Merge branch 'work.regset' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / media / usb / gspca / ov534.c
blob185c1f10fb30be059727af39d44cbcd16b5adbc5
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ov534-ov7xxx gspca driver
5 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
6 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
7 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
9 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
10 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
11 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
13 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
14 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
15 * added by Max Thrun <bear24rw@gmail.com>
16 * PS3 Eye camera - FPS range extended by Joseph Howse
17 * <josephhowse@nummist.com> http://nummist.com
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #define MODULE_NAME "ov534"
24 #include "gspca.h"
26 #include <linux/fixp-arith.h>
27 #include <media/v4l2-ctrls.h>
29 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
30 #define OV534_REG_SUBADDR 0xf2
31 #define OV534_REG_WRITE 0xf3
32 #define OV534_REG_READ 0xf4
33 #define OV534_REG_OPERATION 0xf5
34 #define OV534_REG_STATUS 0xf6
36 #define OV534_OP_WRITE_3 0x37
37 #define OV534_OP_WRITE_2 0x33
38 #define OV534_OP_READ_2 0xf9
40 #define CTRL_TIMEOUT 500
41 #define DEFAULT_FRAME_RATE 30
43 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
44 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
45 MODULE_LICENSE("GPL");
47 /* specific webcam descriptor */
48 struct sd {
49 struct gspca_dev gspca_dev; /* !! must be the first item */
51 struct v4l2_ctrl_handler ctrl_handler;
52 struct v4l2_ctrl *hue;
53 struct v4l2_ctrl *saturation;
54 struct v4l2_ctrl *brightness;
55 struct v4l2_ctrl *contrast;
56 struct { /* gain control cluster */
57 struct v4l2_ctrl *autogain;
58 struct v4l2_ctrl *gain;
60 struct v4l2_ctrl *autowhitebalance;
61 struct { /* exposure control cluster */
62 struct v4l2_ctrl *autoexposure;
63 struct v4l2_ctrl *exposure;
65 struct v4l2_ctrl *sharpness;
66 struct v4l2_ctrl *hflip;
67 struct v4l2_ctrl *vflip;
68 struct v4l2_ctrl *plfreq;
70 __u32 last_pts;
71 u16 last_fid;
72 u8 frame_rate;
74 u8 sensor;
76 enum sensors {
77 SENSOR_OV767x,
78 SENSOR_OV772x,
79 NSENSORS
82 static int sd_start(struct gspca_dev *gspca_dev);
83 static void sd_stopN(struct gspca_dev *gspca_dev);
86 static const struct v4l2_pix_format ov772x_mode[] = {
87 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
88 .bytesperline = 320 * 2,
89 .sizeimage = 320 * 240 * 2,
90 .colorspace = V4L2_COLORSPACE_SRGB,
91 .priv = 1},
92 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
93 .bytesperline = 640 * 2,
94 .sizeimage = 640 * 480 * 2,
95 .colorspace = V4L2_COLORSPACE_SRGB,
96 .priv = 0},
97 {320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
98 .bytesperline = 320,
99 .sizeimage = 320 * 240,
100 .colorspace = V4L2_COLORSPACE_SRGB,
101 .priv = 1},
102 {640, 480, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
103 .bytesperline = 640,
104 .sizeimage = 640 * 480,
105 .colorspace = V4L2_COLORSPACE_SRGB,
106 .priv = 0},
108 static const struct v4l2_pix_format ov767x_mode[] = {
109 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
110 .bytesperline = 320,
111 .sizeimage = 320 * 240 * 3 / 8 + 590,
112 .colorspace = V4L2_COLORSPACE_JPEG},
113 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
114 .bytesperline = 640,
115 .sizeimage = 640 * 480 * 3 / 8 + 590,
116 .colorspace = V4L2_COLORSPACE_JPEG},
119 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
120 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
122 static const struct framerates ov772x_framerates[] = {
123 { /* 320x240 */
124 .rates = qvga_rates,
125 .nrates = ARRAY_SIZE(qvga_rates),
127 { /* 640x480 */
128 .rates = vga_rates,
129 .nrates = ARRAY_SIZE(vga_rates),
131 { /* 320x240 SGBRG8 */
132 .rates = qvga_rates,
133 .nrates = ARRAY_SIZE(qvga_rates),
135 { /* 640x480 SGBRG8 */
136 .rates = vga_rates,
137 .nrates = ARRAY_SIZE(vga_rates),
141 struct reg_array {
142 const u8 (*val)[2];
143 int len;
146 static const u8 bridge_init_767x[][2] = {
147 /* comments from the ms-win file apollo7670.set */
148 /* str1 */
149 {0xf1, 0x42},
150 {0x88, 0xf8},
151 {0x89, 0xff},
152 {0x76, 0x03},
153 {0x92, 0x03},
154 {0x95, 0x10},
155 {0xe2, 0x00},
156 {0xe7, 0x3e},
157 {0x8d, 0x1c},
158 {0x8e, 0x00},
159 {0x8f, 0x00},
160 {0x1f, 0x00},
161 {0xc3, 0xf9},
162 {0x89, 0xff},
163 {0x88, 0xf8},
164 {0x76, 0x03},
165 {0x92, 0x01},
166 {0x93, 0x18},
167 {0x1c, 0x00},
168 {0x1d, 0x48},
169 {0x1d, 0x00},
170 {0x1d, 0xff},
171 {0x1d, 0x02},
172 {0x1d, 0x58},
173 {0x1d, 0x00},
174 {0x1c, 0x0a},
175 {0x1d, 0x0a},
176 {0x1d, 0x0e},
177 {0xc0, 0x50}, /* HSize 640 */
178 {0xc1, 0x3c}, /* VSize 480 */
179 {0x34, 0x05}, /* enable Audio Suspend mode */
180 {0xc2, 0x0c}, /* Input YUV */
181 {0xc3, 0xf9}, /* enable PRE */
182 {0x34, 0x05}, /* enable Audio Suspend mode */
183 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
184 {0x31, 0xf9}, /* enable 1.8V Suspend */
185 {0x35, 0x02}, /* turn on JPEG */
186 {0xd9, 0x10},
187 {0x25, 0x42}, /* GPIO[8]:Input */
188 {0x94, 0x11}, /* If the default setting is loaded when
189 * system boots up, this flag is closed here */
191 static const u8 sensor_init_767x[][2] = {
192 {0x12, 0x80},
193 {0x11, 0x03},
194 {0x3a, 0x04},
195 {0x12, 0x00},
196 {0x17, 0x13},
197 {0x18, 0x01},
198 {0x32, 0xb6},
199 {0x19, 0x02},
200 {0x1a, 0x7a},
201 {0x03, 0x0a},
202 {0x0c, 0x00},
203 {0x3e, 0x00},
204 {0x70, 0x3a},
205 {0x71, 0x35},
206 {0x72, 0x11},
207 {0x73, 0xf0},
208 {0xa2, 0x02},
209 {0x7a, 0x2a}, /* set Gamma=1.6 below */
210 {0x7b, 0x12},
211 {0x7c, 0x1d},
212 {0x7d, 0x2d},
213 {0x7e, 0x45},
214 {0x7f, 0x50},
215 {0x80, 0x59},
216 {0x81, 0x62},
217 {0x82, 0x6b},
218 {0x83, 0x73},
219 {0x84, 0x7b},
220 {0x85, 0x8a},
221 {0x86, 0x98},
222 {0x87, 0xb2},
223 {0x88, 0xca},
224 {0x89, 0xe0},
225 {0x13, 0xe0},
226 {0x00, 0x00},
227 {0x10, 0x00},
228 {0x0d, 0x40},
229 {0x14, 0x38}, /* gain max 16x */
230 {0xa5, 0x05},
231 {0xab, 0x07},
232 {0x24, 0x95},
233 {0x25, 0x33},
234 {0x26, 0xe3},
235 {0x9f, 0x78},
236 {0xa0, 0x68},
237 {0xa1, 0x03},
238 {0xa6, 0xd8},
239 {0xa7, 0xd8},
240 {0xa8, 0xf0},
241 {0xa9, 0x90},
242 {0xaa, 0x94},
243 {0x13, 0xe5},
244 {0x0e, 0x61},
245 {0x0f, 0x4b},
246 {0x16, 0x02},
247 {0x21, 0x02},
248 {0x22, 0x91},
249 {0x29, 0x07},
250 {0x33, 0x0b},
251 {0x35, 0x0b},
252 {0x37, 0x1d},
253 {0x38, 0x71},
254 {0x39, 0x2a},
255 {0x3c, 0x78},
256 {0x4d, 0x40},
257 {0x4e, 0x20},
258 {0x69, 0x00},
259 {0x6b, 0x4a},
260 {0x74, 0x10},
261 {0x8d, 0x4f},
262 {0x8e, 0x00},
263 {0x8f, 0x00},
264 {0x90, 0x00},
265 {0x91, 0x00},
266 {0x96, 0x00},
267 {0x9a, 0x80},
268 {0xb0, 0x84},
269 {0xb1, 0x0c},
270 {0xb2, 0x0e},
271 {0xb3, 0x82},
272 {0xb8, 0x0a},
273 {0x43, 0x0a},
274 {0x44, 0xf0},
275 {0x45, 0x34},
276 {0x46, 0x58},
277 {0x47, 0x28},
278 {0x48, 0x3a},
279 {0x59, 0x88},
280 {0x5a, 0x88},
281 {0x5b, 0x44},
282 {0x5c, 0x67},
283 {0x5d, 0x49},
284 {0x5e, 0x0e},
285 {0x6c, 0x0a},
286 {0x6d, 0x55},
287 {0x6e, 0x11},
288 {0x6f, 0x9f},
289 {0x6a, 0x40},
290 {0x01, 0x40},
291 {0x02, 0x40},
292 {0x13, 0xe7},
293 {0x4f, 0x80},
294 {0x50, 0x80},
295 {0x51, 0x00},
296 {0x52, 0x22},
297 {0x53, 0x5e},
298 {0x54, 0x80},
299 {0x58, 0x9e},
300 {0x41, 0x08},
301 {0x3f, 0x00},
302 {0x75, 0x04},
303 {0x76, 0xe1},
304 {0x4c, 0x00},
305 {0x77, 0x01},
306 {0x3d, 0xc2},
307 {0x4b, 0x09},
308 {0xc9, 0x60},
309 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
310 {0x56, 0x40},
311 {0x34, 0x11},
312 {0x3b, 0xc2},
313 {0xa4, 0x8a}, /* Night mode trigger point */
314 {0x96, 0x00},
315 {0x97, 0x30},
316 {0x98, 0x20},
317 {0x99, 0x20},
318 {0x9a, 0x84},
319 {0x9b, 0x29},
320 {0x9c, 0x03},
321 {0x9d, 0x4c},
322 {0x9e, 0x3f},
323 {0x78, 0x04},
324 {0x79, 0x01},
325 {0xc8, 0xf0},
326 {0x79, 0x0f},
327 {0xc8, 0x00},
328 {0x79, 0x10},
329 {0xc8, 0x7e},
330 {0x79, 0x0a},
331 {0xc8, 0x80},
332 {0x79, 0x0b},
333 {0xc8, 0x01},
334 {0x79, 0x0c},
335 {0xc8, 0x0f},
336 {0x79, 0x0d},
337 {0xc8, 0x20},
338 {0x79, 0x09},
339 {0xc8, 0x80},
340 {0x79, 0x02},
341 {0xc8, 0xc0},
342 {0x79, 0x03},
343 {0xc8, 0x20},
344 {0x79, 0x26},
346 static const u8 bridge_start_vga_767x[][2] = {
347 /* str59 JPG */
348 {0x94, 0xaa},
349 {0xf1, 0x42},
350 {0xe5, 0x04},
351 {0xc0, 0x50},
352 {0xc1, 0x3c},
353 {0xc2, 0x0c},
354 {0x35, 0x02}, /* turn on JPEG */
355 {0xd9, 0x10},
356 {0xda, 0x00}, /* for higher clock rate(30fps) */
357 {0x34, 0x05}, /* enable Audio Suspend mode */
358 {0xc3, 0xf9}, /* enable PRE */
359 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
360 {0x8d, 0x1c}, /* output YUV */
361 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
362 {0x50, 0x00}, /* H/V divider=0 */
363 {0x51, 0xa0}, /* input H=640/4 */
364 {0x52, 0x3c}, /* input V=480/4 */
365 {0x53, 0x00}, /* offset X=0 */
366 {0x54, 0x00}, /* offset Y=0 */
367 {0x55, 0x00}, /* H/V size[8]=0 */
368 {0x57, 0x00}, /* H-size[9]=0 */
369 {0x5c, 0x00}, /* output size[9:8]=0 */
370 {0x5a, 0xa0}, /* output H=640/4 */
371 {0x5b, 0x78}, /* output V=480/4 */
372 {0x1c, 0x0a},
373 {0x1d, 0x0a},
374 {0x94, 0x11},
376 static const u8 sensor_start_vga_767x[][2] = {
377 {0x11, 0x01},
378 {0x1e, 0x04},
379 {0x19, 0x02},
380 {0x1a, 0x7a},
382 static const u8 bridge_start_qvga_767x[][2] = {
383 /* str86 JPG */
384 {0x94, 0xaa},
385 {0xf1, 0x42},
386 {0xe5, 0x04},
387 {0xc0, 0x80},
388 {0xc1, 0x60},
389 {0xc2, 0x0c},
390 {0x35, 0x02}, /* turn on JPEG */
391 {0xd9, 0x10},
392 {0xc0, 0x50}, /* CIF HSize 640 */
393 {0xc1, 0x3c}, /* CIF VSize 480 */
394 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
395 {0x8d, 0x1c}, /* output YUV */
396 {0x34, 0x05}, /* enable Audio Suspend mode */
397 {0xc2, 0x4c}, /* output YUV and Enable DCW */
398 {0xc3, 0xf9}, /* enable PRE */
399 {0x1c, 0x00}, /* indirect addressing */
400 {0x1d, 0x48}, /* output YUV422 */
401 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
402 {0x51, 0xa0}, /* DCW input H=640/4 */
403 {0x52, 0x78}, /* DCW input V=480/4 */
404 {0x53, 0x00}, /* offset X=0 */
405 {0x54, 0x00}, /* offset Y=0 */
406 {0x55, 0x00}, /* H/V size[8]=0 */
407 {0x57, 0x00}, /* H-size[9]=0 */
408 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
409 {0x5a, 0x50}, /* DCW output H=320/4 */
410 {0x5b, 0x3c}, /* DCW output V=240/4 */
411 {0x1c, 0x0a},
412 {0x1d, 0x0a},
413 {0x94, 0x11},
415 static const u8 sensor_start_qvga_767x[][2] = {
416 {0x11, 0x01},
417 {0x1e, 0x04},
418 {0x19, 0x02},
419 {0x1a, 0x7a},
422 static const u8 bridge_init_772x[][2] = {
423 { 0x88, 0xf8 },
424 { 0x89, 0xff },
425 { 0x76, 0x03 },
426 { 0x92, 0x01 },
427 { 0x93, 0x18 },
428 { 0x94, 0x10 },
429 { 0x95, 0x10 },
430 { 0xe2, 0x00 },
431 { 0xe7, 0x3e },
433 { 0x96, 0x00 },
435 { 0x97, 0x20 },
436 { 0x97, 0x20 },
437 { 0x97, 0x20 },
438 { 0x97, 0x0a },
439 { 0x97, 0x3f },
440 { 0x97, 0x4a },
441 { 0x97, 0x20 },
442 { 0x97, 0x15 },
443 { 0x97, 0x0b },
445 { 0x8e, 0x40 },
446 { 0x1f, 0x81 },
447 { 0x34, 0x05 },
448 { 0xe3, 0x04 },
449 { 0x89, 0x00 },
450 { 0x76, 0x00 },
451 { 0xe7, 0x2e },
452 { 0x31, 0xf9 },
453 { 0x25, 0x42 },
454 { 0x21, 0xf0 },
456 { 0x1c, 0x0a },
457 { 0x1d, 0x08 }, /* turn on UVC header */
458 { 0x1d, 0x0e }, /* .. */
460 static const u8 sensor_init_772x[][2] = {
461 { 0x12, 0x80 },
462 { 0x11, 0x01 },
463 /*fixme: better have a delay?*/
464 { 0x11, 0x01 },
465 { 0x11, 0x01 },
466 { 0x11, 0x01 },
467 { 0x11, 0x01 },
468 { 0x11, 0x01 },
469 { 0x11, 0x01 },
470 { 0x11, 0x01 },
471 { 0x11, 0x01 },
472 { 0x11, 0x01 },
473 { 0x11, 0x01 },
475 { 0x3d, 0x03 },
476 { 0x17, 0x26 },
477 { 0x18, 0xa0 },
478 { 0x19, 0x07 },
479 { 0x1a, 0xf0 },
480 { 0x32, 0x00 },
481 { 0x29, 0xa0 },
482 { 0x2c, 0xf0 },
483 { 0x65, 0x20 },
484 { 0x11, 0x01 },
485 { 0x42, 0x7f },
486 { 0x63, 0xaa }, /* AWB - was e0 */
487 { 0x64, 0xff },
488 { 0x66, 0x00 },
489 { 0x13, 0xf0 }, /* com8 */
490 { 0x0d, 0x41 },
491 { 0x0f, 0xc5 },
492 { 0x14, 0x11 },
494 { 0x22, 0x7f },
495 { 0x23, 0x03 },
496 { 0x24, 0x40 },
497 { 0x25, 0x30 },
498 { 0x26, 0xa1 },
499 { 0x2a, 0x00 },
500 { 0x2b, 0x00 },
501 { 0x6b, 0xaa },
502 { 0x13, 0xff }, /* AWB */
504 { 0x90, 0x05 },
505 { 0x91, 0x01 },
506 { 0x92, 0x03 },
507 { 0x93, 0x00 },
508 { 0x94, 0x60 },
509 { 0x95, 0x3c },
510 { 0x96, 0x24 },
511 { 0x97, 0x1e },
512 { 0x98, 0x62 },
513 { 0x99, 0x80 },
514 { 0x9a, 0x1e },
515 { 0x9b, 0x08 },
516 { 0x9c, 0x20 },
517 { 0x9e, 0x81 },
519 { 0xa6, 0x07 },
520 { 0x7e, 0x0c },
521 { 0x7f, 0x16 },
522 { 0x80, 0x2a },
523 { 0x81, 0x4e },
524 { 0x82, 0x61 },
525 { 0x83, 0x6f },
526 { 0x84, 0x7b },
527 { 0x85, 0x86 },
528 { 0x86, 0x8e },
529 { 0x87, 0x97 },
530 { 0x88, 0xa4 },
531 { 0x89, 0xaf },
532 { 0x8a, 0xc5 },
533 { 0x8b, 0xd7 },
534 { 0x8c, 0xe8 },
535 { 0x8d, 0x20 },
537 { 0x2b, 0x00 },
538 { 0x22, 0x7f },
539 { 0x23, 0x03 },
540 { 0x11, 0x01 },
541 { 0x64, 0xff },
542 { 0x0d, 0x41 },
544 { 0x14, 0x41 },
545 { 0x0e, 0xcd },
546 { 0xac, 0xbf },
547 { 0x8e, 0x00 }, /* De-noise threshold */
549 static const u8 bridge_start_vga_yuyv_772x[][2] = {
550 {0x88, 0x00},
551 {0x1c, 0x00},
552 {0x1d, 0x40},
553 {0x1d, 0x02},
554 {0x1d, 0x00},
555 {0x1d, 0x02},
556 {0x1d, 0x58},
557 {0x1d, 0x00},
558 {0x8d, 0x1c},
559 {0x8e, 0x80},
560 {0xc0, 0x50},
561 {0xc1, 0x3c},
562 {0xc2, 0x0c},
563 {0xc3, 0x69},
565 static const u8 sensor_start_vga_yuyv_772x[][2] = {
566 {0x12, 0x00},
567 {0x17, 0x26},
568 {0x18, 0xa0},
569 {0x19, 0x07},
570 {0x1a, 0xf0},
571 {0x29, 0xa0},
572 {0x2c, 0xf0},
573 {0x65, 0x20},
574 {0x67, 0x00},
576 static const u8 bridge_start_qvga_yuyv_772x[][2] = {
577 {0x88, 0x00},
578 {0x1c, 0x00},
579 {0x1d, 0x40},
580 {0x1d, 0x02},
581 {0x1d, 0x00},
582 {0x1d, 0x01},
583 {0x1d, 0x4b},
584 {0x1d, 0x00},
585 {0x8d, 0x1c},
586 {0x8e, 0x80},
587 {0xc0, 0x28},
588 {0xc1, 0x1e},
589 {0xc2, 0x0c},
590 {0xc3, 0x69},
592 static const u8 sensor_start_qvga_yuyv_772x[][2] = {
593 {0x12, 0x40},
594 {0x17, 0x3f},
595 {0x18, 0x50},
596 {0x19, 0x03},
597 {0x1a, 0x78},
598 {0x29, 0x50},
599 {0x2c, 0x78},
600 {0x65, 0x2f},
601 {0x67, 0x00},
603 static const u8 bridge_start_vga_gbrg_772x[][2] = {
604 {0x88, 0x08},
605 {0x1c, 0x00},
606 {0x1d, 0x00},
607 {0x1d, 0x02},
608 {0x1d, 0x00},
609 {0x1d, 0x01},
610 {0x1d, 0x2c},
611 {0x1d, 0x00},
612 {0x8d, 0x00},
613 {0x8e, 0x00},
614 {0xc0, 0x50},
615 {0xc1, 0x3c},
616 {0xc2, 0x01},
617 {0xc3, 0x01},
619 static const u8 sensor_start_vga_gbrg_772x[][2] = {
620 {0x12, 0x01},
621 {0x17, 0x26},
622 {0x18, 0xa0},
623 {0x19, 0x07},
624 {0x1a, 0xf0},
625 {0x29, 0xa0},
626 {0x2c, 0xf0},
627 {0x65, 0x20},
628 {0x67, 0x02},
630 static const u8 bridge_start_qvga_gbrg_772x[][2] = {
631 {0x88, 0x08},
632 {0x1c, 0x00},
633 {0x1d, 0x00},
634 {0x1d, 0x02},
635 {0x1d, 0x00},
636 {0x1d, 0x00},
637 {0x1d, 0x4b},
638 {0x1d, 0x00},
639 {0x8d, 0x00},
640 {0x8e, 0x00},
641 {0xc0, 0x28},
642 {0xc1, 0x1e},
643 {0xc2, 0x01},
644 {0xc3, 0x01},
646 static const u8 sensor_start_qvga_gbrg_772x[][2] = {
647 {0x12, 0x41},
648 {0x17, 0x3f},
649 {0x18, 0x50},
650 {0x19, 0x03},
651 {0x1a, 0x78},
652 {0x29, 0x50},
653 {0x2c, 0x78},
654 {0x65, 0x2f},
655 {0x67, 0x02},
658 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
660 struct usb_device *udev = gspca_dev->dev;
661 int ret;
663 if (gspca_dev->usb_err < 0)
664 return;
666 gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val);
667 gspca_dev->usb_buf[0] = val;
668 ret = usb_control_msg(udev,
669 usb_sndctrlpipe(udev, 0),
670 0x01,
671 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
672 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
673 if (ret < 0) {
674 pr_err("write failed %d\n", ret);
675 gspca_dev->usb_err = ret;
679 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
681 struct usb_device *udev = gspca_dev->dev;
682 int ret;
684 if (gspca_dev->usb_err < 0)
685 return 0;
686 ret = usb_control_msg(udev,
687 usb_rcvctrlpipe(udev, 0),
688 0x01,
689 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
690 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
691 gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n",
692 reg, gspca_dev->usb_buf[0]);
693 if (ret < 0) {
694 pr_err("read failed %d\n", ret);
695 gspca_dev->usb_err = ret;
697 * Make sure the result is zeroed to avoid uninitialized
698 * values.
700 gspca_dev->usb_buf[0] = 0;
702 return gspca_dev->usb_buf[0];
705 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
706 * (direction and output)? */
707 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
709 u8 data;
711 gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status);
713 data = ov534_reg_read(gspca_dev, 0x21);
714 data |= 0x80;
715 ov534_reg_write(gspca_dev, 0x21, data);
717 data = ov534_reg_read(gspca_dev, 0x23);
718 if (status)
719 data |= 0x80;
720 else
721 data &= ~0x80;
723 ov534_reg_write(gspca_dev, 0x23, data);
725 if (!status) {
726 data = ov534_reg_read(gspca_dev, 0x21);
727 data &= ~0x80;
728 ov534_reg_write(gspca_dev, 0x21, data);
732 static int sccb_check_status(struct gspca_dev *gspca_dev)
734 u8 data;
735 int i;
737 for (i = 0; i < 5; i++) {
738 usleep_range(10000, 20000);
739 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
741 switch (data) {
742 case 0x00:
743 return 1;
744 case 0x04:
745 return 0;
746 case 0x03:
747 break;
748 default:
749 gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n",
750 data, i + 1);
753 return 0;
756 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
758 gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val);
759 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
760 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
761 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
763 if (!sccb_check_status(gspca_dev)) {
764 pr_err("sccb_reg_write failed\n");
765 gspca_dev->usb_err = -EIO;
769 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
771 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
772 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
773 if (!sccb_check_status(gspca_dev))
774 pr_err("sccb_reg_read failed 1\n");
776 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
777 if (!sccb_check_status(gspca_dev))
778 pr_err("sccb_reg_read failed 2\n");
780 return ov534_reg_read(gspca_dev, OV534_REG_READ);
783 /* output a bridge sequence (reg - val) */
784 static void reg_w_array(struct gspca_dev *gspca_dev,
785 const u8 (*data)[2], int len)
787 while (--len >= 0) {
788 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
789 data++;
793 /* output a sensor sequence (reg - val) */
794 static void sccb_w_array(struct gspca_dev *gspca_dev,
795 const u8 (*data)[2], int len)
797 while (--len >= 0) {
798 if ((*data)[0] != 0xff) {
799 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
800 } else {
801 sccb_reg_read(gspca_dev, (*data)[1]);
802 sccb_reg_write(gspca_dev, 0xff, 0x00);
804 data++;
808 /* ov772x specific controls */
809 static void set_frame_rate(struct gspca_dev *gspca_dev)
811 struct sd *sd = (struct sd *) gspca_dev;
812 int i;
813 struct rate_s {
814 u8 fps;
815 u8 r11;
816 u8 r0d;
817 u8 re5;
819 const struct rate_s *r;
820 static const struct rate_s rate_0[] = { /* 640x480 */
821 {60, 0x01, 0xc1, 0x04},
822 {50, 0x01, 0x41, 0x02},
823 {40, 0x02, 0xc1, 0x04},
824 {30, 0x04, 0x81, 0x02},
825 {15, 0x03, 0x41, 0x04},
827 static const struct rate_s rate_1[] = { /* 320x240 */
828 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
829 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
830 {150, 0x01, 0xc1, 0x04},
831 {137, 0x02, 0xc1, 0x02},
832 {125, 0x02, 0x81, 0x02},
833 {100, 0x02, 0xc1, 0x04},
834 {75, 0x03, 0xc1, 0x04},
835 {60, 0x04, 0xc1, 0x04},
836 {50, 0x02, 0x41, 0x04},
837 {37, 0x03, 0x41, 0x04},
838 {30, 0x04, 0x41, 0x04},
841 if (sd->sensor != SENSOR_OV772x)
842 return;
843 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
844 r = rate_0;
845 i = ARRAY_SIZE(rate_0);
846 } else {
847 r = rate_1;
848 i = ARRAY_SIZE(rate_1);
850 while (--i > 0) {
851 if (sd->frame_rate >= r->fps)
852 break;
853 r++;
856 sccb_reg_write(gspca_dev, 0x11, r->r11);
857 sccb_reg_write(gspca_dev, 0x0d, r->r0d);
858 ov534_reg_write(gspca_dev, 0xe5, r->re5);
860 gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps);
863 static void sethue(struct gspca_dev *gspca_dev, s32 val)
865 struct sd *sd = (struct sd *) gspca_dev;
867 if (sd->sensor == SENSOR_OV767x) {
868 /* TBD */
869 } else {
870 s16 huesin;
871 s16 huecos;
873 /* According to the datasheet the registers expect HUESIN and
874 * HUECOS to be the result of the trigonometric functions,
875 * scaled by 0x80.
877 * The 0x7fff here represents the maximum absolute value
878 * returned byt fixp_sin and fixp_cos, so the scaling will
879 * consider the result like in the interval [-1.0, 1.0].
881 huesin = fixp_sin16(val) * 0x80 / 0x7fff;
882 huecos = fixp_cos16(val) * 0x80 / 0x7fff;
884 if (huesin < 0) {
885 sccb_reg_write(gspca_dev, 0xab,
886 sccb_reg_read(gspca_dev, 0xab) | 0x2);
887 huesin = -huesin;
888 } else {
889 sccb_reg_write(gspca_dev, 0xab,
890 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
893 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
894 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
898 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
900 struct sd *sd = (struct sd *) gspca_dev;
902 if (sd->sensor == SENSOR_OV767x) {
903 int i;
904 static u8 color_tb[][6] = {
905 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
906 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
907 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
908 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
909 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
910 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
911 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
914 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
915 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
916 } else {
917 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
918 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
922 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
924 struct sd *sd = (struct sd *) gspca_dev;
926 if (sd->sensor == SENSOR_OV767x) {
927 if (val < 0)
928 val = 0x80 - val;
929 sccb_reg_write(gspca_dev, 0x55, val); /* bright */
930 } else {
931 sccb_reg_write(gspca_dev, 0x9b, val);
935 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
937 struct sd *sd = (struct sd *) gspca_dev;
939 if (sd->sensor == SENSOR_OV767x)
940 sccb_reg_write(gspca_dev, 0x56, val); /* contras */
941 else
942 sccb_reg_write(gspca_dev, 0x9c, val);
945 static void setgain(struct gspca_dev *gspca_dev, s32 val)
947 switch (val & 0x30) {
948 case 0x00:
949 val &= 0x0f;
950 break;
951 case 0x10:
952 val &= 0x0f;
953 val |= 0x30;
954 break;
955 case 0x20:
956 val &= 0x0f;
957 val |= 0x70;
958 break;
959 default:
960 /* case 0x30: */
961 val &= 0x0f;
962 val |= 0xf0;
963 break;
965 sccb_reg_write(gspca_dev, 0x00, val);
968 static s32 getgain(struct gspca_dev *gspca_dev)
970 return sccb_reg_read(gspca_dev, 0x00);
973 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
975 struct sd *sd = (struct sd *) gspca_dev;
977 if (sd->sensor == SENSOR_OV767x) {
979 /* set only aec[9:2] */
980 sccb_reg_write(gspca_dev, 0x10, val); /* aech */
981 } else {
983 /* 'val' is one byte and represents half of the exposure value
984 * we are going to set into registers, a two bytes value:
986 * MSB: ((u16) val << 1) >> 8 == val >> 7
987 * LSB: ((u16) val << 1) & 0xff == val << 1
989 sccb_reg_write(gspca_dev, 0x08, val >> 7);
990 sccb_reg_write(gspca_dev, 0x10, val << 1);
994 static s32 getexposure(struct gspca_dev *gspca_dev)
996 struct sd *sd = (struct sd *) gspca_dev;
998 if (sd->sensor == SENSOR_OV767x) {
999 /* get only aec[9:2] */
1000 return sccb_reg_read(gspca_dev, 0x10); /* aech */
1001 } else {
1002 u8 hi = sccb_reg_read(gspca_dev, 0x08);
1003 u8 lo = sccb_reg_read(gspca_dev, 0x10);
1004 return (hi << 8 | lo) >> 1;
1008 static void setagc(struct gspca_dev *gspca_dev, s32 val)
1010 if (val) {
1011 sccb_reg_write(gspca_dev, 0x13,
1012 sccb_reg_read(gspca_dev, 0x13) | 0x04);
1013 sccb_reg_write(gspca_dev, 0x64,
1014 sccb_reg_read(gspca_dev, 0x64) | 0x03);
1015 } else {
1016 sccb_reg_write(gspca_dev, 0x13,
1017 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
1018 sccb_reg_write(gspca_dev, 0x64,
1019 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
1023 static void setawb(struct gspca_dev *gspca_dev, s32 val)
1025 struct sd *sd = (struct sd *) gspca_dev;
1027 if (val) {
1028 sccb_reg_write(gspca_dev, 0x13,
1029 sccb_reg_read(gspca_dev, 0x13) | 0x02);
1030 if (sd->sensor == SENSOR_OV772x)
1031 sccb_reg_write(gspca_dev, 0x63,
1032 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
1033 } else {
1034 sccb_reg_write(gspca_dev, 0x13,
1035 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
1036 if (sd->sensor == SENSOR_OV772x)
1037 sccb_reg_write(gspca_dev, 0x63,
1038 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
1042 static void setaec(struct gspca_dev *gspca_dev, s32 val)
1044 struct sd *sd = (struct sd *) gspca_dev;
1045 u8 data;
1047 data = sd->sensor == SENSOR_OV767x ?
1048 0x05 : /* agc + aec */
1049 0x01; /* agc */
1050 switch (val) {
1051 case V4L2_EXPOSURE_AUTO:
1052 sccb_reg_write(gspca_dev, 0x13,
1053 sccb_reg_read(gspca_dev, 0x13) | data);
1054 break;
1055 case V4L2_EXPOSURE_MANUAL:
1056 sccb_reg_write(gspca_dev, 0x13,
1057 sccb_reg_read(gspca_dev, 0x13) & ~data);
1058 break;
1062 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1064 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
1065 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
1068 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1070 struct sd *sd = (struct sd *) gspca_dev;
1071 u8 val;
1073 if (sd->sensor == SENSOR_OV767x) {
1074 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
1075 val &= ~0x30;
1076 if (hflip)
1077 val |= 0x20;
1078 if (vflip)
1079 val |= 0x10;
1080 sccb_reg_write(gspca_dev, 0x1e, val);
1081 } else {
1082 val = sccb_reg_read(gspca_dev, 0x0c);
1083 val &= ~0xc0;
1084 if (hflip == 0)
1085 val |= 0x40;
1086 if (vflip == 0)
1087 val |= 0x80;
1088 sccb_reg_write(gspca_dev, 0x0c, val);
1092 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1094 struct sd *sd = (struct sd *) gspca_dev;
1096 val = val ? 0x9e : 0x00;
1097 if (sd->sensor == SENSOR_OV767x) {
1098 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1099 if (val)
1100 val = 0x9d; /* insert dummy to 25fps for 50Hz */
1102 sccb_reg_write(gspca_dev, 0x2b, val);
1106 /* this function is called at probe time */
1107 static int sd_config(struct gspca_dev *gspca_dev,
1108 const struct usb_device_id *id)
1110 struct sd *sd = (struct sd *) gspca_dev;
1111 struct cam *cam;
1113 cam = &gspca_dev->cam;
1115 cam->cam_mode = ov772x_mode;
1116 cam->nmodes = ARRAY_SIZE(ov772x_mode);
1118 sd->frame_rate = DEFAULT_FRAME_RATE;
1120 return 0;
1123 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1125 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1126 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1128 switch (ctrl->id) {
1129 case V4L2_CID_AUTOGAIN:
1130 gspca_dev->usb_err = 0;
1131 if (ctrl->val && sd->gain && gspca_dev->streaming)
1132 sd->gain->val = getgain(gspca_dev);
1133 return gspca_dev->usb_err;
1135 case V4L2_CID_EXPOSURE_AUTO:
1136 gspca_dev->usb_err = 0;
1137 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1138 gspca_dev->streaming)
1139 sd->exposure->val = getexposure(gspca_dev);
1140 return gspca_dev->usb_err;
1142 return -EINVAL;
1145 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1147 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1148 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1150 gspca_dev->usb_err = 0;
1151 if (!gspca_dev->streaming)
1152 return 0;
1154 switch (ctrl->id) {
1155 case V4L2_CID_HUE:
1156 sethue(gspca_dev, ctrl->val);
1157 break;
1158 case V4L2_CID_SATURATION:
1159 setsaturation(gspca_dev, ctrl->val);
1160 break;
1161 case V4L2_CID_BRIGHTNESS:
1162 setbrightness(gspca_dev, ctrl->val);
1163 break;
1164 case V4L2_CID_CONTRAST:
1165 setcontrast(gspca_dev, ctrl->val);
1166 break;
1167 case V4L2_CID_AUTOGAIN:
1168 /* case V4L2_CID_GAIN: */
1169 setagc(gspca_dev, ctrl->val);
1170 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1171 setgain(gspca_dev, sd->gain->val);
1172 break;
1173 case V4L2_CID_AUTO_WHITE_BALANCE:
1174 setawb(gspca_dev, ctrl->val);
1175 break;
1176 case V4L2_CID_EXPOSURE_AUTO:
1177 /* case V4L2_CID_EXPOSURE: */
1178 setaec(gspca_dev, ctrl->val);
1179 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1180 sd->exposure)
1181 setexposure(gspca_dev, sd->exposure->val);
1182 break;
1183 case V4L2_CID_SHARPNESS:
1184 setsharpness(gspca_dev, ctrl->val);
1185 break;
1186 case V4L2_CID_HFLIP:
1187 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1188 break;
1189 case V4L2_CID_VFLIP:
1190 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1191 break;
1192 case V4L2_CID_POWER_LINE_FREQUENCY:
1193 setlightfreq(gspca_dev, ctrl->val);
1194 break;
1196 return gspca_dev->usb_err;
1199 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1200 .g_volatile_ctrl = ov534_g_volatile_ctrl,
1201 .s_ctrl = ov534_s_ctrl,
1204 static int sd_init_controls(struct gspca_dev *gspca_dev)
1206 struct sd *sd = (struct sd *) gspca_dev;
1207 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1208 /* parameters with different values between the supported sensors */
1209 int saturation_min;
1210 int saturation_max;
1211 int saturation_def;
1212 int brightness_min;
1213 int brightness_max;
1214 int brightness_def;
1215 int contrast_max;
1216 int contrast_def;
1217 int exposure_min;
1218 int exposure_max;
1219 int exposure_def;
1220 int hflip_def;
1222 if (sd->sensor == SENSOR_OV767x) {
1223 saturation_min = 0,
1224 saturation_max = 6,
1225 saturation_def = 3,
1226 brightness_min = -127;
1227 brightness_max = 127;
1228 brightness_def = 0;
1229 contrast_max = 0x80;
1230 contrast_def = 0x40;
1231 exposure_min = 0x08;
1232 exposure_max = 0x60;
1233 exposure_def = 0x13;
1234 hflip_def = 1;
1235 } else {
1236 saturation_min = 0,
1237 saturation_max = 255,
1238 saturation_def = 64,
1239 brightness_min = 0;
1240 brightness_max = 255;
1241 brightness_def = 0;
1242 contrast_max = 255;
1243 contrast_def = 32;
1244 exposure_min = 0;
1245 exposure_max = 255;
1246 exposure_def = 120;
1247 hflip_def = 0;
1250 gspca_dev->vdev.ctrl_handler = hdl;
1252 v4l2_ctrl_handler_init(hdl, 13);
1254 if (sd->sensor == SENSOR_OV772x)
1255 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1256 V4L2_CID_HUE, -90, 90, 1, 0);
1258 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1259 V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1260 saturation_def);
1261 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1262 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1263 brightness_def);
1264 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1265 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1267 if (sd->sensor == SENSOR_OV772x) {
1268 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1269 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1270 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1271 V4L2_CID_GAIN, 0, 63, 1, 20);
1274 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1275 V4L2_CID_EXPOSURE_AUTO,
1276 V4L2_EXPOSURE_MANUAL, 0,
1277 V4L2_EXPOSURE_AUTO);
1278 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1279 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1280 exposure_def);
1282 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1283 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1285 if (sd->sensor == SENSOR_OV772x)
1286 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1287 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1289 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1290 V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1291 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1292 V4L2_CID_VFLIP, 0, 1, 1, 0);
1293 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1294 V4L2_CID_POWER_LINE_FREQUENCY,
1295 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1296 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1298 if (hdl->error) {
1299 pr_err("Could not initialize controls\n");
1300 return hdl->error;
1303 if (sd->sensor == SENSOR_OV772x)
1304 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1306 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1307 true);
1309 return 0;
1312 /* this function is called at probe and resume time */
1313 static int sd_init(struct gspca_dev *gspca_dev)
1315 struct sd *sd = (struct sd *) gspca_dev;
1316 u16 sensor_id;
1317 static const struct reg_array bridge_init[NSENSORS] = {
1318 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1319 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1321 static const struct reg_array sensor_init[NSENSORS] = {
1322 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1323 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1326 /* reset bridge */
1327 ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1328 ov534_reg_write(gspca_dev, 0xe0, 0x08);
1329 msleep(100);
1331 /* initialize the sensor address */
1332 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1334 /* reset sensor */
1335 sccb_reg_write(gspca_dev, 0x12, 0x80);
1336 usleep_range(10000, 20000);
1338 /* probe the sensor */
1339 sccb_reg_read(gspca_dev, 0x0a);
1340 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1341 sccb_reg_read(gspca_dev, 0x0b);
1342 sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1343 gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id);
1345 if ((sensor_id & 0xfff0) == 0x7670) {
1346 sd->sensor = SENSOR_OV767x;
1347 gspca_dev->cam.cam_mode = ov767x_mode;
1348 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1349 } else {
1350 sd->sensor = SENSOR_OV772x;
1351 gspca_dev->cam.bulk = 1;
1352 gspca_dev->cam.bulk_size = 16384;
1353 gspca_dev->cam.bulk_nurbs = 2;
1354 gspca_dev->cam.mode_framerates = ov772x_framerates;
1357 /* initialize */
1358 reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1359 bridge_init[sd->sensor].len);
1360 ov534_set_led(gspca_dev, 1);
1361 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1362 sensor_init[sd->sensor].len);
1364 sd_stopN(gspca_dev);
1365 /* set_frame_rate(gspca_dev); */
1367 return gspca_dev->usb_err;
1370 static int sd_start(struct gspca_dev *gspca_dev)
1372 struct sd *sd = (struct sd *) gspca_dev;
1373 int mode;
1374 static const struct reg_array bridge_start[NSENSORS][4] = {
1375 [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1376 ARRAY_SIZE(bridge_start_qvga_767x)},
1377 {bridge_start_vga_767x,
1378 ARRAY_SIZE(bridge_start_vga_767x)}},
1379 [SENSOR_OV772x] = {{bridge_start_qvga_yuyv_772x,
1380 ARRAY_SIZE(bridge_start_qvga_yuyv_772x)},
1381 {bridge_start_vga_yuyv_772x,
1382 ARRAY_SIZE(bridge_start_vga_yuyv_772x)},
1383 {bridge_start_qvga_gbrg_772x,
1384 ARRAY_SIZE(bridge_start_qvga_gbrg_772x)},
1385 {bridge_start_vga_gbrg_772x,
1386 ARRAY_SIZE(bridge_start_vga_gbrg_772x)} },
1388 static const struct reg_array sensor_start[NSENSORS][4] = {
1389 [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1390 ARRAY_SIZE(sensor_start_qvga_767x)},
1391 {sensor_start_vga_767x,
1392 ARRAY_SIZE(sensor_start_vga_767x)}},
1393 [SENSOR_OV772x] = {{sensor_start_qvga_yuyv_772x,
1394 ARRAY_SIZE(sensor_start_qvga_yuyv_772x)},
1395 {sensor_start_vga_yuyv_772x,
1396 ARRAY_SIZE(sensor_start_vga_yuyv_772x)},
1397 {sensor_start_qvga_gbrg_772x,
1398 ARRAY_SIZE(sensor_start_qvga_gbrg_772x)},
1399 {sensor_start_vga_gbrg_772x,
1400 ARRAY_SIZE(sensor_start_vga_gbrg_772x)} },
1403 /* (from ms-win trace) */
1404 if (sd->sensor == SENSOR_OV767x)
1405 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1406 /* black sun enable ? */
1408 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
1409 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1410 bridge_start[sd->sensor][mode].len);
1411 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1412 sensor_start[sd->sensor][mode].len);
1414 set_frame_rate(gspca_dev);
1416 if (sd->hue)
1417 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1418 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1419 if (sd->autogain)
1420 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1421 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1422 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1423 if (sd->gain)
1424 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1425 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1426 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1427 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1428 if (sd->sharpness)
1429 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1430 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1431 v4l2_ctrl_g_ctrl(sd->vflip));
1432 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1434 ov534_set_led(gspca_dev, 1);
1435 ov534_reg_write(gspca_dev, 0xe0, 0x00);
1436 return gspca_dev->usb_err;
1439 static void sd_stopN(struct gspca_dev *gspca_dev)
1441 ov534_reg_write(gspca_dev, 0xe0, 0x09);
1442 ov534_set_led(gspca_dev, 0);
1445 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1446 #define UVC_STREAM_EOH (1 << 7)
1447 #define UVC_STREAM_ERR (1 << 6)
1448 #define UVC_STREAM_STI (1 << 5)
1449 #define UVC_STREAM_RES (1 << 4)
1450 #define UVC_STREAM_SCR (1 << 3)
1451 #define UVC_STREAM_PTS (1 << 2)
1452 #define UVC_STREAM_EOF (1 << 1)
1453 #define UVC_STREAM_FID (1 << 0)
1455 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1456 u8 *data, int len)
1458 struct sd *sd = (struct sd *) gspca_dev;
1459 __u32 this_pts;
1460 u16 this_fid;
1461 int remaining_len = len;
1462 int payload_len;
1464 payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1465 do {
1466 len = min(remaining_len, payload_len);
1468 /* Payloads are prefixed with a UVC-style header. We
1469 consider a frame to start when the FID toggles, or the PTS
1470 changes. A frame ends when EOF is set, and we've received
1471 the correct number of bytes. */
1473 /* Verify UVC header. Header length is always 12 */
1474 if (data[0] != 12 || len < 12) {
1475 gspca_dbg(gspca_dev, D_PACK, "bad header\n");
1476 goto discard;
1479 /* Check errors */
1480 if (data[1] & UVC_STREAM_ERR) {
1481 gspca_dbg(gspca_dev, D_PACK, "payload error\n");
1482 goto discard;
1485 /* Extract PTS and FID */
1486 if (!(data[1] & UVC_STREAM_PTS)) {
1487 gspca_dbg(gspca_dev, D_PACK, "PTS not present\n");
1488 goto discard;
1490 this_pts = (data[5] << 24) | (data[4] << 16)
1491 | (data[3] << 8) | data[2];
1492 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1494 /* If PTS or FID has changed, start a new frame. */
1495 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1496 if (gspca_dev->last_packet_type == INTER_PACKET)
1497 gspca_frame_add(gspca_dev, LAST_PACKET,
1498 NULL, 0);
1499 sd->last_pts = this_pts;
1500 sd->last_fid = this_fid;
1501 gspca_frame_add(gspca_dev, FIRST_PACKET,
1502 data + 12, len - 12);
1503 /* If this packet is marked as EOF, end the frame */
1504 } else if (data[1] & UVC_STREAM_EOF) {
1505 sd->last_pts = 0;
1506 if (gspca_dev->pixfmt.pixelformat != V4L2_PIX_FMT_JPEG
1507 && gspca_dev->image_len + len - 12 !=
1508 gspca_dev->pixfmt.sizeimage) {
1509 gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n");
1510 goto discard;
1512 gspca_frame_add(gspca_dev, LAST_PACKET,
1513 data + 12, len - 12);
1514 } else {
1516 /* Add the data from this payload */
1517 gspca_frame_add(gspca_dev, INTER_PACKET,
1518 data + 12, len - 12);
1521 /* Done this payload */
1522 goto scan_next;
1524 discard:
1525 /* Discard data until a new frame starts. */
1526 gspca_dev->last_packet_type = DISCARD_PACKET;
1528 scan_next:
1529 remaining_len -= len;
1530 data += len;
1531 } while (remaining_len > 0);
1534 /* get stream parameters (framerate) */
1535 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1536 struct v4l2_streamparm *parm)
1538 struct v4l2_captureparm *cp = &parm->parm.capture;
1539 struct v4l2_fract *tpf = &cp->timeperframe;
1540 struct sd *sd = (struct sd *) gspca_dev;
1542 tpf->numerator = 1;
1543 tpf->denominator = sd->frame_rate;
1546 /* set stream parameters (framerate) */
1547 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1548 struct v4l2_streamparm *parm)
1550 struct v4l2_captureparm *cp = &parm->parm.capture;
1551 struct v4l2_fract *tpf = &cp->timeperframe;
1552 struct sd *sd = (struct sd *) gspca_dev;
1554 if (tpf->numerator == 0 || tpf->denominator == 0)
1555 sd->frame_rate = DEFAULT_FRAME_RATE;
1556 else
1557 sd->frame_rate = tpf->denominator / tpf->numerator;
1559 if (gspca_dev->streaming)
1560 set_frame_rate(gspca_dev);
1562 /* Return the actual framerate */
1563 tpf->numerator = 1;
1564 tpf->denominator = sd->frame_rate;
1567 /* sub-driver description */
1568 static const struct sd_desc sd_desc = {
1569 .name = MODULE_NAME,
1570 .config = sd_config,
1571 .init = sd_init,
1572 .init_controls = sd_init_controls,
1573 .start = sd_start,
1574 .stopN = sd_stopN,
1575 .pkt_scan = sd_pkt_scan,
1576 .get_streamparm = sd_get_streamparm,
1577 .set_streamparm = sd_set_streamparm,
1580 /* -- module initialisation -- */
1581 static const struct usb_device_id device_table[] = {
1582 {USB_DEVICE(0x1415, 0x2000)},
1583 {USB_DEVICE(0x06f8, 0x3002)},
1587 MODULE_DEVICE_TABLE(usb, device_table);
1589 /* -- device connect -- */
1590 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1592 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1593 THIS_MODULE);
1596 static struct usb_driver sd_driver = {
1597 .name = MODULE_NAME,
1598 .id_table = device_table,
1599 .probe = sd_probe,
1600 .disconnect = gspca_disconnect,
1601 #ifdef CONFIG_PM
1602 .suspend = gspca_suspend,
1603 .resume = gspca_resume,
1604 .reset_resume = gspca_resume,
1605 #endif
1608 module_usb_driver(sd_driver);