2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
27 #define SPI_BITBANG_CS_DELAY 100
30 /*----------------------------------------------------------------------*/
33 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
34 * Use this for GPIO or shift-register level hardware APIs.
36 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
37 * to glue code. These bitbang setup() and cleanup() routines are always
38 * used, though maybe they're called from controller-aware code.
40 * chipselect() and friends may use spi_device->controller_data and
41 * controller registers as appropriate.
44 * NOTE: SPI controller pins can often be used as GPIO pins instead,
45 * which means you could use a bitbang driver either to get hardware
46 * working quickly, or testing for differences that aren't speed related.
49 struct spi_bitbang_cs
{
50 unsigned nsecs
; /* (clock cycle time)/2 */
51 u32 (*txrx_word
)(struct spi_device
*spi
, unsigned nsecs
,
53 unsigned (*txrx_bufs
)(struct spi_device
*,
55 struct spi_device
*spi
,
58 unsigned, struct spi_transfer
*);
61 static unsigned bitbang_txrx_8(
62 struct spi_device
*spi
,
63 u32 (*txrx_word
)(struct spi_device
*spi
,
67 struct spi_transfer
*t
69 unsigned bits
= t
->bits_per_word
;
70 unsigned count
= t
->len
;
71 const u8
*tx
= t
->tx_buf
;
74 while (likely(count
> 0)) {
79 word
= txrx_word(spi
, ns
, word
, bits
);
84 return t
->len
- count
;
87 static unsigned bitbang_txrx_16(
88 struct spi_device
*spi
,
89 u32 (*txrx_word
)(struct spi_device
*spi
,
93 struct spi_transfer
*t
95 unsigned bits
= t
->bits_per_word
;
96 unsigned count
= t
->len
;
97 const u16
*tx
= t
->tx_buf
;
100 while (likely(count
> 1)) {
105 word
= txrx_word(spi
, ns
, word
, bits
);
110 return t
->len
- count
;
113 static unsigned bitbang_txrx_32(
114 struct spi_device
*spi
,
115 u32 (*txrx_word
)(struct spi_device
*spi
,
119 struct spi_transfer
*t
121 unsigned bits
= t
->bits_per_word
;
122 unsigned count
= t
->len
;
123 const u32
*tx
= t
->tx_buf
;
126 while (likely(count
> 3)) {
131 word
= txrx_word(spi
, ns
, word
, bits
);
136 return t
->len
- count
;
139 int spi_bitbang_setup_transfer(struct spi_device
*spi
, struct spi_transfer
*t
)
141 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
146 bits_per_word
= t
->bits_per_word
;
153 /* spi_transfer level calls that work per-word */
155 bits_per_word
= spi
->bits_per_word
;
156 if (bits_per_word
<= 8)
157 cs
->txrx_bufs
= bitbang_txrx_8
;
158 else if (bits_per_word
<= 16)
159 cs
->txrx_bufs
= bitbang_txrx_16
;
160 else if (bits_per_word
<= 32)
161 cs
->txrx_bufs
= bitbang_txrx_32
;
165 /* nsecs = (clock period)/2 */
167 hz
= spi
->max_speed_hz
;
169 cs
->nsecs
= (1000000000/2) / hz
;
170 if (cs
->nsecs
> (MAX_UDELAY_MS
* 1000 * 1000))
176 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer
);
179 * spi_bitbang_setup - default setup for per-word I/O loops
181 int spi_bitbang_setup(struct spi_device
*spi
)
183 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
184 struct spi_bitbang
*bitbang
;
186 bitbang
= spi_master_get_devdata(spi
->master
);
189 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
192 spi
->controller_state
= cs
;
195 /* per-word shift register access, in hardware or bitbanging */
196 cs
->txrx_word
= bitbang
->txrx_word
[spi
->mode
& (SPI_CPOL
|SPI_CPHA
)];
200 if (bitbang
->setup_transfer
) {
201 int retval
= bitbang
->setup_transfer(spi
, NULL
);
206 dev_dbg(&spi
->dev
, "%s, %u nsec/bit\n", __func__
, 2 * cs
->nsecs
);
208 /* NOTE we _need_ to call chipselect() early, ideally with adapter
209 * setup, unless the hardware defaults cooperate to avoid confusion
210 * between normal (active low) and inverted chipselects.
213 /* deselect chip (low or high) */
214 mutex_lock(&bitbang
->lock
);
215 if (!bitbang
->busy
) {
216 bitbang
->chipselect(spi
, BITBANG_CS_INACTIVE
);
219 mutex_unlock(&bitbang
->lock
);
223 EXPORT_SYMBOL_GPL(spi_bitbang_setup
);
226 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
228 void spi_bitbang_cleanup(struct spi_device
*spi
)
230 kfree(spi
->controller_state
);
232 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup
);
234 static int spi_bitbang_bufs(struct spi_device
*spi
, struct spi_transfer
*t
)
236 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
237 unsigned nsecs
= cs
->nsecs
;
239 return cs
->txrx_bufs(spi
, cs
->txrx_word
, nsecs
, t
);
242 /*----------------------------------------------------------------------*/
245 * SECOND PART ... simple transfer queue runner.
247 * This costs a task context per controller, running the queue by
248 * performing each transfer in sequence. Smarter hardware can queue
249 * several DMA transfers at once, and process several controller queues
250 * in parallel; this driver doesn't match such hardware very well.
252 * Drivers can provide word-at-a-time i/o primitives, or provide
253 * transfer-at-a-time ones to leverage dma or fifo hardware.
256 static int spi_bitbang_prepare_hardware(struct spi_master
*spi
)
258 struct spi_bitbang
*bitbang
;
260 bitbang
= spi_master_get_devdata(spi
);
262 mutex_lock(&bitbang
->lock
);
264 mutex_unlock(&bitbang
->lock
);
269 static int spi_bitbang_transfer_one(struct spi_master
*master
,
270 struct spi_device
*spi
,
271 struct spi_transfer
*transfer
)
273 struct spi_bitbang
*bitbang
= spi_master_get_devdata(master
);
276 if (bitbang
->setup_transfer
) {
277 status
= bitbang
->setup_transfer(spi
, transfer
);
283 status
= bitbang
->txrx_bufs(spi
, transfer
);
285 if (status
== transfer
->len
)
287 else if (status
>= 0)
291 spi_finalize_current_transfer(master
);
296 static int spi_bitbang_unprepare_hardware(struct spi_master
*spi
)
298 struct spi_bitbang
*bitbang
;
300 bitbang
= spi_master_get_devdata(spi
);
302 mutex_lock(&bitbang
->lock
);
304 mutex_unlock(&bitbang
->lock
);
309 static void spi_bitbang_set_cs(struct spi_device
*spi
, bool enable
)
311 struct spi_bitbang
*bitbang
= spi_master_get_devdata(spi
->master
);
313 /* SPI core provides CS high / low, but bitbang driver
315 * spi device driver takes care of handling SPI_CS_HIGH
317 enable
= (!!(spi
->mode
& SPI_CS_HIGH
) == enable
);
319 ndelay(SPI_BITBANG_CS_DELAY
);
320 bitbang
->chipselect(spi
, enable
? BITBANG_CS_ACTIVE
:
321 BITBANG_CS_INACTIVE
);
322 ndelay(SPI_BITBANG_CS_DELAY
);
325 /*----------------------------------------------------------------------*/
328 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
329 * @bitbang: driver handle
331 * Caller should have zero-initialized all parts of the structure, and then
332 * provided callbacks for chip selection and I/O loops. If the master has
333 * a transfer method, its final step should call spi_bitbang_transfer; or,
334 * that's the default if the transfer routine is not initialized. It should
335 * also set up the bus number and number of chipselects.
337 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
338 * hardware that basically exposes a shift register) or per-spi_transfer
339 * (which takes better advantage of hardware like fifos or DMA engines).
341 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
342 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
343 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
344 * routine isn't initialized.
346 * This routine registers the spi_master, which will process requests in a
347 * dedicated task, keeping IRQs unblocked most of the time. To stop
348 * processing those requests, call spi_bitbang_stop().
350 * On success, this routine will take a reference to master. The caller is
351 * responsible for calling spi_bitbang_stop() to decrement the reference and
352 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
355 int spi_bitbang_start(struct spi_bitbang
*bitbang
)
357 struct spi_master
*master
= bitbang
->master
;
360 if (!master
|| !bitbang
->chipselect
)
363 mutex_init(&bitbang
->lock
);
365 if (!master
->mode_bits
)
366 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| bitbang
->flags
;
368 if (master
->transfer
|| master
->transfer_one_message
)
371 master
->prepare_transfer_hardware
= spi_bitbang_prepare_hardware
;
372 master
->unprepare_transfer_hardware
= spi_bitbang_unprepare_hardware
;
373 master
->transfer_one
= spi_bitbang_transfer_one
;
374 master
->set_cs
= spi_bitbang_set_cs
;
376 if (!bitbang
->txrx_bufs
) {
377 bitbang
->use_dma
= 0;
378 bitbang
->txrx_bufs
= spi_bitbang_bufs
;
379 if (!master
->setup
) {
380 if (!bitbang
->setup_transfer
)
381 bitbang
->setup_transfer
=
382 spi_bitbang_setup_transfer
;
383 master
->setup
= spi_bitbang_setup
;
384 master
->cleanup
= spi_bitbang_cleanup
;
388 /* driver may get busy before register() returns, especially
389 * if someone registered boardinfo for devices
391 ret
= spi_register_master(spi_master_get(master
));
393 spi_master_put(master
);
397 EXPORT_SYMBOL_GPL(spi_bitbang_start
);
400 * spi_bitbang_stop - stops the task providing spi communication
402 void spi_bitbang_stop(struct spi_bitbang
*bitbang
)
404 spi_unregister_master(bitbang
->master
);
406 EXPORT_SYMBOL_GPL(spi_bitbang_stop
);
408 MODULE_LICENSE("GPL");