ext3: Update MAINTAINERS for ext3 and JBD
[linux/fpc-iii.git] / fs / gfs2 / aops.c
blob7ebae9a4ecc01b50533cf0316dc936626a3350b9
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40 unsigned int from, unsigned int to)
42 struct buffer_head *head = page_buffers(page);
43 unsigned int bsize = head->b_size;
44 struct buffer_head *bh;
45 unsigned int start, end;
47 for (bh = head, start = 0; bh != head || !start;
48 bh = bh->b_this_page, start = end) {
49 end = start + bsize;
50 if (end <= from || start >= to)
51 continue;
52 if (gfs2_is_jdata(ip))
53 set_buffer_uptodate(bh);
54 gfs2_trans_add_bh(ip->i_gl, bh, 0);
58 /**
59 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60 * @inode: The inode
61 * @lblock: The block number to look up
62 * @bh_result: The buffer head to return the result in
63 * @create: Non-zero if we may add block to the file
65 * Returns: errno
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69 struct buffer_head *bh_result, int create)
71 int error;
73 error = gfs2_block_map(inode, lblock, bh_result, 0);
74 if (error)
75 return error;
76 if (!buffer_mapped(bh_result))
77 return -EIO;
78 return 0;
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82 struct buffer_head *bh_result, int create)
84 return gfs2_block_map(inode, lblock, bh_result, 0);
87 /**
88 * gfs2_writepage_common - Common bits of writepage
89 * @page: The page to be written
90 * @wbc: The writeback control
92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95 static int gfs2_writepage_common(struct page *page,
96 struct writeback_control *wbc)
98 struct inode *inode = page->mapping->host;
99 struct gfs2_inode *ip = GFS2_I(inode);
100 struct gfs2_sbd *sdp = GFS2_SB(inode);
101 loff_t i_size = i_size_read(inode);
102 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103 unsigned offset;
105 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 goto out;
107 if (current->journal_info)
108 goto redirty;
109 /* Is the page fully outside i_size? (truncate in progress) */
110 offset = i_size & (PAGE_CACHE_SIZE-1);
111 if (page->index > end_index || (page->index == end_index && !offset)) {
112 page->mapping->a_ops->invalidatepage(page, 0);
113 goto out;
115 return 1;
116 redirty:
117 redirty_page_for_writepage(wbc, page);
118 out:
119 unlock_page(page);
120 return 0;
124 * gfs2_writeback_writepage - Write page for writeback mappings
125 * @page: The page
126 * @wbc: The writeback control
130 static int gfs2_writeback_writepage(struct page *page,
131 struct writeback_control *wbc)
133 int ret;
135 ret = gfs2_writepage_common(page, wbc);
136 if (ret <= 0)
137 return ret;
139 ret = mpage_writepage(page, gfs2_get_block_noalloc, wbc);
140 if (ret == -EAGAIN)
141 ret = block_write_full_page(page, gfs2_get_block_noalloc, wbc);
142 return ret;
146 * gfs2_ordered_writepage - Write page for ordered data files
147 * @page: The page to write
148 * @wbc: The writeback control
152 static int gfs2_ordered_writepage(struct page *page,
153 struct writeback_control *wbc)
155 struct inode *inode = page->mapping->host;
156 struct gfs2_inode *ip = GFS2_I(inode);
157 int ret;
159 ret = gfs2_writepage_common(page, wbc);
160 if (ret <= 0)
161 return ret;
163 if (!page_has_buffers(page)) {
164 create_empty_buffers(page, inode->i_sb->s_blocksize,
165 (1 << BH_Dirty)|(1 << BH_Uptodate));
167 gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
168 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
172 * __gfs2_jdata_writepage - The core of jdata writepage
173 * @page: The page to write
174 * @wbc: The writeback control
176 * This is shared between writepage and writepages and implements the
177 * core of the writepage operation. If a transaction is required then
178 * PageChecked will have been set and the transaction will have
179 * already been started before this is called.
182 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
184 struct inode *inode = page->mapping->host;
185 struct gfs2_inode *ip = GFS2_I(inode);
186 struct gfs2_sbd *sdp = GFS2_SB(inode);
188 if (PageChecked(page)) {
189 ClearPageChecked(page);
190 if (!page_has_buffers(page)) {
191 create_empty_buffers(page, inode->i_sb->s_blocksize,
192 (1 << BH_Dirty)|(1 << BH_Uptodate));
194 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
196 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
200 * gfs2_jdata_writepage - Write complete page
201 * @page: Page to write
203 * Returns: errno
207 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
209 struct inode *inode = page->mapping->host;
210 struct gfs2_sbd *sdp = GFS2_SB(inode);
211 int ret;
212 int done_trans = 0;
214 if (PageChecked(page)) {
215 if (wbc->sync_mode != WB_SYNC_ALL)
216 goto out_ignore;
217 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
218 if (ret)
219 goto out_ignore;
220 done_trans = 1;
222 ret = gfs2_writepage_common(page, wbc);
223 if (ret > 0)
224 ret = __gfs2_jdata_writepage(page, wbc);
225 if (done_trans)
226 gfs2_trans_end(sdp);
227 return ret;
229 out_ignore:
230 redirty_page_for_writepage(wbc, page);
231 unlock_page(page);
232 return 0;
236 * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
237 * @mapping: The mapping to write
238 * @wbc: Write-back control
240 * For the data=writeback case we can already ignore buffer heads
241 * and write whole extents at once. This is a big reduction in the
242 * number of I/O requests we send and the bmap calls we make in this case.
244 static int gfs2_writeback_writepages(struct address_space *mapping,
245 struct writeback_control *wbc)
247 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
251 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252 * @mapping: The mapping
253 * @wbc: The writeback control
254 * @writepage: The writepage function to call for each page
255 * @pvec: The vector of pages
256 * @nr_pages: The number of pages to write
258 * Returns: non-zero if loop should terminate, zero otherwise
261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 struct writeback_control *wbc,
263 struct pagevec *pvec,
264 int nr_pages, pgoff_t end)
266 struct inode *inode = mapping->host;
267 struct gfs2_sbd *sdp = GFS2_SB(inode);
268 loff_t i_size = i_size_read(inode);
269 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
270 unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
271 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
272 struct backing_dev_info *bdi = mapping->backing_dev_info;
273 int i;
274 int ret;
276 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
277 if (ret < 0)
278 return ret;
280 for(i = 0; i < nr_pages; i++) {
281 struct page *page = pvec->pages[i];
283 lock_page(page);
285 if (unlikely(page->mapping != mapping)) {
286 unlock_page(page);
287 continue;
290 if (!wbc->range_cyclic && page->index > end) {
291 ret = 1;
292 unlock_page(page);
293 continue;
296 if (wbc->sync_mode != WB_SYNC_NONE)
297 wait_on_page_writeback(page);
299 if (PageWriteback(page) ||
300 !clear_page_dirty_for_io(page)) {
301 unlock_page(page);
302 continue;
305 /* Is the page fully outside i_size? (truncate in progress) */
306 if (page->index > end_index || (page->index == end_index && !offset)) {
307 page->mapping->a_ops->invalidatepage(page, 0);
308 unlock_page(page);
309 continue;
312 ret = __gfs2_jdata_writepage(page, wbc);
314 if (ret || (--(wbc->nr_to_write) <= 0))
315 ret = 1;
316 if (wbc->nonblocking && bdi_write_congested(bdi)) {
317 wbc->encountered_congestion = 1;
318 ret = 1;
322 gfs2_trans_end(sdp);
323 return ret;
327 * gfs2_write_cache_jdata - Like write_cache_pages but different
328 * @mapping: The mapping to write
329 * @wbc: The writeback control
330 * @writepage: The writepage function to call
331 * @data: The data to pass to writepage
333 * The reason that we use our own function here is that we need to
334 * start transactions before we grab page locks. This allows us
335 * to get the ordering right.
338 static int gfs2_write_cache_jdata(struct address_space *mapping,
339 struct writeback_control *wbc)
341 struct backing_dev_info *bdi = mapping->backing_dev_info;
342 int ret = 0;
343 int done = 0;
344 struct pagevec pvec;
345 int nr_pages;
346 pgoff_t index;
347 pgoff_t end;
348 int scanned = 0;
349 int range_whole = 0;
351 if (wbc->nonblocking && bdi_write_congested(bdi)) {
352 wbc->encountered_congestion = 1;
353 return 0;
356 pagevec_init(&pvec, 0);
357 if (wbc->range_cyclic) {
358 index = mapping->writeback_index; /* Start from prev offset */
359 end = -1;
360 } else {
361 index = wbc->range_start >> PAGE_CACHE_SHIFT;
362 end = wbc->range_end >> PAGE_CACHE_SHIFT;
363 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
364 range_whole = 1;
365 scanned = 1;
368 retry:
369 while (!done && (index <= end) &&
370 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
371 PAGECACHE_TAG_DIRTY,
372 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
373 scanned = 1;
374 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
375 if (ret)
376 done = 1;
377 if (ret > 0)
378 ret = 0;
380 pagevec_release(&pvec);
381 cond_resched();
384 if (!scanned && !done) {
386 * We hit the last page and there is more work to be done: wrap
387 * back to the start of the file
389 scanned = 1;
390 index = 0;
391 goto retry;
394 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
395 mapping->writeback_index = index;
396 return ret;
401 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
402 * @mapping: The mapping to write
403 * @wbc: The writeback control
407 static int gfs2_jdata_writepages(struct address_space *mapping,
408 struct writeback_control *wbc)
410 struct gfs2_inode *ip = GFS2_I(mapping->host);
411 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
412 int ret;
414 ret = gfs2_write_cache_jdata(mapping, wbc);
415 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
416 gfs2_log_flush(sdp, ip->i_gl);
417 ret = gfs2_write_cache_jdata(mapping, wbc);
419 return ret;
423 * stuffed_readpage - Fill in a Linux page with stuffed file data
424 * @ip: the inode
425 * @page: the page
427 * Returns: errno
430 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
432 struct buffer_head *dibh;
433 void *kaddr;
434 int error;
437 * Due to the order of unstuffing files and ->fault(), we can be
438 * asked for a zero page in the case of a stuffed file being extended,
439 * so we need to supply one here. It doesn't happen often.
441 if (unlikely(page->index)) {
442 zero_user(page, 0, PAGE_CACHE_SIZE);
443 SetPageUptodate(page);
444 return 0;
447 error = gfs2_meta_inode_buffer(ip, &dibh);
448 if (error)
449 return error;
451 kaddr = kmap_atomic(page, KM_USER0);
452 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode),
453 ip->i_disksize);
454 memset(kaddr + ip->i_disksize, 0, PAGE_CACHE_SIZE - ip->i_disksize);
455 kunmap_atomic(kaddr, KM_USER0);
456 flush_dcache_page(page);
457 brelse(dibh);
458 SetPageUptodate(page);
460 return 0;
465 * __gfs2_readpage - readpage
466 * @file: The file to read a page for
467 * @page: The page to read
469 * This is the core of gfs2's readpage. Its used by the internal file
470 * reading code as in that case we already hold the glock. Also its
471 * called by gfs2_readpage() once the required lock has been granted.
475 static int __gfs2_readpage(void *file, struct page *page)
477 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
478 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
479 int error;
481 if (gfs2_is_stuffed(ip)) {
482 error = stuffed_readpage(ip, page);
483 unlock_page(page);
484 } else {
485 error = mpage_readpage(page, gfs2_block_map);
488 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
489 return -EIO;
491 return error;
495 * gfs2_readpage - read a page of a file
496 * @file: The file to read
497 * @page: The page of the file
499 * This deals with the locking required. We have to unlock and
500 * relock the page in order to get the locking in the right
501 * order.
504 static int gfs2_readpage(struct file *file, struct page *page)
506 struct address_space *mapping = page->mapping;
507 struct gfs2_inode *ip = GFS2_I(mapping->host);
508 struct gfs2_holder gh;
509 int error;
511 unlock_page(page);
512 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
513 error = gfs2_glock_nq(&gh);
514 if (unlikely(error))
515 goto out;
516 error = AOP_TRUNCATED_PAGE;
517 lock_page(page);
518 if (page->mapping == mapping && !PageUptodate(page))
519 error = __gfs2_readpage(file, page);
520 else
521 unlock_page(page);
522 gfs2_glock_dq(&gh);
523 out:
524 gfs2_holder_uninit(&gh);
525 if (error && error != AOP_TRUNCATED_PAGE)
526 lock_page(page);
527 return error;
531 * gfs2_internal_read - read an internal file
532 * @ip: The gfs2 inode
533 * @ra_state: The readahead state (or NULL for no readahead)
534 * @buf: The buffer to fill
535 * @pos: The file position
536 * @size: The amount to read
540 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
541 char *buf, loff_t *pos, unsigned size)
543 struct address_space *mapping = ip->i_inode.i_mapping;
544 unsigned long index = *pos / PAGE_CACHE_SIZE;
545 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
546 unsigned copied = 0;
547 unsigned amt;
548 struct page *page;
549 void *p;
551 do {
552 amt = size - copied;
553 if (offset + size > PAGE_CACHE_SIZE)
554 amt = PAGE_CACHE_SIZE - offset;
555 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
556 if (IS_ERR(page))
557 return PTR_ERR(page);
558 p = kmap_atomic(page, KM_USER0);
559 memcpy(buf + copied, p + offset, amt);
560 kunmap_atomic(p, KM_USER0);
561 mark_page_accessed(page);
562 page_cache_release(page);
563 copied += amt;
564 index++;
565 offset = 0;
566 } while(copied < size);
567 (*pos) += size;
568 return size;
572 * gfs2_readpages - Read a bunch of pages at once
574 * Some notes:
575 * 1. This is only for readahead, so we can simply ignore any things
576 * which are slightly inconvenient (such as locking conflicts between
577 * the page lock and the glock) and return having done no I/O. Its
578 * obviously not something we'd want to do on too regular a basis.
579 * Any I/O we ignore at this time will be done via readpage later.
580 * 2. We don't handle stuffed files here we let readpage do the honours.
581 * 3. mpage_readpages() does most of the heavy lifting in the common case.
582 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
585 static int gfs2_readpages(struct file *file, struct address_space *mapping,
586 struct list_head *pages, unsigned nr_pages)
588 struct inode *inode = mapping->host;
589 struct gfs2_inode *ip = GFS2_I(inode);
590 struct gfs2_sbd *sdp = GFS2_SB(inode);
591 struct gfs2_holder gh;
592 int ret;
594 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
595 ret = gfs2_glock_nq(&gh);
596 if (unlikely(ret))
597 goto out_uninit;
598 if (!gfs2_is_stuffed(ip))
599 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
600 gfs2_glock_dq(&gh);
601 out_uninit:
602 gfs2_holder_uninit(&gh);
603 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
604 ret = -EIO;
605 return ret;
609 * gfs2_write_begin - Begin to write to a file
610 * @file: The file to write to
611 * @mapping: The mapping in which to write
612 * @pos: The file offset at which to start writing
613 * @len: Length of the write
614 * @flags: Various flags
615 * @pagep: Pointer to return the page
616 * @fsdata: Pointer to return fs data (unused by GFS2)
618 * Returns: errno
621 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
622 loff_t pos, unsigned len, unsigned flags,
623 struct page **pagep, void **fsdata)
625 struct gfs2_inode *ip = GFS2_I(mapping->host);
626 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
627 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
628 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
629 int alloc_required;
630 int error = 0;
631 struct gfs2_alloc *al;
632 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
633 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
634 unsigned to = from + len;
635 struct page *page;
637 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
638 error = gfs2_glock_nq(&ip->i_gh);
639 if (unlikely(error))
640 goto out_uninit;
641 if (&ip->i_inode == sdp->sd_rindex) {
642 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
643 GL_NOCACHE, &m_ip->i_gh);
644 if (unlikely(error)) {
645 gfs2_glock_dq(&ip->i_gh);
646 goto out_uninit;
650 error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
651 if (error)
652 goto out_unlock;
654 if (alloc_required || gfs2_is_jdata(ip))
655 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
657 if (alloc_required) {
658 al = gfs2_alloc_get(ip);
659 if (!al) {
660 error = -ENOMEM;
661 goto out_unlock;
664 error = gfs2_quota_lock_check(ip);
665 if (error)
666 goto out_alloc_put;
668 al->al_requested = data_blocks + ind_blocks;
669 error = gfs2_inplace_reserve(ip);
670 if (error)
671 goto out_qunlock;
674 rblocks = RES_DINODE + ind_blocks;
675 if (gfs2_is_jdata(ip))
676 rblocks += data_blocks ? data_blocks : 1;
677 if (ind_blocks || data_blocks)
678 rblocks += RES_STATFS + RES_QUOTA;
679 if (&ip->i_inode == sdp->sd_rindex)
680 rblocks += 2 * RES_STATFS;
682 error = gfs2_trans_begin(sdp, rblocks,
683 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
684 if (error)
685 goto out_trans_fail;
687 error = -ENOMEM;
688 flags |= AOP_FLAG_NOFS;
689 page = grab_cache_page_write_begin(mapping, index, flags);
690 *pagep = page;
691 if (unlikely(!page))
692 goto out_endtrans;
694 if (gfs2_is_stuffed(ip)) {
695 error = 0;
696 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
697 error = gfs2_unstuff_dinode(ip, page);
698 if (error == 0)
699 goto prepare_write;
700 } else if (!PageUptodate(page)) {
701 error = stuffed_readpage(ip, page);
703 goto out;
706 prepare_write:
707 error = block_prepare_write(page, from, to, gfs2_block_map);
708 out:
709 if (error == 0)
710 return 0;
712 page_cache_release(page);
713 if (pos + len > ip->i_inode.i_size)
714 vmtruncate(&ip->i_inode, ip->i_inode.i_size);
715 out_endtrans:
716 gfs2_trans_end(sdp);
717 out_trans_fail:
718 if (alloc_required) {
719 gfs2_inplace_release(ip);
720 out_qunlock:
721 gfs2_quota_unlock(ip);
722 out_alloc_put:
723 gfs2_alloc_put(ip);
725 out_unlock:
726 if (&ip->i_inode == sdp->sd_rindex) {
727 gfs2_glock_dq(&m_ip->i_gh);
728 gfs2_holder_uninit(&m_ip->i_gh);
730 gfs2_glock_dq(&ip->i_gh);
731 out_uninit:
732 gfs2_holder_uninit(&ip->i_gh);
733 return error;
737 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
738 * @inode: the rindex inode
740 static void adjust_fs_space(struct inode *inode)
742 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
743 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
744 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
745 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
746 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
747 struct buffer_head *m_bh, *l_bh;
748 u64 fs_total, new_free;
750 /* Total up the file system space, according to the latest rindex. */
751 fs_total = gfs2_ri_total(sdp);
752 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
753 return;
755 spin_lock(&sdp->sd_statfs_spin);
756 gfs2_statfs_change_in(m_sc, m_bh->b_data +
757 sizeof(struct gfs2_dinode));
758 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
759 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
760 else
761 new_free = 0;
762 spin_unlock(&sdp->sd_statfs_spin);
763 fs_warn(sdp, "File system extended by %llu blocks.\n",
764 (unsigned long long)new_free);
765 gfs2_statfs_change(sdp, new_free, new_free, 0);
767 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
768 goto out;
769 update_statfs(sdp, m_bh, l_bh);
770 brelse(l_bh);
771 out:
772 brelse(m_bh);
776 * gfs2_stuffed_write_end - Write end for stuffed files
777 * @inode: The inode
778 * @dibh: The buffer_head containing the on-disk inode
779 * @pos: The file position
780 * @len: The length of the write
781 * @copied: How much was actually copied by the VFS
782 * @page: The page
784 * This copies the data from the page into the inode block after
785 * the inode data structure itself.
787 * Returns: errno
789 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
790 loff_t pos, unsigned len, unsigned copied,
791 struct page *page)
793 struct gfs2_inode *ip = GFS2_I(inode);
794 struct gfs2_sbd *sdp = GFS2_SB(inode);
795 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
796 u64 to = pos + copied;
797 void *kaddr;
798 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
799 struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
801 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
802 kaddr = kmap_atomic(page, KM_USER0);
803 memcpy(buf + pos, kaddr + pos, copied);
804 memset(kaddr + pos + copied, 0, len - copied);
805 flush_dcache_page(page);
806 kunmap_atomic(kaddr, KM_USER0);
808 if (!PageUptodate(page))
809 SetPageUptodate(page);
810 unlock_page(page);
811 page_cache_release(page);
813 if (copied) {
814 if (inode->i_size < to) {
815 i_size_write(inode, to);
816 ip->i_disksize = inode->i_size;
818 gfs2_dinode_out(ip, di);
819 mark_inode_dirty(inode);
822 if (inode == sdp->sd_rindex)
823 adjust_fs_space(inode);
825 brelse(dibh);
826 gfs2_trans_end(sdp);
827 if (inode == sdp->sd_rindex) {
828 gfs2_glock_dq(&m_ip->i_gh);
829 gfs2_holder_uninit(&m_ip->i_gh);
831 gfs2_glock_dq(&ip->i_gh);
832 gfs2_holder_uninit(&ip->i_gh);
833 return copied;
837 * gfs2_write_end
838 * @file: The file to write to
839 * @mapping: The address space to write to
840 * @pos: The file position
841 * @len: The length of the data
842 * @copied:
843 * @page: The page that has been written
844 * @fsdata: The fsdata (unused in GFS2)
846 * The main write_end function for GFS2. We have a separate one for
847 * stuffed files as they are slightly different, otherwise we just
848 * put our locking around the VFS provided functions.
850 * Returns: errno
853 static int gfs2_write_end(struct file *file, struct address_space *mapping,
854 loff_t pos, unsigned len, unsigned copied,
855 struct page *page, void *fsdata)
857 struct inode *inode = page->mapping->host;
858 struct gfs2_inode *ip = GFS2_I(inode);
859 struct gfs2_sbd *sdp = GFS2_SB(inode);
860 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
861 struct buffer_head *dibh;
862 struct gfs2_alloc *al = ip->i_alloc;
863 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
864 unsigned int to = from + len;
865 int ret;
867 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
869 ret = gfs2_meta_inode_buffer(ip, &dibh);
870 if (unlikely(ret)) {
871 unlock_page(page);
872 page_cache_release(page);
873 goto failed;
876 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
878 if (gfs2_is_stuffed(ip))
879 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
881 if (!gfs2_is_writeback(ip))
882 gfs2_page_add_databufs(ip, page, from, to);
884 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
885 if (ret > 0) {
886 if (inode->i_size > ip->i_disksize)
887 ip->i_disksize = inode->i_size;
888 gfs2_dinode_out(ip, dibh->b_data);
889 mark_inode_dirty(inode);
892 if (inode == sdp->sd_rindex)
893 adjust_fs_space(inode);
895 brelse(dibh);
896 gfs2_trans_end(sdp);
897 failed:
898 if (al) {
899 gfs2_inplace_release(ip);
900 gfs2_quota_unlock(ip);
901 gfs2_alloc_put(ip);
903 if (inode == sdp->sd_rindex) {
904 gfs2_glock_dq(&m_ip->i_gh);
905 gfs2_holder_uninit(&m_ip->i_gh);
907 gfs2_glock_dq(&ip->i_gh);
908 gfs2_holder_uninit(&ip->i_gh);
909 return ret;
913 * gfs2_set_page_dirty - Page dirtying function
914 * @page: The page to dirty
916 * Returns: 1 if it dirtyed the page, or 0 otherwise
919 static int gfs2_set_page_dirty(struct page *page)
921 SetPageChecked(page);
922 return __set_page_dirty_buffers(page);
926 * gfs2_bmap - Block map function
927 * @mapping: Address space info
928 * @lblock: The block to map
930 * Returns: The disk address for the block or 0 on hole or error
933 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
935 struct gfs2_inode *ip = GFS2_I(mapping->host);
936 struct gfs2_holder i_gh;
937 sector_t dblock = 0;
938 int error;
940 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
941 if (error)
942 return 0;
944 if (!gfs2_is_stuffed(ip))
945 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
947 gfs2_glock_dq_uninit(&i_gh);
949 return dblock;
952 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
954 struct gfs2_bufdata *bd;
956 lock_buffer(bh);
957 gfs2_log_lock(sdp);
958 clear_buffer_dirty(bh);
959 bd = bh->b_private;
960 if (bd) {
961 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
962 list_del_init(&bd->bd_le.le_list);
963 else
964 gfs2_remove_from_journal(bh, current->journal_info, 0);
966 bh->b_bdev = NULL;
967 clear_buffer_mapped(bh);
968 clear_buffer_req(bh);
969 clear_buffer_new(bh);
970 gfs2_log_unlock(sdp);
971 unlock_buffer(bh);
974 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
976 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
977 struct buffer_head *bh, *head;
978 unsigned long pos = 0;
980 BUG_ON(!PageLocked(page));
981 if (offset == 0)
982 ClearPageChecked(page);
983 if (!page_has_buffers(page))
984 goto out;
986 bh = head = page_buffers(page);
987 do {
988 if (offset <= pos)
989 gfs2_discard(sdp, bh);
990 pos += bh->b_size;
991 bh = bh->b_this_page;
992 } while (bh != head);
993 out:
994 if (offset == 0)
995 try_to_release_page(page, 0);
999 * gfs2_ok_for_dio - check that dio is valid on this file
1000 * @ip: The inode
1001 * @rw: READ or WRITE
1002 * @offset: The offset at which we are reading or writing
1004 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1005 * 1 (to accept the i/o request)
1007 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1010 * Should we return an error here? I can't see that O_DIRECT for
1011 * a stuffed file makes any sense. For now we'll silently fall
1012 * back to buffered I/O
1014 if (gfs2_is_stuffed(ip))
1015 return 0;
1017 if (offset >= i_size_read(&ip->i_inode))
1018 return 0;
1019 return 1;
1024 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1025 const struct iovec *iov, loff_t offset,
1026 unsigned long nr_segs)
1028 struct file *file = iocb->ki_filp;
1029 struct inode *inode = file->f_mapping->host;
1030 struct gfs2_inode *ip = GFS2_I(inode);
1031 struct gfs2_holder gh;
1032 int rv;
1035 * Deferred lock, even if its a write, since we do no allocation
1036 * on this path. All we need change is atime, and this lock mode
1037 * ensures that other nodes have flushed their buffered read caches
1038 * (i.e. their page cache entries for this inode). We do not,
1039 * unfortunately have the option of only flushing a range like
1040 * the VFS does.
1042 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1043 rv = gfs2_glock_nq(&gh);
1044 if (rv)
1045 return rv;
1046 rv = gfs2_ok_for_dio(ip, rw, offset);
1047 if (rv != 1)
1048 goto out; /* dio not valid, fall back to buffered i/o */
1050 rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1051 iov, offset, nr_segs,
1052 gfs2_get_block_direct, NULL);
1053 out:
1054 gfs2_glock_dq_m(1, &gh);
1055 gfs2_holder_uninit(&gh);
1056 return rv;
1060 * gfs2_releasepage - free the metadata associated with a page
1061 * @page: the page that's being released
1062 * @gfp_mask: passed from Linux VFS, ignored by us
1064 * Call try_to_free_buffers() if the buffers in this page can be
1065 * released.
1067 * Returns: 0
1070 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1072 struct inode *aspace = page->mapping->host;
1073 struct gfs2_sbd *sdp = aspace->i_sb->s_fs_info;
1074 struct buffer_head *bh, *head;
1075 struct gfs2_bufdata *bd;
1077 if (!page_has_buffers(page))
1078 return 0;
1080 gfs2_log_lock(sdp);
1081 head = bh = page_buffers(page);
1082 do {
1083 if (atomic_read(&bh->b_count))
1084 goto cannot_release;
1085 bd = bh->b_private;
1086 if (bd && bd->bd_ail)
1087 goto cannot_release;
1088 gfs2_assert_warn(sdp, !buffer_pinned(bh));
1089 gfs2_assert_warn(sdp, !buffer_dirty(bh));
1090 bh = bh->b_this_page;
1091 } while(bh != head);
1092 gfs2_log_unlock(sdp);
1094 head = bh = page_buffers(page);
1095 do {
1096 gfs2_log_lock(sdp);
1097 bd = bh->b_private;
1098 if (bd) {
1099 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1100 gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1101 if (!list_empty(&bd->bd_le.le_list)) {
1102 if (!buffer_pinned(bh))
1103 list_del_init(&bd->bd_le.le_list);
1104 else
1105 bd = NULL;
1107 if (bd)
1108 bd->bd_bh = NULL;
1109 bh->b_private = NULL;
1111 gfs2_log_unlock(sdp);
1112 if (bd)
1113 kmem_cache_free(gfs2_bufdata_cachep, bd);
1115 bh = bh->b_this_page;
1116 } while (bh != head);
1118 return try_to_free_buffers(page);
1119 cannot_release:
1120 gfs2_log_unlock(sdp);
1121 return 0;
1124 static const struct address_space_operations gfs2_writeback_aops = {
1125 .writepage = gfs2_writeback_writepage,
1126 .writepages = gfs2_writeback_writepages,
1127 .readpage = gfs2_readpage,
1128 .readpages = gfs2_readpages,
1129 .sync_page = block_sync_page,
1130 .write_begin = gfs2_write_begin,
1131 .write_end = gfs2_write_end,
1132 .bmap = gfs2_bmap,
1133 .invalidatepage = gfs2_invalidatepage,
1134 .releasepage = gfs2_releasepage,
1135 .direct_IO = gfs2_direct_IO,
1136 .migratepage = buffer_migrate_page,
1137 .is_partially_uptodate = block_is_partially_uptodate,
1140 static const struct address_space_operations gfs2_ordered_aops = {
1141 .writepage = gfs2_ordered_writepage,
1142 .readpage = gfs2_readpage,
1143 .readpages = gfs2_readpages,
1144 .sync_page = block_sync_page,
1145 .write_begin = gfs2_write_begin,
1146 .write_end = gfs2_write_end,
1147 .set_page_dirty = gfs2_set_page_dirty,
1148 .bmap = gfs2_bmap,
1149 .invalidatepage = gfs2_invalidatepage,
1150 .releasepage = gfs2_releasepage,
1151 .direct_IO = gfs2_direct_IO,
1152 .migratepage = buffer_migrate_page,
1153 .is_partially_uptodate = block_is_partially_uptodate,
1156 static const struct address_space_operations gfs2_jdata_aops = {
1157 .writepage = gfs2_jdata_writepage,
1158 .writepages = gfs2_jdata_writepages,
1159 .readpage = gfs2_readpage,
1160 .readpages = gfs2_readpages,
1161 .sync_page = block_sync_page,
1162 .write_begin = gfs2_write_begin,
1163 .write_end = gfs2_write_end,
1164 .set_page_dirty = gfs2_set_page_dirty,
1165 .bmap = gfs2_bmap,
1166 .invalidatepage = gfs2_invalidatepage,
1167 .releasepage = gfs2_releasepage,
1168 .is_partially_uptodate = block_is_partially_uptodate,
1171 void gfs2_set_aops(struct inode *inode)
1173 struct gfs2_inode *ip = GFS2_I(inode);
1175 if (gfs2_is_writeback(ip))
1176 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1177 else if (gfs2_is_ordered(ip))
1178 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1179 else if (gfs2_is_jdata(ip))
1180 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1181 else
1182 BUG();