pwm: mxs: Switch to SPDX identifier
[linux/fpc-iii.git] / block / blk-mq-tag.c
blob09b2ee6694fb16858a104b7021b986aff603a91a
1 /*
2 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
3 * fairer distribution of tags between multiple submitters when a shared tag map
4 * is used.
6 * Copyright (C) 2013-2014 Jens Axboe
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/blk-mq.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-tag.h"
16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
18 if (!tags)
19 return true;
21 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb);
25 * If a previously inactive queue goes active, bump the active user count.
27 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
29 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
30 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
31 atomic_inc(&hctx->tags->active_queues);
33 return true;
37 * Wakeup all potentially sleeping on tags
39 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
41 sbitmap_queue_wake_all(&tags->bitmap_tags);
42 if (include_reserve)
43 sbitmap_queue_wake_all(&tags->breserved_tags);
47 * If a previously busy queue goes inactive, potential waiters could now
48 * be allowed to queue. Wake them up and check.
50 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
52 struct blk_mq_tags *tags = hctx->tags;
54 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
55 return;
57 atomic_dec(&tags->active_queues);
59 blk_mq_tag_wakeup_all(tags, false);
63 * For shared tag users, we track the number of currently active users
64 * and attempt to provide a fair share of the tag depth for each of them.
66 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
67 struct sbitmap_queue *bt)
69 unsigned int depth, users;
71 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
72 return true;
73 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
74 return true;
77 * Don't try dividing an ant
79 if (bt->sb.depth == 1)
80 return true;
82 users = atomic_read(&hctx->tags->active_queues);
83 if (!users)
84 return true;
87 * Allow at least some tags
89 depth = max((bt->sb.depth + users - 1) / users, 4U);
90 return atomic_read(&hctx->nr_active) < depth;
93 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
94 struct sbitmap_queue *bt)
96 if (!(data->flags & BLK_MQ_REQ_INTERNAL) &&
97 !hctx_may_queue(data->hctx, bt))
98 return -1;
99 if (data->shallow_depth)
100 return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
101 else
102 return __sbitmap_queue_get(bt);
105 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
107 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
108 struct sbitmap_queue *bt;
109 struct sbq_wait_state *ws;
110 DEFINE_WAIT(wait);
111 unsigned int tag_offset;
112 bool drop_ctx;
113 int tag;
115 if (data->flags & BLK_MQ_REQ_RESERVED) {
116 if (unlikely(!tags->nr_reserved_tags)) {
117 WARN_ON_ONCE(1);
118 return BLK_MQ_TAG_FAIL;
120 bt = &tags->breserved_tags;
121 tag_offset = 0;
122 } else {
123 bt = &tags->bitmap_tags;
124 tag_offset = tags->nr_reserved_tags;
127 tag = __blk_mq_get_tag(data, bt);
128 if (tag != -1)
129 goto found_tag;
131 if (data->flags & BLK_MQ_REQ_NOWAIT)
132 return BLK_MQ_TAG_FAIL;
134 ws = bt_wait_ptr(bt, data->hctx);
135 drop_ctx = data->ctx == NULL;
136 do {
137 struct sbitmap_queue *bt_prev;
140 * We're out of tags on this hardware queue, kick any
141 * pending IO submits before going to sleep waiting for
142 * some to complete.
144 blk_mq_run_hw_queue(data->hctx, false);
147 * Retry tag allocation after running the hardware queue,
148 * as running the queue may also have found completions.
150 tag = __blk_mq_get_tag(data, bt);
151 if (tag != -1)
152 break;
154 prepare_to_wait_exclusive(&ws->wait, &wait,
155 TASK_UNINTERRUPTIBLE);
157 tag = __blk_mq_get_tag(data, bt);
158 if (tag != -1)
159 break;
161 if (data->ctx)
162 blk_mq_put_ctx(data->ctx);
164 bt_prev = bt;
165 io_schedule();
167 data->ctx = blk_mq_get_ctx(data->q);
168 data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu);
169 tags = blk_mq_tags_from_data(data);
170 if (data->flags & BLK_MQ_REQ_RESERVED)
171 bt = &tags->breserved_tags;
172 else
173 bt = &tags->bitmap_tags;
175 finish_wait(&ws->wait, &wait);
178 * If destination hw queue is changed, fake wake up on
179 * previous queue for compensating the wake up miss, so
180 * other allocations on previous queue won't be starved.
182 if (bt != bt_prev)
183 sbitmap_queue_wake_up(bt_prev);
185 ws = bt_wait_ptr(bt, data->hctx);
186 } while (1);
188 if (drop_ctx && data->ctx)
189 blk_mq_put_ctx(data->ctx);
191 finish_wait(&ws->wait, &wait);
193 found_tag:
194 return tag + tag_offset;
197 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags,
198 struct blk_mq_ctx *ctx, unsigned int tag)
200 if (!blk_mq_tag_is_reserved(tags, tag)) {
201 const int real_tag = tag - tags->nr_reserved_tags;
203 BUG_ON(real_tag >= tags->nr_tags);
204 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
205 } else {
206 BUG_ON(tag >= tags->nr_reserved_tags);
207 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
211 struct bt_iter_data {
212 struct blk_mq_hw_ctx *hctx;
213 busy_iter_fn *fn;
214 void *data;
215 bool reserved;
218 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
220 struct bt_iter_data *iter_data = data;
221 struct blk_mq_hw_ctx *hctx = iter_data->hctx;
222 struct blk_mq_tags *tags = hctx->tags;
223 bool reserved = iter_data->reserved;
224 struct request *rq;
226 if (!reserved)
227 bitnr += tags->nr_reserved_tags;
228 rq = tags->rqs[bitnr];
231 * We can hit rq == NULL here, because the tagging functions
232 * test and set the bit before assining ->rqs[].
234 if (rq && rq->q == hctx->queue)
235 iter_data->fn(hctx, rq, iter_data->data, reserved);
236 return true;
239 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
240 busy_iter_fn *fn, void *data, bool reserved)
242 struct bt_iter_data iter_data = {
243 .hctx = hctx,
244 .fn = fn,
245 .data = data,
246 .reserved = reserved,
249 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
252 struct bt_tags_iter_data {
253 struct blk_mq_tags *tags;
254 busy_tag_iter_fn *fn;
255 void *data;
256 bool reserved;
259 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
261 struct bt_tags_iter_data *iter_data = data;
262 struct blk_mq_tags *tags = iter_data->tags;
263 bool reserved = iter_data->reserved;
264 struct request *rq;
266 if (!reserved)
267 bitnr += tags->nr_reserved_tags;
270 * We can hit rq == NULL here, because the tagging functions
271 * test and set the bit before assining ->rqs[].
273 rq = tags->rqs[bitnr];
274 if (rq && blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
275 iter_data->fn(rq, iter_data->data, reserved);
277 return true;
280 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
281 busy_tag_iter_fn *fn, void *data, bool reserved)
283 struct bt_tags_iter_data iter_data = {
284 .tags = tags,
285 .fn = fn,
286 .data = data,
287 .reserved = reserved,
290 if (tags->rqs)
291 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
294 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags,
295 busy_tag_iter_fn *fn, void *priv)
297 if (tags->nr_reserved_tags)
298 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true);
299 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false);
302 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
303 busy_tag_iter_fn *fn, void *priv)
305 int i;
307 for (i = 0; i < tagset->nr_hw_queues; i++) {
308 if (tagset->tags && tagset->tags[i])
309 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv);
312 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
314 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
315 void *priv)
317 struct blk_mq_hw_ctx *hctx;
318 int i;
321 queue_for_each_hw_ctx(q, hctx, i) {
322 struct blk_mq_tags *tags = hctx->tags;
325 * If not software queues are currently mapped to this
326 * hardware queue, there's nothing to check
328 if (!blk_mq_hw_queue_mapped(hctx))
329 continue;
331 if (tags->nr_reserved_tags)
332 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
333 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
338 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
339 bool round_robin, int node)
341 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
342 node);
345 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
346 int node, int alloc_policy)
348 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
349 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
351 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
352 goto free_tags;
353 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
354 node))
355 goto free_bitmap_tags;
357 return tags;
358 free_bitmap_tags:
359 sbitmap_queue_free(&tags->bitmap_tags);
360 free_tags:
361 kfree(tags);
362 return NULL;
365 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
366 unsigned int reserved_tags,
367 int node, int alloc_policy)
369 struct blk_mq_tags *tags;
371 if (total_tags > BLK_MQ_TAG_MAX) {
372 pr_err("blk-mq: tag depth too large\n");
373 return NULL;
376 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
377 if (!tags)
378 return NULL;
380 tags->nr_tags = total_tags;
381 tags->nr_reserved_tags = reserved_tags;
383 return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
386 void blk_mq_free_tags(struct blk_mq_tags *tags)
388 sbitmap_queue_free(&tags->bitmap_tags);
389 sbitmap_queue_free(&tags->breserved_tags);
390 kfree(tags);
393 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
394 struct blk_mq_tags **tagsptr, unsigned int tdepth,
395 bool can_grow)
397 struct blk_mq_tags *tags = *tagsptr;
399 if (tdepth <= tags->nr_reserved_tags)
400 return -EINVAL;
402 tdepth -= tags->nr_reserved_tags;
405 * If we are allowed to grow beyond the original size, allocate
406 * a new set of tags before freeing the old one.
408 if (tdepth > tags->nr_tags) {
409 struct blk_mq_tag_set *set = hctx->queue->tag_set;
410 struct blk_mq_tags *new;
411 bool ret;
413 if (!can_grow)
414 return -EINVAL;
417 * We need some sort of upper limit, set it high enough that
418 * no valid use cases should require more.
420 if (tdepth > 16 * BLKDEV_MAX_RQ)
421 return -EINVAL;
423 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth, 0);
424 if (!new)
425 return -ENOMEM;
426 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
427 if (ret) {
428 blk_mq_free_rq_map(new);
429 return -ENOMEM;
432 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
433 blk_mq_free_rq_map(*tagsptr);
434 *tagsptr = new;
435 } else {
437 * Don't need (or can't) update reserved tags here, they
438 * remain static and should never need resizing.
440 sbitmap_queue_resize(&tags->bitmap_tags, tdepth);
443 return 0;
447 * blk_mq_unique_tag() - return a tag that is unique queue-wide
448 * @rq: request for which to compute a unique tag
450 * The tag field in struct request is unique per hardware queue but not over
451 * all hardware queues. Hence this function that returns a tag with the
452 * hardware context index in the upper bits and the per hardware queue tag in
453 * the lower bits.
455 * Note: When called for a request that is queued on a non-multiqueue request
456 * queue, the hardware context index is set to zero.
458 u32 blk_mq_unique_tag(struct request *rq)
460 struct request_queue *q = rq->q;
461 struct blk_mq_hw_ctx *hctx;
462 int hwq = 0;
464 if (q->mq_ops) {
465 hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
466 hwq = hctx->queue_num;
469 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
470 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
472 EXPORT_SYMBOL(blk_mq_unique_tag);