->phy_map
[AU1XXX_PHY0_ADDR
];
399 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
402 # endif /* defined(AU1XXX_PHY0_ADDR) */
403 } else if (aup
->mac_id
== 1) { /* get PHY1 */
404 # if defined(AU1XXX_PHY1_ADDR)
405 phydev
= au_macs
[AU1XXX_PHY1_BUSID
]->mii_bus
->phy_map
[AU1XXX_PHY1_ADDR
];
407 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
410 # endif /* defined(AU1XXX_PHY1_ADDR) */
413 #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
416 /* find the first (lowest address) PHY on the current MAC's MII bus */
417 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++)
418 if (aup
->mii_bus
->phy_map
[phy_addr
]) {
419 phydev
= aup
->mii_bus
->phy_map
[phy_addr
];
420 # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
421 break; /* break out with first one found */
425 # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
426 /* try harder to find a PHY */
427 if (!phydev
&& (aup
->mac_id
== 1)) {
428 /* no PHY found, maybe we have a dual PHY? */
429 printk (KERN_INFO DRV_NAME
": no PHY found on MAC1, "
430 "let's see if it's attached to MAC0...\n");
434 /* find the first (lowest address) non-attached PHY on
435 * the MAC0 MII bus */
436 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++) {
437 struct phy_device
*const tmp_phydev
=
438 au_macs
[0]->mii_bus
->phy_map
[phy_addr
];
441 continue; /* no PHY here... */
443 if (tmp_phydev
->attached_dev
)
444 continue; /* already claimed by MAC0 */
447 break; /* found it */
450 # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
452 #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
454 printk (KERN_ERR DRV_NAME
":%s: no PHY found\n", dev
->name
);
458 /* now we are supposed to have a proper phydev, to attach to... */
459 BUG_ON(phydev
->attached_dev
);
461 phydev
= phy_connect(dev
, dev_name(&phydev
->dev
), &au1000_adjust_link
,
462 0, PHY_INTERFACE_MODE_MII
);
464 if (IS_ERR(phydev
)) {
465 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
466 return PTR_ERR(phydev
);
469 /* mask with MAC supported features */
470 phydev
->supported
&= (SUPPORTED_10baseT_Half
471 | SUPPORTED_10baseT_Full
472 | SUPPORTED_100baseT_Half
473 | SUPPORTED_100baseT_Full
475 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
479 phydev
->advertising
= phydev
->supported
;
483 aup
->old_duplex
= -1;
484 aup
->phy_dev
= phydev
;
486 printk(KERN_INFO
"%s: attached PHY driver [%s] "
487 "(mii_bus:phy_addr=%s, irq=%d)\n", dev
->name
,
488 phydev
->drv
->name
, dev_name(&phydev
->dev
), phydev
->irq
);
495 * Buffer allocation/deallocation routines. The buffer descriptor returned
496 * has the virtual and dma address of a buffer suitable for
497 * both, receive and transmit operations.
499 static db_dest_t
*GetFreeDB(struct au1000_private
*aup
)
505 aup
->pDBfree
= pDB
->pnext
;
510 void ReleaseDB(struct au1000_private
*aup
, db_dest_t
*pDB
)
512 db_dest_t
*pDBfree
= aup
->pDBfree
;
514 pDBfree
->pnext
= pDB
;
518 static void reset_mac_unlocked(struct net_device
*dev
)
520 struct au1000_private
*const aup
= netdev_priv(dev
);
525 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
531 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
532 /* reset control bits */
533 aup
->rx_dma_ring
[i
]->buff_stat
&= ~0xf;
535 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
536 /* reset control bits */
537 aup
->tx_dma_ring
[i
]->buff_stat
&= ~0xf;
540 aup
->mac_enabled
= 0;
544 static void reset_mac(struct net_device
*dev
)
546 struct au1000_private
*const aup
= netdev_priv(dev
);
549 if (au1000_debug
> 4)
550 printk(KERN_INFO
"%s: reset mac, aup %x\n",
551 dev
->name
, (unsigned)aup
);
553 spin_lock_irqsave(&aup
->lock
, flags
);
555 reset_mac_unlocked (dev
);
557 spin_unlock_irqrestore(&aup
->lock
, flags
);
561 * Setup the receive and transmit "rings". These pointers are the addresses
562 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
563 * these are not descriptors sitting in memory.
566 setup_hw_rings(struct au1000_private
*aup
, u32 rx_base
, u32 tx_base
)
570 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
571 aup
->rx_dma_ring
[i
] =
572 (volatile rx_dma_t
*) (rx_base
+ sizeof(rx_dma_t
)*i
);
574 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
575 aup
->tx_dma_ring
[i
] =
576 (volatile tx_dma_t
*) (tx_base
+ sizeof(tx_dma_t
)*i
);
584 struct net_device
*dev
;
586 #ifdef CONFIG_SOC_AU1000
587 {AU1000_ETH0_BASE
, AU1000_MAC0_ENABLE
, AU1000_MAC0_DMA_INT
},
588 {AU1000_ETH1_BASE
, AU1000_MAC1_ENABLE
, AU1000_MAC1_DMA_INT
}
590 #ifdef CONFIG_SOC_AU1100
591 {AU1100_ETH0_BASE
, AU1100_MAC0_ENABLE
, AU1100_MAC0_DMA_INT
}
593 #ifdef CONFIG_SOC_AU1500
594 {AU1500_ETH0_BASE
, AU1500_MAC0_ENABLE
, AU1500_MAC0_DMA_INT
},
595 {AU1500_ETH1_BASE
, AU1500_MAC1_ENABLE
, AU1500_MAC1_DMA_INT
}
597 #ifdef CONFIG_SOC_AU1550
598 {AU1550_ETH0_BASE
, AU1550_MAC0_ENABLE
, AU1550_MAC0_DMA_INT
},
599 {AU1550_ETH1_BASE
, AU1550_MAC1_ENABLE
, AU1550_MAC1_DMA_INT
}
609 static int au1000_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
611 struct au1000_private
*aup
= netdev_priv(dev
);
614 return phy_ethtool_gset(aup
->phy_dev
, cmd
);
619 static int au1000_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
621 struct au1000_private
*aup
= netdev_priv(dev
);
623 if (!capable(CAP_NET_ADMIN
))
627 return phy_ethtool_sset(aup
->phy_dev
, cmd
);
633 au1000_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
635 struct au1000_private
*aup
= netdev_priv(dev
);
637 strcpy(info
->driver
, DRV_NAME
);
638 strcpy(info
->version
, DRV_VERSION
);
639 info
->fw_version
[0] = '\0';
640 sprintf(info
->bus_info
, "%s %d", DRV_NAME
, aup
->mac_id
);
641 info
->regdump_len
= 0;
644 static const struct ethtool_ops au1000_ethtool_ops
= {
645 .get_settings
= au1000_get_settings
,
646 .set_settings
= au1000_set_settings
,
647 .get_drvinfo
= au1000_get_drvinfo
,
648 .get_link
= ethtool_op_get_link
,
653 * Initialize the interface.
655 * When the device powers up, the clocks are disabled and the
656 * mac is in reset state. When the interface is closed, we
657 * do the same -- reset the device and disable the clocks to
658 * conserve power. Thus, whenever au1000_init() is called,
659 * the device should already be in reset state.
661 static int au1000_init(struct net_device
*dev
)
663 struct au1000_private
*aup
= netdev_priv(dev
);
668 if (au1000_debug
> 4)
669 printk("%s: au1000_init\n", dev
->name
);
671 /* bring the device out of reset */
674 spin_lock_irqsave(&aup
->lock
, flags
);
676 aup
->mac
->control
= 0;
677 aup
->tx_head
= (aup
->tx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
678 aup
->tx_tail
= aup
->tx_head
;
679 aup
->rx_head
= (aup
->rx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
681 aup
->mac
->mac_addr_high
= dev
->dev_addr
[5]<<8 | dev
->dev_addr
[4];
682 aup
->mac
->mac_addr_low
= dev
->dev_addr
[3]<<24 | dev
->dev_addr
[2]<<16 |
683 dev
->dev_addr
[1]<<8 | dev
->dev_addr
[0];
685 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
686 aup
->rx_dma_ring
[i
]->buff_stat
|= RX_DMA_ENABLE
;
690 control
= MAC_RX_ENABLE
| MAC_TX_ENABLE
;
691 #ifndef CONFIG_CPU_LITTLE_ENDIAN
692 control
|= MAC_BIG_ENDIAN
;
695 if (aup
->phy_dev
->link
&& (DUPLEX_FULL
== aup
->phy_dev
->duplex
))
696 control
|= MAC_FULL_DUPLEX
;
698 control
|= MAC_DISABLE_RX_OWN
;
699 } else { /* PHY-less op, assume full-duplex */
700 control
|= MAC_FULL_DUPLEX
;
703 aup
->mac
->control
= control
;
704 aup
->mac
->vlan1_tag
= 0x8100; /* activate vlan support */
707 spin_unlock_irqrestore(&aup
->lock
, flags
);
711 static inline void update_rx_stats(struct net_device
*dev
, u32 status
)
713 struct au1000_private
*aup
= netdev_priv(dev
);
714 struct net_device_stats
*ps
= &dev
->stats
;
717 if (status
& RX_MCAST_FRAME
)
720 if (status
& RX_ERROR
) {
722 if (status
& RX_MISSED_FRAME
)
723 ps
->rx_missed_errors
++;
724 if (status
& (RX_OVERLEN
| RX_OVERLEN
| RX_LEN_ERROR
))
725 ps
->rx_length_errors
++;
726 if (status
& RX_CRC_ERROR
)
728 if (status
& RX_COLL
)
732 ps
->rx_bytes
+= status
& RX_FRAME_LEN_MASK
;
737 * Au1000 receive routine.
739 static int au1000_rx(struct net_device
*dev
)
741 struct au1000_private
*aup
= netdev_priv(dev
);
743 volatile rx_dma_t
*prxd
;
744 u32 buff_stat
, status
;
748 if (au1000_debug
> 5)
749 printk("%s: au1000_rx head %d\n", dev
->name
, aup
->rx_head
);
751 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
752 buff_stat
= prxd
->buff_stat
;
753 while (buff_stat
& RX_T_DONE
) {
754 status
= prxd
->status
;
755 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
756 update_rx_stats(dev
, status
);
757 if (!(status
& RX_ERROR
)) {
760 frmlen
= (status
& RX_FRAME_LEN_MASK
);
761 frmlen
-= 4; /* Remove FCS */
762 skb
= dev_alloc_skb(frmlen
+ 2);
765 "%s: Memory squeeze, dropping packet.\n",
767 dev
->stats
.rx_dropped
++;
770 skb_reserve(skb
, 2); /* 16 byte IP header align */
771 skb_copy_to_linear_data(skb
,
772 (unsigned char *)pDB
->vaddr
, frmlen
);
773 skb_put(skb
, frmlen
);
774 skb
->protocol
= eth_type_trans(skb
, dev
);
775 netif_rx(skb
); /* pass the packet to upper layers */
778 if (au1000_debug
> 4) {
779 if (status
& RX_MISSED_FRAME
)
781 if (status
& RX_WDOG_TIMER
)
783 if (status
& RX_RUNT
)
785 if (status
& RX_OVERLEN
)
786 printk("rx overlen\n");
787 if (status
& RX_COLL
)
789 if (status
& RX_MII_ERROR
)
790 printk("rx mii error\n");
791 if (status
& RX_CRC_ERROR
)
792 printk("rx crc error\n");
793 if (status
& RX_LEN_ERROR
)
794 printk("rx len error\n");
795 if (status
& RX_U_CNTRL_FRAME
)
796 printk("rx u control frame\n");
797 if (status
& RX_MISSED_FRAME
)
801 prxd
->buff_stat
= (u32
)(pDB
->dma_addr
| RX_DMA_ENABLE
);
802 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_RX_DMA
- 1);
805 /* next descriptor */
806 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
807 buff_stat
= prxd
->buff_stat
;
812 static void update_tx_stats(struct net_device
*dev
, u32 status
)
814 struct au1000_private
*aup
= netdev_priv(dev
);
815 struct net_device_stats
*ps
= &dev
->stats
;
817 if (status
& TX_FRAME_ABORTED
) {
818 if (!aup
->phy_dev
|| (DUPLEX_FULL
== aup
->phy_dev
->duplex
)) {
819 if (status
& (TX_JAB_TIMEOUT
| TX_UNDERRUN
)) {
820 /* any other tx errors are only valid
821 * in half duplex mode */
823 ps
->tx_aborted_errors
++;
828 ps
->tx_aborted_errors
++;
829 if (status
& (TX_NO_CARRIER
| TX_LOSS_CARRIER
))
830 ps
->tx_carrier_errors
++;
836 * Called from the interrupt service routine to acknowledge
837 * the TX DONE bits. This is a must if the irq is setup as
840 static void au1000_tx_ack(struct net_device
*dev
)
842 struct au1000_private
*aup
= netdev_priv(dev
);
843 volatile tx_dma_t
*ptxd
;
845 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
847 while (ptxd
->buff_stat
& TX_T_DONE
) {
848 update_tx_stats(dev
, ptxd
->status
);
849 ptxd
->buff_stat
&= ~TX_T_DONE
;
853 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_TX_DMA
- 1);
854 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
858 netif_wake_queue(dev
);
864 * Au1000 interrupt service routine.
866 static irqreturn_t
au1000_interrupt(int irq
, void *dev_id
)
868 struct net_device
*dev
= dev_id
;
870 /* Handle RX interrupts first to minimize chance of overrun */
874 return IRQ_RETVAL(1);
877 static int au1000_open(struct net_device
*dev
)
880 struct au1000_private
*aup
= netdev_priv(dev
);
882 if (au1000_debug
> 4)
883 printk("%s: open: dev=%p\n", dev
->name
, dev
);
885 if ((retval
= request_irq(dev
->irq
, &au1000_interrupt
, 0,
887 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
888 dev
->name
, dev
->irq
);
892 if ((retval
= au1000_init(dev
))) {
893 printk(KERN_ERR
"%s: error in au1000_init\n", dev
->name
);
894 free_irq(dev
->irq
, dev
);
899 /* cause the PHY state machine to schedule a link state check */
900 aup
->phy_dev
->state
= PHY_CHANGELINK
;
901 phy_start(aup
->phy_dev
);
904 netif_start_queue(dev
);
906 if (au1000_debug
> 4)
907 printk("%s: open: Initialization done.\n", dev
->name
);
912 static int au1000_close(struct net_device
*dev
)
915 struct au1000_private
*const aup
= netdev_priv(dev
);
917 if (au1000_debug
> 4)
918 printk("%s: close: dev=%p\n", dev
->name
, dev
);
921 phy_stop(aup
->phy_dev
);
923 spin_lock_irqsave(&aup
->lock
, flags
);
925 reset_mac_unlocked (dev
);
927 /* stop the device */
928 netif_stop_queue(dev
);
930 /* disable the interrupt */
931 free_irq(dev
->irq
, dev
);
932 spin_unlock_irqrestore(&aup
->lock
, flags
);
938 * Au1000 transmit routine.
940 static netdev_tx_t
au1000_tx(struct sk_buff
*skb
, struct net_device
*dev
)
942 struct au1000_private
*aup
= netdev_priv(dev
);
943 struct net_device_stats
*ps
= &dev
->stats
;
944 volatile tx_dma_t
*ptxd
;
949 if (au1000_debug
> 5)
950 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
951 dev
->name
, (unsigned)aup
, skb
->len
,
952 skb
->data
, aup
->tx_head
);
954 ptxd
= aup
->tx_dma_ring
[aup
->tx_head
];
955 buff_stat
= ptxd
->buff_stat
;
956 if (buff_stat
& TX_DMA_ENABLE
) {
957 /* We've wrapped around and the transmitter is still busy */
958 netif_stop_queue(dev
);
960 return NETDEV_TX_BUSY
;
962 else if (buff_stat
& TX_T_DONE
) {
963 update_tx_stats(dev
, ptxd
->status
);
969 netif_wake_queue(dev
);
972 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
973 skb_copy_from_linear_data(skb
, pDB
->vaddr
, skb
->len
);
974 if (skb
->len
< ETH_ZLEN
) {
975 for (i
=skb
->len
; i
<ETH_ZLEN
; i
++) {
976 ((char *)pDB
->vaddr
)[i
] = 0;
978 ptxd
->len
= ETH_ZLEN
;
981 ptxd
->len
= skb
->len
;
984 ps
->tx_bytes
+= ptxd
->len
;
986 ptxd
->buff_stat
= pDB
->dma_addr
| TX_DMA_ENABLE
;
989 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_TX_DMA
- 1);
990 dev
->trans_start
= jiffies
;
995 * The Tx ring has been full longer than the watchdog timeout
996 * value. The transmitter must be hung?
998 static void au1000_tx_timeout(struct net_device
*dev
)
1000 printk(KERN_ERR
"%s: au1000_tx_timeout: dev=%p\n", dev
->name
, dev
);
1003 dev
->trans_start
= jiffies
;
1004 netif_wake_queue(dev
);
1007 static void au1000_multicast_list(struct net_device
*dev
)
1009 struct au1000_private
*aup
= netdev_priv(dev
);
1011 if (au1000_debug
> 4)
1012 printk("%s: au1000_multicast_list: flags=%x\n", dev
->name
, dev
->flags
);
1014 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1015 aup
->mac
->control
|= MAC_PROMISCUOUS
;
1016 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1017 dev
->mc_count
> MULTICAST_FILTER_LIMIT
) {
1018 aup
->mac
->control
|= MAC_PASS_ALL_MULTI
;
1019 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1020 printk(KERN_INFO
"%s: Pass all multicast\n", dev
->name
);
1023 struct dev_mc_list
*mclist
;
1024 u32 mc_filter
[2]; /* Multicast hash filter */
1026 mc_filter
[1] = mc_filter
[0] = 0;
1027 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1028 i
++, mclist
= mclist
->next
) {
1029 set_bit(ether_crc(ETH_ALEN
, mclist
->dmi_addr
)>>26,
1032 aup
->mac
->multi_hash_high
= mc_filter
[1];
1033 aup
->mac
->multi_hash_low
= mc_filter
[0];
1034 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1035 aup
->mac
->control
|= MAC_HASH_MODE
;
1039 static int au1000_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1041 struct au1000_private
*aup
= netdev_priv(dev
);
1043 if (!netif_running(dev
)) return -EINVAL
;
1045 if (!aup
->phy_dev
) return -EINVAL
; // PHY not controllable
1047 return phy_mii_ioctl(aup
->phy_dev
, if_mii(rq
), cmd
);
1050 static const struct net_device_ops au1000_netdev_ops
= {
1051 .ndo_open
= au1000_open
,
1052 .ndo_stop
= au1000_close
,
1053 .ndo_start_xmit
= au1000_tx
,
1054 .ndo_set_multicast_list
= au1000_multicast_list
,
1055 .ndo_do_ioctl
= au1000_ioctl
,
1056 .ndo_tx_timeout
= au1000_tx_timeout
,
1057 .ndo_set_mac_address
= eth_mac_addr
,
1058 .ndo_validate_addr
= eth_validate_addr
,
1059 .ndo_change_mtu
= eth_change_mtu
,
1062 static struct net_device
* au1000_probe(int port_num
)
1064 static unsigned version_printed
= 0;
1065 struct au1000_private
*aup
= NULL
;
1066 struct net_device
*dev
= NULL
;
1067 db_dest_t
*pDB
, *pDBfree
;
1072 if (port_num
>= NUM_ETH_INTERFACES
)
1075 base
= CPHYSADDR(iflist
[port_num
].base_addr
);
1076 macen
= CPHYSADDR(iflist
[port_num
].macen_addr
);
1077 irq
= iflist
[port_num
].irq
;
1079 if (!request_mem_region( base
, MAC_IOSIZE
, "Au1x00 ENET") ||
1080 !request_mem_region(macen
, 4, "Au1x00 ENET"))
1083 if (version_printed
++ == 0)
1084 printk("%s version %s %s\n", DRV_NAME
, DRV_VERSION
, DRV_AUTHOR
);
1086 dev
= alloc_etherdev(sizeof(struct au1000_private
));
1088 printk(KERN_ERR
"%s: alloc_etherdev failed\n", DRV_NAME
);
1092 if ((err
= register_netdev(dev
)) != 0) {
1093 printk(KERN_ERR
"%s: Cannot register net device, error %d\n",
1099 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
1100 dev
->name
, base
, irq
);
1102 aup
= netdev_priv(dev
);
1104 spin_lock_init(&aup
->lock
);
1106 /* Allocate the data buffers */
1107 /* Snooping works fine with eth on all au1xxx */
1108 aup
->vaddr
= (u32
)dma_alloc_noncoherent(NULL
, MAX_BUF_SIZE
*
1109 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1113 release_mem_region( base
, MAC_IOSIZE
);
1114 release_mem_region(macen
, 4);
1118 /* aup->mac is the base address of the MAC's registers */
1119 aup
->mac
= (volatile mac_reg_t
*)iflist
[port_num
].base_addr
;
1121 /* Setup some variables for quick register address access */
1122 aup
->enable
= (volatile u32
*)iflist
[port_num
].macen_addr
;
1123 aup
->mac_id
= port_num
;
1124 au_macs
[port_num
] = aup
;
1126 if (port_num
== 0) {
1127 if (prom_get_ethernet_addr(ethaddr
) == 0)
1128 memcpy(au1000_mac_addr
, ethaddr
, sizeof(au1000_mac_addr
));
1130 printk(KERN_INFO
"%s: No MAC address found\n",
1132 /* Use the hard coded MAC addresses */
1135 setup_hw_rings(aup
, MAC0_RX_DMA_ADDR
, MAC0_TX_DMA_ADDR
);
1136 } else if (port_num
== 1)
1137 setup_hw_rings(aup
, MAC1_RX_DMA_ADDR
, MAC1_TX_DMA_ADDR
);
1140 * Assign to the Ethernet ports two consecutive MAC addresses
1141 * to match those that are printed on their stickers
1143 memcpy(dev
->dev_addr
, au1000_mac_addr
, sizeof(au1000_mac_addr
));
1144 dev
->dev_addr
[5] += port_num
;
1147 aup
->mac_enabled
= 0;
1149 aup
->mii_bus
= mdiobus_alloc();
1150 if (aup
->mii_bus
== NULL
)
1153 aup
->mii_bus
->priv
= dev
;
1154 aup
->mii_bus
->read
= au1000_mdiobus_read
;
1155 aup
->mii_bus
->write
= au1000_mdiobus_write
;
1156 aup
->mii_bus
->reset
= au1000_mdiobus_reset
;
1157 aup
->mii_bus
->name
= "au1000_eth_mii";
1158 snprintf(aup
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", aup
->mac_id
);
1159 aup
->mii_bus
->irq
= kmalloc(sizeof(int)*PHY_MAX_ADDR
, GFP_KERNEL
);
1160 if (aup
->mii_bus
->irq
== NULL
)
1163 for(i
= 0; i
< PHY_MAX_ADDR
; ++i
)
1164 aup
->mii_bus
->irq
[i
] = PHY_POLL
;
1166 /* if known, set corresponding PHY IRQs */
1167 #if defined(AU1XXX_PHY_STATIC_CONFIG)
1168 # if defined(AU1XXX_PHY0_IRQ)
1169 if (AU1XXX_PHY0_BUSID
== aup
->mac_id
)
1170 aup
->mii_bus
->irq
[AU1XXX_PHY0_ADDR
] = AU1XXX_PHY0_IRQ
;
1172 # if defined(AU1XXX_PHY1_IRQ)
1173 if (AU1XXX_PHY1_BUSID
== aup
->mac_id
)
1174 aup
->mii_bus
->irq
[AU1XXX_PHY1_ADDR
] = AU1XXX_PHY1_IRQ
;
1177 mdiobus_register(aup
->mii_bus
);
1179 if (mii_probe(dev
) != 0) {
1184 /* setup the data buffer descriptors and attach a buffer to each one */
1186 for (i
= 0; i
< (NUM_TX_BUFFS
+NUM_RX_BUFFS
); i
++) {
1187 pDB
->pnext
= pDBfree
;
1189 pDB
->vaddr
= (u32
*)((unsigned)aup
->vaddr
+ MAX_BUF_SIZE
*i
);
1190 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
1193 aup
->pDBfree
= pDBfree
;
1195 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1196 pDB
= GetFreeDB(aup
);
1200 aup
->rx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1201 aup
->rx_db_inuse
[i
] = pDB
;
1203 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1204 pDB
= GetFreeDB(aup
);
1208 aup
->tx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1209 aup
->tx_dma_ring
[i
]->len
= 0;
1210 aup
->tx_db_inuse
[i
] = pDB
;
1213 dev
->base_addr
= base
;
1215 dev
->netdev_ops
= &au1000_netdev_ops
;
1216 SET_ETHTOOL_OPS(dev
, &au1000_ethtool_ops
);
1217 dev
->watchdog_timeo
= ETH_TX_TIMEOUT
;
1220 * The boot code uses the ethernet controller, so reset it to start
1221 * fresh. au1000_init() expects that the device is in reset state.
1228 if (aup
->mii_bus
!= NULL
) {
1229 mdiobus_unregister(aup
->mii_bus
);
1230 mdiobus_free(aup
->mii_bus
);
1233 /* here we should have a valid dev plus aup-> register addresses
1234 * so we can reset the mac properly.*/
1237 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1238 if (aup
->rx_db_inuse
[i
])
1239 ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
1241 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1242 if (aup
->tx_db_inuse
[i
])
1243 ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
1245 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1246 (void *)aup
->vaddr
, aup
->dma_addr
);
1247 unregister_netdev(dev
);
1249 release_mem_region( base
, MAC_IOSIZE
);
1250 release_mem_region(macen
, 4);
1255 * Setup the base address and interrupt of the Au1xxx ethernet macs
1256 * based on cpu type and whether the interface is enabled in sys_pinfunc
1257 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
1259 static int __init
au1000_init_module(void)
1261 int ni
= (int)((au_readl(SYS_PINFUNC
) & (u32
)(SYS_PF_NI2
)) >> 4);
1262 struct net_device
*dev
;
1263 int i
, found_one
= 0;
1265 num_ifs
= NUM_ETH_INTERFACES
- ni
;
1267 for(i
= 0; i
< num_ifs
; i
++) {
1268 dev
= au1000_probe(i
);
1269 iflist
[i
].dev
= dev
;
1278 static void __exit
au1000_cleanup_module(void)
1281 struct net_device
*dev
;
1282 struct au1000_private
*aup
;
1284 for (i
= 0; i
< num_ifs
; i
++) {
1285 dev
= iflist
[i
].dev
;
1287 aup
= netdev_priv(dev
);
1288 unregister_netdev(dev
);
1289 mdiobus_unregister(aup
->mii_bus
);
1290 mdiobus_free(aup
->mii_bus
);
1291 for (j
= 0; j
< NUM_RX_DMA
; j
++)
1292 if (aup
->rx_db_inuse
[j
])
1293 ReleaseDB(aup
, aup
->rx_db_inuse
[j
]);
1294 for (j
= 0; j
< NUM_TX_DMA
; j
++)
1295 if (aup
->tx_db_inuse
[j
])
1296 ReleaseDB(aup
, aup
->tx_db_inuse
[j
]);
1297 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
*
1298 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1299 (void *)aup
->vaddr
, aup
->dma_addr
);
1300 release_mem_region(dev
->base_addr
, MAC_IOSIZE
);
1301 release_mem_region(CPHYSADDR(iflist
[i
].macen_addr
), 4);
1307 module_init(au1000_init_module
);
1308 module_exit(au1000_cleanup_module
);