[ALSA] oxygen: generalize handling of DAC volume limits
[linux/fpc-iii.git] / fs / xfs / xfs_alloc_btree.c
blob3ce2645508ae70ea826cc3b77cb2aeeaa1830785
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_error.h"
43 * Prototypes for internal functions.
46 STATIC void xfs_alloc_log_block(xfs_trans_t *, xfs_buf_t *, int);
47 STATIC void xfs_alloc_log_keys(xfs_btree_cur_t *, xfs_buf_t *, int, int);
48 STATIC void xfs_alloc_log_ptrs(xfs_btree_cur_t *, xfs_buf_t *, int, int);
49 STATIC void xfs_alloc_log_recs(xfs_btree_cur_t *, xfs_buf_t *, int, int);
50 STATIC int xfs_alloc_lshift(xfs_btree_cur_t *, int, int *);
51 STATIC int xfs_alloc_newroot(xfs_btree_cur_t *, int *);
52 STATIC int xfs_alloc_rshift(xfs_btree_cur_t *, int, int *);
53 STATIC int xfs_alloc_split(xfs_btree_cur_t *, int, xfs_agblock_t *,
54 xfs_alloc_key_t *, xfs_btree_cur_t **, int *);
55 STATIC int xfs_alloc_updkey(xfs_btree_cur_t *, xfs_alloc_key_t *, int);
58 * Internal functions.
62 * Single level of the xfs_alloc_delete record deletion routine.
63 * Delete record pointed to by cur/level.
64 * Remove the record from its block then rebalance the tree.
65 * Return 0 for error, 1 for done, 2 to go on to the next level.
67 STATIC int /* error */
68 xfs_alloc_delrec(
69 xfs_btree_cur_t *cur, /* btree cursor */
70 int level, /* level removing record from */
71 int *stat) /* fail/done/go-on */
73 xfs_agf_t *agf; /* allocation group freelist header */
74 xfs_alloc_block_t *block; /* btree block record/key lives in */
75 xfs_agblock_t bno; /* btree block number */
76 xfs_buf_t *bp; /* buffer for block */
77 int error; /* error return value */
78 int i; /* loop index */
79 xfs_alloc_key_t key; /* kp points here if block is level 0 */
80 xfs_agblock_t lbno; /* left block's block number */
81 xfs_buf_t *lbp; /* left block's buffer pointer */
82 xfs_alloc_block_t *left; /* left btree block */
83 xfs_alloc_key_t *lkp=NULL; /* left block key pointer */
84 xfs_alloc_ptr_t *lpp=NULL; /* left block address pointer */
85 int lrecs=0; /* number of records in left block */
86 xfs_alloc_rec_t *lrp; /* left block record pointer */
87 xfs_mount_t *mp; /* mount structure */
88 int ptr; /* index in btree block for this rec */
89 xfs_agblock_t rbno; /* right block's block number */
90 xfs_buf_t *rbp; /* right block's buffer pointer */
91 xfs_alloc_block_t *right; /* right btree block */
92 xfs_alloc_key_t *rkp; /* right block key pointer */
93 xfs_alloc_ptr_t *rpp; /* right block address pointer */
94 int rrecs=0; /* number of records in right block */
95 int numrecs;
96 xfs_alloc_rec_t *rrp; /* right block record pointer */
97 xfs_btree_cur_t *tcur; /* temporary btree cursor */
100 * Get the index of the entry being deleted, check for nothing there.
102 ptr = cur->bc_ptrs[level];
103 if (ptr == 0) {
104 *stat = 0;
105 return 0;
108 * Get the buffer & block containing the record or key/ptr.
110 bp = cur->bc_bufs[level];
111 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
112 #ifdef DEBUG
113 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
114 return error;
115 #endif
117 * Fail if we're off the end of the block.
119 numrecs = be16_to_cpu(block->bb_numrecs);
120 if (ptr > numrecs) {
121 *stat = 0;
122 return 0;
124 XFS_STATS_INC(xs_abt_delrec);
126 * It's a nonleaf. Excise the key and ptr being deleted, by
127 * sliding the entries past them down one.
128 * Log the changed areas of the block.
130 if (level > 0) {
131 lkp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
132 lpp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
133 #ifdef DEBUG
134 for (i = ptr; i < numrecs; i++) {
135 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level)))
136 return error;
138 #endif
139 if (ptr < numrecs) {
140 memmove(&lkp[ptr - 1], &lkp[ptr],
141 (numrecs - ptr) * sizeof(*lkp));
142 memmove(&lpp[ptr - 1], &lpp[ptr],
143 (numrecs - ptr) * sizeof(*lpp));
144 xfs_alloc_log_ptrs(cur, bp, ptr, numrecs - 1);
145 xfs_alloc_log_keys(cur, bp, ptr, numrecs - 1);
149 * It's a leaf. Excise the record being deleted, by sliding the
150 * entries past it down one. Log the changed areas of the block.
152 else {
153 lrp = XFS_ALLOC_REC_ADDR(block, 1, cur);
154 if (ptr < numrecs) {
155 memmove(&lrp[ptr - 1], &lrp[ptr],
156 (numrecs - ptr) * sizeof(*lrp));
157 xfs_alloc_log_recs(cur, bp, ptr, numrecs - 1);
160 * If it's the first record in the block, we'll need a key
161 * structure to pass up to the next level (updkey).
163 if (ptr == 1) {
164 key.ar_startblock = lrp->ar_startblock;
165 key.ar_blockcount = lrp->ar_blockcount;
166 lkp = &key;
170 * Decrement and log the number of entries in the block.
172 numrecs--;
173 block->bb_numrecs = cpu_to_be16(numrecs);
174 xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS);
176 * See if the longest free extent in the allocation group was
177 * changed by this operation. True if it's the by-size btree, and
178 * this is the leaf level, and there is no right sibling block,
179 * and this was the last record.
181 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
182 mp = cur->bc_mp;
184 if (level == 0 &&
185 cur->bc_btnum == XFS_BTNUM_CNT &&
186 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
187 ptr > numrecs) {
188 ASSERT(ptr == numrecs + 1);
190 * There are still records in the block. Grab the size
191 * from the last one.
193 if (numrecs) {
194 rrp = XFS_ALLOC_REC_ADDR(block, numrecs, cur);
195 agf->agf_longest = rrp->ar_blockcount;
198 * No free extents left.
200 else
201 agf->agf_longest = 0;
202 mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest =
203 be32_to_cpu(agf->agf_longest);
204 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
205 XFS_AGF_LONGEST);
208 * Is this the root level? If so, we're almost done.
210 if (level == cur->bc_nlevels - 1) {
212 * If this is the root level,
213 * and there's only one entry left,
214 * and it's NOT the leaf level,
215 * then we can get rid of this level.
217 if (numrecs == 1 && level > 0) {
219 * lpp is still set to the first pointer in the block.
220 * Make it the new root of the btree.
222 bno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]);
223 agf->agf_roots[cur->bc_btnum] = *lpp;
224 be32_add_cpu(&agf->agf_levels[cur->bc_btnum], -1);
225 mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_levels[cur->bc_btnum]--;
227 * Put this buffer/block on the ag's freelist.
229 error = xfs_alloc_put_freelist(cur->bc_tp,
230 cur->bc_private.a.agbp, NULL, bno, 1);
231 if (error)
232 return error;
234 * Since blocks move to the free list without the
235 * coordination used in xfs_bmap_finish, we can't allow
236 * block to be available for reallocation and
237 * non-transaction writing (user data) until we know
238 * that the transaction that moved it to the free list
239 * is permanently on disk. We track the blocks by
240 * declaring these blocks as "busy"; the busy list is
241 * maintained on a per-ag basis and each transaction
242 * records which entries should be removed when the
243 * iclog commits to disk. If a busy block is
244 * allocated, the iclog is pushed up to the LSN
245 * that freed the block.
247 xfs_alloc_mark_busy(cur->bc_tp,
248 be32_to_cpu(agf->agf_seqno), bno, 1);
250 xfs_trans_agbtree_delta(cur->bc_tp, -1);
251 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
252 XFS_AGF_ROOTS | XFS_AGF_LEVELS);
254 * Update the cursor so there's one fewer level.
256 xfs_btree_setbuf(cur, level, NULL);
257 cur->bc_nlevels--;
258 } else if (level > 0 &&
259 (error = xfs_alloc_decrement(cur, level, &i)))
260 return error;
261 *stat = 1;
262 return 0;
265 * If we deleted the leftmost entry in the block, update the
266 * key values above us in the tree.
268 if (ptr == 1 && (error = xfs_alloc_updkey(cur, lkp, level + 1)))
269 return error;
271 * If the number of records remaining in the block is at least
272 * the minimum, we're done.
274 if (numrecs >= XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
275 if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i)))
276 return error;
277 *stat = 1;
278 return 0;
281 * Otherwise, we have to move some records around to keep the
282 * tree balanced. Look at the left and right sibling blocks to
283 * see if we can re-balance by moving only one record.
285 rbno = be32_to_cpu(block->bb_rightsib);
286 lbno = be32_to_cpu(block->bb_leftsib);
287 bno = NULLAGBLOCK;
288 ASSERT(rbno != NULLAGBLOCK || lbno != NULLAGBLOCK);
290 * Duplicate the cursor so our btree manipulations here won't
291 * disrupt the next level up.
293 if ((error = xfs_btree_dup_cursor(cur, &tcur)))
294 return error;
296 * If there's a right sibling, see if it's ok to shift an entry
297 * out of it.
299 if (rbno != NULLAGBLOCK) {
301 * Move the temp cursor to the last entry in the next block.
302 * Actually any entry but the first would suffice.
304 i = xfs_btree_lastrec(tcur, level);
305 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
306 if ((error = xfs_alloc_increment(tcur, level, &i)))
307 goto error0;
308 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
309 i = xfs_btree_lastrec(tcur, level);
310 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
312 * Grab a pointer to the block.
314 rbp = tcur->bc_bufs[level];
315 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
316 #ifdef DEBUG
317 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
318 goto error0;
319 #endif
321 * Grab the current block number, for future use.
323 bno = be32_to_cpu(right->bb_leftsib);
325 * If right block is full enough so that removing one entry
326 * won't make it too empty, and left-shifting an entry out
327 * of right to us works, we're done.
329 if (be16_to_cpu(right->bb_numrecs) - 1 >=
330 XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
331 if ((error = xfs_alloc_lshift(tcur, level, &i)))
332 goto error0;
333 if (i) {
334 ASSERT(be16_to_cpu(block->bb_numrecs) >=
335 XFS_ALLOC_BLOCK_MINRECS(level, cur));
336 xfs_btree_del_cursor(tcur,
337 XFS_BTREE_NOERROR);
338 if (level > 0 &&
339 (error = xfs_alloc_decrement(cur, level,
340 &i)))
341 return error;
342 *stat = 1;
343 return 0;
347 * Otherwise, grab the number of records in right for
348 * future reference, and fix up the temp cursor to point
349 * to our block again (last record).
351 rrecs = be16_to_cpu(right->bb_numrecs);
352 if (lbno != NULLAGBLOCK) {
353 i = xfs_btree_firstrec(tcur, level);
354 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
355 if ((error = xfs_alloc_decrement(tcur, level, &i)))
356 goto error0;
357 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
361 * If there's a left sibling, see if it's ok to shift an entry
362 * out of it.
364 if (lbno != NULLAGBLOCK) {
366 * Move the temp cursor to the first entry in the
367 * previous block.
369 i = xfs_btree_firstrec(tcur, level);
370 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
371 if ((error = xfs_alloc_decrement(tcur, level, &i)))
372 goto error0;
373 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
374 xfs_btree_firstrec(tcur, level);
376 * Grab a pointer to the block.
378 lbp = tcur->bc_bufs[level];
379 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
380 #ifdef DEBUG
381 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
382 goto error0;
383 #endif
385 * Grab the current block number, for future use.
387 bno = be32_to_cpu(left->bb_rightsib);
389 * If left block is full enough so that removing one entry
390 * won't make it too empty, and right-shifting an entry out
391 * of left to us works, we're done.
393 if (be16_to_cpu(left->bb_numrecs) - 1 >=
394 XFS_ALLOC_BLOCK_MINRECS(level, cur)) {
395 if ((error = xfs_alloc_rshift(tcur, level, &i)))
396 goto error0;
397 if (i) {
398 ASSERT(be16_to_cpu(block->bb_numrecs) >=
399 XFS_ALLOC_BLOCK_MINRECS(level, cur));
400 xfs_btree_del_cursor(tcur,
401 XFS_BTREE_NOERROR);
402 if (level == 0)
403 cur->bc_ptrs[0]++;
404 *stat = 1;
405 return 0;
409 * Otherwise, grab the number of records in right for
410 * future reference.
412 lrecs = be16_to_cpu(left->bb_numrecs);
415 * Delete the temp cursor, we're done with it.
417 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
419 * If here, we need to do a join to keep the tree balanced.
421 ASSERT(bno != NULLAGBLOCK);
423 * See if we can join with the left neighbor block.
425 if (lbno != NULLAGBLOCK &&
426 lrecs + numrecs <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
428 * Set "right" to be the starting block,
429 * "left" to be the left neighbor.
431 rbno = bno;
432 right = block;
433 rrecs = be16_to_cpu(right->bb_numrecs);
434 rbp = bp;
435 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
436 cur->bc_private.a.agno, lbno, 0, &lbp,
437 XFS_ALLOC_BTREE_REF)))
438 return error;
439 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
440 lrecs = be16_to_cpu(left->bb_numrecs);
441 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
442 return error;
445 * If that won't work, see if we can join with the right neighbor block.
447 else if (rbno != NULLAGBLOCK &&
448 rrecs + numrecs <= XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
450 * Set "left" to be the starting block,
451 * "right" to be the right neighbor.
453 lbno = bno;
454 left = block;
455 lrecs = be16_to_cpu(left->bb_numrecs);
456 lbp = bp;
457 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
458 cur->bc_private.a.agno, rbno, 0, &rbp,
459 XFS_ALLOC_BTREE_REF)))
460 return error;
461 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
462 rrecs = be16_to_cpu(right->bb_numrecs);
463 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
464 return error;
467 * Otherwise, we can't fix the imbalance.
468 * Just return. This is probably a logic error, but it's not fatal.
470 else {
471 if (level > 0 && (error = xfs_alloc_decrement(cur, level, &i)))
472 return error;
473 *stat = 1;
474 return 0;
477 * We're now going to join "left" and "right" by moving all the stuff
478 * in "right" to "left" and deleting "right".
480 if (level > 0) {
482 * It's a non-leaf. Move keys and pointers.
484 lkp = XFS_ALLOC_KEY_ADDR(left, lrecs + 1, cur);
485 lpp = XFS_ALLOC_PTR_ADDR(left, lrecs + 1, cur);
486 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
487 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
488 #ifdef DEBUG
489 for (i = 0; i < rrecs; i++) {
490 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level)))
491 return error;
493 #endif
494 memcpy(lkp, rkp, rrecs * sizeof(*lkp));
495 memcpy(lpp, rpp, rrecs * sizeof(*lpp));
496 xfs_alloc_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
497 xfs_alloc_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
498 } else {
500 * It's a leaf. Move records.
502 lrp = XFS_ALLOC_REC_ADDR(left, lrecs + 1, cur);
503 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
504 memcpy(lrp, rrp, rrecs * sizeof(*lrp));
505 xfs_alloc_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
508 * If we joined with the left neighbor, set the buffer in the
509 * cursor to the left block, and fix up the index.
511 if (bp != lbp) {
512 xfs_btree_setbuf(cur, level, lbp);
513 cur->bc_ptrs[level] += lrecs;
516 * If we joined with the right neighbor and there's a level above
517 * us, increment the cursor at that level.
519 else if (level + 1 < cur->bc_nlevels &&
520 (error = xfs_alloc_increment(cur, level + 1, &i)))
521 return error;
523 * Fix up the number of records in the surviving block.
525 lrecs += rrecs;
526 left->bb_numrecs = cpu_to_be16(lrecs);
528 * Fix up the right block pointer in the surviving block, and log it.
530 left->bb_rightsib = right->bb_rightsib;
531 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
533 * If there is a right sibling now, make it point to the
534 * remaining block.
536 if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) {
537 xfs_alloc_block_t *rrblock;
538 xfs_buf_t *rrbp;
540 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
541 cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib), 0,
542 &rrbp, XFS_ALLOC_BTREE_REF)))
543 return error;
544 rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp);
545 if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp)))
546 return error;
547 rrblock->bb_leftsib = cpu_to_be32(lbno);
548 xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB);
551 * Free the deleting block by putting it on the freelist.
553 error = xfs_alloc_put_freelist(cur->bc_tp,
554 cur->bc_private.a.agbp, NULL, rbno, 1);
555 if (error)
556 return error;
558 * Since blocks move to the free list without the coordination
559 * used in xfs_bmap_finish, we can't allow block to be available
560 * for reallocation and non-transaction writing (user data)
561 * until we know that the transaction that moved it to the free
562 * list is permanently on disk. We track the blocks by declaring
563 * these blocks as "busy"; the busy list is maintained on a
564 * per-ag basis and each transaction records which entries
565 * should be removed when the iclog commits to disk. If a
566 * busy block is allocated, the iclog is pushed up to the
567 * LSN that freed the block.
569 xfs_alloc_mark_busy(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1);
570 xfs_trans_agbtree_delta(cur->bc_tp, -1);
573 * Adjust the current level's cursor so that we're left referring
574 * to the right node, after we're done.
575 * If this leaves the ptr value 0 our caller will fix it up.
577 if (level > 0)
578 cur->bc_ptrs[level]--;
580 * Return value means the next level up has something to do.
582 *stat = 2;
583 return 0;
585 error0:
586 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
587 return error;
591 * Insert one record/level. Return information to the caller
592 * allowing the next level up to proceed if necessary.
594 STATIC int /* error */
595 xfs_alloc_insrec(
596 xfs_btree_cur_t *cur, /* btree cursor */
597 int level, /* level to insert record at */
598 xfs_agblock_t *bnop, /* i/o: block number inserted */
599 xfs_alloc_rec_t *recp, /* i/o: record data inserted */
600 xfs_btree_cur_t **curp, /* output: new cursor replacing cur */
601 int *stat) /* output: success/failure */
603 xfs_agf_t *agf; /* allocation group freelist header */
604 xfs_alloc_block_t *block; /* btree block record/key lives in */
605 xfs_buf_t *bp; /* buffer for block */
606 int error; /* error return value */
607 int i; /* loop index */
608 xfs_alloc_key_t key; /* key value being inserted */
609 xfs_alloc_key_t *kp; /* pointer to btree keys */
610 xfs_agblock_t nbno; /* block number of allocated block */
611 xfs_btree_cur_t *ncur; /* new cursor to be used at next lvl */
612 xfs_alloc_key_t nkey; /* new key value, from split */
613 xfs_alloc_rec_t nrec; /* new record value, for caller */
614 int numrecs;
615 int optr; /* old ptr value */
616 xfs_alloc_ptr_t *pp; /* pointer to btree addresses */
617 int ptr; /* index in btree block for this rec */
618 xfs_alloc_rec_t *rp; /* pointer to btree records */
620 ASSERT(be32_to_cpu(recp->ar_blockcount) > 0);
623 * GCC doesn't understand the (arguably complex) control flow in
624 * this function and complains about uninitialized structure fields
625 * without this.
627 memset(&nrec, 0, sizeof(nrec));
630 * If we made it to the root level, allocate a new root block
631 * and we're done.
633 if (level >= cur->bc_nlevels) {
634 XFS_STATS_INC(xs_abt_insrec);
635 if ((error = xfs_alloc_newroot(cur, &i)))
636 return error;
637 *bnop = NULLAGBLOCK;
638 *stat = i;
639 return 0;
642 * Make a key out of the record data to be inserted, and save it.
644 key.ar_startblock = recp->ar_startblock;
645 key.ar_blockcount = recp->ar_blockcount;
646 optr = ptr = cur->bc_ptrs[level];
648 * If we're off the left edge, return failure.
650 if (ptr == 0) {
651 *stat = 0;
652 return 0;
654 XFS_STATS_INC(xs_abt_insrec);
656 * Get pointers to the btree buffer and block.
658 bp = cur->bc_bufs[level];
659 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
660 numrecs = be16_to_cpu(block->bb_numrecs);
661 #ifdef DEBUG
662 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
663 return error;
665 * Check that the new entry is being inserted in the right place.
667 if (ptr <= numrecs) {
668 if (level == 0) {
669 rp = XFS_ALLOC_REC_ADDR(block, ptr, cur);
670 xfs_btree_check_rec(cur->bc_btnum, recp, rp);
671 } else {
672 kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur);
673 xfs_btree_check_key(cur->bc_btnum, &key, kp);
676 #endif
677 nbno = NULLAGBLOCK;
678 ncur = NULL;
680 * If the block is full, we can't insert the new entry until we
681 * make the block un-full.
683 if (numrecs == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
685 * First, try shifting an entry to the right neighbor.
687 if ((error = xfs_alloc_rshift(cur, level, &i)))
688 return error;
689 if (i) {
690 /* nothing */
693 * Next, try shifting an entry to the left neighbor.
695 else {
696 if ((error = xfs_alloc_lshift(cur, level, &i)))
697 return error;
698 if (i)
699 optr = ptr = cur->bc_ptrs[level];
700 else {
702 * Next, try splitting the current block in
703 * half. If this works we have to re-set our
704 * variables because we could be in a
705 * different block now.
707 if ((error = xfs_alloc_split(cur, level, &nbno,
708 &nkey, &ncur, &i)))
709 return error;
710 if (i) {
711 bp = cur->bc_bufs[level];
712 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
713 #ifdef DEBUG
714 if ((error =
715 xfs_btree_check_sblock(cur,
716 block, level, bp)))
717 return error;
718 #endif
719 ptr = cur->bc_ptrs[level];
720 nrec.ar_startblock = nkey.ar_startblock;
721 nrec.ar_blockcount = nkey.ar_blockcount;
724 * Otherwise the insert fails.
726 else {
727 *stat = 0;
728 return 0;
734 * At this point we know there's room for our new entry in the block
735 * we're pointing at.
737 numrecs = be16_to_cpu(block->bb_numrecs);
738 if (level > 0) {
740 * It's a non-leaf entry. Make a hole for the new data
741 * in the key and ptr regions of the block.
743 kp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
744 pp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
745 #ifdef DEBUG
746 for (i = numrecs; i >= ptr; i--) {
747 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(pp[i - 1]), level)))
748 return error;
750 #endif
751 memmove(&kp[ptr], &kp[ptr - 1],
752 (numrecs - ptr + 1) * sizeof(*kp));
753 memmove(&pp[ptr], &pp[ptr - 1],
754 (numrecs - ptr + 1) * sizeof(*pp));
755 #ifdef DEBUG
756 if ((error = xfs_btree_check_sptr(cur, *bnop, level)))
757 return error;
758 #endif
760 * Now stuff the new data in, bump numrecs and log the new data.
762 kp[ptr - 1] = key;
763 pp[ptr - 1] = cpu_to_be32(*bnop);
764 numrecs++;
765 block->bb_numrecs = cpu_to_be16(numrecs);
766 xfs_alloc_log_keys(cur, bp, ptr, numrecs);
767 xfs_alloc_log_ptrs(cur, bp, ptr, numrecs);
768 #ifdef DEBUG
769 if (ptr < numrecs)
770 xfs_btree_check_key(cur->bc_btnum, kp + ptr - 1,
771 kp + ptr);
772 #endif
773 } else {
775 * It's a leaf entry. Make a hole for the new record.
777 rp = XFS_ALLOC_REC_ADDR(block, 1, cur);
778 memmove(&rp[ptr], &rp[ptr - 1],
779 (numrecs - ptr + 1) * sizeof(*rp));
781 * Now stuff the new record in, bump numrecs
782 * and log the new data.
784 rp[ptr - 1] = *recp;
785 numrecs++;
786 block->bb_numrecs = cpu_to_be16(numrecs);
787 xfs_alloc_log_recs(cur, bp, ptr, numrecs);
788 #ifdef DEBUG
789 if (ptr < numrecs)
790 xfs_btree_check_rec(cur->bc_btnum, rp + ptr - 1,
791 rp + ptr);
792 #endif
795 * Log the new number of records in the btree header.
797 xfs_alloc_log_block(cur->bc_tp, bp, XFS_BB_NUMRECS);
799 * If we inserted at the start of a block, update the parents' keys.
801 if (optr == 1 && (error = xfs_alloc_updkey(cur, &key, level + 1)))
802 return error;
804 * Look to see if the longest extent in the allocation group
805 * needs to be updated.
808 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
809 if (level == 0 &&
810 cur->bc_btnum == XFS_BTNUM_CNT &&
811 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
812 be32_to_cpu(recp->ar_blockcount) > be32_to_cpu(agf->agf_longest)) {
814 * If this is a leaf in the by-size btree and there
815 * is no right sibling block and this block is bigger
816 * than the previous longest block, update it.
818 agf->agf_longest = recp->ar_blockcount;
819 cur->bc_mp->m_perag[be32_to_cpu(agf->agf_seqno)].pagf_longest
820 = be32_to_cpu(recp->ar_blockcount);
821 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
822 XFS_AGF_LONGEST);
825 * Return the new block number, if any.
826 * If there is one, give back a record value and a cursor too.
828 *bnop = nbno;
829 if (nbno != NULLAGBLOCK) {
830 *recp = nrec;
831 *curp = ncur;
833 *stat = 1;
834 return 0;
838 * Log header fields from a btree block.
840 STATIC void
841 xfs_alloc_log_block(
842 xfs_trans_t *tp, /* transaction pointer */
843 xfs_buf_t *bp, /* buffer containing btree block */
844 int fields) /* mask of fields: XFS_BB_... */
846 int first; /* first byte offset logged */
847 int last; /* last byte offset logged */
848 static const short offsets[] = { /* table of offsets */
849 offsetof(xfs_alloc_block_t, bb_magic),
850 offsetof(xfs_alloc_block_t, bb_level),
851 offsetof(xfs_alloc_block_t, bb_numrecs),
852 offsetof(xfs_alloc_block_t, bb_leftsib),
853 offsetof(xfs_alloc_block_t, bb_rightsib),
854 sizeof(xfs_alloc_block_t)
857 xfs_btree_offsets(fields, offsets, XFS_BB_NUM_BITS, &first, &last);
858 xfs_trans_log_buf(tp, bp, first, last);
862 * Log keys from a btree block (nonleaf).
864 STATIC void
865 xfs_alloc_log_keys(
866 xfs_btree_cur_t *cur, /* btree cursor */
867 xfs_buf_t *bp, /* buffer containing btree block */
868 int kfirst, /* index of first key to log */
869 int klast) /* index of last key to log */
871 xfs_alloc_block_t *block; /* btree block to log from */
872 int first; /* first byte offset logged */
873 xfs_alloc_key_t *kp; /* key pointer in btree block */
874 int last; /* last byte offset logged */
876 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
877 kp = XFS_ALLOC_KEY_ADDR(block, 1, cur);
878 first = (int)((xfs_caddr_t)&kp[kfirst - 1] - (xfs_caddr_t)block);
879 last = (int)(((xfs_caddr_t)&kp[klast] - 1) - (xfs_caddr_t)block);
880 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
884 * Log block pointer fields from a btree block (nonleaf).
886 STATIC void
887 xfs_alloc_log_ptrs(
888 xfs_btree_cur_t *cur, /* btree cursor */
889 xfs_buf_t *bp, /* buffer containing btree block */
890 int pfirst, /* index of first pointer to log */
891 int plast) /* index of last pointer to log */
893 xfs_alloc_block_t *block; /* btree block to log from */
894 int first; /* first byte offset logged */
895 int last; /* last byte offset logged */
896 xfs_alloc_ptr_t *pp; /* block-pointer pointer in btree blk */
898 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
899 pp = XFS_ALLOC_PTR_ADDR(block, 1, cur);
900 first = (int)((xfs_caddr_t)&pp[pfirst - 1] - (xfs_caddr_t)block);
901 last = (int)(((xfs_caddr_t)&pp[plast] - 1) - (xfs_caddr_t)block);
902 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
906 * Log records from a btree block (leaf).
908 STATIC void
909 xfs_alloc_log_recs(
910 xfs_btree_cur_t *cur, /* btree cursor */
911 xfs_buf_t *bp, /* buffer containing btree block */
912 int rfirst, /* index of first record to log */
913 int rlast) /* index of last record to log */
915 xfs_alloc_block_t *block; /* btree block to log from */
916 int first; /* first byte offset logged */
917 int last; /* last byte offset logged */
918 xfs_alloc_rec_t *rp; /* record pointer for btree block */
921 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
922 rp = XFS_ALLOC_REC_ADDR(block, 1, cur);
923 #ifdef DEBUG
925 xfs_agf_t *agf;
926 xfs_alloc_rec_t *p;
928 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
929 for (p = &rp[rfirst - 1]; p <= &rp[rlast - 1]; p++)
930 ASSERT(be32_to_cpu(p->ar_startblock) +
931 be32_to_cpu(p->ar_blockcount) <=
932 be32_to_cpu(agf->agf_length));
934 #endif
935 first = (int)((xfs_caddr_t)&rp[rfirst - 1] - (xfs_caddr_t)block);
936 last = (int)(((xfs_caddr_t)&rp[rlast] - 1) - (xfs_caddr_t)block);
937 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
941 * Lookup the record. The cursor is made to point to it, based on dir.
942 * Return 0 if can't find any such record, 1 for success.
944 STATIC int /* error */
945 xfs_alloc_lookup(
946 xfs_btree_cur_t *cur, /* btree cursor */
947 xfs_lookup_t dir, /* <=, ==, or >= */
948 int *stat) /* success/failure */
950 xfs_agblock_t agbno; /* a.g. relative btree block number */
951 xfs_agnumber_t agno; /* allocation group number */
952 xfs_alloc_block_t *block=NULL; /* current btree block */
953 int diff; /* difference for the current key */
954 int error; /* error return value */
955 int keyno=0; /* current key number */
956 int level; /* level in the btree */
957 xfs_mount_t *mp; /* file system mount point */
959 XFS_STATS_INC(xs_abt_lookup);
961 * Get the allocation group header, and the root block number.
963 mp = cur->bc_mp;
966 xfs_agf_t *agf; /* a.g. freespace header */
968 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
969 agno = be32_to_cpu(agf->agf_seqno);
970 agbno = be32_to_cpu(agf->agf_roots[cur->bc_btnum]);
973 * Iterate over each level in the btree, starting at the root.
974 * For each level above the leaves, find the key we need, based
975 * on the lookup record, then follow the corresponding block
976 * pointer down to the next level.
978 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
979 xfs_buf_t *bp; /* buffer pointer for btree block */
980 xfs_daddr_t d; /* disk address of btree block */
983 * Get the disk address we're looking for.
985 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
987 * If the old buffer at this level is for a different block,
988 * throw it away, otherwise just use it.
990 bp = cur->bc_bufs[level];
991 if (bp && XFS_BUF_ADDR(bp) != d)
992 bp = NULL;
993 if (!bp) {
995 * Need to get a new buffer. Read it, then
996 * set it in the cursor, releasing the old one.
998 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp, agno,
999 agbno, 0, &bp, XFS_ALLOC_BTREE_REF)))
1000 return error;
1001 xfs_btree_setbuf(cur, level, bp);
1003 * Point to the btree block, now that we have the buffer
1005 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1006 if ((error = xfs_btree_check_sblock(cur, block, level,
1007 bp)))
1008 return error;
1009 } else
1010 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1012 * If we already had a key match at a higher level, we know
1013 * we need to use the first entry in this block.
1015 if (diff == 0)
1016 keyno = 1;
1018 * Otherwise we need to search this block. Do a binary search.
1020 else {
1021 int high; /* high entry number */
1022 xfs_alloc_key_t *kkbase=NULL;/* base of keys in block */
1023 xfs_alloc_rec_t *krbase=NULL;/* base of records in block */
1024 int low; /* low entry number */
1027 * Get a pointer to keys or records.
1029 if (level > 0)
1030 kkbase = XFS_ALLOC_KEY_ADDR(block, 1, cur);
1031 else
1032 krbase = XFS_ALLOC_REC_ADDR(block, 1, cur);
1034 * Set low and high entry numbers, 1-based.
1036 low = 1;
1037 if (!(high = be16_to_cpu(block->bb_numrecs))) {
1039 * If the block is empty, the tree must
1040 * be an empty leaf.
1042 ASSERT(level == 0 && cur->bc_nlevels == 1);
1043 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1044 *stat = 0;
1045 return 0;
1048 * Binary search the block.
1050 while (low <= high) {
1051 xfs_extlen_t blockcount; /* key value */
1052 xfs_agblock_t startblock; /* key value */
1054 XFS_STATS_INC(xs_abt_compare);
1056 * keyno is average of low and high.
1058 keyno = (low + high) >> 1;
1060 * Get startblock & blockcount.
1062 if (level > 0) {
1063 xfs_alloc_key_t *kkp;
1065 kkp = kkbase + keyno - 1;
1066 startblock = be32_to_cpu(kkp->ar_startblock);
1067 blockcount = be32_to_cpu(kkp->ar_blockcount);
1068 } else {
1069 xfs_alloc_rec_t *krp;
1071 krp = krbase + keyno - 1;
1072 startblock = be32_to_cpu(krp->ar_startblock);
1073 blockcount = be32_to_cpu(krp->ar_blockcount);
1076 * Compute difference to get next direction.
1078 if (cur->bc_btnum == XFS_BTNUM_BNO)
1079 diff = (int)startblock -
1080 (int)cur->bc_rec.a.ar_startblock;
1081 else if (!(diff = (int)blockcount -
1082 (int)cur->bc_rec.a.ar_blockcount))
1083 diff = (int)startblock -
1084 (int)cur->bc_rec.a.ar_startblock;
1086 * Less than, move right.
1088 if (diff < 0)
1089 low = keyno + 1;
1091 * Greater than, move left.
1093 else if (diff > 0)
1094 high = keyno - 1;
1096 * Equal, we're done.
1098 else
1099 break;
1103 * If there are more levels, set up for the next level
1104 * by getting the block number and filling in the cursor.
1106 if (level > 0) {
1108 * If we moved left, need the previous key number,
1109 * unless there isn't one.
1111 if (diff > 0 && --keyno < 1)
1112 keyno = 1;
1113 agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, keyno, cur));
1114 #ifdef DEBUG
1115 if ((error = xfs_btree_check_sptr(cur, agbno, level)))
1116 return error;
1117 #endif
1118 cur->bc_ptrs[level] = keyno;
1122 * Done with the search.
1123 * See if we need to adjust the results.
1125 if (dir != XFS_LOOKUP_LE && diff < 0) {
1126 keyno++;
1128 * If ge search and we went off the end of the block, but it's
1129 * not the last block, we're in the wrong block.
1131 if (dir == XFS_LOOKUP_GE &&
1132 keyno > be16_to_cpu(block->bb_numrecs) &&
1133 be32_to_cpu(block->bb_rightsib) != NULLAGBLOCK) {
1134 int i;
1136 cur->bc_ptrs[0] = keyno;
1137 if ((error = xfs_alloc_increment(cur, 0, &i)))
1138 return error;
1139 XFS_WANT_CORRUPTED_RETURN(i == 1);
1140 *stat = 1;
1141 return 0;
1144 else if (dir == XFS_LOOKUP_LE && diff > 0)
1145 keyno--;
1146 cur->bc_ptrs[0] = keyno;
1148 * Return if we succeeded or not.
1150 if (keyno == 0 || keyno > be16_to_cpu(block->bb_numrecs))
1151 *stat = 0;
1152 else
1153 *stat = ((dir != XFS_LOOKUP_EQ) || (diff == 0));
1154 return 0;
1158 * Move 1 record left from cur/level if possible.
1159 * Update cur to reflect the new path.
1161 STATIC int /* error */
1162 xfs_alloc_lshift(
1163 xfs_btree_cur_t *cur, /* btree cursor */
1164 int level, /* level to shift record on */
1165 int *stat) /* success/failure */
1167 int error; /* error return value */
1168 #ifdef DEBUG
1169 int i; /* loop index */
1170 #endif
1171 xfs_alloc_key_t key; /* key value for leaf level upward */
1172 xfs_buf_t *lbp; /* buffer for left neighbor block */
1173 xfs_alloc_block_t *left; /* left neighbor btree block */
1174 int nrec; /* new number of left block entries */
1175 xfs_buf_t *rbp; /* buffer for right (current) block */
1176 xfs_alloc_block_t *right; /* right (current) btree block */
1177 xfs_alloc_key_t *rkp=NULL; /* key pointer for right block */
1178 xfs_alloc_ptr_t *rpp=NULL; /* address pointer for right block */
1179 xfs_alloc_rec_t *rrp=NULL; /* record pointer for right block */
1182 * Set up variables for this block as "right".
1184 rbp = cur->bc_bufs[level];
1185 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1186 #ifdef DEBUG
1187 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
1188 return error;
1189 #endif
1191 * If we've got no left sibling then we can't shift an entry left.
1193 if (be32_to_cpu(right->bb_leftsib) == NULLAGBLOCK) {
1194 *stat = 0;
1195 return 0;
1198 * If the cursor entry is the one that would be moved, don't
1199 * do it... it's too complicated.
1201 if (cur->bc_ptrs[level] <= 1) {
1202 *stat = 0;
1203 return 0;
1206 * Set up the left neighbor as "left".
1208 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1209 cur->bc_private.a.agno, be32_to_cpu(right->bb_leftsib),
1210 0, &lbp, XFS_ALLOC_BTREE_REF)))
1211 return error;
1212 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1213 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1214 return error;
1216 * If it's full, it can't take another entry.
1218 if (be16_to_cpu(left->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
1219 *stat = 0;
1220 return 0;
1222 nrec = be16_to_cpu(left->bb_numrecs) + 1;
1224 * If non-leaf, copy a key and a ptr to the left block.
1226 if (level > 0) {
1227 xfs_alloc_key_t *lkp; /* key pointer for left block */
1228 xfs_alloc_ptr_t *lpp; /* address pointer for left block */
1230 lkp = XFS_ALLOC_KEY_ADDR(left, nrec, cur);
1231 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1232 *lkp = *rkp;
1233 xfs_alloc_log_keys(cur, lbp, nrec, nrec);
1234 lpp = XFS_ALLOC_PTR_ADDR(left, nrec, cur);
1235 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1236 #ifdef DEBUG
1237 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*rpp), level)))
1238 return error;
1239 #endif
1240 *lpp = *rpp;
1241 xfs_alloc_log_ptrs(cur, lbp, nrec, nrec);
1242 xfs_btree_check_key(cur->bc_btnum, lkp - 1, lkp);
1245 * If leaf, copy a record to the left block.
1247 else {
1248 xfs_alloc_rec_t *lrp; /* record pointer for left block */
1250 lrp = XFS_ALLOC_REC_ADDR(left, nrec, cur);
1251 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1252 *lrp = *rrp;
1253 xfs_alloc_log_recs(cur, lbp, nrec, nrec);
1254 xfs_btree_check_rec(cur->bc_btnum, lrp - 1, lrp);
1257 * Bump and log left's numrecs, decrement and log right's numrecs.
1259 be16_add_cpu(&left->bb_numrecs, 1);
1260 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS);
1261 be16_add_cpu(&right->bb_numrecs, -1);
1262 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS);
1264 * Slide the contents of right down one entry.
1266 if (level > 0) {
1267 #ifdef DEBUG
1268 for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) {
1269 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i + 1]),
1270 level)))
1271 return error;
1273 #endif
1274 memmove(rkp, rkp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1275 memmove(rpp, rpp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1276 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1277 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1278 } else {
1279 memmove(rrp, rrp + 1, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1280 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1281 key.ar_startblock = rrp->ar_startblock;
1282 key.ar_blockcount = rrp->ar_blockcount;
1283 rkp = &key;
1286 * Update the parent key values of right.
1288 if ((error = xfs_alloc_updkey(cur, rkp, level + 1)))
1289 return error;
1291 * Slide the cursor value left one.
1293 cur->bc_ptrs[level]--;
1294 *stat = 1;
1295 return 0;
1299 * Allocate a new root block, fill it in.
1301 STATIC int /* error */
1302 xfs_alloc_newroot(
1303 xfs_btree_cur_t *cur, /* btree cursor */
1304 int *stat) /* success/failure */
1306 int error; /* error return value */
1307 xfs_agblock_t lbno; /* left block number */
1308 xfs_buf_t *lbp; /* left btree buffer */
1309 xfs_alloc_block_t *left; /* left btree block */
1310 xfs_mount_t *mp; /* mount structure */
1311 xfs_agblock_t nbno; /* new block number */
1312 xfs_buf_t *nbp; /* new (root) buffer */
1313 xfs_alloc_block_t *new; /* new (root) btree block */
1314 int nptr; /* new value for key index, 1 or 2 */
1315 xfs_agblock_t rbno; /* right block number */
1316 xfs_buf_t *rbp; /* right btree buffer */
1317 xfs_alloc_block_t *right; /* right btree block */
1319 mp = cur->bc_mp;
1321 ASSERT(cur->bc_nlevels < XFS_AG_MAXLEVELS(mp));
1323 * Get a buffer from the freelist blocks, for the new root.
1325 error = xfs_alloc_get_freelist(cur->bc_tp,
1326 cur->bc_private.a.agbp, &nbno, 1);
1327 if (error)
1328 return error;
1330 * None available, we fail.
1332 if (nbno == NULLAGBLOCK) {
1333 *stat = 0;
1334 return 0;
1336 xfs_trans_agbtree_delta(cur->bc_tp, 1);
1337 nbp = xfs_btree_get_bufs(mp, cur->bc_tp, cur->bc_private.a.agno, nbno,
1339 new = XFS_BUF_TO_ALLOC_BLOCK(nbp);
1341 * Set the root data in the a.g. freespace structure.
1344 xfs_agf_t *agf; /* a.g. freespace header */
1345 xfs_agnumber_t seqno;
1347 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
1348 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(nbno);
1349 be32_add_cpu(&agf->agf_levels[cur->bc_btnum], 1);
1350 seqno = be32_to_cpu(agf->agf_seqno);
1351 mp->m_perag[seqno].pagf_levels[cur->bc_btnum]++;
1352 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
1353 XFS_AGF_ROOTS | XFS_AGF_LEVELS);
1356 * At the previous root level there are now two blocks: the old
1357 * root, and the new block generated when it was split.
1358 * We don't know which one the cursor is pointing at, so we
1359 * set up variables "left" and "right" for each case.
1361 lbp = cur->bc_bufs[cur->bc_nlevels - 1];
1362 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1363 #ifdef DEBUG
1364 if ((error = xfs_btree_check_sblock(cur, left, cur->bc_nlevels - 1, lbp)))
1365 return error;
1366 #endif
1367 if (be32_to_cpu(left->bb_rightsib) != NULLAGBLOCK) {
1369 * Our block is left, pick up the right block.
1371 lbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(lbp));
1372 rbno = be32_to_cpu(left->bb_rightsib);
1373 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
1374 cur->bc_private.a.agno, rbno, 0, &rbp,
1375 XFS_ALLOC_BTREE_REF)))
1376 return error;
1377 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1378 if ((error = xfs_btree_check_sblock(cur, right,
1379 cur->bc_nlevels - 1, rbp)))
1380 return error;
1381 nptr = 1;
1382 } else {
1384 * Our block is right, pick up the left block.
1386 rbp = lbp;
1387 right = left;
1388 rbno = XFS_DADDR_TO_AGBNO(mp, XFS_BUF_ADDR(rbp));
1389 lbno = be32_to_cpu(right->bb_leftsib);
1390 if ((error = xfs_btree_read_bufs(mp, cur->bc_tp,
1391 cur->bc_private.a.agno, lbno, 0, &lbp,
1392 XFS_ALLOC_BTREE_REF)))
1393 return error;
1394 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1395 if ((error = xfs_btree_check_sblock(cur, left,
1396 cur->bc_nlevels - 1, lbp)))
1397 return error;
1398 nptr = 2;
1401 * Fill in the new block's btree header and log it.
1403 new->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]);
1404 new->bb_level = cpu_to_be16(cur->bc_nlevels);
1405 new->bb_numrecs = cpu_to_be16(2);
1406 new->bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1407 new->bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1408 xfs_alloc_log_block(cur->bc_tp, nbp, XFS_BB_ALL_BITS);
1409 ASSERT(lbno != NULLAGBLOCK && rbno != NULLAGBLOCK);
1411 * Fill in the key data in the new root.
1414 xfs_alloc_key_t *kp; /* btree key pointer */
1416 kp = XFS_ALLOC_KEY_ADDR(new, 1, cur);
1417 if (be16_to_cpu(left->bb_level) > 0) {
1418 kp[0] = *XFS_ALLOC_KEY_ADDR(left, 1, cur);
1419 kp[1] = *XFS_ALLOC_KEY_ADDR(right, 1, cur);
1420 } else {
1421 xfs_alloc_rec_t *rp; /* btree record pointer */
1423 rp = XFS_ALLOC_REC_ADDR(left, 1, cur);
1424 kp[0].ar_startblock = rp->ar_startblock;
1425 kp[0].ar_blockcount = rp->ar_blockcount;
1426 rp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1427 kp[1].ar_startblock = rp->ar_startblock;
1428 kp[1].ar_blockcount = rp->ar_blockcount;
1431 xfs_alloc_log_keys(cur, nbp, 1, 2);
1433 * Fill in the pointer data in the new root.
1436 xfs_alloc_ptr_t *pp; /* btree address pointer */
1438 pp = XFS_ALLOC_PTR_ADDR(new, 1, cur);
1439 pp[0] = cpu_to_be32(lbno);
1440 pp[1] = cpu_to_be32(rbno);
1442 xfs_alloc_log_ptrs(cur, nbp, 1, 2);
1444 * Fix up the cursor.
1446 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
1447 cur->bc_ptrs[cur->bc_nlevels] = nptr;
1448 cur->bc_nlevels++;
1449 *stat = 1;
1450 return 0;
1454 * Move 1 record right from cur/level if possible.
1455 * Update cur to reflect the new path.
1457 STATIC int /* error */
1458 xfs_alloc_rshift(
1459 xfs_btree_cur_t *cur, /* btree cursor */
1460 int level, /* level to shift record on */
1461 int *stat) /* success/failure */
1463 int error; /* error return value */
1464 int i; /* loop index */
1465 xfs_alloc_key_t key; /* key value for leaf level upward */
1466 xfs_buf_t *lbp; /* buffer for left (current) block */
1467 xfs_alloc_block_t *left; /* left (current) btree block */
1468 xfs_buf_t *rbp; /* buffer for right neighbor block */
1469 xfs_alloc_block_t *right; /* right neighbor btree block */
1470 xfs_alloc_key_t *rkp; /* key pointer for right block */
1471 xfs_btree_cur_t *tcur; /* temporary cursor */
1474 * Set up variables for this block as "left".
1476 lbp = cur->bc_bufs[level];
1477 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1478 #ifdef DEBUG
1479 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1480 return error;
1481 #endif
1483 * If we've got no right sibling then we can't shift an entry right.
1485 if (be32_to_cpu(left->bb_rightsib) == NULLAGBLOCK) {
1486 *stat = 0;
1487 return 0;
1490 * If the cursor entry is the one that would be moved, don't
1491 * do it... it's too complicated.
1493 if (cur->bc_ptrs[level] >= be16_to_cpu(left->bb_numrecs)) {
1494 *stat = 0;
1495 return 0;
1498 * Set up the right neighbor as "right".
1500 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1501 cur->bc_private.a.agno, be32_to_cpu(left->bb_rightsib),
1502 0, &rbp, XFS_ALLOC_BTREE_REF)))
1503 return error;
1504 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1505 if ((error = xfs_btree_check_sblock(cur, right, level, rbp)))
1506 return error;
1508 * If it's full, it can't take another entry.
1510 if (be16_to_cpu(right->bb_numrecs) == XFS_ALLOC_BLOCK_MAXRECS(level, cur)) {
1511 *stat = 0;
1512 return 0;
1515 * Make a hole at the start of the right neighbor block, then
1516 * copy the last left block entry to the hole.
1518 if (level > 0) {
1519 xfs_alloc_key_t *lkp; /* key pointer for left block */
1520 xfs_alloc_ptr_t *lpp; /* address pointer for left block */
1521 xfs_alloc_ptr_t *rpp; /* address pointer for right block */
1523 lkp = XFS_ALLOC_KEY_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1524 lpp = XFS_ALLOC_PTR_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1525 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1526 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1527 #ifdef DEBUG
1528 for (i = be16_to_cpu(right->bb_numrecs) - 1; i >= 0; i--) {
1529 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(rpp[i]), level)))
1530 return error;
1532 #endif
1533 memmove(rkp + 1, rkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1534 memmove(rpp + 1, rpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1535 #ifdef DEBUG
1536 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(*lpp), level)))
1537 return error;
1538 #endif
1539 *rkp = *lkp;
1540 *rpp = *lpp;
1541 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1542 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1543 xfs_btree_check_key(cur->bc_btnum, rkp, rkp + 1);
1544 } else {
1545 xfs_alloc_rec_t *lrp; /* record pointer for left block */
1546 xfs_alloc_rec_t *rrp; /* record pointer for right block */
1548 lrp = XFS_ALLOC_REC_ADDR(left, be16_to_cpu(left->bb_numrecs), cur);
1549 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1550 memmove(rrp + 1, rrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1551 *rrp = *lrp;
1552 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs) + 1);
1553 key.ar_startblock = rrp->ar_startblock;
1554 key.ar_blockcount = rrp->ar_blockcount;
1555 rkp = &key;
1556 xfs_btree_check_rec(cur->bc_btnum, rrp, rrp + 1);
1559 * Decrement and log left's numrecs, bump and log right's numrecs.
1561 be16_add_cpu(&left->bb_numrecs, -1);
1562 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS);
1563 be16_add_cpu(&right->bb_numrecs, 1);
1564 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_NUMRECS);
1566 * Using a temporary cursor, update the parent key values of the
1567 * block on the right.
1569 if ((error = xfs_btree_dup_cursor(cur, &tcur)))
1570 return error;
1571 i = xfs_btree_lastrec(tcur, level);
1572 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1573 if ((error = xfs_alloc_increment(tcur, level, &i)) ||
1574 (error = xfs_alloc_updkey(tcur, rkp, level + 1)))
1575 goto error0;
1576 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1577 *stat = 1;
1578 return 0;
1579 error0:
1580 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1581 return error;
1585 * Split cur/level block in half.
1586 * Return new block number and its first record (to be inserted into parent).
1588 STATIC int /* error */
1589 xfs_alloc_split(
1590 xfs_btree_cur_t *cur, /* btree cursor */
1591 int level, /* level to split */
1592 xfs_agblock_t *bnop, /* output: block number allocated */
1593 xfs_alloc_key_t *keyp, /* output: first key of new block */
1594 xfs_btree_cur_t **curp, /* output: new cursor */
1595 int *stat) /* success/failure */
1597 int error; /* error return value */
1598 int i; /* loop index/record number */
1599 xfs_agblock_t lbno; /* left (current) block number */
1600 xfs_buf_t *lbp; /* buffer for left block */
1601 xfs_alloc_block_t *left; /* left (current) btree block */
1602 xfs_agblock_t rbno; /* right (new) block number */
1603 xfs_buf_t *rbp; /* buffer for right block */
1604 xfs_alloc_block_t *right; /* right (new) btree block */
1607 * Allocate the new block from the freelist.
1608 * If we can't do it, we're toast. Give up.
1610 error = xfs_alloc_get_freelist(cur->bc_tp,
1611 cur->bc_private.a.agbp, &rbno, 1);
1612 if (error)
1613 return error;
1614 if (rbno == NULLAGBLOCK) {
1615 *stat = 0;
1616 return 0;
1618 xfs_trans_agbtree_delta(cur->bc_tp, 1);
1619 rbp = xfs_btree_get_bufs(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agno,
1620 rbno, 0);
1622 * Set up the new block as "right".
1624 right = XFS_BUF_TO_ALLOC_BLOCK(rbp);
1626 * "Left" is the current (according to the cursor) block.
1628 lbp = cur->bc_bufs[level];
1629 left = XFS_BUF_TO_ALLOC_BLOCK(lbp);
1630 #ifdef DEBUG
1631 if ((error = xfs_btree_check_sblock(cur, left, level, lbp)))
1632 return error;
1633 #endif
1635 * Fill in the btree header for the new block.
1637 right->bb_magic = cpu_to_be32(xfs_magics[cur->bc_btnum]);
1638 right->bb_level = left->bb_level;
1639 right->bb_numrecs = cpu_to_be16(be16_to_cpu(left->bb_numrecs) / 2);
1641 * Make sure that if there's an odd number of entries now, that
1642 * each new block will have the same number of entries.
1644 if ((be16_to_cpu(left->bb_numrecs) & 1) &&
1645 cur->bc_ptrs[level] <= be16_to_cpu(right->bb_numrecs) + 1)
1646 be16_add_cpu(&right->bb_numrecs, 1);
1647 i = be16_to_cpu(left->bb_numrecs) - be16_to_cpu(right->bb_numrecs) + 1;
1649 * For non-leaf blocks, copy keys and addresses over to the new block.
1651 if (level > 0) {
1652 xfs_alloc_key_t *lkp; /* left btree key pointer */
1653 xfs_alloc_ptr_t *lpp; /* left btree address pointer */
1654 xfs_alloc_key_t *rkp; /* right btree key pointer */
1655 xfs_alloc_ptr_t *rpp; /* right btree address pointer */
1657 lkp = XFS_ALLOC_KEY_ADDR(left, i, cur);
1658 lpp = XFS_ALLOC_PTR_ADDR(left, i, cur);
1659 rkp = XFS_ALLOC_KEY_ADDR(right, 1, cur);
1660 rpp = XFS_ALLOC_PTR_ADDR(right, 1, cur);
1661 #ifdef DEBUG
1662 for (i = 0; i < be16_to_cpu(right->bb_numrecs); i++) {
1663 if ((error = xfs_btree_check_sptr(cur, be32_to_cpu(lpp[i]), level)))
1664 return error;
1666 #endif
1667 memcpy(rkp, lkp, be16_to_cpu(right->bb_numrecs) * sizeof(*rkp));
1668 memcpy(rpp, lpp, be16_to_cpu(right->bb_numrecs) * sizeof(*rpp));
1669 xfs_alloc_log_keys(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1670 xfs_alloc_log_ptrs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1671 *keyp = *rkp;
1674 * For leaf blocks, copy records over to the new block.
1676 else {
1677 xfs_alloc_rec_t *lrp; /* left btree record pointer */
1678 xfs_alloc_rec_t *rrp; /* right btree record pointer */
1680 lrp = XFS_ALLOC_REC_ADDR(left, i, cur);
1681 rrp = XFS_ALLOC_REC_ADDR(right, 1, cur);
1682 memcpy(rrp, lrp, be16_to_cpu(right->bb_numrecs) * sizeof(*rrp));
1683 xfs_alloc_log_recs(cur, rbp, 1, be16_to_cpu(right->bb_numrecs));
1684 keyp->ar_startblock = rrp->ar_startblock;
1685 keyp->ar_blockcount = rrp->ar_blockcount;
1688 * Find the left block number by looking in the buffer.
1689 * Adjust numrecs, sibling pointers.
1691 lbno = XFS_DADDR_TO_AGBNO(cur->bc_mp, XFS_BUF_ADDR(lbp));
1692 be16_add_cpu(&left->bb_numrecs, -(be16_to_cpu(right->bb_numrecs)));
1693 right->bb_rightsib = left->bb_rightsib;
1694 left->bb_rightsib = cpu_to_be32(rbno);
1695 right->bb_leftsib = cpu_to_be32(lbno);
1696 xfs_alloc_log_block(cur->bc_tp, rbp, XFS_BB_ALL_BITS);
1697 xfs_alloc_log_block(cur->bc_tp, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
1699 * If there's a block to the new block's right, make that block
1700 * point back to right instead of to left.
1702 if (be32_to_cpu(right->bb_rightsib) != NULLAGBLOCK) {
1703 xfs_alloc_block_t *rrblock; /* rr btree block */
1704 xfs_buf_t *rrbp; /* buffer for rrblock */
1706 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1707 cur->bc_private.a.agno, be32_to_cpu(right->bb_rightsib), 0,
1708 &rrbp, XFS_ALLOC_BTREE_REF)))
1709 return error;
1710 rrblock = XFS_BUF_TO_ALLOC_BLOCK(rrbp);
1711 if ((error = xfs_btree_check_sblock(cur, rrblock, level, rrbp)))
1712 return error;
1713 rrblock->bb_leftsib = cpu_to_be32(rbno);
1714 xfs_alloc_log_block(cur->bc_tp, rrbp, XFS_BB_LEFTSIB);
1717 * If the cursor is really in the right block, move it there.
1718 * If it's just pointing past the last entry in left, then we'll
1719 * insert there, so don't change anything in that case.
1721 if (cur->bc_ptrs[level] > be16_to_cpu(left->bb_numrecs) + 1) {
1722 xfs_btree_setbuf(cur, level, rbp);
1723 cur->bc_ptrs[level] -= be16_to_cpu(left->bb_numrecs);
1726 * If there are more levels, we'll need another cursor which refers to
1727 * the right block, no matter where this cursor was.
1729 if (level + 1 < cur->bc_nlevels) {
1730 if ((error = xfs_btree_dup_cursor(cur, curp)))
1731 return error;
1732 (*curp)->bc_ptrs[level + 1]++;
1734 *bnop = rbno;
1735 *stat = 1;
1736 return 0;
1740 * Update keys at all levels from here to the root along the cursor's path.
1742 STATIC int /* error */
1743 xfs_alloc_updkey(
1744 xfs_btree_cur_t *cur, /* btree cursor */
1745 xfs_alloc_key_t *keyp, /* new key value to update to */
1746 int level) /* starting level for update */
1748 int ptr; /* index of key in block */
1751 * Go up the tree from this level toward the root.
1752 * At each level, update the key value to the value input.
1753 * Stop when we reach a level where the cursor isn't pointing
1754 * at the first entry in the block.
1756 for (ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
1757 xfs_alloc_block_t *block; /* btree block */
1758 xfs_buf_t *bp; /* buffer for block */
1759 #ifdef DEBUG
1760 int error; /* error return value */
1761 #endif
1762 xfs_alloc_key_t *kp; /* ptr to btree block keys */
1764 bp = cur->bc_bufs[level];
1765 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1766 #ifdef DEBUG
1767 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
1768 return error;
1769 #endif
1770 ptr = cur->bc_ptrs[level];
1771 kp = XFS_ALLOC_KEY_ADDR(block, ptr, cur);
1772 *kp = *keyp;
1773 xfs_alloc_log_keys(cur, bp, ptr, ptr);
1775 return 0;
1779 * Externally visible routines.
1783 * Decrement cursor by one record at the level.
1784 * For nonzero levels the leaf-ward information is untouched.
1786 int /* error */
1787 xfs_alloc_decrement(
1788 xfs_btree_cur_t *cur, /* btree cursor */
1789 int level, /* level in btree, 0 is leaf */
1790 int *stat) /* success/failure */
1792 xfs_alloc_block_t *block; /* btree block */
1793 int error; /* error return value */
1794 int lev; /* btree level */
1796 ASSERT(level < cur->bc_nlevels);
1798 * Read-ahead to the left at this level.
1800 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1802 * Decrement the ptr at this level. If we're still in the block
1803 * then we're done.
1805 if (--cur->bc_ptrs[level] > 0) {
1806 *stat = 1;
1807 return 0;
1810 * Get a pointer to the btree block.
1812 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[level]);
1813 #ifdef DEBUG
1814 if ((error = xfs_btree_check_sblock(cur, block, level,
1815 cur->bc_bufs[level])))
1816 return error;
1817 #endif
1819 * If we just went off the left edge of the tree, return failure.
1821 if (be32_to_cpu(block->bb_leftsib) == NULLAGBLOCK) {
1822 *stat = 0;
1823 return 0;
1826 * March up the tree decrementing pointers.
1827 * Stop when we don't go off the left edge of a block.
1829 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1830 if (--cur->bc_ptrs[lev] > 0)
1831 break;
1833 * Read-ahead the left block, we're going to read it
1834 * in the next loop.
1836 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1839 * If we went off the root then we are seriously confused.
1841 ASSERT(lev < cur->bc_nlevels);
1843 * Now walk back down the tree, fixing up the cursor's buffer
1844 * pointers and key numbers.
1846 for (block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[lev]); lev > level; ) {
1847 xfs_agblock_t agbno; /* block number of btree block */
1848 xfs_buf_t *bp; /* buffer pointer for block */
1850 agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur));
1851 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
1852 cur->bc_private.a.agno, agbno, 0, &bp,
1853 XFS_ALLOC_BTREE_REF)))
1854 return error;
1855 lev--;
1856 xfs_btree_setbuf(cur, lev, bp);
1857 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1858 if ((error = xfs_btree_check_sblock(cur, block, lev, bp)))
1859 return error;
1860 cur->bc_ptrs[lev] = be16_to_cpu(block->bb_numrecs);
1862 *stat = 1;
1863 return 0;
1867 * Delete the record pointed to by cur.
1868 * The cursor refers to the place where the record was (could be inserted)
1869 * when the operation returns.
1871 int /* error */
1872 xfs_alloc_delete(
1873 xfs_btree_cur_t *cur, /* btree cursor */
1874 int *stat) /* success/failure */
1876 int error; /* error return value */
1877 int i; /* result code */
1878 int level; /* btree level */
1881 * Go up the tree, starting at leaf level.
1882 * If 2 is returned then a join was done; go to the next level.
1883 * Otherwise we are done.
1885 for (level = 0, i = 2; i == 2; level++) {
1886 if ((error = xfs_alloc_delrec(cur, level, &i)))
1887 return error;
1889 if (i == 0) {
1890 for (level = 1; level < cur->bc_nlevels; level++) {
1891 if (cur->bc_ptrs[level] == 0) {
1892 if ((error = xfs_alloc_decrement(cur, level, &i)))
1893 return error;
1894 break;
1898 *stat = i;
1899 return 0;
1903 * Get the data from the pointed-to record.
1905 int /* error */
1906 xfs_alloc_get_rec(
1907 xfs_btree_cur_t *cur, /* btree cursor */
1908 xfs_agblock_t *bno, /* output: starting block of extent */
1909 xfs_extlen_t *len, /* output: length of extent */
1910 int *stat) /* output: success/failure */
1912 xfs_alloc_block_t *block; /* btree block */
1913 #ifdef DEBUG
1914 int error; /* error return value */
1915 #endif
1916 int ptr; /* record number */
1918 ptr = cur->bc_ptrs[0];
1919 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]);
1920 #ifdef DEBUG
1921 if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0])))
1922 return error;
1923 #endif
1925 * Off the right end or left end, return failure.
1927 if (ptr > be16_to_cpu(block->bb_numrecs) || ptr <= 0) {
1928 *stat = 0;
1929 return 0;
1932 * Point to the record and extract its data.
1935 xfs_alloc_rec_t *rec; /* record data */
1937 rec = XFS_ALLOC_REC_ADDR(block, ptr, cur);
1938 *bno = be32_to_cpu(rec->ar_startblock);
1939 *len = be32_to_cpu(rec->ar_blockcount);
1941 *stat = 1;
1942 return 0;
1946 * Increment cursor by one record at the level.
1947 * For nonzero levels the leaf-ward information is untouched.
1949 int /* error */
1950 xfs_alloc_increment(
1951 xfs_btree_cur_t *cur, /* btree cursor */
1952 int level, /* level in btree, 0 is leaf */
1953 int *stat) /* success/failure */
1955 xfs_alloc_block_t *block; /* btree block */
1956 xfs_buf_t *bp; /* tree block buffer */
1957 int error; /* error return value */
1958 int lev; /* btree level */
1960 ASSERT(level < cur->bc_nlevels);
1962 * Read-ahead to the right at this level.
1964 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1966 * Get a pointer to the btree block.
1968 bp = cur->bc_bufs[level];
1969 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1970 #ifdef DEBUG
1971 if ((error = xfs_btree_check_sblock(cur, block, level, bp)))
1972 return error;
1973 #endif
1975 * Increment the ptr at this level. If we're still in the block
1976 * then we're done.
1978 if (++cur->bc_ptrs[level] <= be16_to_cpu(block->bb_numrecs)) {
1979 *stat = 1;
1980 return 0;
1983 * If we just went off the right edge of the tree, return failure.
1985 if (be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK) {
1986 *stat = 0;
1987 return 0;
1990 * March up the tree incrementing pointers.
1991 * Stop when we don't go off the right edge of a block.
1993 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1994 bp = cur->bc_bufs[lev];
1995 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
1996 #ifdef DEBUG
1997 if ((error = xfs_btree_check_sblock(cur, block, lev, bp)))
1998 return error;
1999 #endif
2000 if (++cur->bc_ptrs[lev] <= be16_to_cpu(block->bb_numrecs))
2001 break;
2003 * Read-ahead the right block, we're going to read it
2004 * in the next loop.
2006 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
2009 * If we went off the root then we are seriously confused.
2011 ASSERT(lev < cur->bc_nlevels);
2013 * Now walk back down the tree, fixing up the cursor's buffer
2014 * pointers and key numbers.
2016 for (bp = cur->bc_bufs[lev], block = XFS_BUF_TO_ALLOC_BLOCK(bp);
2017 lev > level; ) {
2018 xfs_agblock_t agbno; /* block number of btree block */
2020 agbno = be32_to_cpu(*XFS_ALLOC_PTR_ADDR(block, cur->bc_ptrs[lev], cur));
2021 if ((error = xfs_btree_read_bufs(cur->bc_mp, cur->bc_tp,
2022 cur->bc_private.a.agno, agbno, 0, &bp,
2023 XFS_ALLOC_BTREE_REF)))
2024 return error;
2025 lev--;
2026 xfs_btree_setbuf(cur, lev, bp);
2027 block = XFS_BUF_TO_ALLOC_BLOCK(bp);
2028 if ((error = xfs_btree_check_sblock(cur, block, lev, bp)))
2029 return error;
2030 cur->bc_ptrs[lev] = 1;
2032 *stat = 1;
2033 return 0;
2037 * Insert the current record at the point referenced by cur.
2038 * The cursor may be inconsistent on return if splits have been done.
2040 int /* error */
2041 xfs_alloc_insert(
2042 xfs_btree_cur_t *cur, /* btree cursor */
2043 int *stat) /* success/failure */
2045 int error; /* error return value */
2046 int i; /* result value, 0 for failure */
2047 int level; /* current level number in btree */
2048 xfs_agblock_t nbno; /* new block number (split result) */
2049 xfs_btree_cur_t *ncur; /* new cursor (split result) */
2050 xfs_alloc_rec_t nrec; /* record being inserted this level */
2051 xfs_btree_cur_t *pcur; /* previous level's cursor */
2053 level = 0;
2054 nbno = NULLAGBLOCK;
2055 nrec.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
2056 nrec.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
2057 ncur = NULL;
2058 pcur = cur;
2060 * Loop going up the tree, starting at the leaf level.
2061 * Stop when we don't get a split block, that must mean that
2062 * the insert is finished with this level.
2064 do {
2066 * Insert nrec/nbno into this level of the tree.
2067 * Note if we fail, nbno will be null.
2069 if ((error = xfs_alloc_insrec(pcur, level++, &nbno, &nrec, &ncur,
2070 &i))) {
2071 if (pcur != cur)
2072 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
2073 return error;
2076 * See if the cursor we just used is trash.
2077 * Can't trash the caller's cursor, but otherwise we should
2078 * if ncur is a new cursor or we're about to be done.
2080 if (pcur != cur && (ncur || nbno == NULLAGBLOCK)) {
2081 cur->bc_nlevels = pcur->bc_nlevels;
2082 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
2085 * If we got a new cursor, switch to it.
2087 if (ncur) {
2088 pcur = ncur;
2089 ncur = NULL;
2091 } while (nbno != NULLAGBLOCK);
2092 *stat = i;
2093 return 0;
2097 * Lookup the record equal to [bno, len] in the btree given by cur.
2099 int /* error */
2100 xfs_alloc_lookup_eq(
2101 xfs_btree_cur_t *cur, /* btree cursor */
2102 xfs_agblock_t bno, /* starting block of extent */
2103 xfs_extlen_t len, /* length of extent */
2104 int *stat) /* success/failure */
2106 cur->bc_rec.a.ar_startblock = bno;
2107 cur->bc_rec.a.ar_blockcount = len;
2108 return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, stat);
2112 * Lookup the first record greater than or equal to [bno, len]
2113 * in the btree given by cur.
2115 int /* error */
2116 xfs_alloc_lookup_ge(
2117 xfs_btree_cur_t *cur, /* btree cursor */
2118 xfs_agblock_t bno, /* starting block of extent */
2119 xfs_extlen_t len, /* length of extent */
2120 int *stat) /* success/failure */
2122 cur->bc_rec.a.ar_startblock = bno;
2123 cur->bc_rec.a.ar_blockcount = len;
2124 return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, stat);
2128 * Lookup the first record less than or equal to [bno, len]
2129 * in the btree given by cur.
2131 int /* error */
2132 xfs_alloc_lookup_le(
2133 xfs_btree_cur_t *cur, /* btree cursor */
2134 xfs_agblock_t bno, /* starting block of extent */
2135 xfs_extlen_t len, /* length of extent */
2136 int *stat) /* success/failure */
2138 cur->bc_rec.a.ar_startblock = bno;
2139 cur->bc_rec.a.ar_blockcount = len;
2140 return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, stat);
2144 * Update the record referred to by cur, to the value given by [bno, len].
2145 * This either works (return 0) or gets an EFSCORRUPTED error.
2147 int /* error */
2148 xfs_alloc_update(
2149 xfs_btree_cur_t *cur, /* btree cursor */
2150 xfs_agblock_t bno, /* starting block of extent */
2151 xfs_extlen_t len) /* length of extent */
2153 xfs_alloc_block_t *block; /* btree block to update */
2154 int error; /* error return value */
2155 int ptr; /* current record number (updating) */
2157 ASSERT(len > 0);
2159 * Pick up the a.g. freelist struct and the current block.
2161 block = XFS_BUF_TO_ALLOC_BLOCK(cur->bc_bufs[0]);
2162 #ifdef DEBUG
2163 if ((error = xfs_btree_check_sblock(cur, block, 0, cur->bc_bufs[0])))
2164 return error;
2165 #endif
2167 * Get the address of the rec to be updated.
2169 ptr = cur->bc_ptrs[0];
2171 xfs_alloc_rec_t *rp; /* pointer to updated record */
2173 rp = XFS_ALLOC_REC_ADDR(block, ptr, cur);
2175 * Fill in the new contents and log them.
2177 rp->ar_startblock = cpu_to_be32(bno);
2178 rp->ar_blockcount = cpu_to_be32(len);
2179 xfs_alloc_log_recs(cur, cur->bc_bufs[0], ptr, ptr);
2182 * If it's the by-size btree and it's the last leaf block and
2183 * it's the last record... then update the size of the longest
2184 * extent in the a.g., which we cache in the a.g. freelist header.
2186 if (cur->bc_btnum == XFS_BTNUM_CNT &&
2187 be32_to_cpu(block->bb_rightsib) == NULLAGBLOCK &&
2188 ptr == be16_to_cpu(block->bb_numrecs)) {
2189 xfs_agf_t *agf; /* a.g. freespace header */
2190 xfs_agnumber_t seqno;
2192 agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
2193 seqno = be32_to_cpu(agf->agf_seqno);
2194 cur->bc_mp->m_perag[seqno].pagf_longest = len;
2195 agf->agf_longest = cpu_to_be32(len);
2196 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp,
2197 XFS_AGF_LONGEST);
2200 * Updating first record in leaf. Pass new key value up to our parent.
2202 if (ptr == 1) {
2203 xfs_alloc_key_t key; /* key containing [bno, len] */
2205 key.ar_startblock = cpu_to_be32(bno);
2206 key.ar_blockcount = cpu_to_be32(len);
2207 if ((error = xfs_alloc_updkey(cur, &key, 1)))
2208 return error;
2210 return 0;