1 // SPDX-License-Identifier: GPL-2.0-only
3 * Aptina Sensor PLL Configuration
5 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/lcm.h>
12 #include <linux/module.h>
14 #include "aptina-pll.h"
16 int aptina_pll_calculate(struct device
*dev
,
17 const struct aptina_pll_limits
*limits
,
18 struct aptina_pll
*pll
)
27 dev_dbg(dev
, "PLL: ext clock %u pix clock %u\n",
28 pll
->ext_clock
, pll
->pix_clock
);
30 if (pll
->ext_clock
< limits
->ext_clock_min
||
31 pll
->ext_clock
> limits
->ext_clock_max
) {
32 dev_err(dev
, "pll: invalid external clock frequency.\n");
36 if (pll
->pix_clock
== 0 || pll
->pix_clock
> limits
->pix_clock_max
) {
37 dev_err(dev
, "pll: invalid pixel clock frequency.\n");
41 /* Compute the multiplier M and combined N*P1 divisor. */
42 div
= gcd(pll
->pix_clock
, pll
->ext_clock
);
43 pll
->m
= pll
->pix_clock
/ div
;
44 div
= pll
->ext_clock
/ div
;
46 /* We now have the smallest M and N*P1 values that will result in the
47 * desired pixel clock frequency, but they might be out of the valid
48 * range. Compute the factor by which we should multiply them given the
49 * following constraints:
51 * - minimum/maximum multiplier
52 * - minimum/maximum multiplier output clock frequency assuming the
53 * minimum/maximum N value
54 * - minimum/maximum combined N*P1 divisor
56 mf_min
= DIV_ROUND_UP(limits
->m_min
, pll
->m
);
57 mf_min
= max(mf_min
, limits
->out_clock_min
/
58 (pll
->ext_clock
/ limits
->n_min
* pll
->m
));
59 mf_min
= max(mf_min
, limits
->n_min
* limits
->p1_min
/ div
);
60 mf_max
= limits
->m_max
/ pll
->m
;
61 mf_max
= min(mf_max
, limits
->out_clock_max
/
62 (pll
->ext_clock
/ limits
->n_max
* pll
->m
));
63 mf_max
= min(mf_max
, DIV_ROUND_UP(limits
->n_max
* limits
->p1_max
, div
));
65 dev_dbg(dev
, "pll: mf min %u max %u\n", mf_min
, mf_max
);
66 if (mf_min
> mf_max
) {
67 dev_err(dev
, "pll: no valid combined N*P1 divisor.\n");
72 * We're looking for the highest acceptable P1 value for which a
73 * multiplier factor MF exists that fulfills the following conditions:
75 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
77 * 2. mf is in the [mf_min, mf_max] range computed above
78 * 3. div * mf is a multiple of p1, in order to compute
81 * 4. the internal clock frequency, given by ext_clock / n, is in the
82 * [int_clock_min, int_clock_max] range given by the limits
83 * 5. the output clock frequency, given by ext_clock / n * m, is in the
84 * [out_clock_min, out_clock_max] range given by the limits
86 * The first naive approach is to iterate over all p1 values acceptable
87 * according to (1) and all mf values acceptable according to (2), and
88 * stop at the first combination that fulfills (3), (4) and (5). This
89 * has a O(n^2) complexity.
91 * Instead of iterating over all mf values in the [mf_min, mf_max] range
92 * we can compute the mf increment between two acceptable values
93 * according to (3) with
95 * mf_inc = p1 / gcd(div, p1) (6)
97 * and round the minimum up to the nearest multiple of mf_inc. This will
98 * restrict the number of mf values to be checked.
100 * Furthermore, conditions (4) and (5) only restrict the range of
101 * acceptable p1 and mf values by modifying the minimum and maximum
102 * limits. (5) can be expressed as
104 * ext_clock / (div * mf / p1) * m * mf >= out_clock_min
105 * ext_clock / (div * mf / p1) * m * mf <= out_clock_max
109 * p1 >= out_clock_min * div / (ext_clock * m) (7)
110 * p1 <= out_clock_max * div / (ext_clock * m)
112 * Similarly, (4) can be expressed as
114 * mf >= ext_clock * p1 / (int_clock_max * div) (8)
115 * mf <= ext_clock * p1 / (int_clock_min * div)
117 * We can thus iterate over the restricted p1 range defined by the
118 * combination of (1) and (7), and then compute the restricted mf range
119 * defined by the combination of (2), (6) and (8). If the resulting mf
120 * range is not empty, any value in the mf range is acceptable. We thus
121 * select the mf lwoer bound and the corresponding p1 value.
123 if (limits
->p1_min
== 0) {
124 dev_err(dev
, "pll: P1 minimum value must be >0.\n");
128 p1_min
= max(limits
->p1_min
, DIV_ROUND_UP(limits
->out_clock_min
* div
,
129 pll
->ext_clock
* pll
->m
));
130 p1_max
= min(limits
->p1_max
, limits
->out_clock_max
* div
/
131 (pll
->ext_clock
* pll
->m
));
133 for (p1
= p1_max
& ~1; p1
>= p1_min
; p1
-= 2) {
134 unsigned int mf_inc
= p1
/ gcd(div
, p1
);
135 unsigned int mf_high
;
138 mf_low
= roundup(max(mf_min
, DIV_ROUND_UP(pll
->ext_clock
* p1
,
139 limits
->int_clock_max
* div
)), mf_inc
);
140 mf_high
= min(mf_max
, pll
->ext_clock
* p1
/
141 (limits
->int_clock_min
* div
));
143 if (mf_low
> mf_high
)
146 pll
->n
= div
* mf_low
/ p1
;
149 dev_dbg(dev
, "PLL: N %u M %u P1 %u\n", pll
->n
, pll
->m
, pll
->p1
);
153 dev_err(dev
, "pll: no valid N and P1 divisors found.\n");
156 EXPORT_SYMBOL_GPL(aptina_pll_calculate
);
158 MODULE_DESCRIPTION("Aptina PLL Helpers");
159 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
160 MODULE_LICENSE("GPL v2");