1 /******************************************************************************
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
6 * See the file "skfddi.c" for further information.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * The information in this file is provided "AS IS" without warranty.
15 ******************************************************************************/
19 Physical Connection Management
23 * Hardware independent state machine implemantation
24 * The following external SMT functions are referenced :
30 * The following external HW dependent functions are referenced :
35 * The following HW dependent events are required :
49 #include "h/supern_2.h"
51 #include "h/smtstate.h"
54 static const char ID_sccs
[] = "@(#)pcmplc.c 2.55 99/08/05 (C) SK " ;
58 extern int snmp_fddi_trap(
60 struct s_smc
* smc
, int type
, int index
65 extern int plc_is_installed(
76 #define GO_STATE(x) (mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE() (mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x) (x|AFLAG)
96 * symbolic state names
98 static const char * const pcm_states
[] = {
99 "PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
100 "PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
104 * symbolic event names
106 static const char * const pcm_events
[] = {
107 "NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
108 "PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
109 "PC_ENABLE","PC_DISABLE",
110 "PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
111 "PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
112 "PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
113 "PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
120 * PCL-S control register
121 * this register in the PLC-S controls the scrambling parameters
123 #define PLCS_CONTROL_C_U 0
124 #define PLCS_CONTROL_C_S (PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
126 #define PLCS_FASSERT_U 0
127 #define PLCS_FASSERT_S 0xFd76 /* 52.0 us */
128 #define PLCS_FDEASSERT_U 0
129 #define PLCS_FDEASSERT_S 0
132 * PCL-S control register
133 * this register in the PLC-S controls the scrambling parameters
134 * can be patched for ANSI compliance if standard changes
136 static const u_char plcs_control_c_u
[17] = "PLC_CNTRL_C_U=\0\0" ;
137 static const u_char plcs_control_c_s
[17] = "PLC_CNTRL_C_S=\01\02" ;
139 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
140 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
141 #endif /* nMOT_ELM */
146 /* struct definition see 'cmtdef.h' (also used by CFM) */
157 #define LCT_LEM_MAX 255
160 * PLC timing parameter
163 #define PLC_MS(m) ((int)((0x10000L-(m*100000L/2048))))
164 #define SLOW_TL_MIN PLC_MS(6)
165 #define SLOW_C_MIN PLC_MS(10)
167 static const struct plt
{
168 int timer
; /* relative plc timer address */
169 int para
; /* default timing parameters */
171 { PL_C_MIN
, SLOW_C_MIN
}, /* min t. to remain Connect State */
172 { PL_TL_MIN
, SLOW_TL_MIN
}, /* min t. to transmit a Line State */
173 { PL_TB_MIN
, TP_TB_MIN
}, /* min break time */
174 { PL_T_OUT
, TP_T_OUT
}, /* Signaling timeout */
175 { PL_LC_LENGTH
, TP_LC_LENGTH
}, /* Link Confidence Test Time */
176 { PL_T_SCRUB
, TP_T_SCRUB
}, /* Scrub Time == MAC TVX time ! */
177 { PL_NS_MAX
, TP_NS_MAX
}, /* max t. that noise is tolerated */
186 * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
189 static const int plc_imsk_na
= PL_PCM_CODE
| PL_TRACE_PROP
| PL_PCM_BREAK
|
190 PL_PCM_ENABLED
| PL_SELF_TEST
| PL_EBUF_ERR
;
191 #else /* SUPERNET_3 */
193 * We do NOT need the elasticity buffer error during signaling.
195 static int plc_imsk_na
= PL_PCM_CODE
| PL_TRACE_PROP
| PL_PCM_BREAK
|
196 PL_PCM_ENABLED
| PL_SELF_TEST
;
197 #endif /* SUPERNET_3 */
198 static const int plc_imsk_act
= PL_PCM_CODE
| PL_TRACE_PROP
| PL_PCM_BREAK
|
199 PL_PCM_ENABLED
| PL_SELF_TEST
| PL_EBUF_ERR
;
201 /* internal functions */
202 static void pcm_fsm(struct s_smc
*smc
, struct s_phy
*phy
, int cmd
);
203 static void pc_rcode_actions(struct s_smc
*smc
, int bit
, struct s_phy
*phy
);
204 static void pc_tcode_actions(struct s_smc
*smc
, const int bit
, struct s_phy
*phy
);
205 static void reset_lem_struct(struct s_phy
*phy
);
206 static void plc_init(struct s_smc
*smc
, int p
);
207 static void sm_ph_lem_start(struct s_smc
*smc
, int np
, int threshold
);
208 static void sm_ph_lem_stop(struct s_smc
*smc
, int np
);
209 static void sm_ph_linestate(struct s_smc
*smc
, int phy
, int ls
);
210 static void real_init_plc(struct s_smc
*smc
);
213 * SMT timer interface
216 static void start_pcm_timer0(struct s_smc
*smc
, u_long value
, int event
,
219 phy
->timer0_exp
= FALSE
; /* clear timer event flag */
220 smt_timer_start(smc
,&phy
->pcm_timer0
,value
,
221 EV_TOKEN(EVENT_PCM
+phy
->np
,event
)) ;
224 * SMT timer interface
227 static void stop_pcm_timer0(struct s_smc
*smc
, struct s_phy
*phy
)
229 if (phy
->pcm_timer0
.tm_active
)
230 smt_timer_stop(smc
,&phy
->pcm_timer0
) ;
234 init PCM state machine (called by driver)
235 clear all PCM vars and flags
237 void pcm_init(struct s_smc
*smc
)
242 struct fddi_mib_p
*mib
;
244 for (np
= 0,phy
= smc
->y
; np
< NUMPHYS
; np
++,phy
++) {
245 /* Indicates the type of PHY being used */
247 mib
->fddiPORTPCMState
= ACTIONS(PC0_OFF
) ;
249 switch (smc
->s
.sas
) {
252 mib
->fddiPORTMy_Type
= (np
== PS
) ? TS
: TM
;
255 mib
->fddiPORTMy_Type
= (np
== PA
) ? TA
:
256 (np
== PB
) ? TB
: TM
;
259 mib
->fddiPORTMy_Type
= TM
;
263 mib
->fddiPORTMy_Type
= (np
== PS
) ? TS
: TNONE
;
264 mib
->fddiPORTHardwarePresent
= (np
== PS
) ? TRUE
:
267 smc
->y
[PA
].mib
->fddiPORTPCMState
= PC0_OFF
;
269 smc
->y
[PB
].mib
->fddiPORTPCMState
= PC0_OFF
;
273 mib
->fddiPORTMy_Type
= (np
== PB
) ? TB
: TA
;
280 phy
->pmd_scramble
= 0 ;
281 switch (phy
->pmd_type
[PMD_SK_PMD
]) {
283 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_MULTI
;
286 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_LCF
;
289 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_TP
;
292 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_TP
;
293 phy
->pmd_scramble
= TRUE
;
296 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_TP
;
297 phy
->pmd_scramble
= TRUE
;
300 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_SINGLE1
;
303 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_SINGLE2
;
306 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_SINGLE2
;
309 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_SINGLE1
;
312 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_UNKNOWN
;
315 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_TP
;
318 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_TP
;
321 mib
->fddiPORTPMDClass
= MIB_PMDCLASS_UNKNOWN
;
325 * A and B port can be on primary and secondary path
327 switch (mib
->fddiPORTMy_Type
) {
329 mib
->fddiPORTAvailablePaths
|= MIB_PATH_S
;
330 mib
->fddiPORTRequestedPaths
[1] = MIB_P_PATH_LOCAL
;
331 mib
->fddiPORTRequestedPaths
[2] =
333 MIB_P_PATH_CON_ALTER
|
334 MIB_P_PATH_SEC_PREFER
;
335 mib
->fddiPORTRequestedPaths
[3] =
337 MIB_P_PATH_CON_ALTER
|
338 MIB_P_PATH_SEC_PREFER
|
342 mib
->fddiPORTAvailablePaths
|= MIB_PATH_S
;
343 mib
->fddiPORTRequestedPaths
[1] = MIB_P_PATH_LOCAL
;
344 mib
->fddiPORTRequestedPaths
[2] =
346 MIB_P_PATH_PRIM_PREFER
;
347 mib
->fddiPORTRequestedPaths
[3] =
349 MIB_P_PATH_PRIM_PREFER
|
350 MIB_P_PATH_CON_PREFER
|
354 mib
->fddiPORTAvailablePaths
|= MIB_PATH_S
;
355 mib
->fddiPORTRequestedPaths
[1] = MIB_P_PATH_LOCAL
;
356 mib
->fddiPORTRequestedPaths
[2] =
358 MIB_P_PATH_CON_ALTER
|
359 MIB_P_PATH_PRIM_PREFER
;
360 mib
->fddiPORTRequestedPaths
[3] =
362 MIB_P_PATH_CON_ALTER
|
363 MIB_P_PATH_PRIM_PREFER
;
366 mib
->fddiPORTRequestedPaths
[1] = MIB_P_PATH_LOCAL
;
367 mib
->fddiPORTRequestedPaths
[2] =
369 MIB_P_PATH_SEC_ALTER
|
370 MIB_P_PATH_PRIM_ALTER
;
371 mib
->fddiPORTRequestedPaths
[3] = 0 ;
375 phy
->pc_lem_fail
= FALSE
;
376 mib
->fddiPORTPCMStateX
= mib
->fddiPORTPCMState
;
377 mib
->fddiPORTLCTFail_Ct
= 0 ;
378 mib
->fddiPORTBS_Flag
= 0 ;
379 mib
->fddiPORTCurrentPath
= MIB_PATH_ISOLATED
;
380 mib
->fddiPORTNeighborType
= TNONE
;
386 phy
->phy_name
= '0' + np
- PM
;
388 phy
->phy_name
= 'A' + np
;
389 phy
->wc_flag
= FALSE
; /* set by SMT */
390 memset((char *)&phy
->lem
,0,sizeof(struct lem_counter
)) ;
391 reset_lem_struct(phy
) ;
392 memset((char *)&phy
->plc
,0,sizeof(struct s_plc
)) ;
393 phy
->plc
.p_state
= PS_OFF
;
394 for (i
= 0 ; i
< NUMBITS
; i
++) {
401 void init_plc(struct s_smc
*smc
)
407 * this is an obsolete public entry point that has to remain
408 * for compat. It is used by various drivers.
409 * the work is now done in real_init_plc()
410 * which is called from pcm_init() ;
414 static void real_init_plc(struct s_smc
*smc
)
418 for (p
= 0 ; p
< NUMPHYS
; p
++)
422 static void plc_init(struct s_smc
*smc
, int p
)
426 int rev
; /* Revision of PLC-x */
429 /* transit PCM state machine to MAINT state */
430 outpw(PLC(p
,PL_CNTRL_B
),0) ;
431 outpw(PLC(p
,PL_CNTRL_B
),PL_PCM_STOP
) ;
432 outpw(PLC(p
,PL_CNTRL_A
),0) ;
435 * if PLC-S then set control register C
438 rev
= inpw(PLC(p
,PL_STATUS_A
)) & PLC_REV_MASK
;
439 if (rev
!= PLC_REVISION_A
)
442 if (smc
->y
[p
].pmd_scramble
) {
443 outpw(PLC(p
,PL_CNTRL_C
),PLCS_CONTROL_C_S
) ;
445 outpw(PLC(p
,PL_T_FOT_ASS
),PLCS_FASSERT_S
) ;
446 outpw(PLC(p
,PL_T_FOT_DEASS
),PLCS_FDEASSERT_S
) ;
450 outpw(PLC(p
,PL_CNTRL_C
),PLCS_CONTROL_C_U
) ;
452 outpw(PLC(p
,PL_T_FOT_ASS
),PLCS_FASSERT_U
) ;
453 outpw(PLC(p
,PL_T_FOT_DEASS
),PLCS_FDEASSERT_U
) ;
461 for ( i
= 0 ; pltm
[i
].timer
; i
++) /* set timer parameter reg */
462 outpw(PLC(p
,pltm
[i
].timer
),pltm
[i
].para
) ;
464 (void)inpw(PLC(p
,PL_INTR_EVENT
)) ; /* clear interrupt event reg */
465 plc_clear_irq(smc
,p
) ;
466 outpw(PLC(p
,PL_INTR_MASK
),plc_imsk_na
); /* enable non active irq's */
469 * if PCM is configured for class s, it will NOT go to the
470 * REMOVE state if offline (page 3-36;)
471 * in the concentrator, all inactive PHYS always must be in
473 * there's no real need to use this feature at all ..
476 if ((smc
->s
.sas
== SMT_SAS
) && (p
== PS
)) {
477 outpw(PLC(p
,PL_CNTRL_B
),PL_CLASS_S
) ;
483 * control PCM state machine
485 static void plc_go_state(struct s_smc
*smc
, int p
, int state
)
492 port
= (HW_PTR
) (PLC(p
,PL_CNTRL_B
)) ;
493 val
= inpw(port
) & ~(PL_PCM_CNTRL
| PL_MAINT
) ;
495 outpw(port
,val
| state
) ;
499 * read current line state (called by ECM & PCM)
501 int sm_pm_get_ls(struct s_smc
*smc
, int phy
)
506 if (!plc_is_installed(smc
,phy
))
510 state
= inpw(PLC(phy
,PL_STATUS_A
)) & PL_LINE_ST
;
534 static int plc_send_bits(struct s_smc
*smc
, struct s_phy
*phy
, int len
)
536 int np
= phy
->np
; /* PHY index */
542 /* create bit vector */
543 for (i
= len
-1,n
= 0 ; i
>= 0 ; i
--) {
544 n
= (n
<<1) | phy
->t_val
[phy
->bitn
+i
] ;
546 if (inpw(PLC(np
,PL_STATUS_B
)) & PL_PCM_SIGNAL
) {
548 printf("PL_PCM_SIGNAL is set\n") ;
552 /* write bit[n] & length = 1 to regs */
553 outpw(PLC(np
,PL_VECTOR_LEN
),len
-1) ; /* len=nr-1 */
554 outpw(PLC(np
,PL_XMIT_VECTOR
),n
) ;
558 if (smc
->debug
.d_plc
& 0x80)
560 if (debug
.d_plc
& 0x80)
562 printf("SIGNALING bit %d .. %d\n",phy
->bitn
,phy
->bitn
+len
-1) ;
571 void plc_config_mux(struct s_smc
*smc
, int mux
)
573 if (smc
->s
.sas
!= SMT_DAS
)
575 if (mux
== MUX_WRAPB
) {
576 SETMASK(PLC(PA
,PL_CNTRL_B
),PL_CONFIG_CNTRL
,PL_CONFIG_CNTRL
) ;
577 SETMASK(PLC(PA
,PL_CNTRL_A
),PL_SC_REM_LOOP
,PL_SC_REM_LOOP
) ;
580 CLEAR(PLC(PA
,PL_CNTRL_B
),PL_CONFIG_CNTRL
) ;
581 CLEAR(PLC(PA
,PL_CNTRL_A
),PL_SC_REM_LOOP
) ;
583 CLEAR(PLC(PB
,PL_CNTRL_B
),PL_CONFIG_CNTRL
) ;
584 CLEAR(PLC(PB
,PL_CNTRL_A
),PL_SC_REM_LOOP
) ;
589 called by dispatcher & fddi_init() (driver)
595 void pcm(struct s_smc
*smc
, const int np
, int event
)
600 struct fddi_mib_p
*mib
;
604 * ignore 2nd PHY if SAS
606 if ((np
!= PS
) && (smc
->s
.sas
== SMT_SAS
))
611 oldstate
= mib
->fddiPORTPCMState
;
613 DB_PCM("PCM %c: state %s",
615 (mib
->fddiPORTPCMState
& AFLAG
) ? "ACTIONS " : "") ;
616 DB_PCM("%s, event %s\n",
617 pcm_states
[mib
->fddiPORTPCMState
& ~AFLAG
],
619 state
= mib
->fddiPORTPCMState
;
620 pcm_fsm(smc
,phy
,event
) ;
622 } while (state
!= mib
->fddiPORTPCMState
) ;
624 * because the PLC does the bit signaling for us,
625 * we're always in SIGNAL state
626 * the MIB want's to see CONNECT
627 * we therefore fake an entry in the MIB
629 if (state
== PC5_SIGNAL
)
630 mib
->fddiPORTPCMStateX
= PC3_CONNECT
;
632 mib
->fddiPORTPCMStateX
= state
;
638 if ( mib
->fddiPORTPCMState
!= oldstate
&&
639 ((oldstate
== PC8_ACTIVE
) || (mib
->fddiPORTPCMState
== PC8_ACTIVE
))) {
640 smt_srf_event(smc
,SMT_EVENT_PORT_PATH_CHANGE
,
641 (int) (INDEX_PORT
+ phy
->np
),0) ;
646 /* check whether a snmp-trap has to be sent */
648 if ( mib
->fddiPORTPCMState
!= oldstate
) {
649 /* a real state change took place */
650 DB_SNMP ("PCM from %d to %d\n", oldstate
, mib
->fddiPORTPCMState
);
651 if ( mib
->fddiPORTPCMState
== PC0_OFF
) {
652 /* send first trap */
653 snmp_fddi_trap (smc
, 1, (int) mib
->fddiPORTIndex
);
654 } else if ( oldstate
== PC0_OFF
) {
655 /* send second trap */
656 snmp_fddi_trap (smc
, 2, (int) mib
->fddiPORTIndex
);
657 } else if ( mib
->fddiPORTPCMState
!= PC2_TRACE
&&
658 oldstate
== PC8_ACTIVE
) {
659 /* send third trap */
660 snmp_fddi_trap (smc
, 3, (int) mib
->fddiPORTIndex
);
661 } else if ( mib
->fddiPORTPCMState
== PC8_ACTIVE
) {
662 /* send fourth trap */
663 snmp_fddi_trap (smc
, 4, (int) mib
->fddiPORTIndex
);
668 pcm_state_change(smc
,np
,state
) ;
674 static void pcm_fsm(struct s_smc
*smc
, struct s_phy
*phy
, int cmd
)
677 int np
= phy
->np
; /* PHY index */
679 struct fddi_mib_p
*mib
;
681 u_short plc_rev
; /* Revision of the plc */
682 #endif /* nMOT_ELM */
688 * general transitions independent of state
693 if (mib
->fddiPORTPCMState
!= PC9_MAINT
) {
695 AIX_EVENT(smc
, (u_long
) FDDI_RING_STATUS
, (u_long
)
696 FDDI_PORT_EVENT
, (u_long
) FDDI_PORT_STOP
,
697 smt_get_port_event_word(smc
));
702 if (mib
->fddiPORTPCMState
!= PC9_MAINT
)
703 GO_STATE(PC1_BREAK
) ;
707 GO_STATE(PC9_MAINT
) ;
708 AIX_EVENT(smc
, (u_long
) FDDI_RING_STATUS
, (u_long
)
709 FDDI_PORT_EVENT
, (u_long
) FDDI_PORT_DISABLED
,
710 smt_get_port_event_word(smc
));
712 case PC_TIMEOUT_LCT
:
713 /* if long or extended LCT */
714 stop_pcm_timer0(smc
,phy
) ;
715 CLEAR(PLC(np
,PL_CNTRL_B
),PL_LONG
) ;
716 /* end of LCT is indicate by PCM_CODE (initiate PCM event) */
720 switch(mib
->fddiPORTPCMState
) {
721 case ACTIONS(PC0_OFF
) :
722 stop_pcm_timer0(smc
,phy
) ;
723 outpw(PLC(np
,PL_CNTRL_A
),0) ;
724 CLEAR(PLC(np
,PL_CNTRL_B
),PL_PC_JOIN
) ;
725 CLEAR(PLC(np
,PL_CNTRL_B
),PL_LONG
) ;
726 sm_ph_lem_stop(smc
,np
) ; /* disable LEM */
727 phy
->cf_loop
= FALSE
;
728 phy
->cf_join
= FALSE
;
729 queue_event(smc
,EVENT_CFM
,CF_JOIN
+np
) ;
730 plc_go_state(smc
,np
,PL_PCM_STOP
) ;
731 mib
->fddiPORTConnectState
= PCM_DISABLED
;
736 if (cmd
== PC_MAINT
) {
737 GO_STATE(PC9_MAINT
) ;
741 case ACTIONS(PC1_BREAK
) :
742 /* Stop the LCT timer if we came from Signal state */
743 stop_pcm_timer0(smc
,phy
) ;
745 plc_go_state(smc
,np
,0) ;
746 CLEAR(PLC(np
,PL_CNTRL_B
),PL_PC_JOIN
) ;
747 CLEAR(PLC(np
,PL_CNTRL_B
),PL_LONG
) ;
748 sm_ph_lem_stop(smc
,np
) ; /* disable LEM */
750 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
753 if (inpw(PLC(np
,PL_STATUS_B
)) & PL_PCM_SIGNAL
) {
754 plc_go_state(smc
,np
,PL_PCM_STOP
) ;
759 * Go to OFF state in any case.
761 plc_go_state(smc
,np
,PL_PCM_STOP
) ;
763 if (mib
->fddiPORTPC_Withhold
== PC_WH_NONE
)
764 mib
->fddiPORTConnectState
= PCM_CONNECTING
;
765 phy
->cf_loop
= FALSE
;
766 phy
->cf_join
= FALSE
;
767 queue_event(smc
,EVENT_CFM
,CF_JOIN
+np
) ;
768 phy
->ls_flag
= FALSE
;
769 phy
->pc_mode
= PM_NONE
; /* needed by CFM */
770 phy
->bitn
= 0 ; /* bit signaling start bit */
771 for (i
= 0 ; i
< 3 ; i
++)
772 pc_tcode_actions(smc
,i
,phy
) ;
774 /* Set the non-active interrupt mask register */
775 outpw(PLC(np
,PL_INTR_MASK
),plc_imsk_na
) ;
778 * If the LCT was stopped. There might be a
779 * PCM_CODE interrupt event present.
780 * This must be cleared.
782 (void)inpw(PLC(np
,PL_INTR_EVENT
)) ;
784 /* Get the plc revision for revision dependent code */
785 plc_rev
= inpw(PLC(np
,PL_STATUS_A
)) & PLC_REV_MASK
;
787 if (plc_rev
!= PLC_REV_SN3
)
791 * No supernet III PLC, so set Xmit verctor and
792 * length BEFORE starting the state machine.
794 if (plc_send_bits(smc
,phy
,3)) {
800 * Now give the Start command.
801 * - The start command shall be done before setting the bits
802 * to be signaled. (In PLC-S description and PLCS in SN3.
803 * - The start command shall be issued AFTER setting the
804 * XMIT vector and the XMIT length register.
806 * We do it exactly according this specs for the old PLC and
807 * the new PLCS inside the SN3.
808 * For the usual PLCS we try it the way it is done for the
809 * old PLC and set the XMIT registers again, if the PLC is
810 * not in SIGNAL state. This is done according to an PLCS
814 plc_go_state(smc
,np
,PL_PCM_START
) ;
817 * workaround for PLC-S eng. sample errata
820 if (!(inpw(PLC(np
,PL_STATUS_B
)) & PL_PCM_SIGNAL
))
822 if (((inpw(PLC(np
,PL_STATUS_A
)) & PLC_REV_MASK
) !=
824 !(inpw(PLC(np
,PL_STATUS_B
)) & PL_PCM_SIGNAL
))
825 #endif /* nMOT_ELM */
828 * Set register again (PLCS errata) or the first time
831 (void) plc_send_bits(smc
,phy
,3) ;
837 GO_STATE(PC5_SIGNAL
) ;
838 plc
->p_state
= PS_BIT3
;
845 case ACTIONS(PC2_TRACE
) :
846 plc_go_state(smc
,np
,PL_PCM_TRACE
) ;
852 case PC3_CONNECT
: /* these states are done by hardware */
856 case ACTIONS(PC5_SIGNAL
) :
859 if ((cmd
!= PC_SIGNAL
) && (cmd
!= PC_TIMEOUT_LCT
))
861 switch (plc
->p_state
) {
863 for (i
= 0 ; i
<= 2 ; i
++)
864 pc_rcode_actions(smc
,i
,phy
) ;
865 pc_tcode_actions(smc
,3,phy
) ;
866 plc
->p_state
= PS_BIT4
;
870 if (plc_send_bits(smc
,phy
,1)) {
875 pc_rcode_actions(smc
,3,phy
) ;
876 for (i
= 4 ; i
<= 6 ; i
++)
877 pc_tcode_actions(smc
,i
,phy
) ;
878 plc
->p_state
= PS_BIT7
;
882 if (plc_send_bits(smc
,phy
,3)) {
887 for (i
= 3 ; i
<= 6 ; i
++)
888 pc_rcode_actions(smc
,i
,phy
) ;
889 plc
->p_state
= PS_LCT
;
893 sm_ph_lem_start(smc
,np
,(int)smc
->s
.lct_short
) ; /* enable LEM */
895 i
= inpw(PLC(np
,PL_CNTRL_B
)) & ~PL_PC_LOOP
;
896 outpw(PLC(np
,PL_CNTRL_B
),i
) ; /* must be cleared */
897 outpw(PLC(np
,PL_CNTRL_B
),i
| PL_RLBP
) ;
900 /* check for local LCT failure */
901 pc_tcode_actions(smc
,7,phy
) ;
905 plc
->p_state
= PS_BIT8
;
909 if (plc_send_bits(smc
,phy
,1)) {
914 /* check for remote LCT failure */
915 pc_rcode_actions(smc
,7,phy
) ;
916 if (phy
->t_val
[7] || phy
->r_val
[7]) {
917 plc_go_state(smc
,np
,PL_PCM_STOP
) ;
918 GO_STATE(PC1_BREAK
) ;
921 for (i
= 8 ; i
<= 9 ; i
++)
922 pc_tcode_actions(smc
,i
,phy
) ;
923 plc
->p_state
= PS_JOIN
;
927 if (plc_send_bits(smc
,phy
,2)) {
932 for (i
= 8 ; i
<= 9 ; i
++)
933 pc_rcode_actions(smc
,i
,phy
) ;
934 plc
->p_state
= PS_ACTIVE
;
940 case ACTIONS(PC6_JOIN
) :
942 * prevent mux error when going from WRAP_A to WRAP_B
944 if (smc
->s
.sas
== SMT_DAS
&& np
== PB
&&
945 (smc
->y
[PA
].pc_mode
== PM_TREE
||
946 smc
->y
[PB
].pc_mode
== PM_TREE
)) {
947 SETMASK(PLC(np
,PL_CNTRL_A
),
948 PL_SC_REM_LOOP
,PL_SC_REM_LOOP
) ;
949 SETMASK(PLC(np
,PL_CNTRL_B
),
950 PL_CONFIG_CNTRL
,PL_CONFIG_CNTRL
) ;
952 SETMASK(PLC(np
,PL_CNTRL_B
),PL_PC_JOIN
,PL_PC_JOIN
) ;
953 SETMASK(PLC(np
,PL_CNTRL_B
),PL_PC_JOIN
,PL_PC_JOIN
) ;
958 switch (plc
->p_state
) {
962 phy
->cf_join
= TRUE
;
963 queue_event(smc
,EVENT_CFM
,CF_JOIN
+np
) ; ;
966 GO_STATE(PC8_ACTIVE
) ;
968 if (cmd
== PC_TRACE
) {
969 GO_STATE(PC2_TRACE
) ;
979 case ACTIONS(PC8_ACTIVE
) :
983 sm_ph_lem_start(smc
,(int)phy
->np
,LCT_LEM_MAX
) ;
985 phy
->tr_flag
= FALSE
;
986 mib
->fddiPORTConnectState
= PCM_ACTIVE
;
988 /* Set the active interrupt mask register */
989 outpw(PLC(np
,PL_INTR_MASK
),plc_imsk_act
) ;
994 /*PC81 is done by PL_TNE_EXPIRED irq */
996 if (cmd
== PC_TRACE
) {
997 GO_STATE(PC2_TRACE
) ;
1000 /*PC88c: is done by TRACE_PROP irq */
1003 case ACTIONS(PC9_MAINT
) :
1004 stop_pcm_timer0(smc
,phy
) ;
1005 CLEAR(PLC(np
,PL_CNTRL_B
),PL_PC_JOIN
) ;
1006 CLEAR(PLC(np
,PL_CNTRL_B
),PL_LONG
) ;
1007 CLEAR(PLC(np
,PL_INTR_MASK
),PL_LE_CTR
) ; /* disable LEM int. */
1008 sm_ph_lem_stop(smc
,np
) ; /* disable LEM */
1009 phy
->cf_loop
= FALSE
;
1010 phy
->cf_join
= FALSE
;
1011 queue_event(smc
,EVENT_CFM
,CF_JOIN
+np
) ;
1012 plc_go_state(smc
,np
,PL_PCM_STOP
) ;
1013 mib
->fddiPORTConnectState
= PCM_DISABLED
;
1014 SETMASK(PLC(np
,PL_CNTRL_B
),PL_MAINT
,PL_MAINT
) ;
1015 sm_ph_linestate(smc
,np
,(int) MIB2LS(mib
->fddiPORTMaint_LS
)) ;
1016 outpw(PLC(np
,PL_CNTRL_A
),PL_SC_BYPASS
) ;
1020 DB_PCMN(1,"PCM %c : MAINT\n",phy
->phy_name
,0) ;
1022 if (cmd
== PC_ENABLE
) {
1029 SMT_PANIC(smc
,SMT_E0118
, SMT_E0118_MSG
) ;
1035 * force line state on a PHY output (only in MAINT state)
1037 static void sm_ph_linestate(struct s_smc
*smc
, int phy
, int ls
)
1043 cntrl
= (inpw(PLC(phy
,PL_CNTRL_B
)) & ~PL_MAINT_LS
) |
1044 PL_PCM_STOP
| PL_MAINT
;
1046 case PC_QLS
: /* Force Quiet */
1047 cntrl
|= PL_M_QUI0
;
1049 case PC_MLS
: /* Force Master */
1050 cntrl
|= PL_M_MASTR
;
1052 case PC_HLS
: /* Force Halt */
1053 cntrl
|= PL_M_HALT
;
1056 case PC_ILS
: /* Force Idle */
1057 cntrl
|= PL_M_IDLE
;
1059 case PC_LS_PDR
: /* Enable repeat filter */
1060 cntrl
|= PL_M_TPDR
;
1063 outpw(PLC(phy
,PL_CNTRL_B
),cntrl
) ;
1066 static void reset_lem_struct(struct s_phy
*phy
)
1068 struct lem_counter
*lem
= &phy
->lem
;
1070 phy
->mib
->fddiPORTLer_Estimate
= 15 ;
1071 lem
->lem_float_ber
= 15 * 100 ;
1075 * link error monitor
1077 static void lem_evaluate(struct s_smc
*smc
, struct s_phy
*phy
)
1081 struct lem_counter
*lem
= &phy
->lem
;
1082 struct fddi_mib_p
*mib
;
1090 errors
= inpw(PLC(((int) phy
->np
),PL_LINK_ERR_CTR
)) ;
1091 lem
->lem_errors
+= errors
;
1092 mib
->fddiPORTLem_Ct
+= errors
;
1094 errors
= lem
->lem_errors
;
1096 * calculation is called on a intervall of 8 seconds
1097 * -> this means, that one error in 8 sec. is one of 8*125*10E6
1098 * the same as BER = 10E-9
1100 * -> 9 errors in 8 seconds mean:
1101 * BER = 9 * 10E-9 and this is
1102 * < 10E-8, so the limit of 10E-8 is not reached!
1105 if (!errors
) ber
= 15 ;
1106 else if (errors
<= 9) ber
= 9 ;
1107 else if (errors
<= 99) ber
= 8 ;
1108 else if (errors
<= 999) ber
= 7 ;
1109 else if (errors
<= 9999) ber
= 6 ;
1110 else if (errors
<= 99999) ber
= 5 ;
1111 else if (errors
<= 999999) ber
= 4 ;
1112 else if (errors
<= 9999999) ber
= 3 ;
1113 else if (errors
<= 99999999) ber
= 2 ;
1114 else if (errors
<= 999999999) ber
= 1 ;
1121 lem
->lem_float_ber
= lem
->lem_float_ber
* 7 + ber
* 3 ;
1122 lem
->lem_float_ber
/= 10 ;
1123 mib
->fddiPORTLer_Estimate
= lem
->lem_float_ber
/ 100 ;
1124 if (mib
->fddiPORTLer_Estimate
< 4) {
1125 mib
->fddiPORTLer_Estimate
= 4 ;
1128 if (lem
->lem_errors
) {
1129 DB_PCMN(1,"LEM %c :\n",phy
->np
== PB
? 'B' : 'A',0) ;
1130 DB_PCMN(1,"errors : %ld\n",lem
->lem_errors
,0) ;
1131 DB_PCMN(1,"sum_errors : %ld\n",mib
->fddiPORTLem_Ct
,0) ;
1132 DB_PCMN(1,"current BER : 10E-%d\n",ber
/100,0) ;
1133 DB_PCMN(1,"float BER : 10E-(%d/100)\n",lem
->lem_float_ber
,0) ;
1134 DB_PCMN(1,"avg. BER : 10E-%d\n",
1135 mib
->fddiPORTLer_Estimate
,0) ;
1138 lem
->lem_errors
= 0L ;
1141 cond
= (mib
->fddiPORTLer_Estimate
<= mib
->fddiPORTLer_Alarm
) ?
1143 #ifdef SMT_EXT_CUTOFF
1144 smt_ler_alarm_check(smc
,phy
,cond
) ;
1145 #endif /* nSMT_EXT_CUTOFF */
1146 if (cond
!= mib
->fddiPORTLerFlag
) {
1147 smt_srf_event(smc
,SMT_COND_PORT_LER
,
1148 (int) (INDEX_PORT
+ phy
->np
) ,cond
) ;
1152 if ( mib
->fddiPORTLer_Estimate
<= mib
->fddiPORTLer_Cutoff
) {
1153 phy
->pc_lem_fail
= TRUE
; /* flag */
1154 mib
->fddiPORTLem_Reject_Ct
++ ;
1156 * "forgive 10e-2" if we cutoff so we can come
1159 lem
->lem_float_ber
+= 2*100 ;
1163 DB_PCMN(1,"PCM: LER cutoff on port %d cutoff %d\n",
1164 phy
->np
, mib
->fddiPORTLer_Cutoff
) ;
1166 #ifdef SMT_EXT_CUTOFF
1167 smt_port_off_event(smc
,phy
->np
);
1168 #else /* nSMT_EXT_CUTOFF */
1169 queue_event(smc
,(int)(EVENT_PCM
+phy
->np
),PC_START
) ;
1170 #endif /* nSMT_EXT_CUTOFF */
1175 * called by SMT to calculate LEM bit error rate
1177 void sm_lem_evaluate(struct s_smc
*smc
)
1181 for (np
= 0 ; np
< NUMPHYS
; np
++)
1182 lem_evaluate(smc
,&smc
->y
[np
]) ;
1185 static void lem_check_lct(struct s_smc
*smc
, struct s_phy
*phy
)
1187 struct lem_counter
*lem
= &phy
->lem
;
1188 struct fddi_mib_p
*mib
;
1193 phy
->pc_lem_fail
= FALSE
; /* flag */
1194 errors
= inpw(PLC(((int)phy
->np
),PL_LINK_ERR_CTR
)) ;
1195 lem
->lem_errors
+= errors
;
1196 mib
->fddiPORTLem_Ct
+= errors
;
1197 if (lem
->lem_errors
) {
1198 switch(phy
->lc_test
) {
1200 if (lem
->lem_errors
>= smc
->s
.lct_short
)
1201 phy
->pc_lem_fail
= TRUE
;
1204 if (lem
->lem_errors
>= smc
->s
.lct_medium
)
1205 phy
->pc_lem_fail
= TRUE
;
1208 if (lem
->lem_errors
>= smc
->s
.lct_long
)
1209 phy
->pc_lem_fail
= TRUE
;
1212 if (lem
->lem_errors
>= smc
->s
.lct_extended
)
1213 phy
->pc_lem_fail
= TRUE
;
1216 DB_PCMN(1," >>errors : %d\n",lem
->lem_errors
,0) ;
1218 if (phy
->pc_lem_fail
) {
1219 mib
->fddiPORTLCTFail_Ct
++ ;
1220 mib
->fddiPORTLem_Reject_Ct
++ ;
1223 mib
->fddiPORTLCTFail_Ct
= 0 ;
1229 static void sm_ph_lem_start(struct s_smc
*smc
, int np
, int threshold
)
1231 struct lem_counter
*lem
= &smc
->y
[np
].lem
;
1234 lem
->lem_errors
= 0L ;
1236 /* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1240 outpw(PLC(np
,PL_LE_THRESHOLD
),threshold
) ;
1241 (void)inpw(PLC(np
,PL_LINK_ERR_CTR
)) ; /* clear error counter */
1244 SETMASK(PLC(np
,PL_INTR_MASK
),PL_LE_CTR
,PL_LE_CTR
) ;
1247 static void sm_ph_lem_stop(struct s_smc
*smc
, int np
)
1249 struct lem_counter
*lem
= &smc
->y
[np
].lem
;
1252 CLEAR(PLC(np
,PL_INTR_MASK
),PL_LE_CTR
) ;
1256 void sm_pm_ls_latch(struct s_smc
*smc
, int phy
, int on_off
)
1257 /* int on_off; en- or disable ident. ls */
1261 phy
= phy
; on_off
= on_off
;
1267 * receive actions are called AFTER the bit n is received,
1268 * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1272 * PCM pseudo code 5.1 .. 6.1
1274 static void pc_rcode_actions(struct s_smc
*smc
, int bit
, struct s_phy
*phy
)
1276 struct fddi_mib_p
*mib
;
1280 DB_PCMN(1,"SIG rec %x %x: \n", bit
,phy
->r_val
[bit
] ) ;
1289 if (phy
->r_val
[1] == 0 && phy
->r_val
[2] == 0)
1290 mib
->fddiPORTNeighborType
= TA
;
1291 else if (phy
->r_val
[1] == 0 && phy
->r_val
[2] == 1)
1292 mib
->fddiPORTNeighborType
= TB
;
1293 else if (phy
->r_val
[1] == 1 && phy
->r_val
[2] == 0)
1294 mib
->fddiPORTNeighborType
= TS
;
1295 else if (phy
->r_val
[1] == 1 && phy
->r_val
[2] == 1)
1296 mib
->fddiPORTNeighborType
= TM
;
1299 if (mib
->fddiPORTMy_Type
== TM
&&
1300 mib
->fddiPORTNeighborType
== TM
) {
1301 DB_PCMN(1,"PCM %c : E100 withhold M-M\n",
1303 mib
->fddiPORTPC_Withhold
= PC_WH_M_M
;
1304 RS_SET(smc
,RS_EVENT
) ;
1306 else if (phy
->t_val
[3] || phy
->r_val
[3]) {
1307 mib
->fddiPORTPC_Withhold
= PC_WH_NONE
;
1308 if (mib
->fddiPORTMy_Type
== TM
||
1309 mib
->fddiPORTNeighborType
== TM
)
1310 phy
->pc_mode
= PM_TREE
;
1312 phy
->pc_mode
= PM_PEER
;
1314 /* reevaluate the selection criteria (wc_flag) */
1315 all_selection_criteria (smc
);
1318 mib
->fddiPORTPC_Withhold
= PC_WH_PATH
;
1322 mib
->fddiPORTPC_Withhold
= PC_WH_OTHER
;
1323 RS_SET(smc
,RS_EVENT
) ;
1324 DB_PCMN(1,"PCM %c : E101 withhold other\n",
1327 phy
->twisted
= ((mib
->fddiPORTMy_Type
!= TS
) &&
1328 (mib
->fddiPORTMy_Type
!= TM
) &&
1329 (mib
->fddiPORTNeighborType
==
1330 mib
->fddiPORTMy_Type
)) ;
1332 DB_PCMN(1,"PCM %c : E102 !!! TWISTED !!!\n",
1339 if (phy
->t_val
[4] || phy
->r_val
[4]) {
1340 if ((phy
->t_val
[4] && phy
->t_val
[5]) ||
1341 (phy
->r_val
[4] && phy
->r_val
[5]) )
1342 phy
->lc_test
= LC_EXTENDED
;
1344 phy
->lc_test
= LC_LONG
;
1346 else if (phy
->t_val
[5] || phy
->r_val
[5])
1347 phy
->lc_test
= LC_MEDIUM
;
1349 phy
->lc_test
= LC_SHORT
;
1350 switch (phy
->lc_test
) {
1351 case LC_SHORT
: /* 50ms */
1352 outpw(PLC((int)phy
->np
,PL_LC_LENGTH
), TP_LC_LENGTH
) ;
1353 phy
->t_next
[7] = smc
->s
.pcm_lc_short
;
1355 case LC_MEDIUM
: /* 500ms */
1356 outpw(PLC((int)phy
->np
,PL_LC_LENGTH
), TP_LC_LONGLN
) ;
1357 phy
->t_next
[7] = smc
->s
.pcm_lc_medium
;
1360 SETMASK(PLC((int)phy
->np
,PL_CNTRL_B
),PL_LONG
,PL_LONG
) ;
1361 phy
->t_next
[7] = smc
->s
.pcm_lc_long
;
1364 SETMASK(PLC((int)phy
->np
,PL_CNTRL_B
),PL_LONG
,PL_LONG
) ;
1365 phy
->t_next
[7] = smc
->s
.pcm_lc_extended
;
1368 if (phy
->t_next
[7] > smc
->s
.pcm_lc_medium
) {
1369 start_pcm_timer0(smc
,phy
->t_next
[7],PC_TIMEOUT_LCT
,phy
);
1371 DB_PCMN(1,"LCT timer = %ld us\n", phy
->t_next
[7], 0) ;
1372 phy
->t_next
[9] = smc
->s
.pcm_t_next_9
;
1375 if (phy
->t_val
[6]) {
1376 phy
->cf_loop
= TRUE
;
1378 phy
->td_flag
= TRUE
;
1381 if (phy
->t_val
[7] || phy
->r_val
[7]) {
1382 DB_PCMN(1,"PCM %c : E103 LCT fail %s\n",
1383 phy
->phy_name
,phy
->t_val
[7]? "local":"remote") ;
1384 queue_event(smc
,(int)(EVENT_PCM
+phy
->np
),PC_START
) ;
1388 if (phy
->t_val
[8] || phy
->r_val
[8]) {
1390 phy
->cf_loop
= TRUE
;
1391 phy
->td_flag
= TRUE
;
1395 if (phy
->r_val
[9]) {
1396 /* neighbor intends to have MAC on output */ ;
1397 mib
->fddiPORTMacIndicated
.R_val
= TRUE
;
1400 /* neighbor does not intend to have MAC on output */ ;
1401 mib
->fddiPORTMacIndicated
.R_val
= FALSE
;
1408 * PCM pseudo code 5.1 .. 6.1
1410 static void pc_tcode_actions(struct s_smc
*smc
, const int bit
, struct s_phy
*phy
)
1413 struct fddi_mib_p
*mib
;
1419 phy
->t_val
[0] = 0 ; /* no escape used */
1422 if (mib
->fddiPORTMy_Type
== TS
|| mib
->fddiPORTMy_Type
== TM
)
1428 if (mib
->fddiPORTMy_Type
== TB
|| mib
->fddiPORTMy_Type
== TM
)
1438 type
= mib
->fddiPORTMy_Type
;
1439 ne
= mib
->fddiPORTNeighborType
;
1440 policy
= smc
->mib
.fddiSMTConnectionPolicy
;
1442 phy
->t_val
[3] = 1 ; /* Accept connection */
1446 ((policy
& POLICY_AA
) && ne
== TA
) ||
1447 ((policy
& POLICY_AB
) && ne
== TB
) ||
1448 ((policy
& POLICY_AS
) && ne
== TS
) ||
1449 ((policy
& POLICY_AM
) && ne
== TM
) )
1450 phy
->t_val
[3] = 0 ; /* Reject */
1454 ((policy
& POLICY_BA
) && ne
== TA
) ||
1455 ((policy
& POLICY_BB
) && ne
== TB
) ||
1456 ((policy
& POLICY_BS
) && ne
== TS
) ||
1457 ((policy
& POLICY_BM
) && ne
== TM
) )
1458 phy
->t_val
[3] = 0 ; /* Reject */
1462 ((policy
& POLICY_SA
) && ne
== TA
) ||
1463 ((policy
& POLICY_SB
) && ne
== TB
) ||
1464 ((policy
& POLICY_SS
) && ne
== TS
) ||
1465 ((policy
& POLICY_SM
) && ne
== TM
) )
1466 phy
->t_val
[3] = 0 ; /* Reject */
1470 ((policy
& POLICY_MA
) && ne
== TA
) ||
1471 ((policy
& POLICY_MB
) && ne
== TB
) ||
1472 ((policy
& POLICY_MS
) && ne
== TS
) ||
1473 ((policy
& POLICY_MM
) && ne
== TM
) )
1474 phy
->t_val
[3] = 0 ; /* Reject */
1479 * detect undesirable connection attempt event
1481 if ( (type
== TA
&& ne
== TA
) ||
1482 (type
== TA
&& ne
== TS
) ||
1483 (type
== TB
&& ne
== TB
) ||
1484 (type
== TB
&& ne
== TS
) ||
1485 (type
== TS
&& ne
== TA
) ||
1486 (type
== TS
&& ne
== TB
) ) {
1487 smt_srf_event(smc
,SMT_EVENT_PORT_CONNECTION
,
1488 (int) (INDEX_PORT
+ phy
->np
) ,0) ;
1494 if (mib
->fddiPORTPC_Withhold
== PC_WH_NONE
) {
1495 if (phy
->pc_lem_fail
) {
1496 phy
->t_val
[4] = 1 ; /* long */
1501 if (mib
->fddiPORTLCTFail_Ct
> 0)
1502 phy
->t_val
[5] = 1 ; /* medium */
1504 phy
->t_val
[5] = 0 ; /* short */
1507 * Implementers choice: use medium
1508 * instead of short when undesired
1509 * connection attempt is made.
1512 phy
->t_val
[5] = 1 ; /* medium */
1514 mib
->fddiPORTConnectState
= PCM_CONNECTING
;
1517 mib
->fddiPORTConnectState
= PCM_STANDBY
;
1518 phy
->t_val
[4] = 1 ; /* extended */
1525 /* we do NOT have a MAC for LCT */
1529 phy
->cf_loop
= FALSE
;
1530 lem_check_lct(smc
,phy
) ;
1531 if (phy
->pc_lem_fail
) {
1532 DB_PCMN(1,"PCM %c : E104 LCT failed\n",
1540 phy
->t_val
[8] = 0 ; /* Don't request MAC loopback */
1544 if ((mib
->fddiPORTPC_Withhold
!= PC_WH_NONE
) ||
1545 ((smc
->s
.sas
== SMT_DAS
) && (phy
->wc_flag
))) {
1546 queue_event(smc
,EVENT_PCM
+np
,PC_START
) ;
1549 phy
->t_val
[9] = FALSE
;
1550 switch (smc
->s
.sas
) {
1553 * MAC intended on output
1555 if (phy
->pc_mode
== PM_TREE
) {
1556 if ((np
== PB
) || ((np
== PA
) &&
1557 (smc
->y
[PB
].mib
->fddiPORTConnectState
!=
1559 phy
->t_val
[9] = TRUE
;
1563 phy
->t_val
[9] = TRUE
;
1568 phy
->t_val
[9] = TRUE
;
1573 * MAC intended on output
1576 phy
->t_val
[9] = TRUE
;
1580 mib
->fddiPORTMacIndicated
.T_val
= phy
->t_val
[9] ;
1583 DB_PCMN(1,"SIG snd %x %x: \n", bit
,phy
->t_val
[bit
] ) ;
1587 * return status twisted (called by SMT)
1589 int pcm_status_twisted(struct s_smc
*smc
)
1592 if (smc
->s
.sas
!= SMT_DAS
)
1594 if (smc
->y
[PA
].twisted
&& (smc
->y
[PA
].mib
->fddiPORTPCMState
== PC8_ACTIVE
))
1596 if (smc
->y
[PB
].twisted
&& (smc
->y
[PB
].mib
->fddiPORTPCMState
== PC8_ACTIVE
))
1602 * return status (called by SMT)
1608 void pcm_status_state(struct s_smc
*smc
, int np
, int *type
, int *state
,
1609 int *remote
, int *mac
)
1611 struct s_phy
*phy
= &smc
->y
[np
] ;
1612 struct fddi_mib_p
*mib
;
1616 /* remote PHY type and MAC - set only if active */
1618 *type
= mib
->fddiPORTMy_Type
; /* our PHY type */
1619 *state
= mib
->fddiPORTConnectState
;
1620 *remote
= mib
->fddiPORTNeighborType
;
1622 switch(mib
->fddiPORTPCMState
) {
1624 *mac
= mib
->fddiPORTMacIndicated
.R_val
;
1630 * return rooted station status (called by SMT)
1632 int pcm_rooted_station(struct s_smc
*smc
)
1636 for (n
= 0 ; n
< NUMPHYS
; n
++) {
1637 if (smc
->y
[n
].mib
->fddiPORTPCMState
== PC8_ACTIVE
&&
1638 smc
->y
[n
].mib
->fddiPORTNeighborType
== TM
)
1645 * Interrupt actions for PLC & PCM events
1647 void plc_irq(struct s_smc
*smc
, int np
, unsigned int cmd
)
1648 /* int np; PHY index */
1650 struct s_phy
*phy
= &smc
->y
[np
] ;
1651 struct s_plc
*plc
= &phy
->plc
;
1655 #endif /* SUPERNET_3 */
1658 if (np
>= smc
->s
.numphys
) {
1662 if (cmd
& PL_EBUF_ERR
) { /* elastic buff. det. over-|underflow*/
1664 * Check whether the SRF Condition occurred.
1666 if (!plc
->ebuf_cont
&& phy
->mib
->fddiPORTPCMState
== PC8_ACTIVE
){
1668 * This is the real Elasticity Error.
1669 * More than one in a row are treated as a
1671 * Only count this in the active state.
1673 phy
->mib
->fddiPORTEBError_Ct
++ ;
1678 if (plc
->ebuf_cont
<= 1000) {
1680 * Prevent counter from being wrapped after
1681 * hanging years in that interrupt.
1683 plc
->ebuf_cont
++ ; /* Ebuf continous error */
1687 if (plc
->ebuf_cont
== 1000 &&
1688 ((inpw(PLC(np
,PL_STATUS_A
)) & PLC_REV_MASK
) ==
1691 * This interrupt remeained high for at least
1692 * 1000 consecutive interrupt calls.
1694 * This is caused by a hardware error of the
1695 * ORION part of the Supernet III chipset.
1697 * Disable this bit from the mask.
1699 corr_mask
= (plc_imsk_na
& ~PL_EBUF_ERR
) ;
1700 outpw(PLC(np
,PL_INTR_MASK
),corr_mask
);
1703 * Disconnect from the ring.
1704 * Call the driver with the reset indication.
1706 queue_event(smc
,EVENT_ECM
,EC_DISCONNECT
) ;
1709 * Make an error log entry.
1711 SMT_ERR_LOG(smc
,SMT_E0136
, SMT_E0136_MSG
) ;
1714 * Indicate the Reset.
1716 drv_reset_indication(smc
) ;
1718 #endif /* SUPERNET_3 */
1720 /* Reset the continous error variable */
1721 plc
->ebuf_cont
= 0 ; /* reset Ebuf continous error */
1723 if (cmd
& PL_PHYINV
) { /* physical layer invalid signal */
1726 if (cmd
& PL_VSYM_CTR
) { /* violation symbol counter has incr.*/
1729 if (cmd
& PL_MINI_CTR
) { /* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1732 if (cmd
& PL_LE_CTR
) { /* link error event counter */
1736 * note: PL_LINK_ERR_CTR MUST be read to clear it
1738 j
= inpw(PLC(np
,PL_LE_THRESHOLD
)) ;
1739 i
= inpw(PLC(np
,PL_LINK_ERR_CTR
)) ;
1742 /* wrapped around */
1746 if (phy
->lem
.lem_on
) {
1747 /* Note: Lem errors shall only be counted when
1748 * link is ACTIVE or LCT is active.
1750 phy
->lem
.lem_errors
+= i
;
1751 phy
->mib
->fddiPORTLem_Ct
+= i
;
1754 if (cmd
& PL_TPC_EXPIRED
) { /* TPC timer reached zero */
1755 if (plc
->p_state
== PS_LCT
) {
1763 if (cmd
& PL_LS_MATCH
) { /* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1764 switch (inpw(PLC(np
,PL_CNTRL_B
)) & PL_MATCH_LS
) {
1765 case PL_I_IDLE
: phy
->curr_ls
= PC_ILS
; break ;
1766 case PL_I_HALT
: phy
->curr_ls
= PC_HLS
; break ;
1767 case PL_I_MASTR
: phy
->curr_ls
= PC_MLS
; break ;
1768 case PL_I_QUIET
: phy
->curr_ls
= PC_QLS
; break ;
1771 if (cmd
& PL_PCM_BREAK
) { /* PCM has entered the BREAK state */
1774 reason
= inpw(PLC(np
,PL_STATUS_B
)) & PL_BREAK_REASON
;
1777 case PL_B_PCS
: plc
->b_pcs
++ ; break ;
1778 case PL_B_TPC
: plc
->b_tpc
++ ; break ;
1779 case PL_B_TNE
: plc
->b_tne
++ ; break ;
1780 case PL_B_QLS
: plc
->b_qls
++ ; break ;
1781 case PL_B_ILS
: plc
->b_ils
++ ; break ;
1782 case PL_B_HLS
: plc
->b_hls
++ ; break ;
1785 /*jd 05-Aug-1999 changed: Bug #10419 */
1786 DB_PCMN(1,"PLC %d: MDcF = %x\n", np
, smc
->e
.DisconnectFlag
);
1787 if (smc
->e
.DisconnectFlag
== FALSE
) {
1788 DB_PCMN(1,"PLC %d: restart (reason %x)\n", np
, reason
);
1789 queue_event(smc
,EVENT_PCM
+np
,PC_START
) ;
1792 DB_PCMN(1,"PLC %d: NO!! restart (reason %x)\n", np
, reason
);
1797 * If both CODE & ENABLE are set ignore enable
1799 if (cmd
& PL_PCM_CODE
) { /* receive last sign.-bit | LCT complete */
1800 queue_event(smc
,EVENT_PCM
+np
,PC_SIGNAL
) ;
1801 n
= inpw(PLC(np
,PL_RCV_VECTOR
)) ;
1802 for (i
= 0 ; i
< plc
->p_bits
; i
++) {
1803 phy
->r_val
[plc
->p_start
+i
] = n
& 1 ;
1807 else if (cmd
& PL_PCM_ENABLED
) { /* asserted SC_JOIN, scrub.completed*/
1808 queue_event(smc
,EVENT_PCM
+np
,PC_JOIN
) ;
1810 if (cmd
& PL_TRACE_PROP
) { /* MLS while PC8_ACTIV || PC2_TRACE */
1812 if (!phy
->tr_flag
) {
1813 DB_PCMN(1,"PCM : irq TRACE_PROP %d %d\n",
1814 np
,smc
->mib
.fddiSMTECMState
) ;
1815 phy
->tr_flag
= TRUE
;
1816 smc
->e
.trace_prop
|= ENTITY_BIT(ENTITY_PHY(np
)) ;
1817 queue_event(smc
,EVENT_ECM
,EC_TRACE_PROP
) ;
1821 * filter PLC glitch ???
1822 * QLS || HLS only while in PC2_TRACE state
1824 if ((cmd
& PL_SELF_TEST
) && (phy
->mib
->fddiPORTPCMState
== PC2_TRACE
)) {
1826 if (smc
->e
.path_test
== PT_PASSED
) {
1827 DB_PCMN(1,"PCM : state = %s %d\n", get_pcmstate(smc
,np
),
1828 phy
->mib
->fddiPORTPCMState
) ;
1830 smc
->e
.path_test
= PT_PENDING
;
1831 queue_event(smc
,EVENT_ECM
,EC_PATH_TEST
) ;
1834 if (cmd
& PL_TNE_EXPIRED
) { /* TNE: length of noise events */
1835 /* break_required (TNE > NS_Max) */
1836 if (phy
->mib
->fddiPORTPCMState
== PC8_ACTIVE
) {
1837 if (!phy
->tr_flag
) {
1838 DB_PCMN(1,"PCM %c : PC81 %s\n",phy
->phy_name
,"NSE");
1839 queue_event(smc
,EVENT_PCM
+np
,PC_START
) ;
1845 if (cmd
& PL_NP_ERR
) { /* NP has requested to r/w an inv reg*/
1851 /* pin inactiv (GND) */
1852 if (cmd
& PL_PARITY_ERR
) { /* p. error dedected on TX9-0 inp */
1855 if (cmd
& PL_LSDO
) { /* carrier detected */
1865 void pcm_get_state(struct s_smc
*smc
, struct smt_state
*state
)
1868 struct pcm_state
*pcs
;
1873 struct fddi_mib_p
*mib
;
1875 for (i
= 0, phy
= smc
->y
, pcs
= state
->pcm_state
; i
< NUMPHYS
;
1876 i
++ , phy
++, pcs
++ ) {
1878 pcs
->pcm_type
= (u_char
) mib
->fddiPORTMy_Type
;
1879 pcs
->pcm_state
= (u_char
) mib
->fddiPORTPCMState
;
1880 pcs
->pcm_mode
= phy
->pc_mode
;
1881 pcs
->pcm_neighbor
= (u_char
) mib
->fddiPORTNeighborType
;
1882 pcs
->pcm_bsf
= mib
->fddiPORTBS_Flag
;
1883 pcs
->pcm_lsf
= phy
->ls_flag
;
1884 pcs
->pcm_lct_fail
= (u_char
) mib
->fddiPORTLCTFail_Ct
;
1885 pcs
->pcm_ls_rx
= LS2MIB(sm_pm_get_ls(smc
,i
)) ;
1886 for (ii
= 0, rbits
= tbits
= 0 ; ii
< NUMBITS
; ii
++) {
1889 if (phy
->r_val
[NUMBITS
-1-ii
])
1891 if (phy
->t_val
[NUMBITS
-1-ii
])
1894 pcs
->pcm_r_val
= rbits
;
1895 pcs
->pcm_t_val
= tbits
;
1899 int get_pcm_state(struct s_smc
*smc
, int np
)
1905 switch (inpw(PLC(np
,PL_STATUS_B
)) & PL_PCM_STATE
) {
1906 case PL_PC0
: pcs
= PC_STOP
; break ;
1907 case PL_PC1
: pcs
= PC_START
; break ;
1908 case PL_PC2
: pcs
= PC_TRACE
; break ;
1909 case PL_PC3
: pcs
= PC_SIGNAL
; break ;
1910 case PL_PC4
: pcs
= PC_SIGNAL
; break ;
1911 case PL_PC5
: pcs
= PC_SIGNAL
; break ;
1912 case PL_PC6
: pcs
= PC_JOIN
; break ;
1913 case PL_PC7
: pcs
= PC_JOIN
; break ;
1914 case PL_PC8
: pcs
= PC_ENABLE
; break ;
1915 case PL_PC9
: pcs
= PC_MAINT
; break ;
1916 default : pcs
= PC_DISABLE
; break ;
1921 char *get_linestate(struct s_smc
*smc
, int np
)
1927 switch (inpw(PLC(np
,PL_STATUS_A
)) & PL_LINE_ST
) {
1928 case PL_L_NLS
: ls
= "NOISE" ; break ;
1929 case PL_L_ALS
: ls
= "ACTIV" ; break ;
1930 case PL_L_UND
: ls
= "UNDEF" ; break ;
1931 case PL_L_ILS4
: ls
= "ILS 4" ; break ;
1932 case PL_L_QLS
: ls
= "QLS" ; break ;
1933 case PL_L_MLS
: ls
= "MLS" ; break ;
1934 case PL_L_HLS
: ls
= "HLS" ; break ;
1935 case PL_L_ILS16
:ls
= "ILS16" ; break ;
1937 default: ls
= "unknown" ; break ;
1943 char *get_pcmstate(struct s_smc
*smc
, int np
)
1949 switch (inpw(PLC(np
,PL_STATUS_B
)) & PL_PCM_STATE
) {
1950 case PL_PC0
: pcs
= "OFF" ; break ;
1951 case PL_PC1
: pcs
= "BREAK" ; break ;
1952 case PL_PC2
: pcs
= "TRACE" ; break ;
1953 case PL_PC3
: pcs
= "CONNECT"; break ;
1954 case PL_PC4
: pcs
= "NEXT" ; break ;
1955 case PL_PC5
: pcs
= "SIGNAL" ; break ;
1956 case PL_PC6
: pcs
= "JOIN" ; break ;
1957 case PL_PC7
: pcs
= "VERIFY" ; break ;
1958 case PL_PC8
: pcs
= "ACTIV" ; break ;
1959 case PL_PC9
: pcs
= "MAINT" ; break ;
1960 default : pcs
= "UNKNOWN" ; break ;
1965 void list_phy(struct s_smc
*smc
)
1970 for (np
= 0 ; np
< NUMPHYS
; np
++) {
1971 plc
= &smc
->y
[np
].plc
;
1972 printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np
) ;
1973 printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1974 plc
->soft_err
,plc
->b_pcs
);
1975 printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1976 plc
->parity_err
,plc
->b_tpc
,get_linestate(smc
,np
)) ;
1977 printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1978 plc
->ebuf_err
,plc
->b_tne
) ;
1979 printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1980 plc
->phyinv
,plc
->b_qls
,get_pcmstate(smc
,np
)) ;
1981 printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1982 plc
->vsym_ctr
,plc
->b_ils
) ;
1983 printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1984 plc
->mini_ctr
,plc
->b_hls
) ;
1985 printf("\tnodepr_err: %ld\n",plc
->np_err
) ;
1986 printf("\tTPC_exp : %ld\n",plc
->tpc_exp
) ;
1987 printf("\tLEM_err : %ld\n",smc
->y
[np
].lem
.lem_errors
) ;
1993 void pcm_lem_dump(struct s_smc
*smc
)
1997 struct fddi_mib_p
*mib
;
1999 char *entostring() ;
2001 printf("PHY errors BER\n") ;
2002 printf("----------------------\n") ;
2003 for (i
= 0,phy
= smc
->y
; i
< NUMPHYS
; i
++,phy
++) {
2004 if (!plc_is_installed(smc
,i
))
2007 printf("%s\t%ld\t10E-%d\n",
2008 entostring(smc
,ENTITY_PHY(i
)),
2009 mib
->fddiPORTLem_Ct
,
2010 mib
->fddiPORTLer_Estimate
) ;