2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
23 #include <linux/spi/spi.h>
25 #define SUN4I_FIFO_DEPTH 64
27 #define SUN4I_RXDATA_REG 0x00
29 #define SUN4I_TXDATA_REG 0x04
31 #define SUN4I_CTL_REG 0x08
32 #define SUN4I_CTL_ENABLE BIT(0)
33 #define SUN4I_CTL_MASTER BIT(1)
34 #define SUN4I_CTL_CPHA BIT(2)
35 #define SUN4I_CTL_CPOL BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW BIT(4)
37 #define SUN4I_CTL_LMTF BIT(6)
38 #define SUN4I_CTL_TF_RST BIT(8)
39 #define SUN4I_CTL_RF_RST BIT(9)
40 #define SUN4I_CTL_XCH BIT(10)
41 #define SUN4I_CTL_CS_MASK 0x3000
42 #define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB BIT(15)
44 #define SUN4I_CTL_CS_MANUAL BIT(16)
45 #define SUN4I_CTL_CS_LEVEL BIT(17)
46 #define SUN4I_CTL_TP BIT(18)
48 #define SUN4I_INT_CTL_REG 0x0c
49 #define SUN4I_INT_CTL_TC BIT(16)
51 #define SUN4I_INT_STA_REG 0x10
53 #define SUN4I_DMA_CTL_REG 0x14
55 #define SUN4I_WAIT_REG 0x18
57 #define SUN4I_CLK_CTL_REG 0x1c
58 #define SUN4I_CLK_CTL_CDR2_MASK 0xff
59 #define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK)
60 #define SUN4I_CLK_CTL_CDR1_MASK 0xf
61 #define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62 #define SUN4I_CLK_CTL_DRS BIT(12)
64 #define SUN4I_BURST_CNT_REG 0x20
65 #define SUN4I_BURST_CNT(cnt) ((cnt) & 0xffffff)
67 #define SUN4I_XMIT_CNT_REG 0x24
68 #define SUN4I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
70 #define SUN4I_FIFO_STA_REG 0x28
71 #define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
72 #define SUN4I_FIFO_STA_RF_CNT_BITS 0
73 #define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f
74 #define SUN4I_FIFO_STA_TF_CNT_BITS 16
77 struct spi_master
*master
;
78 void __iomem
*base_addr
;
82 struct completion done
;
89 static inline u32
sun4i_spi_read(struct sun4i_spi
*sspi
, u32 reg
)
91 return readl(sspi
->base_addr
+ reg
);
94 static inline void sun4i_spi_write(struct sun4i_spi
*sspi
, u32 reg
, u32 value
)
96 writel(value
, sspi
->base_addr
+ reg
);
99 static inline void sun4i_spi_drain_fifo(struct sun4i_spi
*sspi
, int len
)
104 /* See how much data is available */
105 reg
= sun4i_spi_read(sspi
, SUN4I_FIFO_STA_REG
);
106 reg
&= SUN4I_FIFO_STA_RF_CNT_MASK
;
107 cnt
= reg
>> SUN4I_FIFO_STA_RF_CNT_BITS
;
113 byte
= readb(sspi
->base_addr
+ SUN4I_RXDATA_REG
);
115 *sspi
->rx_buf
++ = byte
;
119 static inline void sun4i_spi_fill_fifo(struct sun4i_spi
*sspi
, int len
)
127 byte
= sspi
->tx_buf
? *sspi
->tx_buf
++ : 0;
128 writeb(byte
, sspi
->base_addr
+ SUN4I_TXDATA_REG
);
133 static void sun4i_spi_set_cs(struct spi_device
*spi
, bool enable
)
135 struct sun4i_spi
*sspi
= spi_master_get_devdata(spi
->master
);
138 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
140 reg
&= ~SUN4I_CTL_CS_MASK
;
141 reg
|= SUN4I_CTL_CS(spi
->chip_select
);
143 /* We want to control the chip select manually */
144 reg
|= SUN4I_CTL_CS_MANUAL
;
147 reg
|= SUN4I_CTL_CS_LEVEL
;
149 reg
&= ~SUN4I_CTL_CS_LEVEL
;
152 * Even though this looks irrelevant since we are supposed to
153 * be controlling the chip select manually, this bit also
154 * controls the levels of the chip select for inactive
157 * If we don't set it, the chip select level will go low by
158 * default when the device is idle, which is not really
159 * expected in the common case where the chip select is active
162 if (spi
->mode
& SPI_CS_HIGH
)
163 reg
&= ~SUN4I_CTL_CS_ACTIVE_LOW
;
165 reg
|= SUN4I_CTL_CS_ACTIVE_LOW
;
167 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
);
170 static int sun4i_spi_transfer_one(struct spi_master
*master
,
171 struct spi_device
*spi
,
172 struct spi_transfer
*tfr
)
174 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
175 unsigned int mclk_rate
, div
, timeout
;
176 unsigned int tx_len
= 0;
180 /* We don't support transfer larger than the FIFO */
181 if (tfr
->len
> SUN4I_FIFO_DEPTH
)
184 reinit_completion(&sspi
->done
);
185 sspi
->tx_buf
= tfr
->tx_buf
;
186 sspi
->rx_buf
= tfr
->rx_buf
;
187 sspi
->len
= tfr
->len
;
189 /* Clear pending interrupts */
190 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, ~0);
193 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
196 sun4i_spi_write(sspi
, SUN4I_CTL_REG
,
197 reg
| SUN4I_CTL_RF_RST
| SUN4I_CTL_TF_RST
);
200 * Setup the transfer control register: Chip Select,
203 if (spi
->mode
& SPI_CPOL
)
204 reg
|= SUN4I_CTL_CPOL
;
206 reg
&= ~SUN4I_CTL_CPOL
;
208 if (spi
->mode
& SPI_CPHA
)
209 reg
|= SUN4I_CTL_CPHA
;
211 reg
&= ~SUN4I_CTL_CPHA
;
213 if (spi
->mode
& SPI_LSB_FIRST
)
214 reg
|= SUN4I_CTL_LMTF
;
216 reg
&= ~SUN4I_CTL_LMTF
;
220 * If it's a TX only transfer, we don't want to fill the RX
221 * FIFO with bogus data
224 reg
&= ~SUN4I_CTL_DHB
;
226 reg
|= SUN4I_CTL_DHB
;
228 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
);
230 /* Ensure that we have a parent clock fast enough */
231 mclk_rate
= clk_get_rate(sspi
->mclk
);
232 if (mclk_rate
< (2 * tfr
->speed_hz
)) {
233 clk_set_rate(sspi
->mclk
, 2 * tfr
->speed_hz
);
234 mclk_rate
= clk_get_rate(sspi
->mclk
);
238 * Setup clock divider.
240 * We have two choices there. Either we can use the clock
241 * divide rate 1, which is calculated thanks to this formula:
242 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
243 * Or we can use CDR2, which is calculated with the formula:
244 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
245 * Wether we use the former or the latter is set through the
248 * First try CDR2, and if we can't reach the expected
249 * frequency, fall back to CDR1.
251 div
= mclk_rate
/ (2 * tfr
->speed_hz
);
252 if (div
<= (SUN4I_CLK_CTL_CDR2_MASK
+ 1)) {
256 reg
= SUN4I_CLK_CTL_CDR2(div
) | SUN4I_CLK_CTL_DRS
;
258 div
= ilog2(mclk_rate
) - ilog2(tfr
->speed_hz
);
259 reg
= SUN4I_CLK_CTL_CDR1(div
);
262 sun4i_spi_write(sspi
, SUN4I_CLK_CTL_REG
, reg
);
264 /* Setup the transfer now... */
268 /* Setup the counters */
269 sun4i_spi_write(sspi
, SUN4I_BURST_CNT_REG
, SUN4I_BURST_CNT(tfr
->len
));
270 sun4i_spi_write(sspi
, SUN4I_XMIT_CNT_REG
, SUN4I_XMIT_CNT(tx_len
));
272 /* Fill the TX FIFO */
273 sun4i_spi_fill_fifo(sspi
, SUN4I_FIFO_DEPTH
);
275 /* Enable the interrupts */
276 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, SUN4I_INT_CTL_TC
);
278 /* Start the transfer */
279 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
280 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
| SUN4I_CTL_XCH
);
282 timeout
= wait_for_completion_timeout(&sspi
->done
,
283 msecs_to_jiffies(1000));
289 sun4i_spi_drain_fifo(sspi
, SUN4I_FIFO_DEPTH
);
292 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, 0);
297 static irqreturn_t
sun4i_spi_handler(int irq
, void *dev_id
)
299 struct sun4i_spi
*sspi
= dev_id
;
300 u32 status
= sun4i_spi_read(sspi
, SUN4I_INT_STA_REG
);
302 /* Transfer complete */
303 if (status
& SUN4I_INT_CTL_TC
) {
304 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, SUN4I_INT_CTL_TC
);
305 complete(&sspi
->done
);
312 static int sun4i_spi_runtime_resume(struct device
*dev
)
314 struct spi_master
*master
= dev_get_drvdata(dev
);
315 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
318 ret
= clk_prepare_enable(sspi
->hclk
);
320 dev_err(dev
, "Couldn't enable AHB clock\n");
324 ret
= clk_prepare_enable(sspi
->mclk
);
326 dev_err(dev
, "Couldn't enable module clock\n");
330 sun4i_spi_write(sspi
, SUN4I_CTL_REG
,
331 SUN4I_CTL_ENABLE
| SUN4I_CTL_MASTER
| SUN4I_CTL_TP
);
336 clk_disable_unprepare(sspi
->hclk
);
341 static int sun4i_spi_runtime_suspend(struct device
*dev
)
343 struct spi_master
*master
= dev_get_drvdata(dev
);
344 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
346 clk_disable_unprepare(sspi
->mclk
);
347 clk_disable_unprepare(sspi
->hclk
);
352 static int sun4i_spi_probe(struct platform_device
*pdev
)
354 struct spi_master
*master
;
355 struct sun4i_spi
*sspi
;
356 struct resource
*res
;
359 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sun4i_spi
));
361 dev_err(&pdev
->dev
, "Unable to allocate SPI Master\n");
365 platform_set_drvdata(pdev
, master
);
366 sspi
= spi_master_get_devdata(master
);
368 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
369 sspi
->base_addr
= devm_ioremap_resource(&pdev
->dev
, res
);
370 if (IS_ERR(sspi
->base_addr
)) {
371 ret
= PTR_ERR(sspi
->base_addr
);
372 goto err_free_master
;
375 irq
= platform_get_irq(pdev
, 0);
377 dev_err(&pdev
->dev
, "No spi IRQ specified\n");
379 goto err_free_master
;
382 ret
= devm_request_irq(&pdev
->dev
, irq
, sun4i_spi_handler
,
383 0, "sun4i-spi", sspi
);
385 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
386 goto err_free_master
;
389 sspi
->master
= master
;
390 master
->set_cs
= sun4i_spi_set_cs
;
391 master
->transfer_one
= sun4i_spi_transfer_one
;
392 master
->num_chipselect
= 4;
393 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
;
394 master
->bits_per_word_mask
= SPI_BPW_MASK(8);
395 master
->dev
.of_node
= pdev
->dev
.of_node
;
396 master
->auto_runtime_pm
= true;
398 sspi
->hclk
= devm_clk_get(&pdev
->dev
, "ahb");
399 if (IS_ERR(sspi
->hclk
)) {
400 dev_err(&pdev
->dev
, "Unable to acquire AHB clock\n");
401 ret
= PTR_ERR(sspi
->hclk
);
402 goto err_free_master
;
405 sspi
->mclk
= devm_clk_get(&pdev
->dev
, "mod");
406 if (IS_ERR(sspi
->mclk
)) {
407 dev_err(&pdev
->dev
, "Unable to acquire module clock\n");
408 ret
= PTR_ERR(sspi
->mclk
);
409 goto err_free_master
;
412 init_completion(&sspi
->done
);
415 * This wake-up/shutdown pattern is to be able to have the
416 * device woken up, even if runtime_pm is disabled
418 ret
= sun4i_spi_runtime_resume(&pdev
->dev
);
420 dev_err(&pdev
->dev
, "Couldn't resume the device\n");
421 goto err_free_master
;
424 pm_runtime_set_active(&pdev
->dev
);
425 pm_runtime_enable(&pdev
->dev
);
426 pm_runtime_idle(&pdev
->dev
);
428 ret
= devm_spi_register_master(&pdev
->dev
, master
);
430 dev_err(&pdev
->dev
, "cannot register SPI master\n");
437 pm_runtime_disable(&pdev
->dev
);
438 sun4i_spi_runtime_suspend(&pdev
->dev
);
440 spi_master_put(master
);
444 static int sun4i_spi_remove(struct platform_device
*pdev
)
446 pm_runtime_disable(&pdev
->dev
);
451 static const struct of_device_id sun4i_spi_match
[] = {
452 { .compatible
= "allwinner,sun4i-a10-spi", },
455 MODULE_DEVICE_TABLE(of
, sun4i_spi_match
);
457 static const struct dev_pm_ops sun4i_spi_pm_ops
= {
458 .runtime_resume
= sun4i_spi_runtime_resume
,
459 .runtime_suspend
= sun4i_spi_runtime_suspend
,
462 static struct platform_driver sun4i_spi_driver
= {
463 .probe
= sun4i_spi_probe
,
464 .remove
= sun4i_spi_remove
,
467 .of_match_table
= sun4i_spi_match
,
468 .pm
= &sun4i_spi_pm_ops
,
471 module_platform_driver(sun4i_spi_driver
);
473 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
474 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
475 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
476 MODULE_LICENSE("GPL");